
Elect. Comm. in Probab. 15 (2010), 14–21

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

LIPSCHITZ PERCOLATION

N. DIRR
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
email: n.dirr@maths.bath.ac.uk

P. W. DONDL
Hausdorff Center for Mathematics and Institute for Applied Mathematics,
Endenicher Allee 60, D-53115 Bonn, Germany
email: pwd@hcm.uni-bonn.de

G. R. GRIMMETT
Statistical Laboratory, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road,
Cambridge CB3 0WB, UK
email: g.r.grimmett@statslab.cam.ac.uk

A. E. HOLROYD
Microsoft Research, 1 Microsoft Way, Redmond WA 98052, USA and Department of Mathematics,
University of British Columbia, 121–1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
email: holroyd@math.ubc.ca

M. SCHEUTZOW
Fakultät II, Institut für Mathematik, Sekr. MA 7–5, Technische Universität Berlin, Strasse des 17. Juni
136, D-10623 Berlin, Germany
email: ms@math.tu-berlin.de

Submitted 17 November 2009, accepted in final form 12 January 2010

AMS 2000 Subject classification: 60K35, 82B20
Keywords: percolation, Lipschitz embedding, random surface

Abstract
We prove the existence of a (random) Lipschitz function F : Zd−1 → Z+ such that, for every
x ∈ Zd−1, the site (x , F(x)) is open in a site percolation process on Zd . The Lipschitz constant may
be taken to be 1 when the parameter p of the percolation model is sufficiently close to 1.

1 Introduction

Let d ≥ 1 and p ∈ (0, 1). The site percolation model on the hypercubic lattice Zd is obtained
by designating each site x ∈ Zd open with probability p, and otherwise closed, with different
sites receiving independent states. The corresponding probability measure on the sample space
Ω = {0, 1}Z

d
is denoted by Pp, and the expectation by Ep. We write Z+ = {1, 2, . . . }, and ‖ · ‖ for

the 1-norm on Zd .
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Theorem 1. For any d ≥ 2, if p > 1− (2d)−2 then there exists a.s. a (random) function F : Zd−1→
Z+ with the following properties.

(i) For each x ∈ Zd−1, the site (x , F(x)) ∈ Zd is open.

(ii) For any x , y ∈ Zd−1 with ‖x − y‖= 1 we have |F(x)− F(y)| ≤ 1.

(iii) For any isometry θ of Zd−1 the functions F and F ◦θ have the same laws, and the random field
(F(x) : x ∈ Zd−1) is ergodic under each translation of Zd−1.

(iv) There exists A= A(p, d)<∞ such that

Pp(F(0)> k)≤ Aν k, k ≥ 0.

where ν = 2d(1− p)< 1.

We may think of ((x , F(x)) : x ∈ Zd−1) as a random surface, or a Lipschitz embedding of Zd−1

in Zd . When d = 2, the existence of such an embedding for large p is a consequence of the
fact that two-dimensional directed percolation has a non-trivial critical point. The result is less
straightforward when d ≥ 3.
The event that there exists an F satisfying (i) and (ii) is clearly increasing, and invariant under
translations of Zd−1, therefore there exists pL such that the event occurs with probability 1 if p > pL
and 0 if p < pL. Theorem 1 implies that pL ≤ 1− (2d)−2. This upper bound may be improved to
1− (2d − 1)−2 as indicated at the end of Section 4, but we do not attempt to optimize it here. (A
similar remark applies to the forthcoming Theorem 2.) The inequality pL > 0 also holds, because
site percolation on Zd with next-nearest neighbour edges has a non-trivial critical point.
Theorem 1 is concerned with the critical value pL for the existence of a Lipschitz embedding with
constant 1. Suppose, instead, we seek a Lipschitz embedding with some Lipschitz constant k, and
let pL(k) be the associated critical value. We partition Zd into translates of the set T = {red : 1 ≤
r ≤ s} where ed is a unit vector in the direction of increasing dth coordinate, and we declare any
set of the partition occupied if it contains one or more open sites. Each such set is occupied with
probability 1− (1− p)s, and it follows that

pL(2s− 1)≤ 1− (1− pL)
1/s, s ≥ 1.

In particular, pL(k) ↓ 0 as k→∞.
Some history of the current paper, and some implications of the work, are summarized in Section
2. In Section 3 we present a variant of Theorem 1 involving finite surfaces. The principal combi-
natorial estimate appears in Section 4, and the proofs of the theorems may be found in Section 5.
Further properties of Lipschitz embeddings will be presented in [8].

2 Background and applications

The percolation model is one of the most studied models for a disordered medium, and the reader
is referred to [5] for a recent account of the theory. The basic question is to determine for which
values of p there exists an infinite self-avoiding walk of open sites. There exists a critical value pc,
depending on the choice of underlying lattice, such that such a walk exists a.s. when p > pc, and
not when p < pc. It is clear that pc(Z) = 1, and it is fundamental that pc(Zd) < 1 when d ≥ 2.
Similarly, there exists a critical probability ~pc for the existence of an infinite open self-avoiding
walk that is non-decreasing in each coordinate, and ~pc(Zd)< 1 for d ≥ 2. The existence of certain
types of open surface has also been studied, see for example [1, 4, 7, 10].
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The purpose of this note is to prove the existence of a non-trivial critical point for the existence
of a type of open Lipschitz surface within site percolation on Zd with d ≥ 2. The existence of
such surfaces is interesting in its own right, and in addition there are several applications to be
developed elsewhere. We make a remark about the history of the current note. Theorem 1 was
first proved by a subset of the current authors, using an argument based on a subcritical branching
random walk, summarized in Section 6. This proof involves an exploration process which is of
independent interest. The simpler proof presented in Sections 4 and 5 was found subsequently by
the remaining authors.
Theorem 1 has several applications and extensions described in detail in [3, 8, 9]. Paper [3] is
devoted to the movement of an interface through a field of obstacles, and it is proved that there
exists a supersolution to the so-called Edwards–Wilkinson equation. Paper [8] is concerned with
the existence (or non-existence) of embeddings of Zm within the set of open sites of Zn, subject to
certain geometrical constraints. In particular, it is proved that infinite words indexed by Zd−1 may
be embedded in Zd , thus answering a question posed by Ron Peled and described in [6]. In [9],
an extension of the method of proof of Theorem 1 is used to obtain an improved lower bound on
the critical probability for entanglement percolation in Z3 (see also [2, 7]).

3 Local covers

We next state a variant of Theorem 1 that is in a sense stronger. Let d ≥ 2 and consider site
percolation with parameter p on Zd . Write Z+0 = {0, 1, . . .}. Let x ∈ Zd−1. A local cover of x is a
function L : Zd−1→ Z+0 such that:

(i) for all y ∈ Zd−1, if L(y)> 0 then (y, L(y)) is open;

(ii) for any y, z ∈ Zd−1 with ‖y − z‖= 1 we have |L(y)− L(z)| ≤ 1;

(iii) L(x)> 0.

If x has a local cover, then the minimum of all local covers of x is itself a local cover of x; we call
this the minimal local cover of x and denote it Lx . Define its radius

ρx := sup
n





(x , 0)− (y, Lx(y))




 : y ∈ Zd−1 such that Lx(y)> 0
o

,

and note that ρx ≤∞. If x has no local cover, we set ρx =∞.

Theorem 2. For any d ≥ 2 and p ∈ (0,1) such that q := 1−p < (2d)−2, there exists A= A(p, d)<∞
such that

Pp(ρ0 ≥ n)≤ A[(2d)2q]n, n≥ 0.

4 Principal estimate

The key step is to identify an appropriate set of dual paths that are blocked by a Lipschitz surface
of the type sought in Theorem 1. Such paths will be allowed to move downwards (that is, in
the direction of decreasing d-coordinate), with or without a simultaneous horizontal move, but
whenever they move upwards, they must do so to a closed site.
Let e1, . . . , ed ∈ Zd be the standard basis vectors of Zd . We define a Λ-path from u to v to be any
finite sequence of distinct sites u= x0, x1, . . . , xk = v of Zd such that for each i = 1,2, . . . , k:

x i − x i−1 ∈ {±ed} ∪ {−ed ± e j : j = 1, . . . , d − 1}. (1)
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A Λ-path is called admissible if in addition for each i = 1, 2, . . . , k:

if x i − x i−1 = ed then x i is closed.

Denote by u� v the event that there exists an admissible Λ-path from u to v, and write

τp(u) = Pp(0� u).

The next lemma is the basic estimate used in the proofs. For u = (u1, u2, . . . , ud) ∈ Zd , we write
h(u) = ud for its height, and

r(u) = ‖(u1, u2, . . . , ud−1)‖=
d−1
∑

i=1

|ui |

for its displacement in Zd−1. For x ∈ R, x+ =max{0, x} (respectively, x− =−min{0, x}) denotes
the positive (respectively, negative) part of x .

Lemma 3. Let d ≥ 2 and a = 2d, and take p ∈ (0,1) such that q := 1− p ∈ (0, a−2). For h ∈ Z and
r ∈ Z+0 satisfying r ≥ h−,

∑

u∈Zd :
h(u)≥h, r(u)≥r

τp(u)≤
1

(1− aq)(1− a2q)
(aq)h(a2q)r .

Proof. Fix r ≥ 0, and let h ∈ Z satisfy r ≥ h−. Let

T = Tr,h = {u ∈ Zd : h(u)≥ h, r(u)≥ r}.

Let N(u) be the number of admissible Λ-paths (of all finite lengths) from 0 to u, and note that
∑

u∈T

τp(u) =
∑

u∈T

Pp(N(u)> 0)≤
∑

u∈T

EpN(u).

Let π be a Λ-path beginning at 0. Let U and D be the respective numbers of steps in π that lie in
each of the sets

{ed}; {−ed} ∪ {−ed ± e j : j = 1, . . . , d − 1}.

(The letters U , D stand for ‘upwards’ and ‘downwards’.) Thus, the length of π is U + D, the final
endpoint u of π satisfies h(u) = U − D and r(u) ≤ D, and π is admissible with probability qU ,
where q := 1− p. Also, the number of Λ-paths π beginning at 0 with given values of U and D is
at most aU+D, where a := 2d.
Therefore,

∑

u∈T

EpN(u)≤
∑

U ,D≥0:
U−D≥h, D≥r

aU+DqU .

Assume that a2q < 1 (i.e., p > 1− (2d)−2). Summing over U , the last expression equals

1

1− aq

∑

D≥r

aD(aq)(h+D)+ .

Since D ≥ r ≥ h−, we have (h+ D)+ = h+ D, and the last sum equals

∑

D≥r

(aq)h(a2q)D =
(aq)h(a2q)r

1− a2q
.
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Remark. The number of Λ-paths of k steps is no greater than (2d)k. Only minor changes are
required to the proofs if one restricts the class of Λ-paths to those satisfying (1) for which x i −
x i−1 6= −ed for all i. The number of such paths is no greater than (2d − 1)k, and this leads to
improved versions of Theorems 1 and 2 with 2d replaced by 2d − 1. The details are omitted.

5 Proofs of Theorems 1 and 2

We give two proofs of Theorem 1: one directly from Lemma 3, and the other via Theorem 2.
The second proof gives a worse exponent in the inequality of Theorem 1(iv). We sketch a third
approach in the next section.

1st proof of Theorem 1. Take p and a = 2d as in Lemma 3. Let

T− := Zd−1 × {. . . ,−1,0}

and define the random set of sites

G := {v ∈ Zd : u� v for some u ∈ T−}.

Since an admissible path may always be extended by a downwards step (provided the new site is
not already in the path), if v ∈ G then v − ed ∈ G. Using Lemma 3 with r = 0, we have for h > 0
and suitable A<∞,

Pp(hed ∈ G)≤
∑

u∈T−

Pp(u� hed) =
∑

u∈T0,h

τp(u)≤ A(aq)h. (2)

Hence, by the Borel–Cantelli lemma, a.s. for every x ∈ Zd−1, only finitely many of the sites (x , h) =
x + hed for h> 0 lie in G.
For x ∈ Zd−1, let

F(x) :=min{t > 0 : (x , t) /∈ G}.

Since (x , F(x)) /∈ G and (x , F(x)− 1) ∈ G, the site (x , F(x)) is necessarily open. The required
property (iii) of the theorem follows by fact that Pp is a product measure, and (iv) is an immediate
consequence of (2). To check (ii), consider any x , y ∈ Zd−1 with ‖x− y‖= 1. Since (x , F(x)−1) ∈
G, and an admissible path may be extended in the diagonal direction (y − x) − ed , we have
(y, F(x)− 2) ∈ G, whence F(y)> F(x)− 2.

Proof of Theorem 2. We begin with an explicit construction of the minimal local cover Lx of x ∈
Zd−1, whenever x possesses a local cover. Let Hx be the set of endpoints of admissible paths
from (x , 0) that use no site of Zd−1 ×{−1,−2, . . . }. By the definition of admissibility, Hx does not
depend on the states of sites with height less than or equal to 0.
Let a2q < 1. If rad(H0) = sup{‖u‖ : u ∈ H0} satisfies rad(H0) ≥ k, by the definition of admissible
paths, there exists u ∈ H0 with h(u) = 0 and r(u)≥ k. Therefore, by Lemma 3,

Pp(rad(H0)≥ k)≤
∑

u∈Zd :
h(u)≥0, r(u)≥k

τp(u)

≤ A(a2q)k, k ≥ 0,

for some A= A(p, d)<∞.
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On the event that |H0|<∞, the minimal local cover of 0 is given by

L0(y) =min{h ∈ Z+ : (y, h) /∈ H0};

that is, the corresponding surface consists of the sites immediately above H0. The claim follows.

2nd proof of Theorem 1 with different exponent in part (iv). Let p > 1− (2d)−2, as in Theorem 2,
and let Hx be as in the proof. Let

F(x) := 1+ sup{h : (x , h) ∈ H y for some y ∈ Zd−1}.

Given the general observations above, it suffices to prove that F satisfies part (iv) of Theorem 1.
Now, for k ≥ 1,

Pp(F(0)> k) = Pp((0, k) ∈ H y for some y)

≤ Pp(ρy ≥ k+ ‖y‖ for some y)

≤
∑

y∈Zd−1

Pp(ρ0 ≥ k+ ‖y‖),

and this decays to 0 exponentially in k, by Theorem 2.

6 Sketch proof using branching random walk

This section contains a summary of an alternative approach to the problem, using a branching
random walk to bound the size of a minimal local cover. Write ∆ = Zd−1 × Z+, and recall the
height h(u) of site u ∈ Zd . The minimal cover L at the origin 0 is in one–one correspondence with
the set

S := {(x , L(x)) : x ∈ Zd−1, L(x)> 0}

of open sites. The set S may be constructed iteratively as follows. Let C be the height of the lowest
open site above 0, that is, C := inf{n ≥ 1 : ned is open}. Clearly, S contains no site of the form
(0, k), 1≤ k < C , and in addition no site in the pyramid

P := {u ∈ Zd : ‖u‖< C}.

Let u ∈ ∆ be such that ‖u‖ = C . If all such u are open, then S = {u ∈ ∆ : ‖u‖ = C)}. Any such
u that is closed is regarded as a child of the origin. Each such child u is labelled with the height
of the lowest open site above it, that is, with the label h(u) + inf{n ≥ 1 : u+ ned is open}. The
process is iterated for each such child, and so on to later generations. If the ensuing procedure
terminates after a finite number of steps, then we have constructed the set S corresponding to the
minimal local cover of 0.
A full analysis of the above procedure would require specifying the order in which children are
considered, as well as understanding the interactions between different pyramids. Rather than
do this, we will treat the families of different children as independent, thereby over-counting the
total size and extent of the process. That is, we construct a dominating branching random walk,
as follows.
Let ξ = (ξ(z) : z ∈ Z) be a random measure on Z with ξ(z) ∈ {0, 1,2, . . . } a.s. The corresponding
branching random walk begins with a single particle located at 0, that is, ξ0 := δ0, the point
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mass. This particle produces offspring ξ1 := ξ. For n ≥ 2, ξn is obtained from ξn−1 as follows:
each particle of ξn−1 has (independent) offspring with the same law as ξ, shifted according to the
position of the parent. Assume there exists µ > 0 such that

α := E
�

∑

z∈Z
eµzξ(z)

�

< 1, (3)

and define
Sn :=

∑

z∈Z
eµzξn(z).

It is standard that Sn/α
n is a (non-negative) martingale. In particular, Sn/α

n converges a.s.,
whence Sn→ 0 a.s. as n→∞.
We next describe the law of ξ arising in the current setting. Let Q be the set of all closed u ∈ Zd

satisfying u 6= 0 and
d−1
∑

i=1

|ui |=−ud ,

and think of Q as the set of children of the initial particle at 0. Each child is allocated a location
in Z equal to the height of the lowest open site above it. More precisely, the location of the child
corresponding to u ∈ Q is defined as h(u) + inf{n ≥ 1 : u+ ned is open}, and ξn(z) is simply the
number of children with location z. The corresponding BRW is written BRW(ξ).
The number of children with height −n is binomially distributed with parameters (τn, 1 − p),
where τn ≤ 2(2n+ 1)d−1, and the height of each tower has a geometric distribution. Following
an elementary calculation, there exist µ > 0 and p1 = p1(d) ∈ (0,1) such that: for p ∈ (p1, 1), we
have α < 1 in (3).
We now compare BRW(ξ) and the local cover of 0. With C as above, consider BRW(ξ) with all
locations shifted by height C , written C + BRW(ξ). Each child of the origin in the percolation
model is a child in C + BRW(ξ), and its label in the former equals its location in the latter. The
first generation of C + BRW(ξ) may also contain children with negative heights. In subsequent
generations, the models are different, but it may be seen that C + BRW(ξ) dominates the perco-
lation model in the sense that the set of locations in C + BRW(ξ) with positive heights dominates
(stochastically) the set of labels in the percolation model.
With ξ′n the nth generation in C + BRW(ξ), let

N := sup{n : ξ′n(z)> 0 for some z > 0}.

By the above domination, if P(N <∞) = 1, then the local cover of 0 is (a.s.) finite. By Markov’s
inequality,

P(ξ′n(z)> 0 for some z > 0) = P(ξn(z)> 0 for some z >−C)

≤ E(Sn)E(eµC)

= αnE(eµC).

By the Borel–Cantelli lemma, P(N <∞) = 1, and the finiteness of the local cover at 0 follows.
Substantially more may be obtained by a more careful analysis of the maximum displacement of
particles in the kth generation of C + BRW(ξ). In particular, for p > p1, one may deduce that
Pp(ρ0 ≥ n) decays to 0 faster than a quantity that is exponential in some power of n, and this
implies the existence of the Lipschitz function of Theorem 1, as in the second proof of Section 5.
The details of these arguments are omitted.
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