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Abstract

Let X = (X t)t≥0 be a martingale and H = (Ht)t≥0 be a predictable process taking values in [−1,1].

Let Y denote the stochastic integral of H with respect to X . We show that

|| sup
t≥0

Yt ||1 ≤ β0|| sup
t≥0

|X t |||1,

where β0 = 2,0856 . . . is the best possible. Furthermore, if, in addition, X is nonnegative, then

|| sup
t≥0

Yt ||1 ≤ β+0 || sup
t≥0

X t ||1,

where β+0 =
14

9
is the best possible.

1 Introduction

Let (Ω,F ,P) be a complete probability space, which is filtered by a nondecreasing right-continuous

family (Ft)t≥0 of sub-σ-fields of F . Assume that F0 contains all the events of probability 0. Sup-

pose X = (X t)t≥0 is an adapted real-valued right-continuous semimartingale with left limits. Let

Y be the Itô integral of H with respect to X ,

Yt = H0X0 +

∫

(0,t]

HsdXs, t ≥ 0,

where H is a predictable process with values in [−1,1]. Let ||Y ||1 = supt≥0 ||Yt ||1 and X ∗ =
supt≥0 X t .
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The main interest of this paper is in the comparison of the sizes of Y ∗ and |X |∗. Let us first

describe two related results from the literature. In [4], Burkholder introduced a method of proving

maximal inequalities for martingales and obtained the following sharp estimate.

Theorem 1. If X is a martingale and Y is as above, then we have

||Y ||1 ≤ γ|| |X |∗||1, (1)

where γ= 2,536 . . . is the unique solution of the equation

γ− 3=−exp
�1− γ

2

�

.

The constant is the best possible.

It was then proved by the author in [5], that if X is positive, then the optimal constant γ in (1)

equals 2+ (3e)−1 = 2,1226 . . ..

We study here a related estimate, with Y replaced by its one-sided supremum:

||Y ∗||1 ≤ β || |X |∗||1. (2)

Let β0 = 2,0856 . . . be the positive solution to the equation

2 log

�

8

3
− β0

�

= 1− β0

and β+0 =
14

9
= 1,555 . . .. The main result of the paper can be stated as follows.

Theorem 2. (i) If X is a martingale and Y is as above, then (2) holds with β = β0 and the inequality

is sharp.

(ii) If X is a nonnegative martingale and Y is as above, then (2) holds with β = β+0 and the constant

is the best possible.

As usual, to prove this theorem, it suffices to establish its discrete-time version (by standard ap-

proximation argument due to Bichteler [1]; for details, see e.g. [2]). Let (Ω,F ,P) be a probability

space, equipped with filtration (Fn)n≥0. Let f = ( fn)n≥0 be an adapted sequence of integrable vari-

ables and g = (gn)n≥0 be its transform by a predictable sequence v = (vn)n≥0 bounded in absolute

value by 1. That is, for any n= 0, 1, 2, . . . we have

fn =

n
∑

k=0

d fk and gn =

n
∑

k=0

vkd fk.

By predictability of v we mean that v0 is F0-measurable (and hence deterministic) and for any

k ≥ 1, vk is measurable with respect to Fk−1. In the special case when each vk is deterministic

and takes values in {−1,1} we will say that g is a ±1 transform of f . Let f ∗
n
= maxk≤n fk and

f ∗ = supk fk.

A discrete-time version of Theorem 2 is the following.

Theorem 3. Let f , g, β0, β+0 be as above.

(i) If f is a martingale, then

||g∗||1 ≤ β0||| f |∗||1, (3)
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and the constant β0 is the best possible.

(ii) If f is a nonnegative martingale, then

||g∗||1 ≤ β+0 || f
∗||1, (4)

and the constant β+0 is the best possible.

A few words about the organization of the paper. The proof of Theorem 3 is based on Burkholder’s

technique, which reduces the problem of proving a martingale inequality to finding a certain spe-

cial function. The description of this technique can be found in Section 2. Then, in the following

two sections we provide the special functions corresponding to (3) and (4) and study their prop-

erties. In the last section we complete the proofs of Theorem 2 and Theorem 3 by showing that

the constants β0 and β+0 can not be replaced by smaller ones.

2 Burkholder’s method

Throughout this section we deal with discrete-time setting. Let us start with some standard re-

ductions. Assume f , g are as in the statement of Theorem 3. With no loss of generality we may

assume that the process f is simple: for any integer n the random variable fn takes only a finite

number of values and there exists a number N such that fN = fN+1 = . . . with probability 1.

Furthermore, it suffices to prove Theorem 3 for ±1 transforms. To see this, let us consider the

following version of the Lemma A.1 from [3]. The proof is identical as in the original setting and

hence it is omitted.

Lemma 1. Let g be the transform of a martingale (resp., nonnegative martingale) f by a real-valued

predictable sequence v uniformly bounded in absolute value by 1. Then there exist martingales (resp.,

nonnegative martingales) F j = (F j
n
)n≥0 and Borel measurable functions φ j : [−1,1]→ {−1,1} such

that, for j ≥ 1 and n≥ 0,

fn = F
j

2n+1, | f |∗ = |F j |∗,

gn =

∞
∑

j=1

2− jφ j(v0)G
j

2n+1,

where G j is the transform of F j by ǫ = (ǫk)k≥0 with ǫk = (−1)k.

Suppose we have established Theorem 3 for ±1 transforms and let β denote β0 or β+0 , depending

on whether f is a martingale or nonnegative martingale. Lemma 1 gives us the processes F j

and the functions φ j , j ≥ 1. Conditionally on F0, for any j ≥ 1 the sequence φ j(v0)G
j is a ±1

transform of F j and hence we may write

||g∗||1 ≤

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

∞
∑

j=1

2− j sup
n

�

φ j(v0)G
j

2n+1

�

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

1

≤
∞
∑

j=1

2− j

¯

¯

¯

¯

¯

¯

�

φ j(v0)G
j
�∗
¯

¯

¯

¯

¯

¯

1

≤ β
∞
∑

j=0

2− j |||F j |∗||1 = β ||| f |∗||1.

The final reduction is that it suffices to prove that for any integer n we have

E

�

g∗
n
− β | fn|∗
�

≤ 0. (5)
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To establish the above estimate, consider the following general problem. Let D = R×R×(0,∞)×R
and V : D→ R be a Borel function. Suppose we want to prove the inequality

EV ( fn, gn, | fn|∗, g∗
n
)≤ 0 (6)

for any integer n, any martingale f and g being its ±1 transform.

The key idea is to study the familyU of all functions U : D→ R satisfying the following properties.

U(1,1,1,1)≤ 0, (7)

U(x , y, z, w) = U(x , y, |x | ∨ z, y ∨ w), if (x , y, z, w) ∈ D, (8)

V (x , y, z, w)≤ U(x , y, z, w), if (x , y, z, w) ∈ D (9)

and, furthermore,

αU(x + t1, y + ǫt1, z, w) + (1−α)U(x + t2, y + ǫt2, z, w)≤ U(x , y, z, w),

for any |x | ≤ z, y ≤ w, ǫ ∈ {−1,1}, α ∈ (0,1) and t1, t2

with αt1 + (1−α)t2 = 0.

(10)

The relation between the class U and the estimate (6) is described in the following theorem. It is

a simple modification of Theorems 2.2 and 2.3 in [4] (see also Section 11 in [2] and Theorem 2.1

in [3]). We omit the proof.

Theorem 4. The inequality (6) holds for all n and all pairs ( f , g) as above if and only if the class U
is nonempty. Furthermore, if U is nonempty, then there exists the least element in U , given by

U0(x , y, z, w) = sup{EV ( f∞, g∞, | f |∗ ∨ z, g∗ ∨ w)}. (11)

Here the supremum runs over all the pairs ( f , g), where f is a simple martingale, P(( f0, g0) =

(x , y)) = 1 and d gk =±d fk almost surely for all k ≥ 1.

A similar statement is valid when we want the inequality (6) to hold for any nonnegative martin-

gale f and its ±1 transform g. Let D+ = [0,∞)×R× (0,∞)×R and let U + denote the class of

functions U : D+ → R satisfying (7), (8), (9) and (10) (with D replaced by D+ and, in (10), an

extra assumption t1, t2 ≥−x).

Theorem 5. The inequality (6) holds for all n and all pairs ( f , g) as above if and only if the class

U + is nonempty. Furthermore, if U + is nonempty, then there exists the least element in U +, given

by

U+
0
(x , y, z, w) = sup{EV ( f∞, g∞, | f |∗ ∨ z, g∗ ∨ w)}. (12)

Here the supremum runs over all the pairs ( f , g), where f is a simple nonnegative martingale,

P(( f0, g0) = (x , y)) = 1 and d gk =±d fk almost surely for all k ≥ 1.

Let us now turn to (3) and assume, from now on, that the function V is given by

V (x , y, z, w) = V (x , y, |x | ∨ z, y ∨ w) = y ∨ w − β(|x | ∨ z),

where β > 0 is a fixed number. Denote byU (β), U +(β) the classesU ,U + corresponding to this

choice of V . The purpose of the next two sections is to show that the classes U (β0) and U +(β+0 )
are nonempty. This will establish the inequalities (3) and (4).
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3 The special function: a general case

We start with the class U (β0). Let us introduce an auxiliary parameter. The equation

2 log

�

2−
2

3a

�

=
a− 2

3a
, a >

1

3
, (13)

has a unique solution a = 0.46986 . . ., related to β0 by the identity

β0 =
2a+ 2

3a
. (14)

Let S denote the strip [−1,1]× (−∞, 0] and consider the following subsets of S.

D1 = {(x , y) : |x |+ y > 0},
D2 = {(x , y) : 0≥ |x |+ y > 1− β0},
D3 = {(x , y) : |x |+ y ≤ 1− β0}.

Introduce the special function u : S→ R by

u(x , y) =







a(2|x | − y − 2)(1− |x | − y)1/2 − 3a|x |+ y, if (x , y) ∈ D1,

3a(2− |x |)exp( 1

2
(|x |+ y)) + (1− 3a)y − 8a, if (x , y) ∈ D2,

9a2

4(3a−1)
(1− |x |)exp(|x |+ y)− β0, if (x , y) ∈ D3.

A function defined on the strip S is said to be diagonally concave if it is concave on the intersection

of S with any line of slope 1 or −1. We have the following fact.

Lemma 2. The function u has the following properties.

u(1, ·) is convex, (15)

u(1, y)≥−β0, (16)

u(x , 0)≥−β0, (17)

u is diagonally concave. (18)

Proof. It is easy to check that u is of class C1 in the interior of S. Now the condition (15) is

apparent and hence so is (16). To see that (17) holds, note that

u(x , 0) =−a(2(1− |x |)3/2 + 3|x |), x ∈ [−1,1],

attains its minimum −3a > −β0 at x ∈ {−1,1}. Due to the symmetry, it suffices to check the

diagonal concavity of u restricted to the set (0,1) × (−∞, 0). This is obvious on the lines of

slope −1. On the remaining lines, fix (x , y) ∈ (0,1)× (−∞, 0) and introduce the function F by

F(t) = u(x + t, y + t) for t belonging to a certain open interval containing 0. Denoting by Ao the

interior of a set A, we easily check that

F ′′(0) =







3a y(1− x − y)−3/2, if (x , y) ∈ Do
1
,

−3ax exp( 1

2
(x + y)), if (x , y) ∈ Do

2
,

− 9a2

3a−1
x exp(x + y), if (x , y) ∈ Do

3

is nonpositive. This completes the proof.
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Define U : D→ R by

U(x , y, z, w) = y ∨ w + (|x | ∨ z)u

�

x

|x | ∨ z
,

y − (y ∨ w)

|x | ∨ z

�

. (19)

We have

Lemma 3. The function U belongs to U (β0).

Proof. The conditions (7) and (8) follow from the definition of U . The inequality (9) is equivalent

to u ≥ −β0 on the whole strip S, an estimate which follows directly from (16), (17) and (18).

The main technical difficulty lies in proving (10). Let us start with some reductions. First, we may

assume ǫ = 1, as U(x , y, z, w) = U(−x , y, z, w). Secondly, by homogeneity, it is enough to show

(10) for z = 1. Finally, we may set w = 0, since U(x , y, z, w) = U(x , y − w, z, 0) + w. Now fix

(x , y) ∈ S and introduce the function Φ : R → R by Φ(t) = U(x + t, y + t, 1, 0). The condition

(10) will follow if we show that there exists a concave function Ψ on R such that Φ ≤ Ψ and

Φ(0) = Ψ(0). The existence will be a consequence of the properties (20) – (24) below.

Φ is continuous, (20)

Φ is concave on [−1− x , 1− x], (21)

Φ is convex on (−∞,−1− x] and on [1− x ,∞), (22)

lim
t→−∞

Φ′(t)≥ lim
t↓−1−x

Φ′(t), (23)

lim
t→∞
Φ′(t)≤ lim

t↑1−x
Φ′(t). (24)

The property (20) is straightforward to check. If 1− x ≤−y , then the condition (21) follows from

(18). If 1− x > −y , then (18) gives the concavity only on [−1− x ,−y], but for t ∈ (−y, 1− x)

we have

Φ(t) = y + t − a(2(1− |x + t|)3/2 + 3|x + t|),
which is concave. In addition, one-sided derivatives of Φ match at −y and we are done.

To show (22), fix α1, α2 > 0 satisfying α1 + α2 = 1, choose t1, t2 ∈ (−∞,−1− x] and let t =
∑

αk tk. We have
∑

αkΦ(tk) =
∑

αkU(x + tk, y + tk, 1, 0)

=
∑

αk

�

(−x − tk)u

�

−1,
y + tk

−x − tk

��

= −(x + t)
∑ αk(x + tk)

x + t
u

�

1,
y + tk

−x − tk

�

.

By (15), this can be bounded from below by

−(x + t)u

�

1,
∑ y + tk

−x − tk

·
αk(x + tk)

x + t

�

=−(x + t)u

�

1,−
y + t

x + t

�

= Φ(t).

Hence Φ is convex on (−∞,−1 − x]. If 1 − x < −y , then convexity on [1 − x ,−y] can be

established exactly in the same manner. Furthermore, for t >max{1− x ,−y} we have

Φ(t) = y − 3ax + (1− 3a)t (25)
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and one-sided derivatives of Φ are equal at max{1− x ,−y}. Thus (22) follows.

To prove (23), note that the limit on the left equals −u(1,−1) = 1+2a, while the one on the right

equals

3a−
3

2
a(−y + 1+ x)1/2, if − x + y ≥ 0,

3a

2
exp(

1

2
(y − x)), if 0> −x + y ≥ 1− β0,

9a2

4(3a− 1)
exp(y − x), if − x + y < 1− β0.

and the estimate is satisfied. Finally, let us turn to (24). The limit on the left is equal to 1− 3a,

due to (25). If −x + y ≥−1−β0, then the limit on the right is also 1−3a; for −x + y ≤−1−β0

the inequality (24) becomes

1− 3a ≤−
9a2

4(3a− 1)
exp(2− x + y),

which is a consequence of the fact that the right hand side is a nonincreasing function of y and

both sides are equal for −x + y =−1− β0 (see (13) and (14)).

4 The special function in the nonnegative case

Let S+ denote the strip [0,1]× (−∞, 0] and let

D1 =
�

(x , y) ∈ S+ : x − y > 2

3
, x ≤ 2

3

	

,

D2 =
�

(x , y) ∈ S+ : x + y < 2

3
, x > 2

3

	

,

D3 =
�

(x , y) ∈ S+ : x + y ≥ 2

3

	

,

D4 =
�

(x , y) ∈ S+ : x − y ≤ 2

3

	

.

Introduce the function u+ : S+→ R by

u+(x , y) =















x exp[ 3

2
(−x + y) + 1]− β+0 , if (x , y) ∈ D1,

( 4

3
− x)exp[ 3

2
(x + y)− 1]− β+0 , if (x , y) ∈ D2,

−x + y − 1p
3
(1− x − y)1/2(2− 2x + y), if (x , y) ∈ D3,

x − x log( 3

2
(x − y))− β+0 , if (x , y) ∈ D4.

Here is the analogue of Lemma 2.

Lemma 4. The function u+ has the following properties.

u+(1, ·) is convex, (26)

u+(1, y)≥−β+
0

for y ≤ 0, (27)

u+(x , 0)≥−β+
0

for x ∈ [0,1]. (28)

u+ is diagonally concave. (29)
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Proof. It is not difficult to check that u+ has continuous partial derivatives in the interior of S+.

Now the properties (26) and (27) are easy to see. To show (28) observe that the function u+(·, 0)
is concave on [0,1] and u+(0,0) = −β+0 < u+(1,0). Finally, it is obvious that u+ is concave along

the lines of slope 1 on D1 ∪ D4, and along the lines of slope −1 on D2 ∪ D3. For x ∈ Do
1
∪ Do

4
, let

F−(t) = u(x + t, y − t) and derive that

F ′′−(0) =

¨

(9x − 6)exp[ 3

2
(−x + y) + 1], if (x , y) ∈ Do

1
,

4y(x − y)−2, if (x , y) ∈ Do
2
,

so F ′′−(0)≤ 0. Similarly, for x ∈ Do
2
∪ Do

3
, introduce F+(t) = u(x + t, y + t) and check that

F ′′
+
(0) =

¨

(−9x + 6)exp[ 3

2
(x + y)− 1], if (x , y) ∈ Do

2
,p

3y(1− x − y)−3/2, if (x , y) ∈ Do
3
,

which gives F ′′
+
(0)≤ 0. This completes the proof.

Now we define the special function U+ : D+→ R by the same formula as in (19), namely

U+(x , y, z, w) = y ∨ w + (x ∨ z)u+
�

x

x ∨ z
,

y − (y ∨ w)

x ∨ z

�

. (30)

The following is the analogue of Lemma 3.

Lemma 5. The function U+ belongs to U +(β+0 ).

Proof. The approach is essentially the same. The conditions (7) and (8) are immediate, while

(9) follows from (27), (28), (29) and the equality u+(0, y) = −β+0 . To show (10), we may

assume z = 1 and w = 0. Fix ǫ ∈ {−1,1}, x ∈ [0,1], y ∈ (−∞, 0], introduce the function

Φ(t) = U+(x+ t, y+ǫt, 1, 0) (given for t ≥−x) and observe that it suffices to show the existence

of a concave function Ψ satisfying Ψ ≥ Φ and Ψ(0) = Φ(0). Let us only list here the properties of

Φ which guarantee the existence, and omit the tedious proof.

Φ is continuous, (31)

Φ is concave on [−x , 1− x]. (32)

Φ is convex on (1− x ,∞), (33)

lim
t↑1−x

Φ′(t)≥ lim
t→∞
Φ′(t). (34)

5 Optimality of the constants

In this section we prove that the constants appearing in (3) and (4) are the least possible. This

clearly implies that the inequalities in Theorem 2 are also sharp.

The constant β0 is optimal in (3). Suppose the inequality (5) is valid for all martingales f and their

±1-transforms g. By Theorem 4, the class U (β) is nonempty; let U0 denote its minimal element.

By definition, this function enjoys the following properties.

U0(t x , t y, tz, tw) = tU0(x , y, z, w), for t > 0,
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and

U0(x , y, z, w) = U0(x , y + t, z, w + t)− t, for t ∈ R.

Introduce the functions A, B : (−∞, 0]→ R, C : [0,1]→ R by

A(y) = U0(0, y, 1, 0), B(y) = U0(1, y, 1, 0) = U0(−1, y, 1, 0), C(x) = U0(x , 0, 1, 0).

For the convenience of the reader, the proof is split into a few parts.

Step 1. Let us start with an estimate which will be used several times. If y < 0, δ ∈ (0,1) and

t > −y , then the property (10), with x = z = 1, w = 0, t1 =−δ, t2 = t and α= t/(t +δ), yields

B(y)≥
t

t +δ
U0(1−δ, y −δ, 1, 0) +

δ

t +δ
U0(1+ t, y + t, 1, 0)

=
t

t +δ
U0(1−δ, y −δ, 1, 0) +

δ(1+ t)

t +δ

�

y + t

1+ t
+ U0(1,0,1,0)

�

.

Now take t →∞ to obtain

B(y)≥ U0(1−δ, y −δ, 1, 0) +δ(1+ B(0)). (35)

Step 2. For x ∈ (0,1] and δ ∈ (0, x], the property (10), with y = w = 0, z = 1, t1 = 1 − x ,

t2 =−2δ and α= 2δ/(1− x + 2δ), gives

C(x)≥
2δ

1− x + 2δ
U0(1, x − 1,1,0) +

1− x

1− x + 2δ
U0(x − 2δ,δ, 1, 0)

=
2δ

1− x + 2δ
B(x − 1) +

1− x

1− x + 2δ
(C(x − 2δ) +δ)

≥
2δ

1− x + 2δ
B(x − 1− 2δ) +

1− x

1− x + 2δ
(C(x − 2δ) +δ),

where the latter inequality follows from the fact that B is nondecreasing (by the very definition).

In an equivalent form, the above reads

C(x)− C(x − 2δ)≥ 2δ

�

B(x − 1− 2δ)

1− x + 2δ
−

C(x − 2δ)

1− x + 2δ

�

+
2δ(1− x)

1− x + 2δ
. (36)

Furthermore, by (10), for x ≤ 1 and δ ∈ (0,1),

U0(1−δ, x − 1−δ, 1, 0)≤
δ

1− x + 2δ
C(x − 2δ) +

1− x +δ

1− x + 2δ
B(x − 1− 2δ).

Combining this with (35) yields

B(x − 1)≥ δ(1+ B(0)) +
δ

1− x + 2δ
C(x − 2δ) +

1− x +δ

1− x + 2δ
B(x − 1− 2δ),

or

2B(x − 1)− 2B(x − 1− 2δ)≥ 2δ

�

C(x − 2δ)

1− x + 2δ
−

B(x − 1− 2δ)

1− x + 2δ

�

+ 2δ(1+ B(0)).

Adding (36) to the estimate above gives

C(x) + 2B(x − 1)− C(x − 2δ)− 2B(x − 1− 2δ)≥ 2δ(2+ B(0))−
4δ2

1− x + 2δ
. (37)
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Now fix an integer n, substitute δ = 1/(2n), x = k/n, k = 1, 2, . . . , n and sum these inequalities;

we get

C(1) + 2B(0)− C(0)− 2B(−1)≥ 2+ B(0)−
1

n2

n
∑

k=1

1

1− k−1

n

.

Passing to the limit n→∞ and using the equalities C(1) = B(0), C(0) = A(0) we arrive at

2B(0)− A(0)− 2B(−1)≥ 2. (38)

Step 3. Now we will show that

A(0)≥ B(−1) + 1. (39)

To do this, use the property (10) twice to obtain

A(0)≥
δ

1+δ
B(−1) +

1

1+δ
(C(δ) +δ)

≥
δ

1+δ
B(−1) +

1

1+δ

�

δB(−1) + (1−δ)(δ+ A(0)) +δ
�

,

or, equivalently, A(0)≥ B(−1) + 1− δ
2
. As δ is arbitrary, (39) follows.

Step 4. The property (10), used twice, yields

A(y − 2δ)≥
δ

1+δ
B(y − 2δ− 1) +

1

1+δ
U0(−δ, y −δ, 1, 0)

≥
δ

1+δ
B(y − 2δ− 1) +

δ

1+δ
B(y − 1) +

1−δ
1+δ

A(y)

(40)

if δ < 1 and y ≤ 0. Moreover, combining (35) for y − 1 with the following consequence of (10):

U0(1−δ, y − 1−δ, 1, 0)≥ δA(y − 2δ) + (1−δ)B(y − 1− 2δ)

gives

B(y − 1)≥ δA(y − 2δ) + (1−δ)B(y − 1− 2δ) +δ(1+ B(0)). (41)

Now multiply (40) by 1+δ and add it to (41) to obtain

A(y − 2δ)− B(y − 1− 2δ)≥ (1−δ)(A(y)− B(y − 1)) +δ(1+ B(0)),

which, by induction, leads to the estimate

A(−2nδ)− B(−2nδ− 1)− 1− B(0)≥ (1−δ)n(A(0)− B(−1)− 1− B(0)),

valid for any nonnegative integer n. Fix y < 0, δ =−y/(2n) and let n→∞ to obtain

A(y)− B(y − 1)− 1− B(0)≥ e y/2(A(0)− B(−1)− 1− B(0))≥−B(0)e y/2, (42)

where the latter estimate follows from (39).

Step 5. Come back to (41) and write it in equivalent form

B(y − 1)− B(y − 1− 2δ)≥ δ(A(y − 2δ)− B(y − 1− 2δ)) +δ(1+ B(0)).

By (42), we get

B(y − 1)− B(y − 1− 2δ)≥ δ(−e y/2−δB(0) + 2+ 2B(0)).
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This gives, by induction,

B(−1)− B(−2nδ− 1) =

n−1
∑

k=0

[B(−2kδ− 1)− B(−2kδ− 1− 2δ)]

≥ nδ(2+ 2B(0))−δB(0)e−δ
1− e−nδ

1− e−δ
.

Now fix y < 0, take δ =−y/(2n) and let n→∞ to obtain

B(−1)− B(y − 1)≥−y(1+ B(0))− B(0)(1− e y/2). (43)

Now, by (38) and (39),

B(−1) =
1

3
B(−1) +

2

3
B(−1)≤

1

3
A(0) +

2

3
B(−1) +

1

3
≤

2

3
B(0)− 1.

Furthermore, by the definition of B we have B(y − 1) ≥ −β . Plugging these estimates into (43)

yields

β ≥−y(1+ B(0))− B(0)(1− e y/2) + 1−
2

3
B(0), for all y < 0.

Note that we have 1+B(0) = U0(1,1,1,1)≤ 0, by definition of U0. Therefore, the right hand side

of the inequality above attains its maximum for y satisfying

e y/2 =
2

B(0)
+ 2

and we get

β ≥−2(1+ B(0)) log

�

2+
2

B(0)

�

+ 3+
1

3
B(0).

Now, the right hand side, as a function of B(0) ∈ (−∞,−1], attains its minimum β0 at B(0) = −3a

(where a is given by (13)). This yields β ≥ β0 and we are done.

The constant β+0 is optimal in (4). Suppose for any nonnegative martingale f and its±1 transform

g we have

||g∗||1 ≤ β || f ∗||1.

Then the class U +(β) is nonempty, so we may consider its minimal element U+0 . As previously,

we have

U+
0
(t x , t y, tz, tw) = tU+

0
(x , y, z, w) for t > 0, (44)

and

U+
0
(x , y, z, w) = U+

0
(x , y + t, z, w + t)− t for t ∈ R.

In addition,

the function U+
0
(1, ·, 1, 0) is nondecreasing. (45)

It is convenient to work with the functions

A(y) = U+
0

�2

3
, y, 1, 0
�

, B(y) = U+
0
(1, y, 1, 0), C(x) = U+

0
(x , 0, 1, 0).

As previously, we divide the proof into a few intermediate steps.
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Step 1. First let us note that the arguments leading to (37) are still valid (with the new functions

A, B, C defined above) and hence so is this estimate. For a fixed positive integer n, let us write it

for δ = 1/(6n), x = 2

3
+ 2kδ, k = 1, 2, . . . , n and sum all these inequalities to obtain

C(1) + 2B(0)− C
�2

3

�

− 2B
�

−
1

3

�

≥
1

3
(2+ B(0))−

1

9n2

n
∑

k=1

1

1

3
− k−1

3n

.

Now let n→∞ and use C(1) = B(0). We get

3B(0)≥ C
�2

3

�

+ 2B
�

−
1

3

�

+
1

3
(2+ B(0)). (46)

Step 2. We will show that

C
�2

3

�

≥
2

3
B
�

−
1

3

�

+
4

9
−
β

3
. (47)

To this end, note that, using (10) twice, for δ < 1/3,

C
�2

3

�

≥
3δ

1+ 3δ
B
�

−
1

3

�

+
1

1+ 3δ

�

δ+ C
�2

3
−δ
�

�

≥
3δ

1+ 3δ
B
�

−
1

3

�

+
1

1+ 3δ

½

δ+
3δ

2
(−β) +

2− 3δ

2

�

δ+ C
�2

3

�

�¾

.

This is equivalent to

C
�2

3

�

≥
2

3
B
�

−
1

3

�

+
2

9

�

2−
3

2
δ
�

−
β

3

and it suffices to let δ→ 0.

Step 3. By (35), we have, for y <−1/3,

B(y)≥ U+
0
(1−δ, y −δ, 1, 0) +δ(1+ B(0)).

Furthermore, again by (10),

U+
0
(1−δ, y −δ, 1, 0)≥ (1− 3δ)B(y − 2δ) + 3δA

�

y +
1

3
− 2δ
�

and hence

B(y)≥ (1− 3δ)B(y − 2δ) + 3δA
�

y +
1

3
− 2δ
�

+δ(1+ B(0)). (48)

Moreover,

A
�

y +
1

3
− 2δ
�

≥
3δ

2+ 3δ
U+

0
(0, y −

1

3
− 2δ, 1, 0) +

2

2+ 3δ
U+

0
(
2

3
+δ, y +

1

3
−δ, 1, 0)

≥
3δ

2+ 3δ
(−β) +

2

2+ 3δ

�

3δB(y) + (1− 3δ)A(y +
1

3
)

�

.

(49)

Step 4. Now we will combine (48) and (49) and use them several times. Multiply (49) by γ > 0

(to be specified later) and add it to (48). We obtain

B(y) ·
�

1−
6γδ

2+ 3δ

�

− A(y +
1

3
) ·
(2− 6δ)γ

2+ 3δ

≥ B(y − 2δ) · (1− 3δ)− A(y +
1

3
− 2δ) · (γ− 3δ) +δ

�

1+ B(0)−
3βγ

2+ 3δ

�

≥ B(y − 2δ) · (1− 3δ)− A(y +
1

3
− 2δ) · (γ− 3δ) +δ

�

1+ B(0)−
3βγ

2

�

.
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Now the choice γ= (5−
p

9− 24δ)/4 allows to write the inequality above in the form

F(y)≥QδF(y − 2δ) +δ

�

1+ B(0)−
3βγ

2

�

, (50)

where

F(y) = B(y) ·
�

1−
6γδ

2+ 3δ

�

− A(y +
1

3
) ·
(2− 6δ)γ

2+ 3δ

and

Qδ =
1− 3δ

1− 6γδ

2+3δ

.

The inequality (50), by induction, leads to

F(−1/3)≥Qn
δF(−1/3− 2nδ) +δ

�

1+ B(0)−
3βγ

2

�

·
Qn
δ
− 1

Qδ − 1
.

Now fix Y <−1/3, take δ = −(Y + 1/3)/(2n) and let n→∞. Then

γ→
1

2
, Qn

δ→ exp

�

3

4
(Y +

1

3
)

�

and the estimate yields

B(−
1

3
)−

1

2
A(0)≥exp

�

3

4
(Y +

1

3
)

�

(B(Y )−
1

2
A(Y +

1

3
))

−
2

3

�

1+ B(0)−
3β

4

��

exp

�

3

4
(Y +

1

3
)

�

− 1

�

.

Now we have B(Y )≥−β and A(Y + 1

3
)≤ A(0). Hence, letting Y →−∞ yields

B(−
1

3
)−

1

2
A(0)≥

2

3

�

1+ B(0)−
3β

4

�

. (51)

Now (46), (47) and (51) imply the desired inequality β ≥ β+0 : indeed, by (46),

8

3
B(0)≥ A(0) + 2B(−

1

3
) +

2

3
,

which, by (51), can be bounded from below by

2A(0) + 2+
4

3
B(0)− β .

Now, (47) and (51) give

2

3
A(0)≥

8

9
+

4

9
B(0)−

2β

3

and applying the previous estimate yields β ≥ 14/9. The proof is complete.
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