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Abstract

In a distributed clustering algorithm introduced by Coffman, Courtois, Gilbert and Piret [1], each
vertex of Zd receives an initial amount of a resource, and, at each iteration, transfers all of its
resource to the neighboring vertex which currently holds the maximum amount of resource. In
[4] it was shown that, if the distribution of the initial quantities of resource is invariant under
lattice translations, then the flow of resource at each vertex eventually stops almost surely, thus
solving a problem posed in [2]. In this article we prove the existence of translation-invariant
initial distributions for which resources nevertheless escape to infinity, in the sense that the the
final amount of resource at a given vertex is strictly smaller in expectation than the initial amount.
This answers a question posed in [4].

1 Introduction

1.1 Definitions and statement of the main result

Consider, for d ≥ 1, the d-dimensional integer lattice. This is the graph with vertex set Zd , and
edge set comprising all pairs of vertices (x , y) (= (y, x)) with |x − y| = 1. Here | · | denotes the
1-norm. We use the notation Zd for this graph as well as for its vertex set. It will be clear from the
context which of the two is meant.
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The following model for ‘distributed clustering’ was introduced by Coffman, Courtois, Gilbert and
Piret [1]. To each vertex x of the lattice Zd , we assign a random nonnegative number C0(x) ∈
[0,∞] which we regard as the initial amount of a ‘resource’ placed at x at time 0. (The family
(C0(x); x ∈ Zd) is not necessarily assumed independent). Then we define a discrete-time evolution
in which, at each step, each vertex transfers its resource to the ‘richest’ neighbouring vertex.
More precisely, the evolution is defined recursively as follows. Suppose that, at time n, the amount
of resource at each vertex x is Cn(x). Let N(x) = {y ∈ Zd : |x − y| ≤ 1} be the neighbourhood of
x (note that it includes x itself) and define

Mn(x) =
�

y ∈ N(x) : Cn(y) = max
z∈N(x)

Cn(z)
�

.

Now let vn(x) be a vertex chosen uniformly at random in Mn(x), independently for each x , and
take:

an(x) =
�

x , if Cn(x) = 0
vn(x), if Cn(x)> 0.

Finally, define
Cn+1(x) :=

∑

y : an(y)=x

Cn(y).

For a fixed vertex x , the random variable C0(x) will be called the initial amount of resource at x ,
and the family

�

C0(x); x ∈ Zd
�

will be called the initial configuration. Analogously,
�

Cn(x); x ∈ Zd
�

will be called the configuration at time n. Note that an(x) is the vertex to which the resources lo-
cated at x at time n (if any) will be transferred during the (n+1)-th step of the evolution. We say
that there is a tie in x at time n if Cn(x) > 0 and the cardinality of Mn(x) is strictly greater than
one. In case this occurs, an(x) is chosen uniformly at random among the vertices around x that
maximize Cn. Note that, apart from those possible tie breaks, all the randomness is contained in
the initial configuration. As soon as a vertex has zero resource, its resource remains zero forever.
Also note that, when two or more vertices transfer their resources to the same vertex, these re-
sources are added up. Thus this algorithm models a clustering process in the lattice starting from
a disordered initial configuration.
For a fixed vertex x , we use the notation C∞(x) for limn→∞ Cn(x) in case this limit exists. We write
E for expectation with respect to the underlying probability measure.
Our main result is the following theorem. The proof is given in Section 3.

Theorem 1. Let d ≥ 2. There exists a translation-invariant distribution for the initial configuration
�

C0(x); x ∈ Zd
�

such that, for each x ∈ Zd ,

E
�

C∞(x)
�

< E
�

C0(x)
�

. (1)

1.2 Background and motivation

Here is some more terminology. If, for all sufficiently large n, we have that an(x) = x and an(y) 6=
x for all neighbours y of x , then we say that the flow at x terminates after finitely many steps.
In that case, the limit C∞(x) is attained after finitely many iterations and will be called the final
amount of resource at x . If for all sufficiently large n we have an+1(x) = an(x), then we say that x
eventually transfers its resource to the same fixed vertex.
The following stability questions for this process (formulated here similarly as in [4]) have been
investigated in the literature:
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Question 1. Does each vertex eventually transfer its resource to the same fixed vertex almost surely?

Question 2. Does the flow at each vertex terminate after finitely many steps almost surely?

Question 3. If the answer to the previous question is affirmative, is the expected final amount of
resource of a vertex equal to the expected initial amount?

Of course the answers to the above questions may depend on the assumptions made about the
distribution of the initial configuration. Note that if the answer to Question 2 is affirmative, then
so is the answer to Question 1. In that case, answering Question 3 is equivalent to answering
the question whether the resource quantity that started on a given vertex will eventually stop
moving almost surely. So, informally, Question 2 is related to fixation while Question 3 is related
to conservation.
Van den Berg and Meester [2] considered the case d = 2 and i.i.d. initial resource quantities. Using
translation-invariance and symmetries of the system they proved that the answer to Question 1 is
positive in the case that the initial quantities of resource have a continuous distribution. They also
showed that, if the resources are integer valued, then Question 2 has a positive answer as well.
Later, van den Berg and Ermakov [3] considered again i.i.d. continuously distributed initial quan-
tities of resource on the two-dimensional lattice. Using a percolation approach, they were able to
relate Questions 2 and 3 to a finite (but large) computation. By using Monte Carlo simulation,
they obtained overwhelming evidence that the answer to these questions is positive for this case.
In [4] it was proved that, for every dimension and every translation-invariant distribution of the
initial configuration, the answer to Question 2 is positive. However, Question 3 was left open.
Our Theorem 1 says that, for some initial distributions in this class, the answer to that question is
negative.
The conclusion of Theorem 1 is false for d = 1. To see that, suppose that the probability that
the resource starting at the origin does not stop after finitely many steps is positive. Then, by
translation invariance, there is, with positive probability, a positive density of vertices for which
the initial resource will not stop after finite time. This implies that, with positive probability, there
are infinitely many steps at which resource enters or leaves the origin, contradicting the fixation
result of [4] mentioned in the previous paragraph. This argument can be generalized for example
to any graph of the form Z × G, where G is a finite vertex-transitive graph. (For such graphs
translation-invariance is replaced with automorphism-invariance).
In order to prove Theorem 1, we will construct a random collection (forest) of one-ended trees,
which is embedded in Zd , in a translation-invariant way, and then assign resource quantities to
the vertices in such a way that, during the evolution, each resource follows the unique infinite
self-avoiding path to infinity in the forest. In Section 2 we present a short discussion about the
existence of certain random forests on Zd . In Section 3, Theorem 1 is proved. In Section 4 we
present some concluding remarks and open questions.

2 Translation-invariant forests on Zd

Let G be an infinite graph. A forest of G is a subgraph of G that has no cycles. A tree is a connected
forest. A subgraph spans G if it contains every vertex of G. A spanning forest (respectively tree) on
G is a subgraph of G that is a forest (respectively a tree) and that spans G. The leaves of a forest
T are the vertices of T that only have one neighbor in the forest. The number of ends of a tree is
the number of distinct self-avoiding infinite paths starting from a given vertex. A tree is said to be
one-ended if it has one end.
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We choose the d-dimensional integer lattice as the underlying graph. For this choice, the literature
provides several constructions of random spanning forests with translation-invariant distributions,
for example, the uniform spanning tree [5], and the minimal spanning tree [6]. To be explicit, we
briefly discuss one construction, based on the two-dimensional minimal spanning tree.
Let E be the set of edges of the lattice Z2, and let

�

Ue; e ∈ E
	

be a family of independent random
variables distributed uniformly in the interval [0, 1]. For each cycle of the lattice, delete the edge
having the maximum U-value on the cycle. The resulting random graph is called (free) minimal
spanning forest and is known to be almost surely a one-ended tree which is invariant and ergodic
under lattice translations (see [7]).
For d > 2, we can use the two-dimensional minimal spanning forest to construct a random forest in
Zd of which the distribution is invariant under lattice translations, and of which every component
is one-ended. We regard Zd as Z2 × Zd−2 and in each ‘layer’ Z2 × {z} (where z runs over Zd−2)
we embed an independent copy of the two-dimensional minimal spanning tree Tz . The resulting
subgraph of Zd is a translation-invariant random spanning forest with one-ended components.
This gives the following lemma.

Lemma 2. For each d ≥ 2 there exists a translation-invariant random spanning forest on Zd , of
which each connected component is one-ended almost surely.

Corollary 3. For each d ≥ 2 there exists a translation-invariant random forest T on Zd , for which
the following two properties hold almost surely.
(i) Every connected component of T is one-ended.
(ii) Every edge of Z2 of which both endpoints are in T is an edge of T .

Proof. Let H be a spanning forest as in Lemma 2 and write F for the set of its edges, and V for the
set of its vertices. Let eH be the forest with vertex set {2x : x ∈ V}∪

�

x + y : (x , y) ∈ F
	

and edge
set E =

�

(2x , x + y) : (x , y) ∈ F
	

. Informally, eH corresponds to the forest which is obtained when
H is scaled up by a factor 2. Thus to each edge (x , y) of H, there correspond two edges, (2x , x+ y)
and (x+ y, 2y), in eH. Note that eH is a random forest which is invariant under translations of 2Zd ,
and which has the property that every pair x , y of its vertices satisfying |x − y| = 1 is connected
by an edge of eH. To restore invariance under all translations of Zd , let W be a uniformly random
element of the discrete cube {0,1}d , independent of eH, and set T = eH +W .

3 Proof of main result

In this section we fix d ≥ 2. We will prove Theorem 1 by giving an explicit construction of an
initial configuration (C0(x), x ∈ Zd) whose distribution is translation-invariant and for which (1)
holds.
Let T be a random forest on Zd as given by Corollary 3. For vertices x and y of T we write x ∼ y
if (x , y) is an edge of T . We define a (random) partial order ≤ on Zd by setting y ≤ x if and only
if x and y are vertices of T and x belongs to the unique infinite self-avoiding path in T starting at
y . If y ≤ x we say that x is an ancestor of y and that y is a descendant of x . If y ≤ x and x ∼ y
we say that x is a parent of y and that y is a child of x . Note that every vertex of T has a unique
parent. Moreover, for every vertex x of T , exactly one vertex in {y : y ∼ x} is the parent of x ,
and the others are descendants of x .
We now define, for each x ∈ Zd , the initial quantity of resource at x by:

C0(x) =

(

∑

y∈Zd 1[y ≤ x], if x ∈ T

0, otherwise.
(2)
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Note that, if x ∈ T , then C0(x) is the number of descendants of x . Since every connected com-
ponent of T is one-ended, it follows from the definitions that this number is finite. Also note
that, since the distribution of T is invariant under the translations of Zd , so is that of the family
�

C0(x); x ∈ Zd
�

.
We now define a nested (‘decreasing’) sequence of forests that will be shown to describe the
dynamics of resources when C0(x) is given by (2). For a forest S, let φ(S) denote the forest
obtained from S by deleting all its leaves. Let T0 = T and, for n = 1,2, . . ., define inductively
Tn = φ(Tn−1).
The following observation follows easily from the definitions.

Observation 4. Let x be a vertex of T and n ≥ 0. Then x is in Tn+1 if and only if some child of x is
in Tn.

Lemma 5. For every vertex x in T , there is a finite index n0 (depending on x) such that, for all
n≥ n0, x does not belong to Tn.

Proof. By Observation 4, n0(x) is at most 1 plus the number of descendents of x . As we mentioned
before, this number is finite.

Lemma 6. Suppose that, for all x, C0(x) is given by (2). Then for all n≥ 0,

Cn(x)

(

>
∑

y:y∼x , y≤x Cn(y), if x ∈ Tn;

= 0, if x /∈ Tn.
(3)

Proof. We use induction on n. To verify (3) for n = 0 we note that, if x belongs to T0(= T ) then,
by (2),

∑

y:y∼x ,
y≤x

C0(y) =
∑

y:y∼x ,
y≤x

∑

z∈Zd

1[z ≤ y] =
∑

z∈Zd\{x}

1[z ≤ x] = C0(x)− 1.

Now, suppose that (3) holds for a given n. Since T was taken as in Corollary 3, two vertices of Tn
which are adjacent in Zd must be linked by an edge of Tn. By this and (3) it follows that, for each
vertex z of Tn, an(z) is the parent of z. Therefore, and because Cn ≡ 0 outside Tn, we have

Cn+1(x) = 0 if x /∈ Tn+1; (4)

Cn+1(x) =
∑

y:y∼x , y≤x

Cn(y) if x ∈ Tn+1. (5)

By applying (5), (3) and Observation 4 (and noting that (5) also holds for x /∈ Tn+1, since then
both sides of (5) are equal to 0), we get, for x ∈ Tn+1,

Cn+1(x) =
∑

y:y∼x ,
y≤x

Cn(y)>
∑

y:y∼x ,
y≤x

∑

z:z∼y,
z≤y

Cn(z) =
∑

y:y∼x ,
y≤x

Cn+1(y). (6)

Now (4) and (6) complete the induction step, and the proof of Lemma 6.

Proof of Theorem 1. Let the initial configuration be defined as in (2). Let x ∈ Zd . By Lemma 6
and Lemma 5, we have that almost surely Cn(x) = 0 for all sufficiently large n. Hence C∞(x) = 0
almost surely. On the other hand, it is clear that C0(x) > 0 with positive probability, and hence
E[C0(x)]> 0.
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4 Concluding remarks and open problems

At the end of the proof of Theorem 1 we mentioned the obvious fact that E[C0(x)] > 0 for every
x . It turns out that this expectation is even∞. Indeed, we have

E[C0(x)] =
∑

y∈Z2

P[y ≤ x] =
∑

y∈Z2

P[x + y ≤ x]

=
∑

y∈Z2

P[x ≤ x − y] =
∑

y∈Z2

P[x ≤ y] =∞,

where the second and forth equality follow by relabeling, the third equality follows by translation-
invariance and the last inequality follows from the fact that x has infinitely many ancestors almost
surely.
We have not been able to construct an example where resources escape to infinity but the initial
amount of resource at a given vertex has finite expectation. It is an interesting question whether
such examples exist.
In particular, in our construction, the initial configuration was chosen in such a way that, almost
surely, the induced dynamics takes place in a forest with one-ended components, embedded in Zd

and, at each step, the resources are transferred from every vertex with non-zero resource to its
parent. It is not clear if for every initial configuration with these properties the expectation of the
initial amount of resource of a vertex is infinite. We state these considerations more formally by
the following two questions.

Question 4. Suppose that (C0(x); x ∈ Zd) has a translation-invariant distribution and is positive
exactly on the vertices of a forest with one-ended components. Furthermore, suppose that during the
n-th step of the evolution, every vertex for which Cn−1(x) > 0 transfers its resource to its parent. Is it
the case that E[C0(x)] =∞?

Question 5. Does there exist a translation-invariant distribution for the initial configuration for
which E[C∞(x)]< E[C0(x)]<∞?

A negative answer to Question 4 would yield a positive answer to Question 5.
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