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Abstract
Let (etA)t>0 be a C0-contraction semigroup on a 2-smooth Banach space E, let (Wt)t>0 be a cylin-
drical Brownian motion in a Hilbert space H, and let (gt)t>0 be a progressively measurable process
with values in the space γ(H, E) of all γ-radonifying operators from H to E. We prove that for all
0< p <∞ there exists a constant C , depending only on p and E, such that for all T > 0 we have

E sup
06t6T










∫ t

0

e(t−s)Ags dWs










p
6 CE

�

∫ T

0

‖gt‖2
γ(H,E) dt

�
p
2 .

For p > 2 the proof is based on the observation that ψ(x) = ‖x‖p is Fréchet differentiable and
its derivative satisfies the Lipschitz estimate ‖ψ′(x) − ψ′(y)‖ 6 C(‖x‖ + ‖y‖)p−2‖x − y‖; the
extension to 0< p < 2 proceeds via Lenglart’s inequality.

1 Introduction

Let (etA)t>0 be a C0-contraction semigroup on a 2-smooth Banach space E and let (Wt)t>0 be
a cylindrical Brownian motion in a Hilbert space H. Let (gt)t>0 be a progressively measurable
process with values in the space γ(H, E) of all γ-radonifying operators from H to E satisfying

∫ T

0

‖gt‖2
γ(H,E) dt <∞ P-almost surely
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for all T > 0. As is well known (see [6, 15, 16]), under these assumptions the stochastic convolu-
tion process

X t =

∫ t

0

e(t−s)Ags dWs, t > 0,

is well-defined in E and provides the unique mild solution of the stochastic initial value problem

dX t = AX t dt + gt dWt , X0 = 0.

In order to obtain the existence of a continuous version of this process, one usually proves a
maximal estimate of the form

E sup
06t6T

‖X t‖p 6 C pE
�

∫ T

0

‖gt‖2
γ(H,E) dt

�
p
2 . (1.1)

The first such estimate was obtained by Kotelenez [11, 12] for C0-contraction semigroups on
Hilbert spaces E and exponent p = 2. Tubaro [19] extended this result to exponents p > 2 by
a different method of proof which applies Itô’s formula to the C2-mapping x 7→ ‖x‖p. The case
p ∈ (0, 2) was covered subsequently by Ichikawa [10]. A very simple proof, still for C0-contraction
semigroups on Hilbert spaces, which works for all p ∈ (0,∞), was obtained recently by Hausenblas
and Seidler [9]. It is based on the Sz.-Nagy dilation theorem, which is used to reduce the problem
to the corresponding problem for C0-contraction groups. Then, by using the group property, the
maximal estimate follows from Burkholder’s inequality. This proof shows, moreover, that the
constant C in (1.1) may be taken equal to the constant appearing in Burkholder’s inequality. In
particular, this constant depends only on p.
The maximal inequality (1.1) has been extended by Brzeźniak and Peszat [4] to C0-contraction
semigroups on Banach spaces E with the property that, for some p ∈ [2,∞), x 7→ ‖x‖p is twice
continuously Fréchet differentiable and the first and second Fréchet derivatives are bounded by
constant multiples of ‖x‖p−1 and ‖x‖p−2, respectively. Examples of spaces with this property,
which we shall call (C2

p ), are the spaces Lq(µ) for q ∈ [p,∞). Any (C2
p ) space is 2-smooth (the

definition is recalled in Section 2), but the converse doesn’t hold:
Example 1.1. Let F be a Banach space. The space `2(F) is 2-smooth whenever F is 2-smooth [8,
Proposition 17]. On the other hand, the norm of `2(F) is twice continuously Fréchet differentiable
away from the origin if and only if F is a Hilbert space [14, Theorem 3.9]. Thus, for q ∈ (2,∞),
`2(`q) and `2(Lq(0,1)) are examples of 2-smooth Banach spaces which fail property (C2

p ) for all
p ∈ [2,∞).
To the best of our knowledge, the general problem of proving the maximal estimate (1.1) for C0-
contraction semigroups on 2-smooth Banach space remains open. The present paper aims to fill
this gap:

Theorem 1.2. Let (etA)t>0 be a C0-contraction semigroup on a 2-smooth Banach space E, let (Wt)t>0
be a cylindrical Brownian motion in a Hilbert space H, and let (gt)t>0 be a progressively measurable
process in γ(H, E). If

∫ T

0

‖gt‖2
γ(H,E) dt <∞ P-almost surely,

then the stochastic convolution process X t =
∫ t

0
e(t−s)Ags dWs is well-defined and has a continuous

version. Moreover, for all 0< p <∞ there exists a constant C, depending only on p and E, such that

E sup
06t6T

‖X t‖p 6 C pE
�

∫ T

0

‖gt‖2
γ(H,E) dt

�
p
2 .
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For p > 2, the proof of Theorem 1.2 is based on a version of Itô’s formula (Theorem 3.1) which
exploits the fact (proved in Lemma 2.1) that in 2-smooth Banach spaces the functionψ(x) = ‖x‖p

is Fréchet differentiable and satisfies the Lipschitz estimate

‖ψ′(x)−ψ′(y)‖6 C(‖x‖+ ‖y‖)p−2‖x − y‖.

The extension to exponents 0< p < 2 is obtained by applying Lenglart’s inequality (see (4.1)).
We conclude this introduction with a brief discussion of some developments of the inequality (1.1)
into different directions in the literature. Seidler [18] has proved the inequality (1.1) with optimal
constant C = O(pp) as p → ∞ for positive C0-contraction semigroups on the (2-smooth) space
E = Lq(µ), q > 2. He also proved that the same result holds if the assumption ‘etA is a positive
contraction semigroup’ is replaced by ‘−A has a bounded H∞-calculus of angle strictly less than
1
2
π’. The latter result was subsequently extended by Veraar and Weis [20] to arbitrary UMD spaces

E with type 2. In the same paper, still under the assumption that −A has a bounded H∞-calculus
of angle strictly less than 1

2
π, the following stronger estimate is obtained for UMD spaces E with

Pisier’s property (α):

E sup
06t6T

‖X t‖p 6 C pE‖g‖p
γ(L2(0,T ;H),E) (1.2)

with a constant C depending only on p and E. If, in addition, E has type 2, then the mapping
f ⊗(h⊗ x) 7→ ( f ⊗h)⊗ x extends to a continuous embedding L2(0, T ;γ(H, E)) ,→ γ(L2(0, T ; H), E)
and (1.2) implies (1.1).
Let us finally mention that, for p > 2, a weaker version of (1.1) for arbitrary C0-semigroups on
Hilbert spaces has been obtained by Da Prato and Zabczyk [5]. Using the factorisation method
they proved that

E sup
06t6T

‖X t‖p 6 C pE
∫ T

0

‖gt‖
p
γ(H,E) dt

with a constant C depending on p, E, and T . The proof extends verbatim to C0-semigroups on
martingale type 2 spaces. This relates to the above results for 2-smooth spaces through a theorem
of Pisier [17, Theorem 3.1], which states that a Banach space has martingale type p if and only if
it is p-smooth.

2 The Fréchet derivative of ‖ · ‖p

Let 1< q 6 2. A Banach space E is q-smooth if the modulus of smoothness

ρ‖·‖(t) = sup
n

1
2
(‖x + t y‖+ ‖x − t y‖)− 1 : ‖x‖= ‖y‖= 1

o

satisfies ρ‖·‖(t)6 C tq for all t > 0.
It is known (see [17, Theorem 3.1]) that E is q-smooth if and only if there exists a constant K > 1
such that for all x , y ∈ E,

‖x + y‖q + ‖x − y‖q 6 2‖x‖q + K‖y‖q. (2.1)

Lemma 2.1. Let E be a Banach space and let 1< q 6 2 be given. For p > q set ψp(x) := ‖x‖p.

1. E is q-smooth if and only if the Fréchet derivative of ψq is globally (q− 1)-Hölder continuous
on E.
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2. If E is q-smooth, then for p > q the Fréchet derivative ofψp is locally (q−1)-Hölder continuous
on E.

Moreover, for all p > q and x , y ∈ E we have

‖ψ′p(x)−ψ
′
p(y)‖6 C(‖x‖+ ‖y‖)p−q‖x − y‖q−1, (2.2)

where C depends only on p, q and E.

Proof. If the Fréchet derivative of ψq is (q− 1)-Hölder continuous on E, then by the mean value
theorem we can find 0 6 θ ,ρ 6 1 such that for all x , y ∈ E,

‖x + y‖q + ‖x − y‖q − 2‖x‖q = (‖x + y‖q −‖x‖q) + (‖x − y‖q −‖x‖q)
6 ‖ψ′q(x + θ y)−ψ′q(x −ρ y)‖‖y‖

6 L‖(x + θ y)− (x −ρ y)‖q−1‖y‖6 2q−1 L‖y‖q.

Hence the Banach space E is q-smooth.
Suppose now that the norm of E is q-smooth. Then for all x , y ∈ E with ‖x‖,‖y‖= 1 and all t > 0
we have

‖x + t y‖+ ‖x − t y‖− 2‖x‖6 K‖t y‖q. (2.3)

Thus

lim
t→0

‖x + t y‖+ ‖x − t y‖− 2‖x‖
‖t y‖

= 0,

which by [7, Lemma I.1.3] means that ‖ · ‖ is Fréchet differentiable on the unit sphere. Hence, by
homogeneity, ‖ · ‖ is Fréchet differentiable on E\{0}. Let us denote by fx its Fréchet derivative at
the point x 6= 0.
We begin by showing the (q− 1)-Hölder continuity of x 7→ fx on the unit sphere of E, following
the argument of [7, Lemma V.3.5]. We fix x 6= y ∈ E such that ‖x‖,‖y‖ = 1 and h ∈ E with
‖h‖= ‖x − y‖ and x − y + h 6= 0. Since the norm ‖ · ‖ is a convex function,

f y(x − y)6 ‖x‖− ‖y‖.

Similarly, we have

fx(h)6 ‖x + h‖− ‖x‖, f y(y − x − h)6 ‖2y − x − h‖− ‖y‖.

By using above inequalities and the linearity of the function fx , we have

fx(h)− f y(h)6 ‖x + h‖− ‖x‖− f y(h)

= ‖x + h‖− ‖y‖− f y(x + h− y) + ‖y‖− ‖x‖+ f y(x − y)

6 ‖x + h‖− ‖y‖− f y(x + h− y)

= ‖x + h‖− ‖y‖+ f y(y − x − h)

6 ‖x + h‖+ ‖2y − x − h‖− 2‖y‖

=







y + ‖x + h− y‖ ·
x + h− y

‖x + h− y‖








+







y −‖x + h− y‖ ·
x + h− y

‖x + h− y‖








− 2‖y‖

6 K‖x + h− y‖q 6 K(‖x − y‖+ ‖h‖)q = 2qK‖x − y‖q,
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where we also used (2.3). Since the roles of x and y may be reversed in this inequality, this
implies

‖ fx − f y‖= sup
‖h‖=‖x−y‖

| fx(h)− f y(h)|
‖x − y‖

6 2qK‖x − y‖q−1

This proves the (q− 1)-Hölder continuity of the norm ‖ · ‖ on the unit sphere.
We proceed with the proof of (2.2); the (q − 1)-Hölder continuity of ψq as well as the local
(p − 1)-Hölder continuity of ψp follow from it. For all x , y ∈ E with x 6= 0 and y 6= 0 we have
ψ′p(x) = p‖x‖p−1 fx .
It is easy to check that fx = f x

‖x‖
and ‖ fx‖ = 1. Following once more the argument of [7, Lemma

V.3.5], this gives

‖ψ′p(x)−ψ
′
p(y)‖= p





‖x‖p−1 fx −‖y‖p−1 f y







6 p







‖x‖p−1( f x
‖x‖
− f y

‖y‖
)







+ p







(‖x‖p−1 −‖y‖p−1) f y
‖y‖










6 p2qK‖x‖p−1









x

‖x‖
−

y

‖y‖










q−1
+ p
�

�

�‖x‖p−1 −‖y‖p−1
�

�

�

6 p2qK‖x‖p−q‖y‖1−q







x‖y‖− y‖x‖









q−1
+ p
�

�

�‖x‖p−1 −‖y‖p−1
�

�

�

= p2qK‖x‖p−q‖y‖1−q







‖y‖(x − y) + y(‖y‖− ‖x‖)









q−1
+ p
�

�

�‖x‖p−1 −‖y‖p−1
�

�

�

6 p2qK‖x‖p−q‖y‖1−q(2‖y‖‖x − y‖)q−1 + p
�

�

�‖x‖p−1 −‖y‖p−1
�

�

�

= p22q−1K‖x‖p−q‖x − y‖q−1 + p
�

�

�‖x‖p−1 −‖y‖p−1
�

�

�.

(2.4)
If q 6 p 6 2, then by the inequality |t r − sr | 6 |t − s|r , valid for 0 < r 6 1 and s, t ∈ [0,∞), we
have

�

�‖x‖p−1 −‖y‖p−1
�

�6
�

�‖x‖− ‖y‖
�

�

p−1
6 ‖x − y‖p−1 6 (‖x‖+ ‖y‖)p−q‖x − y‖q−1.

If p > 2, by applying the mean value theorem, for some θ ∈ [0, 1] we have

�

�‖x‖p−1 −‖y‖p−1
�

�= (p− 1)







‖θ x + (1− θ)y‖p−2 fθ x+(1−θ)y(x − y)









6 (p− 1)(‖x‖+ ‖y‖)p−2‖x − y‖

6 (p− 1)(‖x‖+ ‖y‖)p−2(‖x‖+ ‖y‖)2−q‖x − y‖q−1

= (p− 1)(‖x‖+ ‖y‖)p−q‖x − y‖q−1.

Also, since ψ′p(0) = 0, for y 6= 0 we have

‖ψ′p(0)−ψ
′
p(y)‖= p‖y‖p−1 = p‖y‖p−1










y

‖y‖










p−1
6 p‖y‖p−1










y

‖y‖










q−1
= p‖y‖p−q‖y‖q−1.

The above lemma will be combined with the next one, which gives a first order Taylor formula
with a remainder term involving the first derivative only.
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Lemma 2.2. Let E and F be Banach spaces, let 0 < α 6 1, and let ψ : E → F be a Fréchet
differentiable function whose Fréchet derivative ψ′ : E → L (E, F) is locally α-Hölder continuous.
Then for all x , y ∈ E we have

ψ(y) =ψ(x) +ψ′(x)(y − x) + R(x , y),

where

R(x , y) =

∫ 1

0

(ψ′(x + r(y − x))(y − x)−ψ′(x)(y − x))dr. (2.5)

Proof. Pick w ∈ E such that ‖w‖6 1 and consider the function f : R→ F by

f (θ) :=ψ(x + θw).

For all x∗ ∈ F∗, 〈 f ′, x∗〉 is locally α-Hölder continuous. To see this, note that for |θ1|, |θ2| 6 R and
‖x‖ 6 R we have ‖x + θ1w‖,‖x + θ2w‖ 6 2R, so by assumption there exists a constant C2R such
that

|〈 f ′(θ1)− f ′(θ2), x∗〉|= |〈ψ′(x + θ1w)w, x∗〉 − 〈ψ′(x + θ2w)w, x∗〉|
6 ‖ψ′(x + θ1w)−ψ′(x + θ2w)‖‖x∗‖6 C2R|θ1 − θ2|α‖x∗‖.

Applying Taylor’s formula and [1, Lemma 1, Theorem 3] to the function 〈 f , x∗〉 we obtain

〈 f (t)− f (0), x∗〉= t〈 f ′(0), x∗〉+ 〈R f (0, t), x∗〉,

where R f (0, t) =
∫ 1

0
t( f ′(r t) − f ′(0))dr. Now let x , y ∈ E be given and set t = ‖y − x‖ and

w = y−x
‖y−x‖ . With these choices we obtain

〈ψ(y), x∗〉 − 〈ψ(x), x∗〉 − 〈ψ′(x)(y − x), x∗〉= 〈ψ(x + tw), x∗〉 − 〈ψ(x), x∗〉 − t〈ψ(′x)w, x∗〉
= 〈 f (t)− f (0)− t f ′(0), x∗〉

=

∫ 1

0

t〈 f ′(r t)− f ′(0), x∗〉dr

=

∫ 1

0

〈ψ′(x + r(y − x))(y − x)−ψ′(x)(y − x), x∗〉dr.

Since x∗ ∈ F∗ was arbitrary, this proves the lemma.

3 An Itô formula for ‖ · ‖p

From now on we shall always assume that E is a 2-smooth Banach space. We fix T > 0 and let
(Ω,F ,P) be a probability space with a filtration (Ft)t∈[0,T]. Let H be a real Hilbert space, and
denote by γ(H, E) the Banach space of all γ-radonifying operators from H to E. We denote by
M([0, T];γ(H, E)) the space of all progressively measurable processes ξ : [0, T]× Ω → γ(H, E)
such that

∫ T

0

‖ξt‖2
γ(H,E) dt <∞ P-almost surely.
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The space of all such ξ which satisfy

E
�

∫ T

0

‖ξt‖2
γ(H,E) dt

�
p
2
<∞

is denoted by M p([0, T];γ(H, E)), 0< p <∞.
On (Ω,F ,P), let (Wt)t∈[0,T] be an (Ft)t∈[0,T]-cylindrical Brownian motion in H. For adapted
simple processes ξ ∈ M([0, T];γ(H, E)) of the form

ξt =
n−1
∑

i=0

1(t i ,t i+1](t)⊗ Ai ,

where Π = {0 = t0 < t1 < · · · < tn = T} is a partition of the interval [0, T] and the random
variables Ai are Ft i

-measurable and take values in the space of all finite rank operators from H to
E, we define the random variable I(ξ) ∈ L0(Ω,FT ; E) by

I(ξ) :=
n−1
∑

i=0

Ai(Wt i+1
−Wt i

)

where (h⊗ x)Wt := (Wth)⊗ x . It is well known that

E‖I(ξ)‖2 6 C2E
∫ T

0

‖ξt‖2
γ(H,E) dt,

where C depends on p and E only. It follows that I has a unique extension to a bounded linear
operator M2([0, T];γ(H, E)) to L2(Ω,FT ; E). By a standard localisation argument, I extends
continuous linear operator from M([0, T];γ(H, E)) to L0(Ω,FT ; E). In what follows we write

∫ t

0

ξs dWs := I(1(0,t]ξ), t ∈ [0, T].

This stochastic integral has the following properties:

1. For all ξ ∈ M([0, T];γ(H, E)) the process t →
∫ t

0
ξs dWs is an E-valued continuous local

martingale, which is a martingale if ξ ∈ M2([0, T];γ(H, E)).

2. For all ξ ∈ M([0, T];γ(H, E)) and stopping times τ with values in [0, T],
∫ τ

0

ξt dWt =

∫ T

0

1[0,τ](t)ξt dWt P-almost surely. (3.1)

3. For all ξ ∈ M2([0, T];γ(H, E)) and 0 6 u< t 6 T ,

E
�









∫ t

u

ξs dWs










2
|Fu

�

6 CE
�

∫ t

u

‖ξs‖2
γ(H,E) ds |Fu

�

. (3.2)

4. (Burkholder’s inequality [2, 6]) For all 0< p <∞ there exists a constant C , depending only
on p and E, such that for all ξ ∈ M p([0, T];γ(H, E)) and t ∈ [0, T],

E sup
s∈[0,t]










∫ s

0

ξu dWu










p
6 CE

�

∫ t

0

‖ξs‖2
γ(H,E) ds

�
p
2 . (3.3)
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An excellent survey of the theory of stochastic integration in 2-smooth Banach spaces with com-
plete proofs is given in Ondreját’s thesis [16], where also further references to the literature can
be found.
In what follows we fix p > 2 and set ψ(x) :=ψp(x) = ‖x‖p. Since we assume that E is 2-smooth,
this function is Fréchet differentiable. Following the notation of Lemma 2.2 we set

Rψ(x , y) :=

∫ 1

0

(ψ′(x + r(y − x))(y − x)−ψ′(x)(y − x))dr.

We have the following version of Itô’s formula.

Theorem 3.1 (Itô formula). Let E be a 2-smooth Banach space and let 2 6 p <∞. Let (at)t∈[0,T]
be an E-valued progressively measurable process such that

E
�

∫ T

0

‖at‖dt
�p
<∞

and let (gt)t∈[0,T] be a process in M p([0, T];γ(H, E)). Fix x ∈ E and let (X t)t∈[0,T] be given by

X t = x +

∫ t

0

as ds+

∫ t

0

gs dWs.

The process s 7→ ψ′(Xs)gs is progressively measurable and belongs to M1([0, T]; H), and for all
t ∈ [0, T] we have

ψ(X t) =ψ(x) +

∫ t

0

ψ′(Xs)(as)ds+

∫ t

0

ψ′(Xs)(gs)dWs + lim
n→∞

m(n)−1
∑

i=0

Rψ(X tn
i ∧t , X tn

i+1∧t) (3.4)

with convergence in probability, for any sequence of partitions Πn = {0 = tn
0 < tn

1 < · · · < tn
m(n) = T}

whose meshes ‖Πn‖ := max06i6m(n)−1 |tn
i+1 − tn

i | tend to 0 as n → ∞. Moreover, there exists a
constant C and, for each ε > 0, a constant Cε, both independent of a and g, such that

E lim inf
n→∞

m(n)−1
∑

i=0

|Rψ(X tn
i ∧t , X tn

i+1∧t)|6 εCE sup
s∈[0,t]

‖Xs‖p + CεE
�

∫ t

0

‖gs‖2
γ(H,E) ds

�
p
2 . (3.5)

The proof shows that we may take Cε = C ′(ε1− 2
p + 1) for some constant C ′ independent of a, g,

and ε.
Before we start the proof of the theorem we state some lemmas. The first is an immediate conse-
quence of Burkholder’s inequality (3.3).

Lemma 3.2. Under the assumptions of Theorem 3.1 we have

E sup
06t6T

‖X t‖p 6 CE
�

∫ T

0

‖as‖ds
�p
+ CE

�

∫ T

0

‖gs‖2
γ(H,E) ds

�
p
2 .

Lemma 3.3. Under the assumptions of Theorem 3.1, the process t 7→ ψ′(X t)(gt) is progressively
measurable and belongs to M1([0, T]; H).
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Proof. By the identity ‖ψ′(x)‖= p‖x‖p−1 and Hölder’s inequality,

E
�

∫ T

0

‖ψ′(X t)(gt)‖2
H dt

�
1
2
6 E

�

∫ T

0

‖ψ′(X t)‖2‖gt‖2
γ(H,E) dt

�
1
2

6 E sup
t∈[0,T]

‖X t‖p−1
�

∫ T

0

‖gt‖2
γ(H,E) ds

�
1
2

6 C
�

E sup
t∈[0,T]

‖X t‖p
�

p−1
p
�

E
�

∫ T

0

‖gt‖2
γ(H,E) ds

�
p
2
�

1
p ,

and the right-hand side is finite by the previous lemma. The progressively measurability is clear.

This lemma implies that the stochastic integral in (3.4) is well-defined.

Lemma 3.4. Let 0 6 u 6 t 6 T be arbitrary and fixed. Under the assumptions of Theorem 3.1,
the process s 7→ ψ′(Xu)(gs) is progressively measurable and belongs to M1([0, T]; H). Moreover,
P-almost surely,

ψ′(Xu)

∫ t

u

gs dWs =

∫ t

u

ψ′(Xu)(gs)dWs.

Proof. By similar estimates as in the previous lemma,

E
�

∫ t

u

‖ψ′(Xu)(gs)‖2
H ds
�

1
2
6 C(E‖Xu‖p)

p−1
p

�

E
�

∫ t

u

‖gs‖2
γ(H,E) ds

�
p
2
�

1
p .

The progressively measurability is again clear. To prove the identity we first assume that g is a
simple adapted process of the form

gs =
n−1
∑

i=0

1(t i ,t i+1](s)Ai ,

where Π = {u = t0 < t1 < · · · < tn = t} is a partition of the interval [0, T] and the random
variables are Ft i

-measurable and take values in the space of all finite rank operators from H to E.
Then,

ψ′(Xu)

∫ t

u

gs dWs =ψ
′(Xu)

�
n−1
∑

i=0

Ai(Wt i+1
−Wt i

)
�

=
n−1
∑

i=0

ψ′(Xu)(Ai(Wt i+1
−Wt i

)) =

∫ t

u

ψ′(Xu)(gs)dWs.

For general progressively measurable g ∈ Lp(Ω; L2([0, T];γ(H, E))), the identity follows by a
routine approximation argument.

Proof of Theorem 3.1. The proof of the theorem proceeds in two steps. All constants occurring in
the proof may depend on E and p, even where this is not indicated explicitly, but not on T . The
numerical value of the constants may change from line to line.
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Step 1 – Applying Lemma 2.2 to the function ψ(x) = ‖x‖p and the process X , we have, for every
t ∈ [0, T],

ψ(X t)−ψ(x) =
m(n)−1
∑

i=0

�

ψ(X tn
i+1∧t)−ψ(X tn

i ∧t)
�

=
m(n)−1
∑

i=0

ψ′(X tn
i ∧t)(X tn

i+1∧t − X tn
i ∧t) +

m(n)−1
∑

i=0

Rψ(X tn
i ∧t , X tn

i+1∧t).

We shall prove the identity (3.4) by showing that

lim
n→∞

m(n)−1
∑

i=0

ψ′(X tn
i ∧t)(X tn

i+1∧t − X tn
i
) =

∫ t

0

ψ′(Xs)(as)ds+

∫ t

0

ψ′(Xs)(gs)dWs

with convergence in probability. In view of the definition of X t , it is enough to show that

lim
n→∞

�

�

�

m(n)−1
∑

i=0

ψ′(X tn
i ∧t)
�

∫ tn
i+1∧t

tn
i ∧t

as ds
�

−
∫ t

0

ψ′(Xs)(as)ds
�

�

�= 0 P-almost surely

and

lim
n→∞

m(n)−1
∑

i=0

ψ′(X tn
i ∧t)
�

∫ tn
i+1∧t

tn
i ∧t

gs dWs

�

−
∫ t

0

ψ′(Xs)(gs)dWs = 0 in probability. (3.6)

By (2.2), P-almost surely we have

lim sup
n→∞

�

�

�

m(n)−1
∑

i=0

ψ′(X tn
i ∧t)
�

∫ tn
i+1∧t

tn
i ∧t

as

�

−
∫ t

0

ψ′(Xs)(as)ds
�

�

�

6 limsup
n→∞

m(n)−1
∑

i=0

�

�

�

∫ tn
i+1∧t

tn
i ∧t

(ψ′(X tn
i ∧t)−ψ′(Xs))(as)ds

�

�

�

6 C sup
s∈[0,T]

‖Xs‖p−2 × limsup
n→∞

m(n)−1
∑

i=0

∫ tn
i+1∧t

tn
i ∧t

‖X tn
i ∧t − Xs‖‖as‖ds

6 C sup
s∈[0,T]

‖Xs‖p−2 × limsup
n→∞

�

sup
06i6m(n)−1

sup
s∈[tn

i ∧t,tn
i+1∧t]

‖X tn
i ∧t − Xs‖

�

×
�

m(n)−1
∑

i=0

∫ tn
i+1∧t

tn
i ∧t

‖as‖ds
�

= 0,

where we used the continuity of the process X in the last line.
Next, by Lemma 3.4 and the inequalities (3.2) and (2.2),

m(n)−1
∑

i=0

ψ′(X tn
i ∧t)
�

∫ tn
i+1∧t

tn
i ∧t

gs dWs

�

−
∫ t

0

ψ′(Xs)(gs)dWs
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=
m(n)−1
∑

i=0

∫ tn
i+1∧t

tn
i ∧t

ψ′(X tn
i ∧t)(gs)dWs −

∫ t

0

ψ′(Xs)(gs)dWs

=

∫ t

0

m(n)−1
∑

i=0

1(tn
i ,tn

i+1]
(s)(ψ′(X tn

i ∧t)−ψ′(Xs))(gs)dWs.

The localized stochastic integral being continuous from M([0, t];γ(H, E))) into L0(Ω,Ft ; E), in
order to prove that the right-hand side converges to 0 in probability it suffices to prove that

lim
n→∞








s 7→
m(n)−1
∑

i=0

1(tn
i ,tn

i+1]
(s)(ψ′(X tn

i ∧t)−ψ′(Xs))(gs)









L2([0,t];H)
= 0 in probability.

For this, in turn, it suffices to observe that P-almost surely

lim
n→∞










m(n)−1
∑

i=0

1(tn
i ,tn

i+1]
(s)(ψ′(X tn

i ∧t)−ψ′(Xs))









L∞([0,t];E∗)

= lim
n→∞

sup
06i6n−1

sup
s∈[tn

i ∧t,tn
i+1∧t]

‖ψ′(X tn
i ∧t)−ψ′(Xs)‖= 0

by the path continuity of X .

Step 2 – In this step we prove the estimate (3.5). By (2.2), for all x , y ∈ E and r ∈ [0,1] we have

|ψ′(x + r(y − x))−ψ′(x)|6 (‖x‖p−2‖x − y‖+ ‖x − y‖p−1).

Combining this with (2.5) we obtain

|Rψ(X tn
i ∧t , X tn

i+1∧t)|6 C‖X tn
i ∧t‖p−2‖X tn

i+1∧t − X tn
i ∧t‖2 + C‖X tn

i+1∧t − X tn
i ∧t‖p. (3.7)

We shall estimate the two terms on the right hand of (3.7) side separately.
For the first term, using the inequality |a+ b|2 6 2|a|2 + 2|b|2 we obtain

m(n)−1
∑

i=0

‖X tn
i ∧t‖p−2‖X tn

i+1∧t − X tn
i ∧t‖2

6 2
m(n)−1
∑

i=0

‖X tn
i ∧t‖p−2










∫ tn
i+1∧t

tn
i ∧t

as ds









2
+ 2

m(n)−1
∑

i=0

‖X tn
i ∧t‖p−2










∫ tn
i+1∧t

tn
i ∧t

gs dWs










2

=: In
1 + In

2 .

For the first term we have

In
1 6 2C sup

s∈[0,t]
‖Xs‖p−2 × sup

i










∫ tn
i+1∧t

tn
i ∧t

as ds







×
m(n)−1
∑

i=0










∫ tn
i+1∧t

tn
i ∧t

as ds









6 2C sup
s∈[0,t]

‖Xs‖p−2 × sup
i










∫ tn
i+1∧t

tn
i ∧t

as ds







×
∫ t

0

‖as‖ds.
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By letting n→∞ we have max06i6m(n)−1(tn
i+1 − tn

i )→ 0, so

sup
06i6m(n)−1










∫ tn
i+1∧t

tn
i ∧t

as ds







→ 0

as n→∞. Therefore,

lim
n→∞

In
1 = 0, P-almost surely.

To estimate I2 we use (3.2) and Young’s inequality with ε > 0 to infer

E lim inf
n

In
2 6 lim inf

n
EIn

2 = lim inf
n

E
m(n)−1
∑

i=0

‖X tn
i ∧t‖p−2










∫ tn
i+1∧t

tn
i ∧t

gs dWs










2

= lim inf
n

m(n)−1
∑

i=0

E
�

‖X tn
i ∧t‖p−2E

�









∫ tn
i+1∧t

tn
i ∧t

gs dWs










2�
�Ftn

i ∧t

��

6 C lim inf
n

m(n)−1
∑

i=0

E
�

‖X tn
i ∧t‖p−2E

�

∫ tn
i+1∧t

tn
i ∧t

‖gs‖2
γ(H,E) ds

�

�Ftn
i ∧t

��

6 C lim inf
n

m(n)−1
∑

i=0

E
�

‖X tn
i ∧t‖p−2

∫ tn
i+1∧t

tn
i ∧t

‖gs‖2
γ(H,E) ds

�

6 C lim inf
n

E
�

sup
s∈[0,t]

‖Xs‖p−2
m(n)−1
∑

i=0

∫ tn
i+1∧t

tn
i ∧t

‖gs‖2
γ(H,E) ds

�

= CE
�

sup
s∈[0,t]

‖Xs‖p−2

∫ t

0

‖gs‖2
γ(H,E) ds

�

6 CεE
�

sup
s∈[0,t]

‖Xs‖p
�

+ Cε1− p
2 E
�

∫ t

0

‖gs‖2
γ(H,E) ds

�
p
2 .

Next we estimate the second term in (3.7). We have

m(n)−1
∑

i=0

‖X tn
i+1∧t − X tn

i ∧t‖p 6 C
m(n)−1
∑

i=0










∫ tn
i+1∧t

tn
i ∧t

as ds









p
+ C

m(n)−1
∑

i=0










∫ tn
i+1∧t

tn
i ∧t

gs dWs










p

=: In
3 + In

4 .

A similar consideration as before yields

lim
n→∞

In
3 6 C lim

n→∞
sup

06i6m(n)−1










∫ tn
i+1∧t

tn
i ∧t

as ds









p−1
×
∫ t

0

‖as‖ds = 0.

Moreover, by Burkholder’s inequality (3.3),

E lim inf
n

In
4 6 lim inf

n
EIn

4 = C lim inf
n

m(n)−1
∑

i=0

E









∫ tn
i+1∧t

tn
i ∧t

gs dWs










p
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6 C lim inf
n

m(n)−1
∑

i=0

E
�

∫ tn
i+1∧t

tn
i ∧t

‖gs‖2
γ(H,E) ds

�
p
2

6 C lim inf
n

E
�

m(n)−1
∑

i=0

∫ tn
i+1∧t

tn
i ∧t

‖gs‖2
γ(H,E) ds

�
p
2

= CE
�

∫ t

0

‖gs‖2
γ(H,E) ds

�
p
2 .

Collecting terms, for any ε > 0 we obtain the estimate

E lim inf
n→∞

m(n)−1
∑

i=0

|Rψ(X tn
i ∧t , X tn

i+1∧t)|

6 CεE
�

sup
s∈[0,t]

‖Xs‖p
�

+ C(ε1− p
2 + 1)E

�

∫ t

0

‖gs‖2
γ(H,E) ds

�
p
2 .

In the proof of Theorem 1.2 we will also need the following simple observation.

Lemma 3.5. P-Almost surely we have

lim inf
n→∞

sup
t∈[0,T]

m(n)−1
∑

i=0

|Rψ(X tn
i ∧t , X tn

i+1∧t)|6 lim inf
n→∞

m(n)−1
∑

i=0

|Rψ(X tn
i
, X tn

i+1
)|. (3.8)

Proof. Fix t ∈ (0, T] and let k(n) be the unique index such that t ∈ (tn
k(n), tn

k(n)+1]. Then

m(n)−1
∑

i=0

|Rψ(X tn
i ∧t , X tn

i+1∧t)|

=
k(n)−1
∑

i=0

|Rψ(X tn
i
, X tn

i+1
)|+ |Rψ(X tn

k(n)
, X t)|

6
m(n)−1
∑

i=0

|Rψ(X tn
i
, X tn

i+1
)|+ |Rψ(X tn

k(n)
, X t)|

6
m(n)−1
∑

i=0

|Rψ(X tn
i
, X tn

i+1
)|+ C‖X tn

k(n)
‖p−2‖X t − X tn

k(n)
‖2 + C‖X t − X tn

k(n)
‖p

6
m(n)−1
∑

i=0

|Rψ(X tn
i
, X tn

i+1
)|+ C sup

s∈[0,T]
‖Xs‖p−2‖X t − X tn

k(n)
‖2 + C‖X t − X tn

k(n)
‖p.

Now (3.8) follows by taking the limes inferior for n→∞ and using path continuity.

4 Proof of Theorem 1.2

We proceed in four steps. In Steps 1 and 2 we establish the estimate in the theorem for g ∈
M p([0, T];γ(H, E)) with 2 6 p <∞. In order to be able to cover exponents 0 < p < 2 in Step 3,
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we need a stopped version of the inequalities proved in Steps 1 and 2. For reasons of economy of
presentations, we therefore build in a stopping time τ from the start. In Step 4 we finally consider
the case where g ∈ M([0, T];γ(H, E)).
We shall apply (a special case of) Lenglart’s inequality [13, Corollaire II] which states that if
(ξt)t∈[0,T] and (at)t∈[0,T] are continuous non-negative adapted processes, the latter non-decreasing,
such that Eξτ 6 Eaτ for all stopping times τ with values in [0, T], then for all 0< r < 1 one has

E sup
06t6T

ξr
t 6

2− r

1− r
Ear

T . (4.1)

Step 1 – Fix p > 2 and suppose first that g ∈ M p([0, T];γ(H,D(A)). As is well known (see [16]),
under this condition the process X t =

∫ t

0
e(t−s)Ags dWs is a strong solution to the equation

dX t = AX t dt + gt dWt , t > 0; X0 = 0.

In other words, X satisfies

X t =

∫ t

0

AXs ds+

∫ t

0

gs dWs ∀t ∈ [0, T] P-almost surely.

Hence if τ is a stopping time with values in [0, T], then by (3.1),

X t∧τ =

∫ t

0

1[0,τ](s)AXs ds+

∫ t

0

1[0,τ](s)gs dWs ∀t ∈ [0, T], P-almost surely.

Let us check next that at := 1[0,τ](t)AX t satisfies the assumptions of Theorem 3.1. Indeed, with
ht := 1[0,τ](t)Agt we have, using the contractivity of the semigroup S and Burkholder’s inequality
(3.3),

E
�

∫ T

0

‖at‖dt
�p

6 E
�

∫ T

0










∫ t

0

e(t−s)Ahs dWs








dt
�p

6 C T p−1E
∫ T

0










∫ t

0

e(t−s)Ahs dWs










p
dt

6 C T p−1E
∫ T

0

�

∫ t

0

‖e(t−s)Ahs‖2
γ(H,E) ds

�
p
2 dt

6 C T pE
�

∫ T

0

‖hs‖2
γ(H,E) ds

�
p
2
<∞.

Hence we may apply Theorem 3.1 and infer that

‖X t∧τ‖p =

∫ t

0

1[0,τ](s)ψ
′(Xs)(AXs)ds

+

∫ t

0

1[0,τ](s)ψ
′(Xs)(gs)dWs + lim

n→∞

m(n)−1
∑

i=0

Rψ(X tn
i ∧t∧τ, X tn

i+1∧t∧τ)

6

∫ t

0

1[0,τ](s)ψ
′(Xs)(gs)dWs + lim

n→∞

m(n)−1
∑

i=0

Rψ(X tn
i ∧t∧τ, X tn

i+1∧t∧τ),
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since ψ′(x)(Ax) 6 0 for all x ∈ D(A) by the contractivity of etA (see [3, Lemma 4.2]). Hence, by
Lemma 3.5,

E sup
t∈[0,T]

‖X t∧τ‖p

6 E sup
t∈[0,T]

∫ t

0

1[0,τ](s)ψ
′(Xs)(gs)dWs +E sup

t∈[0,T]
lim inf

n→∞

m(n)−1
∑

i=0

|Rψ(X tn
i ∧t∧τ, X tn

i+1∧t∧τ)|

6 E sup
t∈[0,T]

∫ t

0

1[0,τ](s)ψ
′(Xs)(gs)dWs +E lim inf

n→∞

m(n)−1
∑

i=0

|Rψ(X tn
i ∧τ, X tn

i+1∧τ)|

6 CE sup
t∈[0,T]

∫ t

0

1[0,τ](s)ψ
′(Xs)(gs)dWs

+ εCE sup
s∈[0,T]

‖Xs∧τ‖p + CεE
�

∫ T

0

1[0,τ](s)‖gs‖2
γ(H,E) ds

�
p
2 .

By Burkholder’s inequality (3.3) and the identity ‖ψ′(y)‖= p‖y‖p−1,

E sup
t∈[0,T]

�

�

�

∫ t

0

1[0,τ](s)ψ
′(Xs)(gs)dWs

�

�

�

6 CE
�

∫ T

0

1[0,τ](s)




ψ′(Xs)






2‖gs‖2
γ(H,E) ds

�
1
2

= CE
�

∫ T

0

1[0,τ](s)




Xs







2(p−1)‖gs‖2
γ(H,E) ds

�
1
2

6 CE
�

sup
t∈[0,T]

‖X t∧τ‖p−1
�

∫ T

0

1[0,τ](s)‖gs‖2
γ(H,E) ds

�
1
2
�

6 C pp
�

E sup
t∈[0,T]

‖X t∧τ‖p
�

p−1
p
�

E
�

∫ T

0

1[0,τ](s)‖gs‖2
γ(H,E) ds

�
p
2
�

1
p

6 CεE sup
t∈[0,T]

‖X t∧τ‖p + CεE
�

∫ T

0

1[0,τ](s)‖gs‖2
γ(H,E) ds

�
p
2 ,

where we also used the Hölder’s inequality and Young’s inequality.
Combining these estimates and taking ε > 0 small enough, we infer that

E sup
t∈[0,T]

‖X t∧τ‖p 6 CE
�

∫ T

0

1[0,τ](s)‖gs‖2
γ(H,E) ds

�
p
2 .

Step 2 – Now let g ∈ M p([0, T];γ(H, E) be arbitrary. Set gn = n(nI − A)−1 g, n > 1. These
processes satisfy the assumptions of Step 1 and we have ‖gn‖γ(H,E) 6 ‖g‖γ(H,E) pointwise. Define

X n
t =

∫ t

0
e(t−s)Agn

s ds. From Step 1 we know that for any stopping time τ in [0, T] we have

E sup
t∈[0,T]

‖X n
t∧τ‖

p 6 CE
�

∫ T

0

1[0,τ](s)‖gn
s ‖

2
γ(H,E) ds

�
p
2 .
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In particular, as n, m→∞,

E sup
t∈[0,T]

‖X n
t − X m

t ‖
p → 0.

In these circumstances there is a process X̄ such that limn→∞E supt∈[0,T] ‖X̄ n
t − X t‖p = 0 and

E sup
t∈[0,T]

‖X̄ t∧τ‖p 6 CE
�

∫ T

0

1[0,τ](s)‖gs‖2
γ(H,E) ds

�
p
2 . (4.2)

Also, notice that for every t ∈ [0, T], we have

E‖X n
t − X t‖p = E










∫ t

0

e(t−s)Agn
s ds−

∫ t

0

e(t−s)Ags ds









p
6 C

�

E
∫ t

0

‖gn
s − gs‖2

γ(H,E) ds
�p

.

Hence X n
t → X t in Lp(Ω; E). Therefore, X̄ is a modification of X . This concludes the proof for

p > 2.

Step 3 – In this step we extend the result to exponents 0 < p < 2. First consider the case where
g ∈ M2([0, T];γ(H, E)). By (4.2), for all stopping times τ in [0, T] we have

E‖Xτ‖2 6 CE
∫ τ

0

‖gs‖2
γ(H,E) ds.

It then follows from Lenglart’s inequality (4.1) that for all 0< p < 2,

E sup
t∈[0,T]

‖X t‖p 6 CE
�

∫ T

0

‖gs‖2
γ(H,E) ds

�
p
2 .

For g ∈ M p([0, T];γ(H, E)) the result follows by approximation.
Step 4 – Finally, the existence of a continuous version for the process X under the assumption
g ∈ M([0, T];γ(H, E)) follows by a standard localisation argument.
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