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Abstract

In this paper we propose a refinement of Mineka’s coupling inequality that gives a better upper
bound for dT V (L (W ) ,L (W + 1)), where W is a sum of n independent integer valued random
variables, in the case when VarW ≫ n.

Introduction

Translated compound Poisson approximation of sums of independent integer valued random vari-
ables has been studied in a series of papers. Using Stein’s method, [1] and [2] give bounds for the
errors of such approximations in total variation distance, which is defined by

dT V (L (X ),L (Y )) := sup
A⊂Z

|P(X ∈ A)− P(Y ∈ A)|, (1)

Z := {. . . ,−1,0,1, . . .}. Their upper bounds are expressed with the help of the first three moments
of the summands X1, X2, . . . , Xn and the critical ingredient dT V

�
L
�
Wn

�
,L
�
Wn + 1

��
, where

Wn =
∑n

j=1 X j .

The expression dT V

�
L
�
Wn

�
,L
�
Wn + 1

��
is usually bounded by the Mineka coupling [3] (p.

44), which typically yields a bound of order 1/
p

n. If the X j ’s are roughly similar in magnitude,

this is comparable with the order O(1/
p

VarWn) expected for the error in the central limit theorem.
However, if the distributions of the X j become progressively more spread out as j increases, then

VarWn may grow faster than n, and then 1/
p

n is bigger than the ideal order O(1/
p

VarWn). In
this paper we introduce a new coupling which allows us to improve the bounds obtained by the
Mineka coupling in such cases.
An example for this situation is given by the coupon collector’s problem: a collector samples
with replacement a set of n coupons until the random time Wn,m at which he obtains n − m of
them for the first time, m ∈ {0,1, . . . , n− 1}. Relying on the new technique, we shall show that
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dT V

�
L
�

Wn,m

�
,L
�

Wn,m + 1
��
= O

�
1/
p

VarWn,m

�
, and therefore that a translated compound

Poisson approximation to the collector’s waiting time Wn,m, with ideal error rate, can be obtained
in all ranges of n and m in which a central limit theorem can be proved.

The coupling and the bound for dT V (L (W ) ,L (W + 1))

As mentioned in the introduction, it may happen that dT V (L (W ) ,L (W + 1)) = O
�

1p
VarW

�
,

where 1/
p

VarW ≪ 1/
p

n, and thus the usual coupling proof of such a relation does not work. In
the following lemma we show that this result can be established for sums of iid discrete uniform
random variables with the help of a new coupling.

Lemma. Let U1, U2, . . . , Ur , r ≥ 2, be independent identically distributed random variables with
discrete uniform distribution on {1,2, . . . , 2l − 1,2l} for some l ≥ 1 integer. If Vr =

∑r

j=1 U j , then

dT V (L (Vr),L (Vr + 1))≤
1

l
p

r
.

Proof. We construct a coupling of (Vr , Vr + 1). Let U1 be an arbitrary random variable of uniform
distribution on {1,2, . . . , 2l}. If U1 ∈ {1,2, . . . , 2l − 1}, then define

U ′1 = U1 + 1 and U ′
j
= U j , 2≤ j ≤ r,

where U1, . . . , Ur are independent; while if U1 = 2l, then put

U ′1 = 1 and U j = eU j + l I j , U ′
j
= eU j + l(1− I j), 2≤ j ≤ r,

where eU j has uniform distribution on {1, . . . , l}, I j takes on the values 0 and 1, each with proba-

bility 1/2, and eU j , I j , 2≤ j ≤ r, are independent, also of U1.
Introducing Vs :=

∑s

j=1 U j and V ′
s

:=
∑s

j=1 U ′
j
, s ∈ {1, . . . , r}, we see that

Ss := (Vs + 1)− V ′
s
=

¨
0, if U1 ∈ {1,2, . . . , 2l − 1}
2l +

∑s

j=2(U j − U ′
j
), if U1 = 2l,

where U j − U ′
j
=

�
l, with probability 1/2,
−l, with probability 1/2.

Thus if U1 = 2l,
�
Ss

�r

s=1 can be regarded as a symmetric random walk that starts from 2l in time
step one, and then at each subsequent time step increases or decreases by l. Define T to be the
first time the random walk hits 0, that is

T := inf
�
s ≥ 2 : Ss = 0

	
= inf



s ≥ 2 :

s∑

j=2

(U j − U ′
j
) =−2l



 .

By the reflection principle and symmetry,

P(T > r|U1 = 2l) = 1− P(T ≤ r|U1 = 2l)

= 1− P
�
Sr = 0|U1 = 2l

�
− 2P

�
Sr < 0|U1 = 2l

�

= 1− P
�
Sr = 0|U1 = 2l

�
− P
�
Sr < 0|U1 = 2l

�
− P
�
Sr > 4l|U1 = 2l

�

=

4∑

k=1

P
�
Sr = kl|U1 = 2l

�
≤ 2 max

k∈Z
P
�
Sr = kl|U1 = 2l

�
,
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and by Lemma 4.7 of Barbour and Xia [1], we have

max
k∈Z

P
�
Sr = kl|U1 = 2l

�
≤

1
p

2

1
p

r − 1
,

thus

P(T > r|U1 = 2l)≤
2
p

r
. (2)

Now for j, s ∈ {1, . . . , r} put

U ′′
j

:=

¨
U ′

j
, if 1≤ j ≤ T ,

U j , j > T ,
and V ′′

s
:=

s∑

j=1

U ′′
j
.

Of course (Vs)
r
s=1, (V ′

s
)r

s=1 and (V ′′
s
)r

s=1 all have the same distribution, thus (V ′′
r

, Vr+1) is a coupling
of (Vr , Vr + 1), therefore

dT V (Vr , Vr + 1)≤ P(Vr + 1 6= V ′′
r
) = P(T > r)

by the coupling inequality. Since

P(T > r) = P(U1 = 2l)P(T > r|U1 = 2l)≤
1

l
p

r

by (2), the proof is complete. �

Now we show how the result of the lemma concerning sums of iid uniform random variables can
be used to obtain similar results for sums of arbitrary integer valued random variables. The idea
is to embed the uniform random variables in the ones we want to prove the result for.

Proposition. If X1, X2, . . . , Xn, n ≥ 2, are independent integer valued random variables and W =∑n

j=1 Xn, then

dT V (L (W ),L (W + 1))≤
4

l
p

nlp
+

8dn

nlp
,

where l ∈ {2,4,6, . . .} and p ≤ min{P(X j = k) : k = 1, . . . , l, j = 1, . . . , n} are arbitrary and
dn = dT V (L (Xn),L (Xn + 1)).

Proof. We write each of the variables X1, . . . , Xn in the form

X j = I jU j + (1− I j)R j , j = 1, . . . , n, (3)

where I j , U j and R j , j = 1, . . . , n, are all independent random variables defined on a common
probability space, and for each j = 1, . . . , n: U j has discrete uniform distribution on {1,2, . . . , l} for
some even integer l; I j is a Bernoulli random variable with parameter l p, where p ≤ min{P(X j =

k) : k = 1, . . . , l, j = 1, . . . , n} is fixed; and

P(R j = k) =





P(X j=k)−p

1−l p
, 1≤ k ≤ l,

P(X j=k)

1−l p
, otherwise,

k ∈ Z .
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Since L (X j |I j = 1) = L (U j) and L (X j |I j = 0) = L (R j), for any δ1, . . . ,δn−1 ∈ {0,1} and
ρ1, . . . ,ρn−1 ∈ Z we have

L



n−1∑

j=1

X j

��I j = δ j ,R j = ρ j , j = 1, . . . , n− 1


 =L (Vr +ρ),

where r =
∑n−1

j=1 δ j , Vr =
∑r

j=1 U ′
j
, where the U ′

j
are independent copies of U1, and are indepen-

dent of everything else, and ρ =
∑n−1

j=1 (1−δ j)ρ j .
Now we apply the inequality

dT V (L (Z1),L (Z2))≤ E{dT V (L (Z1|Z3),L (Z2|Z3))} (4)

true for any random elements Z1, Z2 and Z3 defined on the same probability space. We obtain

dT V (L (W ),L (W + 1))≤

≤ E



dT V


L




n∑

j=1

X j |I j ,R j , j = 1, . . . , n− 1


,L




n∑

j=1

X j + 1|I j ,R j , j = 1, . . . , n− 1










= E{dT V (L (VT + Xn + R|T,R),L (VT + Xn + R+ 1|T,R))},

where T =
∑n−1

j=1 I j and R=
∑n−1

j=1 (1− I j)R j are independent of (U ′
j
, j ≥ 1) and of Xn. Hence

dT V (L (W ),L (W + 1)) ≤ E{dT V (L (VT + Xn|T ),L (VT + Xn + 1|T ))}, (5)

since total variation distance is invariant under translation.
Now, since T , Xn and (U ′

j
, j ≥ 1) are independent, we have

dT V (L (VT + Xn|T = t),L (VT + Xn + 1|T = t))

≤ min{dT V (L (Vt),L (Vt + 1)), dT V (L (Xn),L (Xn + 1))},

and the lemma provides the bound

dT V (L (Vt),L (Vt + 1))≤ f (t) :=

¨
2

l
p

t
, if t > 0,

1, if t = 0.

Writing dn = dT V (L (Xn),L (Xn + 1)) we thus obtain from (5) that

dT V (L (W ),L (W + 1))≤ E{dT V (L (VT + Xn|T ),L (VT + Xn + 1|T ))}
≤ E

�
min

�
f (T ); dn

�	

≤ E

�
2

l
p

T

���T ≥
ET

2

�
P

�
T ≥

ET

2

�
+ dnP

�
T <

ET

2

�

≤
2
p

2

l
p

ET
+ dnP

�
T <

ET

2

�
.

Since T has distribution Bin(n− 1, l p), ET = (n− 1)l p ≥ 1
2
nlp, and by Chebishev’s inequality

P

�
T <

ET

2

�
≤ P

�
|T − ET |>

ET

2

�
≤

4VarT

(ET )2
≤

4

(n− 1)l p
≤

8

nlp
,
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thus

dT V (L (W ),L (W + 1))≤
4

l
p

nlp
+

8dn

nlp
. (6)

�

Remark 1. Since total variation distance is invariant under translation, there is no loss of gener-
ality in supposing that the l-intervals begin at 1.

Remark 2. The choice of (p, l) depends very much on the problem.

Remark 3. The constants in the upper bound of the proposition can be improved by refining the
method proposed in the proof. One could embed not one, but many uniform random variables
in the X j-s by splitting the whole line into the l-blocks ({(m − 1)l, . . . , ml})m∈Z and defining a
uniform variable corresponding to each block. Thus one could use potential overlaps from the
whole distribution and not just the interval {1, . . . , l}, when bounding dT V (L (W ),L (W + 1)).
More precisely, each X j , j = 1, . . . , n, can be given in the form

X j = I j0R j +

∞∑

i=1

I ji(U ji + (i − 1)l),

where all random variables in the decompositions are defined on a common probability space, and
for each j = 1, . . . , n the following hold true: U ji has discrete uniform distribution on {1, . . . , l},
i = 1,2, . . ., for some fixed even integer l; I j0 ∼ Bernoulli

�
1−
∑∞

i=1 l pi

�
, I ji ∼ Bernoulli(l pi),

where pi ≤ min{P(X j = k) : k = (i − 1)l, . . . , il, j = 1, . . . , n} is fixed, i = 1,2, . . ., and these
Bernoulli variables depend on each other in a way that for each outcome exactly one of them is 1
and the rest are 0; all the other variables in the decompositions are independent of each other and
of the Ii j-s; and R j is defined to make the distribution of the decomposition equal the distribution
of X j .
Then, to bound dT V (L (W ),L (W + 1)) we would use (4), conditioning on all the I ji-s and R j-

s, which would give us (5) with T =
∑n−1

j=1

∑∞
i=1 I ji . In this case ET = (n − 1)l

∑∞
i=1 pi and

VarT = (n−1)l
�∑∞

i=1 pi

��
1− l

∑∞
i=1 pi

�
, hence we would obtain (6) with p replaced by

∑∞
i=1 pi .

Application to the coupon collector’s problem

We return to the coupon collector’s problem defined in the introduction, and our starting point is
the well-known distributional equality ([5], p. 225)

Wn,m
D
= Xm+1 + Xm+2 + · · ·+ Xn, (7)

where Xm+1, Xm+2, . . . , Xn are independent random variables having geometric distributions with
success probabilities (m+1)/n, (m+2)/n, . . . , n/n respectively. Taking advantage of this decompo-
sition we apply a theorem of Barbour and Xia [1] on translated compound Poisson approximation
in total variation distance to the distributions of sums of independent integer valued random vari-
ables. One of the elements in their approximation error is (almost) dT V (L (Wn,m),L (Wn,m + 1)),
to bound which we invoke our proposition. For µ, a > 0, define the compound Poisson distribution
πµ,a to be the distribution of Z1 + 2Z2, where Z1 ∼ Po(µ) and Z2 ∼ Po(a/2) are independent. We
have the following result:
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Theorem. For any fixed n≥ 2 and 2≤ m≤ n− 4, if

µ= VarWn,m − 2〈VarWn,m − EWn,m〉,
a = 〈VarWn,m − EWn,m〉 and (8)

c = ⌊VarWn,m − EWn,m⌋,

where 〈x〉 and ⌊x⌋ denote the fractional and integer part of x respectively, then there exists a
positive constant C such that

dT V

�
L
�

Wn,m + c
�

,πµ,a

�
≤ C

n

m

1
p

VarWn,m

. (9)

Remark 1. It has been proved by Baum and Billingsley in [6] that if m = mn ∈ {0,1, . . . , n− 1} is
an integer that depends on n in such a way that

mn→∞ and
n−mnp

n
→∞ as n→∞, (10)

then W n,m := (Wn,mn
−EWn,mn

)/
p

VarWn,mn
has asymptotically standard normal distribution. This

limit theorem was refined in [7] by showing that

dKol.

�
L
�

W n,m

�
,L (Z)

�
≤ C

n

m

1
p

VarWn,m

, (11)

where dKol.(L (Z1),L (Z2)) = supx∈R |P(Z1 ≤ x)− P(Z2 ≤ x)| is the Kolmogorov distance, Z is a
random variable of standard normal distribution and C = 10.0245, and that this order of approx-
imation error is optimal. We see that the same order of approximation is obtained in the discrete
approximation given in our theorem, but now with the error measured with respect to the much
stronger total variation distance.

Remark 2. Note that, with these parameters, πµ,a has mean µ+a = VarWn,m−〈VarWn,m−EWn,m〉=
EWn,m + c and variance µ+ 2a = VarWn,m.

Remark 3. We can express the bound above more intuitively with the help of the asymptotic
formulae given by Baum and Billingsley in [6] for the variance of the waiting time: if n → ∞,
then

m

n
→ 0, ⇒ VarWn,m ∼ n2

m
m

n
→ c, c ∈ (0,1) ⇒ VarWn,m ∼ γn,

m

n
→ 1, ⇒ VarWn,m ∼ 1

2
(n−m)2

n
,

where γ = (1 − c + c log c)/c. We shall refer to the categories above as "small", "medium" and
"large" m. By these formulae, (9) is equivalent to

dT V

�
L
�

Wn,m + cn

�
,πµn,an

�
=





O
�

1p
m

�
, in the "small" m case;

O
�

1p
n

�
, in the "medium" m case;

O
� p

n

n−m

�
, in the "large" m case.

(12)
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Proof. We apply Theorem 4.3 in [1], which states that if Z j , j = 1, . . . , r, are independent integer
valued random variables with E|Z j |3 <∞, W =

∑r

j=1 Z j , and we define

ψ j := E|Z j(Z j − 1)(Z j − 2)|+ |EZ j |E|Z j(Z j − 1)|+ 2E|Z j ||VarZ j − EZ j |,

d+ := max
1≤i≤r

n
dT V (L (Wi),L (Wi + 1))

o
, where Wi :=W − Zi ,

then with µ= VarW − 2〈VarW − EW 〉, a = 〈VarW − EW 〉 and c = ⌊VarW − EW⌋,

dT V

�
L (W + c) ,πµ,a

�
≤

2+ 2
�
|⌊VarW − EW⌋|+

∑r

j=1ψ j

�
d+

VarW
. (13)

We apply this theorem with Z j = X j − 1, j ∈ {m+ 1, . . . , n}, for the X j given in (7), in order to

approximate the coupon collector’s shifted waiting time fWn,m :=
∑n

j=m+1[X j − 1], and then show
that the upper bound in (13) is not greater than the right hand side of (9). Then, since the two
measures compared in (13) are the same for W =fWn,m and W =Wn,m =fWn,m+n−m, the theorem
for Wn,m follows immediately.
To do so, for given n ≥ 2, 2 ≤ m ≤ n− 4 and j ∈ {m+ 1, . . . , n}, we bound ψ j and d+ as defined
above. For X , a random variable that has geometric distribution with parameter p, we have

EX =
1

p
, EX 2 =

2− p

p2 , EX 3 =
p2 − 6p+ 6

p3 , and VarX =
1− p

p2 .

Hence for Z = X − 1, one can easily calculate

ψ := E|Z(Z − 1)(Z − 2)|+ |EZ |E|Z(Z − 1)|+ 2E|Z ||VarZ − EZ |
= E{X 3 − 6X 2 + 11X − 6}+ E{X − 1}E{X 2 − 3X + 2}+ 2E{X − 1}|VarX − EX + 1|

=
10(1− p)3

p3 ,

so ψ j = 10
�

n

j
− 1
�3

. If we add the ψ j together, we obtain

n∑

j=m+1

ψ j =

n∑

j=m+1

10
�

1− j

n

�3

�
j

n

�3 ≤ 10
n

m+ 1

n∑

j=m+1

1− j

n�
j

n

�2 = 10
n

m+ 1
VarWn,m.

Now combining the bound above with inequality (13) applied to the fWn,m waiting time, and also
noticing that 0 ≤ VarWn,m − EfWn,m ≤ VarWn,m, because for each X j geometric random variable of

parameter j/n we have VarX j − E(X j − 1) =
�

1− j/n

j/n

�2
≤ 1− j/n

( j/n)2
= VarX j , we obtain

dT V

�
L
�
fWn,m + c̃

�
,πµ̃,ã

�
≤

2

VarWn,m
+

�
2+

20n

m+ 1

�
d+, (14)

where c̃, µ̃ and ã are defined by the formulae in (8) with Wn,m replaced with fWn,m.
Before turning to the approximation of d+, we bound VarWn,m. We see that

VarWn,m = n

n∑

j=m+1

n− j

j2 ≤
n

(m+ 1)2

n∑

j=m+1

(n− j) =
n(n−m)(n−m− 1)

2(m+ 1)2
,



An extension of Mineka’s coupling inequality 471

also,

VarWn,m = n

n∑

j=m+1

n− j

j2 ≤ n(n−m− 1)

∫ n

m

1

x2 d x ≤
n(n−m− 1)

m
,

thus

VarWn,m ≤ n(n−m− 1)min

�
n−m

2(m+ 1)2
,

1

m

�
. (15)

Now for d+, by an inequality of Mattner and Roos [4] we have

dT V (L (Wi),L (Wi + 1))≤
r

2

π




n∑

j=m+1, j 6=i

�
1− dT V (L (X j),L (X j + 1))

�


− 1

2

,

and since dT V (L (X j),L (X j + 1)) is equal to

1

2

∞∑

k=1

|P(X j = k)− P(X j = k− 1)|=
1

2

 
j

n
+

�
j

n

�2 ∞∑

k=2

�
1−

j

n

�k−2
!
=

j

n
, (16)

we obtain

d+ ≤
r

2

π




n∑

j=m+1

�
1−

j

n

�
− max

m+1≤i≤n

�
1−

i

n

�

− 1

2

=

r
2

π

p
n

p
(n−m− 1)(n−m− 2)

.

It follows from this and (15) that for any K > 0

d+ ≤
2K
p
π

1
p

VarWn,m

, if
n

K
≤ m≤ n− 4. (17)

Putting this bound into (14) gives a result which, when compared to (9), has an extra factor
K ≥ n/m. Thus it is of inferior order if m ≪ n. To prove the theorem for such values of m, we
need to use our proposition to bound d+.
Let us assume that 2 ≤ m ≤ n

2
. If we apply the Proposition to the random variables {X j , j =

m+ 1, . . . , 2m, j 6= i}, i ∈ {m+ 1, . . . , 2m} fixed, with

l =

¨
⌊ n

m
⌋, if ⌊ n

m
⌋ is even,

⌊ n

m
⌋ − 1, if ⌊ n

m
⌋ is odd,

and p =

�
1−

2m

n

�l m

n
,

we obtain

dT V



L




2m∑

j=m+1, j 6=i

X j


,L




2m∑

j=m+1, j 6=i

X j + 1






≤

2

l
p
(m− 1)l p

+
8d

(m− 1)l p
, (18)

where

d =

¨
dT V

�
L (X2m),L (X2m + 1)

	
= 2m

n
, if i 6= 2m,

dT V

�
L (X2m−1),L (X2m−1 + 1)

	
= 2m−1

n
, if i = 2m

by (16). For any i ∈ {m+ 1, . . . , 2m} we have

d ≤
2m

n
and l ≥

n

2m
,
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since ⌊x⌋ − 1≥ x

2
, if x ≥ 2, and

l p ≥
n

2m

�
1−

2m

n

� n

m m

n
≥

e−2

2
,

because (1 − x)
2
x decreases as x increases in (0,1), and its limit at 0 is e−2. Now putting the

bounds above together in (18) yields

d+ = max
i∈{m+1,...,2m}

dT V



L




2m∑

j=m+1, j 6=i

X j


 ,L




2m∑

j=m+1, j 6=i

X j + 1








≤ 8
p

2e
m

p
m− 1n

+ 32e2 m

(m− 1)n
≤ 16e

p
m

n
+ 64e2 1

n
≤ (16e+ 64e2)

p
m

n
,

where the last two inequalities hold for m≥ 2. By (15),
p

m

n
≤ 1p

VarWn,m
, thus we have

d+ ≤ (16e+ 64e2)
1

p
VarWn,m

, if 2≤ m≤
n

2
.

This and (17) with K = 2 substituted into (14) yield the theorem. �
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