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Abstract
This article studies the behavior of stochastic reaction-diffusion equations driven by additive regu-
larly varying pure jump Lévy noise in the limit of small noise intensity. It is shown that the law of
the suitably renormalized first exit times from the domain of attraction of a stable state converges
to an exponential law of parameter 1 in a strong sense of Laplace transforms, including expo-
nential moments. As a consequence, the expected exit times increase polynomially in the inverse
intensity, in contrast to Gaussian perturbations, where this growth is known to be of exponential
rate.

1 Introduction

Energy balance models with random perturbations may provide crucial probabilistic insight into
paleoclimatological phenomena on a conceptual level (see [1], [13]). Following the suggestion
by [5] and [6], in [14] the authors determine asymptotic first exit times for one-dimensional
heavy-tailed Lévy diffusions from reduced domains of attraction in the limit of small intensity.
Exponential moments not being available, the arguments leading to these results do not employ
large deviations methods, as opposed to [9]. [14] shows that in contrast to the case of Gaussian
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diffusions the expected first exit times are polynomial in terms of the inverse intensity. In this
article these finite dimensional results are generalized to a class of reaction-diffusion equations,
the prototype of which is the Chafee-Infante equation.
Let X ε be the solution process of the stochastic Chafee-Infante equation driven by εL, an additive
regularly varying Lévy noise of index α ∈ (0,2) at intensity ε > 0. In this work we study the laws
of the asymptotic first exit times τ±(ε) of X ε from a (slightly reduced) domain of attraction of the
deterministic Chafee-Infante equation u = X 0 in the small noise limit ε → 0. We show that there
exists a polynomial scale λ±(ε) ≈ εα linking the Lévy measure of L and the domain of attraction

of u, such that λ±(ε)τ±(ε)
d→ τ̄, where τ̄ ∼ EX P(1). In particular E[τ±(ε)] ≈ 1

εα
in the limit of

small ε.
This contrasts sharply with corresponding results in the case of Gaussian perturbation [8], where
large deviations estimates in the spirit of Freidlin and Ventsell are used to show exponential growth
of first exit times in the limit of small ε. Applied in a climatological context, the Chafee-Infante
equation is able to describe energy-balance based reaction-diffusion equations, in which latitudi-
nal heat transport is possible, and states of the system can be seen as temperature distributions on
the interval between south and north pole. In this setting, our result suggests a probabilistic inter-
pretation of fast transitions between different climate states corresponding to the stable equilibria
observed in ice core time series of temperature proxies of [3].
In the following sections we outline the partially tedious and complex arguments needed to de-
scribe the asymptotic properties of the exit times. Detailed proofs in particular of the more tech-
nical parts are given in the forthcoming [4].

2 Preliminaries and the main result

Let H = H1
0(0, 1) be normed by ||u|| := |∇u| for u ∈ H, where | · | is the norm in L2(0, 1) and

C0([0,1]) the space of continuous functions u : [0, 1] → R with u(0) = u(1) = 0 and the
supremum norm | · |∞. Since |u| 6 |u|∞ 6 ||u|| for u ∈ H we obtain the continuous injections
L2(0,1) ,→ C0(0, 1) ,→ H. Denote by M0(H) the class of all Radon measures ν :B(H)→ [0,∞]
satisfying

ν(A)<∞ ⇔ A∈B(H), 0 /∈ Ā.

Let (L(t))t>0 be a càdlàg version of a pure jump Lévy process in H with a symmetric Lévy measure
ν ∈ M0(H) on its Borel σ–algebraB(H) satisfying

∫

H

min{1,‖y‖2}ν(dy)<∞ and ν(A) = ν(−A), A∈B(H), 0 /∈ Ā,

and which is regularly varying with index α = −β ∈ (0,2) and limiting measure µ ∈ M0(H). For
a more comprehensive account we refer to [2] and [12].
Fix π2 < λ 6= (πn)2 and f (z) = −λ(z3 − z) for z ∈ R. The object of study of this article is the
behaviour of the solution process X ε in H of the following system for small ε > 0. For x ∈ H
consider

∂

∂ t
X ε(t,ζ) =

∂ 2

∂ ζ2 X ε(t,ζ) + f (X ε(t,ζ)) + ε L̇(t,ζ), t > 0, ζ ∈ [0,1],

X ε(t, 0) = X ε(t, 1) = 0, t > 0,

X ε(0,ζ) = x(ζ), ζ ∈ [0, 1].

(2.1)
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We summarize some results for the solution u(t; x) = X 0(t; x) of the deterministic Chafee-Infante
equation (ChI). It is well-known that the solution flow (t, x) 7→ u(t; x) is continuous in t and x
and defines a dynamical system in H. Furthermore the solutions are extremely regular for any
positive time, i.e. u(t) ∈ C∞(0,1) for t > 0. The attractor of (ChI) is explicitly known to be
contained in the unit ball with respect to the norm | · |∞ (see for instance [7], Chapter 5.6).

Proposition 2.1. For λ > 0 denote by Eλ the set of fixed points of (ChI). Then for any λ > 0 and
initial value x ∈ H there exists a stationary state ψ ∈ Eλ of the system (ChI) such that

lim
t→∞

u(t; x) =ψ.

Furthermore if π2 < λ 6= (kπ)2, k ∈ N, there are two stable fixed points and all elements of Eλ
are hyperbolic. In addition, the stable and the unstable manifolds of any unstable fixed point of Eλ
intersect transversally.

This relies on the fact that there is an energy functional, which may serve as a Lyapunov function
for the system. A proof of the first part can be found in [8], [11], and of the second part in [10].

Definition 2.2. For λ > π2 the solution of system (ChI) has two stable stationary states denoted by
φ+ and φ−. The full domains of attraction are given by

D± := {x ∈ H | lim
t→∞

u(t; x) = φ±}, and D±0 := D± −φ±,

and the separatrix by
S := H \

�

D+ ∪ D−
�

.

Due to the Morse-Smale property the separatrix is a closed C 1-manifold without boundary in H of
codimension 1 separating D+ from D−, and containing all unstable fixed points. For more refined
results we refer to [17] and references therein.

Definition 2.3. Writing Bδ(x) for the ball of radius δ > 0 in H with respect to the | · |∞–norm
centered at x, denote for δ1,δ2,δ3 ∈ (0, 1)

D±(δ1) :={x ∈ D± | ∪t>0 Bδ1
(u(t; x))⊂ D±},

D±(δ1,δ2) :={x ∈ D± | ∪t>0 Bδ2
(u(t; x))⊂ D±(δ1)},

D±(δ1,δ2,δ3) :={x ∈ D± | ∪t>0 Bδ3
(u(t; x))⊂ D±(δ1,δ2)}. (2.2)

For γ ∈ (0, 1) the sets D̃±(εγ) := D±(εγ,ε2γ) and D±(εγ,ε2γ,ε2γ) will be of particular importance.
We define the reshifted domains of attraction by

D±0 (δ1) :=D±(δ1)−φ±, (2.3)

D±0 (δ1,δ2) :=D±(δ1,δ2)−φ±, (2.4)

D±0 (δ1,δ2,δ3) :=D±(δ1,δ2,δ3)−φ±, (2.5)

and the following neighborhoods of the separatrix S

D̃0(εγ) := H \
�

D̃+(εγ)∪ D̃−(εγ)
�

,

D∗0(ε
γ) :=

�

D±0 (ε) \ D0(ε
γ,ε2γ)

�

+ Bε2γ(0).
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In [4] it is shown that the union over all ε > 0 for each of the sets D±(εγ), D̃±(εγ) and D±(εγ,ε2γ,ε2γ)
exhausts D±. Furthermore D±(εγ) and D̃±(εγ) are positively invariant under the deterministic so-
lution flow, and D̃±(εγ) + Bε2γ(0)⊂ D±(εγ) and D±(εγ,ε2γ,ε2γ) + Bε2γ(0)⊂ D̃±(εγ).

Proposition 2.4. Given the Chafee-Infante parameter π2 < λ 6= (kπ)2 for all k ∈ N there exist a
finite time Trec = Trec(λ) > 0 and a constant κ = κ(λ) > 0, which satisfy the following. For each
γ > 0 there is ε0 = ε0(γ)> 0, such that for all 0< ε 6 ε0, Trec +κγ| lnε|6 t and x ∈ D±(εγ)

|u(t; x)−φ±|∞ 6 (1/2)ε2γ.

This results relies on the hyperbolicity of the fixed points and the fine dynamics of the deterministic
solution flow. In [4] it is proved in the stronger Hilbert space topology of H. The preceding
theorem follows then as a corollary.
We denote the jump increment of L at time t > 0 by∆t L := L(t)− L(t−), and decompose the pro-
cess L for ρ ∈ (0,1) and ε > 0 in the following way. We call ηε the “large jump” compound Poisson
process with intensity βε := ν

�

ε−ρBc
1(0)

�

and jump probability measure ν(· ∩ ε−ρBc
1(0))/βε, and

the complementary “small jump” process ξε := L −ηε. The process ξε is a mean zero martingale
in H thanks to the symmetry of ν with finite exponential moments. We define the jump times of
ηε as

T0 := 0, Tk := inf
¦

t > Tk−1

�

� ‖∆t L‖> ε−ρ
©

, k > 1,

and the times between successive large jumps of ηεt recursively as t0 = 0 and tk := Tk − Tk−1, for
k > 1. Their laws L (tk) are exponential EX P(βε). We shall denote the k-th large jump by W0 = 0
and Wk =∆Tk

L for k > 1.

Proposition 2.5. For any mean zero L2(P; H)-martingale ξ = (ξ(t))t>0, T > 0, and initial value
x ∈ H equation (2.1) driven by εξ instead of εL has a unique càdlàg mild solution (Y ε(t; x))t∈[0,T].
The solution process Y ε induces a homogeneous Markov family satisfying the Feller property.

A proof can be found in [16], Chapter 10. By localization this notion of solution is extended to
the heavy-tailed process L. In [4] this will be carried out in detail.

Corollary 2.6. For x ∈ H equation (2.1) has a càdlàg mild solution (X ε(t; x))t>0, which satisfies
the strong Markov property.

Definition 2.7. For γ ∈ (0,1), ε > 0, and the càdlàg mild solution X ε(·; x) of (2.1) with initial
position x ∈ D̃±(εγ) we define the first exit time from the reduced domain of attraction

τ±x (ε) := inf{t > 0 | X ε(t; x) /∈ D±(εγ)}.

We now introduce the following two hypotheses, which will be required in our main theorem.
They are natural conditions on the regularly varying Lévy measure ν with respect to the underlying
deterministic dynamics in terms of its limit measure µ. See [12] for the relationship between ν
and µ, and (2.9) below for the particular scaling function 1

ε
needed here.

(H.1) Non-trivial transitions: µ
�

�

D±0
�c
�

> 0.
(H.2) Non-degenerate limiting measure: For α ∈ (0, 2) and Γ > 0 according to Proposition 3.4
let

0<Θ<
2−α

2α
, ρ ∈ (

1

2
,

2−α
2− (1−Θ)α

), 0< γ <
(2−α)(1−ρ)−Θαρ

2(Γ+ 2)
. (2.6)

For k =± and η > 0 there is ε0 > 0 such that for all 0< ε 6 ε0

µ
�

H \
�

(D+(εγ,ε2γ,ε2γ)∪ D−(εγ,ε2γ,ε2γ)) + Bε2γ(0)
�

−φk
�

< η. (2.7)
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While (H.1) ensures that there actually are transitions also by “large” jumps with positive proba-
bility, (H.2) implies that the slow deterministic dynamics close to the separatrix does not distort
the generic exit scenario of X ε. For comparable finite dimensional situations with absolutely con-
tinuous Lévy measure ν � d x these hypotheses are always satisfied.
For ε > 0 we define the characteristic rate of the system (2.1) by

λ±(ε) := ν
�

1

ε

�

D±0
�c
�

. (2.8)

According to [2] and [12] for ν chosen above there is a slowly varying function `ν = ` : (0,∞)→
(0,∞) such that for all ε > 0

λ±(ε) = εα `(
1

ε
) µ
�

(D±0 )
c
�

, and βε = ε
αρ `(

1

ερ
) µ
�

Bc
1(0)

�

. (2.9)

We may now state the main theorem.

Theorem 2.8. Given the Chafee-Infante parameter π2 < λ 6= (kπ)2 for all k ∈ N, we suppose that
Hypotheses (H.1) and (H.2) are satisfied. Then for any θ >−1

lim
ε→0+

E



 sup
x∈D̃±(εγ)

exp
�

−θλ±(ε)τ±x (ε)
�



=
1

1+ θ
.

The supremum in the formula can be replaced by the infimum.

The theorem states that in the limit of small ε, suitably renormalized exit times from reduced
domains of attraction have unit exponential laws.

3 The Small Deviation of the Small Noise Solution

This section is devoted to a small deviations’ estimate. It quantifies the fact, that in the time
interval between two adjacent large jumps the solution of the Chafee-Infante equation perturbed
by only the small noise component deviates from the solution of the deterministic equation by
only a small ε-dependent quantity, with probability converging to 1 in the small noise limit ε→ 0.
Define the stochastic convolution ξ∗ with respect to the small jump part ξε by ξ∗(t) =

∫ t

0
S(t −

s)dξε(s) for t > 0 (see [16]). In order to control the deviation for Y ε − u for small ε > 0, we
decompose Y ε = u+ εξ∗ + Rε. By standard methods we obtain in [4] the following lemmas.

Lemma 3.1. For ρ ∈ (0,1), γ > 0, p > 0 and 0 < Θ < 1 there are constants C > 0 and ε0 > 0 such
that for 0< ε 6 ε0 and T > 0

P
�

sup
t∈[0,T]

‖εξ∗t‖> ε
p�6 C T ε2−2p−(2−(1−Θ)α)ρ.

Define for T > 0, Γ> 0 and γ > 0 the small convolution event

ET (ε
(Γ+2)γ) := { sup

r∈[0,T]
||εξ∗(r)||< ε(Γ+2)γ} ε > 0.

By perturbation arguments, the stability of φ±, Proposition 2.4 and Lemma 3.1 we may estimate
the remainder term Rε for small ε.
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Lemma 3.2. There is a constant Γ > 0 such that for ρ ∈ (1/2, 1),γ > 0, there exists ε0 > 0 such
that for 0< ε 6 ε0, T > 0, x ∈ D±(εγ) on the event ET (ε(Γ+2)γ) we have the estimate

sup
t∈[0,T]

|Rε(t; x)|∞ 6
1

4
ε2γ.

We next combine Proposition 2.4, Lemma 3.1 and Lemma 3.2, to obtain the following proposition
on small deviations on deterministic time intervals.

Proposition 3.3. There is a constant Γ> 0 such that for 0< α < 2 given the conditions

0<Θ<
2−α
α

, ρ ∈ (1/2,
2−α

2− (1−Θ)α
), 0< γ <

(2−α)(1−ρ)−Θαρ
2(Γ+ 2)

,

there exist ε0 > 0 and C > 0 such that for any T > 0, 0< ε 6 ε0 and x ∈ D±(εγ)

P
�

sup
s∈[0,T]

|Y ε(s; x)− u(s; x)|∞ > (1/2)ε2γ�6 C T ε2−2(Γ+2)γ−(2−(1−Θ)α)ρ. (3.1)

This can be generalized to the first jump time T1 replacing T .

Proposition 3.4. There is a constant Γ> 0 such that for 0< α < 2 given the conditions

0<Θ<
2−α
α

, ρ ∈ (1/2,
2−α

2− (1−Θ)α
), 0< γ <

(2−α)(1−ρ)−Θαρ
2(Γ+ 2)

,

there exist constants ϑ = ϑ(Θ,ρ,γ,α)> α(1−ρ), Cϑ > 0 and ε0 > 0, which satisfy for all 0< ε 6 ε0

P
�

∃ x ∈ D±(εγ) : sup
s∈[0,T1]

|Y ε(s; x)− u(s; x)|∞ > (1/2)ε2γ�6 Cϑε
ϑ.

Proof. Let Γ> 0 large enough such that the hypotheses of Lemma 3.2 are satisfied. Then with the
given constants there exist constants Cθ > 0 and ε0 > 0 such that for 0< ε 6 ε0

P
�

∃ x ∈ D±(εγ) : sup
s∈[0,T1]

|Y ε(s; x)− u(s; x)|∞ > (1/2)ε2γ�

6

∫ ∞

0

P
�

∃ x ∈ D±(εγ) : sup
s∈[0,t]

|Y ε(s; x)− u(s; x)|∞ > (1/2)ε2γ�βεe
−βε t dt

6 Cθ ε
2−2(Γ+2)γ−(2−(1−Θ)α)ρ−αρ.

Fix ϑ = 2− 2(Γ+ 2)γ− (2− (1−Θ)α)ρ−αρ. One checks that ϑ > α(1−ρ).

For x ∈ D±(εγ) define the small perturbation event

Ex := { sup
s∈[0,T1]

|Y ε(s; x)− u(s; x)|∞ 6 (1/2)ε2γ}.

Corollary 3.5. Given the assumptions of Proposition 3.4 there is a constant ϑ = ϑ(α,Θ,γ,ρ) with
ϑ > α(1−ρ), Cϑ > 0, and ε0 > 0 such that for all 0< ε 6 ε0

E

�

sup
x∈D±(εγ)

1(Ec
x)

�

6 Cϑε
ϑ.

Corollary 3.6. Let C > 0, and let the assumptions of Proposition 3.4 be satisfied. Then there is a
constant ε0 > 0 such that for all 0< ε 6 ε0, θ >−1

E

�

e−θλ
±(ε)T1 sup

x∈D±(εγ)
1(Ec

x)

�

6 C
�

βε

βε + θλ±(ε)

�

λ±(ε)
βε

. (3.2)
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4 Asymptotic first exit times

In this section we derive estimates on exit events which then enable us to obtain upper and lower
bounds for the Laplace transform of the exit times in the small noise limit.

4.1 Estimates of Exit Events by Large Jump and Perturbation Events

To this end, in this subsection we first estimate exit events of X ε by large jump exits on the
one hand, and small deviations on the other hand. Denote the shift by time t on the space of
trajectories by θt , t > 0. For any k ∈ N, t ∈ [0, tk], x ∈ H we have

X ε(t + Tk−1; x) = Y ε(t; X ε(0; x)) ◦ θTk−1
+ εWk1{t = tk}. (4.1)

In the following two lemmas we estimate certain events connecting the behavior of X ε in the
domains of the type D±(εγ) with the large jumps ηε in the reshifted domains of the type D±0 (ε

γ).
We introduce for ε > 0 and x ∈ D̃±(εγ) the events

Ax :={Y ε(s; x) ∈ D±(εγ) for s ∈ [0, T1] and Y ε(T1; x) + εW1 ∈ D±(εγ)},
Bx :={Y ε(s; x) ∈ D±(εγ) for s ∈ [0, T1] and Y ε(T1; x) + εW1 /∈ D±(εγ)},

Cx :={Y ε(s; x) ∈ D±(εγ) f. s ∈ [0, T1] a. Y ε(T1; x) + εW1 ∈ D±(εγ) \ D̃±(εγ)},

A−x :={Y ε(s; x) ∈ D±(εγ) for s ∈ [0, T1] and Y ε(T1; x) + εW1 ∈ D̃±(εγ)}. (4.2)

We exploit the definitions of the reduced domains of attraction in order to obtain estimates of
solution path events by events only depending on the driving noise.

Lemma 4.1 (Partial estimates of the major events). Let Trec ,κ > 0 be given by Proposition 2.4 and
assume that Hypotheses (H.1) and (H.2) are satisfied. For ρ ∈

�

1
2
, 1
�

, γ ∈ (0, 1− ρ) there exists
ε0 > 0 so that the following inequalities hold true for all 0< ε 6 ε0 and x ∈ D±(εγ)

i) 1(Ax)1(Ex)1{T1 > Trec +κγ| lnε|}6 1{εW1 ∈ D±0 }, (4.3)

ii) 1(Bx)1(Ex)1{T1 > Trec +κγ| lnε|}6 1{εW1 /∈ D±0 (ε
γ,ε2γ)}, (4.4)

iii) 1(Cx)1(Ex)1{T1 > Trec +κγ| lnε|}6 1{εW1 ∈ D∗0(ε
γ)}. (4.5)

Additionally, for x ∈ D±(εγ) we have

iv) 1(Bx)1(Ex)1{‖εW1‖6 (1/2)ε2γ}1{T1 > Trec +κγ| lnε|}= 0, (4.6)

v) 1(Cx)1(Ex)1{‖εW1‖6 (1/2)ε2γ}1{T1 > Trec +κγ| lnε|}= 0. (4.7)

In the opposite sense for x ∈ D̃±(εγ)

vi) 1(Ex)1{T1 > Trec +κγ| lnε|}1{εW1 /∈ D±0 }6 1(Bx), (4.8)

vii) 1(Ex)1{T1 > Trec +κγ| lnε|}1{εW1 ∈ D±0 (ε
γ,ε2γ,ε2γ)}6 1(A−x ). (4.9)

With the help of Lemma 4.1 we can show the following crucial estimates.

Lemma 4.2 (Full estimates of the major events). Let Trec ,κ > 0 be given by Proposition 2.4 and
Hypotheses (H.1) and (H.2) be satisfied. For ρ ∈

�

1
2
, 1
�

, γ ∈ (0,1−ρ) there exists ε0 > 0 such that
the following inequalities hold true for all 0< ε 6 ε0,κ > 0 and x ∈ D±(εγ)

i x) 1(Ax) 61{εW1 ∈ D±0 }+ 1{‖εW1‖>
1

2
ε2γ}1{T1 < Trec +κγ| lnε|}+ 1(Ec

x),

x) 1(Bx) 61{εW1 /∈ D±0 (ε
γ,ε2γ)}+ 1{T1 < Trec +κγ| lnε|}+ 1(Ec

x),
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x i) sup
y∈D̃±(εγ)

1{Y ε(s; y) /∈ D±(εγ) for some s ∈ (0, T1)}6 sup
y∈D̃±(εγ)

1(Ec
y),

x ii) 1(Ax)1{Y ε(s; X ε(0, x)) ◦ θT1
/∈ D±(εγ) for some s ∈ (0, T1)}

6 1
¦

εW1 ∈ D∗0(ε
γ)
©

+ 1{T1 < Trec +κγ| lnε|}+ sup
y∈D̃±(εγ)

1(Ec
y) ◦ θT1

+ 1(Ec
x).

In the opposite sense for x ∈ D̃±(εγ)

x iii) 1(A−x )> 1{εW1 ∈ D±0 (ε
γ,ε2γ,ε2γ)} − 1{T1 < Trec +κγ| lnε|} − 2 1(Ec

x),
x iv) 1(Bx)> 1{εW1 /∈ D±0 }(1− 1{T1 < Trec +κγ| lnε|})− 1(Ec

x).

The next lemma ensures that after having relaxed to Bε2γ(φ±) the solution X ε jumps close to the
separatrix only with negligible probability for ε→ 0+.

Lemma 4.3 (Asymptotic behavior of large jump events). Let Hypotheses (H.1) and (H.2) be satis-
fied and 1/2< ρ < 1− 2γ. Then for any C > 0 there is ε0 = ε0(C)> 0 such that for all 0< ε 6 ε0

I)

 

µ
�

(D±0 )
c
�

µ(Bc
1(0))

− C

!

εα(1−ρ) 6
λ±(ε)
βε

6

�

µ((D±0 )
c)

µ(Bc
1(0))

+ C

�

εα(1−ρ),

I I) P
�

‖εW1‖> (1/2)ε2γ
�

6 4εα(1−ρ−2γ),

I I I) P
�

εW1 ∈ (D̃±0 (ε
γ))c
�

6 (1+ C)
λ±(ε)
βε

,

IV ) P
�

εW1 ∈ D∗0(ε
γ)
�

6 C
λ±(ε)
βε

,

V ) P(εW1 ∈ Dc
0(ε

γ,ε2γ,ε2γ))6 (1+ C)
λ±(ε)
βε

.

A detailed proof is given in [4].

4.2 Asymptotic Exit Times from Reduced Domains of Attraction

We next exploit the estimates obtained in the previous subsection and combine them with the small
deviations result of section 3, to identify the exit times from the reduced domains of attraction with
large jumps from small neighborhoods of the stable equilibria that are large enough to cross the
separatrix.

Proposition 4.4 (The upper estimate). Let (H.1) and (H.2) be satisfied. Then for all θ > −1 and
C ∈ (0, 1+ θ) there is ε0 = ε0(θ)> 0 such that for 0< ε 6 ε0

E



 sup
x∈D̃±(εγ)

exp
�

−θλ±(ε)τ±x (ε)
�



6
1+ C

1+ θ − C
.

Proof. By (H.2) Γ> 0 can be chosen large enough to fulfill the hypotheses of Proposition 3.4. Let
C > 0 be given. We drop the superscript ±. Since the jumps of the noise process L exceed any
fixed barrier P-a.s., τx(ε) is P-a.s. finite. Therefore we may rewrite the Laplace transform of τx(ε)
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for ε > 0, giving

E



 sup
x∈D̃(εγ)

e−θλ(ε)τx (ε)



=
∞
∑

k=1

�

E

�

e−θλ(ε)Tk sup
x∈D̃(εγ)

1{τx(ε) = Tk}
�

+E
�

sup
x∈D̃(εγ)

e−θλ(ε)τx (ε)1{τx(ε) ∈ (Tk−1, Tk)}
��

= I1 + I2. (4.10)

Using the strong Markov property, the independence and stationarity of the increments of the
large jumps Wi we obtain for k > 1

E



e−θλ(ε)Tk sup
x∈D̃(εγ)

1{τx(ε) = Tk}





6

�

E

�

e−θλ(ε)T1 sup
y∈D(εγ)

1
�

Ay

�

��k−1

E

�

e−θλ(ε)T1 sup
y∈D(εγ)

1
�

By

�

�

.

In the subsequent Claims 1-4 we estimate the preceding factors with the help of Lemma 4.2.

Claim 1: There exists ε0 > 0 such that for all 0< ε 6 ε0

Ex

�

e−θλ(ε)T1 sup
y∈D(εγ)

1(Ay)

�

6
βε

βε + θλ(ε)

�

1−
λ(ε)
βε
(1− C/5)

�

.

In fact: in the inequality of Lemma 4.2 i x) we can pass to the supremum in y ∈ D(εγ), and
integrate to obtain, using the independence of (Wi)i∈N and (Ti)i∈N

E

�

e−θλ(ε)T1 sup
y∈D(εγ)

1(Ay)

�

6 E

�

e−θλ(ε)T11{T1 < Trec +κγ| lnε|}
�

P

�

ε‖W1‖> (1/2)ε2γ
�

+E
�

e−θλ(ε)T1
�

P
�

εW1 ∈ D0
�

+E

�

e−θλ(ε)T1 sup
y∈D(εγ)

1(Ec
y)

�

=: K1K2 + K3K4 + K5.

The terms K1, K3 and K4 can be calculated explicitly, for K2 we apply Lemma 4.3 I I). For K5 we
use Corollary 3.6 and Lemma 4.3 I) ensuring that there is ε0 so that we have for 0< ε 6 ε0

K5 6 C/10
βε

βε + θλ(ε)
λ(ε)
βε

. (4.11)

Claim 2: There is ε0 > 0 such that for all 0< ε 6 ε0

E

�

e−θλ(ε)T1 sup
y∈D(εγ)

1
�

B(y)
�

�

6 (1+ C)
βε

βε + θλ(ε)
λ(ε)
βε

.
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Indeed, in a similar manner and with the help of Lemma 4.2 x) and Lemma 4.3 I I I) we obtain
that there is ε0 > 0 such that for all 0< ε 6 ε0

E

�

e−θλ(ε)T1 sup
y∈D(εγ)

1
�

B(y)
�

�

6 (1+ C)
βε

βε + θλ(ε)
λ(ε)
βε

.

In order to treat the summands of the second sum of (4.10) we have to distinguish the cases θ > 0
and θ ∈ (−1,0), as well as k = 1 and k > 2. Let us first discuss the case θ > 0.

Claim 3: There is ε0 > 0 such that for all 0< ε 6 ε0

E



 sup
x∈D̃(εγ)

e−θλ(ε)τx (ε)1{τx(ε) ∈ (0, T1)}



6 C/5
�

βε

βε + θλ(ε)

�

λ(ε)
βε

.

This statement is proved by means of Lemma 4.2 x i) and Corollary 3.5.

Claim 4: There exists ε0 > 0 such that for any k > 2

E



 sup
x∈D̃(εγ)

e−θλ(ε)τx (ε)1{τx(ε) ∈ (Tk−1, Tk)}





6

�

βε

βε + θλ(ε)

�

1−
λ(ε)
βε
(1− C/5)

��k−2

C/5
βε

βε + θλ(ε)
λ(ε)
βε

.

To show this, we use the strong Markov property and Lemma 4.2 x ii), as in the estimate for the
first summand to get for k > 2 and θ > 0

E



 sup
x∈D̃(εγ)

e−θλ(ε)Tk−11{τx(ε) ∈ (Tk−1, Tk)}





6

�

E

�

e−θλ(ε)T1 sup
y∈D(εγ)

1(Ay)

��k−2
�

K3K9 + K1 + 2K5
�

. (4.12)

Lemma 4.2 x ii) and Lemma 4.3 IV ) provide the existence of ε0 > 0 such that for 0< ε 6 ε0

K9 = P
�

εW1 ∈ D∗0(ε
γ)
�

6 C/20
λ(ε)
βε

.

It remains to discuss the case θ ∈ (−1,0) in a similar way. This is detailed in [4].
Combining Claims 1-4 we finally find an ε0 > 0 such that for (4.10) and all 0< ε 6 ε0

E



 sup
x∈D̃(εγ)

e−θλ(ε)τx (ε)





6 (1+ (2/5)C)
λ(ε)
βε

βε

βε + θλ(ε)

∞
∑

k=0

�

βε

βε + θλ(ε)

�

1−
λ(ε)
βε
(1− C/5)

��k

6
1+ C

θ + (1− C)
.

The series converges if and only if C < θ + 1.
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Proposition 4.5 (The lower estimate). Assume that Hypotheses (H.1) and (H.2) are satisfied. Then
for all θ >−1 and C ∈ (0, 1+ θ) there is ε0 = ε0(θ)> 0 such that for all 0< ε 6 ε0

E

�

inf
x∈D̃±(εγ)

exp
�

−θλ±(ε)τ±x (ε)
�

�

>
1+ C

1+ θ − C
.

Proof. Again we omit the superscript ± and fix Γ > 0 large enough due to (H.2). Omitting the
term I2 in equation (4.10), we obtain the estimate

E

�

inf
x∈D̃(εγ)

e−θλ(ε)τx (ε)

�

>
∞
∑

k=1

�

E

�

e−θλ(ε)T1 inf
y∈D̃(εγ)

1(A−y )

��k−1

E

�

e−θλ(ε)T1 inf
y∈D̃(εγ)

1(By)

�

. (4.13)

We treat the terms appearing in (4.13) in a similar way as for the upper estimate.

Claim 1: There is ε0 > 0 such that for all 0< ε 6 ε0

E

�

e−θλ(ε)T1 inf
x∈D̃(εγ)

1(A−x )

�

>
βε

βε + θλ(ε)

�

1− (1+ C)
λ(ε)
βε

�

.

To prove this, we apply Lemma 4.1 x iii), take the infimum over y ∈ D̃(εγ) and integrate to get

E

�

e−θλ(ε)T1 inf
y∈D̃(εγ)

1(A−y )

�

= K3

�

1−P(W1 ∈ (1/ε)Dc
0(ε

γ,ε2γ,ε2γ))
�

− K1 − 2K5,

where K1, K3, K5 have the same meaning as in the proof of Proposition 4.4 and are treated identi-
cally.
By Lemma 4.3 V ) there exists ε0 > 0 such that for 0< ε 6 ε0

P(εW1 ∈ Dc
0(ε

γ,ε2γ,ε2γ))6 (1+ C/5)
λ(ε)
βε

.

Claim 2: There is ε0 > 0 such that for 0< ε 6 ε0

E

�

e−θλ(ε)T1 inf
y∈D̃0(εγ)

1(By)

�

>
βε

θλ(ε) + βε

�

(1− C)
λ(ε)
βε

�

.

Here we exploit Lemma 4.2 x iv). Finally combining Claim 1 and Claim 2 we obtain

E

�

inf
x∈D̃(εγ)

e−θλ(ε)τx (ε)

�

≥

>
∞
∑

k=1

�

βε

βε + θλ(ε)

�

1− (1+ C)
λ(ε)
βε

��k−1 βε

θλ(ε) + βε

�

(1− C)
λ(ε)
βε

�

=
λ(ε)(1− C)

θλ(ε)− (1+ C)λ(ε)
=

1− C

θ + 1+ C
.
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The series converges if and only if −(1+ C)< θ .
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