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Abstract

We show that the spectral gap for the interchange process (and the symmetric exclusion
process) in a d-dimensional box of side length L is asymptotic to π2/L2. This gives more
evidence in favor of Aldous’s conjecture that in any graph the spectral gap for the interchange
process is the same as the spectral gap for a corresponding continuous-time random walk. Our
proof uses a technique that is similar to that used by Handjani and Jungreis, who proved that
Aldous’s conjecture holds when the graph is a tree.

1 Introduction

1.1 Aldous’s conjecture

This subsection is taken (with minor alterations) from David Aldous’s web page. Consider an
n-vertex graph G which is connected and undirected. Take n particles labeled 1, 2, ..., n. In
a configuration, there is one particle at each vertex. The interchange process is the following
continuous-time Markov chain on configurations. For each edge (i, j), at rate 1 the particles
at vertex i and vertex j are interchanged.
The interchange process is reversible, and its stationary distribution is uniform on all n! con-
figurations. There is a spectral gap λIP(G) > 0, which is the absolute value of the largest
non-zero eigenvalue of the transition rate matrix. If instead we just watch a single particle, it
performs a continuous-time random walk on G (hereafter referred to simply as“the continuous-
time random walk on G”), which is also reversible and hence has a spectral gap λRW(G) > 0.
Simple arguments (the contraction principle) show λIP(G) ≤ λRW(G).

Problem. Prove λIP(G) = λRW(G) for all G.

Discussion. Fix m and color particles 1, 2, ....,m red. Then the red particles in the interchange
process behave as the usual exclusion process (i.e., m particles performing the continuous-time
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random walk on G, but with moves that take two particles to the same vertex suppressed).
But in the finite setting, the interchange process seems more natural.

1.2 Results

Aldous’s conjecture has been proved in the case where G is a tree [7] and in the case where G
is the complete graph [5]; see also [12]. In this note we prove an asymptotic version of Aldous’s
conjecture for G a box in Zd. We show that if BL denotes a box of side length L in Zd then

λIP(BL)

λRW(BL)
→ 1,

as L → ∞.

Remark: After completing a draft of this paper, I learned that Starr and Conomos had
recently obtained the same result (see [14]). Their proof uses a similar approach, although the
present paper is somewhat shorter.

Connection to simple exclusion. Our result gives a bound on the spectral gap for the
exclusion process. The exclusion process is a widely studied Markov chain, with connections
to card shuffling [16, 1], statistical mechanics [8, 13, 2, 15], and a variety of other processes
(see e.g., [10, 6]); it has been one of the major examples behind the study of convergence
rates for Markov chains (see, e.g., [6, 3, 16, 1]). Our result implies that the spectral gap for
the symmetric exclusion process in BL is asymptotic to π2/L2. The problem of bounding the
spectral gap for simple exclusion was studied in Quastel [13] and a subsequent independent
paper of Diaconis and Saloff-Coste [3]. Both of these papers used a comparison to Bernoulli-
Laplace diffusion (i.e., the exclusion process in the complete graph) to obtain a bound of order
1/dL2. Diaconis and Saloff-Coste explicitly wondered whether the factor d in the denominator
is necessary; in the present paper we show that it is not.

2 Background

Consider a continuous-time Markov chain on a finite state space W with a symmetric transition
rate matrix Q(x, y). The spectral gap is the minimum value of α > 0 such that

Qf = −αf, (1)

for some f : W → R. The spectral gap governs the asymptotic rate of convergence to the
stationary distribution. Define

E(f, f) =
1

2|W |

∑

x,y∈W

(f(x) − f(y))2Q(x, y),

and define

var(f) =
1

|W |

∑

x∈W

(f(x) − E(f))2,

where

E(f) =
1

|W |

∑

x∈W

f(x).
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If f is a function that satisfies Qf = −λf for some λ > 0, then

λ =
E(f, f)

var(f)
. (2)

Furthermore, if α is the spectral gap then for any non-constant f : W → R we have

E(f, f)

var(f)
≥ α. (3)

Thus the spectral gap can be obtained by minimizing the left hand side of (3) over all non-
constant functions f : W → R.

3 Main result

Before specializing to the interchange process, we first prove a general proposition relating the
eigenvalues of a certain function of a Markov chain to the eigenvalues of the Markov chain
itself. Let Xt be a continuous-time Markov chain on a finite state space W with a symmetric
transition rate matrix Q(x, y). Let T be another space and let g : W → T be a function on W
such that if g(x) = g(y) and U = g−1(u) for some u, then

∑
u′∈U Q(x, u′) =

∑
u′∈U Q(y, u′).

Note that g(Xt) is a Markov chain. Let W ′ denote the collection of subsets of W of the form
g−1(u) for some u ∈ T . We can identify the states of g(Xn) with elements of W ′. Let Q′

denote the transition rate matrix for g(Xn). Note that if U,U ′ ∈ W ′, with U = g−1(u) for
some u ∈ T and U 6= U ′, then Q′(U,U ′) =

∑
y∈U ′ Q(u, y).

We shall need the following proposition, which generalizes Lemma 2 of [7].

Proposition 1. Let Xt, g and Q′ be as defined above. Suppose f : W → R is an eigenvector

of Q with corresponding eigenvalue −λ and define h : W ′ → R by h(U) =
∑

x∈U f(x). Then

Q′h = −λh. That is, either h is an eigenvector of Q′ with corresponding eigenvalue −λ, or h
is identically zero.

Proof: Note that for all U ′ ∈ W ′ we have

(Q′h)(U ′) =
∑

U∈W ′

h(U)Q′(U,U ′)

=
∑

U∈W ′

∑

x∈U

f(x)
∑

y∈U ′

Q(x, y)

=
∑

y∈U ′

(Qf)(y)

= −λ
∑

y∈U ′

f(y)

= −λh(U ′),

so Q′h = −λh.

The following Lemma is a weaker version of Aldous’s conjecture. The proof is similar to the
proof of Theorem 1 in [7].
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Lemma 2. Let G be a connected, undirected graph with vertices labeled 1, . . . , n. For 2 ≤ k ≤ n
let Gk be the subgraph of G induced by the vertices 1, 2, . . . , k. Let λRW(Gk) be the spectral gap

for the continuous-time random walk on Gk, and define αk = min2≤j≤k λRW(Gj). Then

λIP(G) ≥ αn.

Proof: Our prooof will be by induction on the number of vertices n. The base case n = 2
is trivial, so assume n > 2. Let W and Q be the state space and transition rate matrix,
respectively, for the interchange process on G. Let f : W → R be a function that satisfies
Qf = −λf . We shall show that λ ≥ αn. Note that a configuration of the interchange process
can be identified with a permutation π in Sn, where if particle i is in vertex j, then π(i) = j.
For positive integers m and k with m, k ≤ n, we write f(π(m) = k) for

∑

π:π(m)=k

f(π).

We consider two cases.

Case 1: For some m and k we have f(π(m) = k) 6= 0. Define h : V → R by h(j) =
f(π(m) = j). Then h is not identically zero, and using Proposition 1 with g defined by
g(π) = π(m) gives that if Q′ is the transition rate matrix for continuous time random walk on
G, then Q′h = −λh. It follows that λ is an eigenvalue of Q′ and hence λ ≥ λRW(G) = αn.

Case 2: For all m and k we have f(π(m) = k) = 0. Define the suppressed process as
the interchange process with moves involving vertex n suppressed. That is, the Markov chain
with the following transition rule:

For every edge e not incident to n, at rate 1 switch the particles at the endpoints of e.

For 1 ≤ k ≤ n, let Wk = {π ∈ W : π−1(n) = k}. Note that the Wk are the irreducible
classes of the suppressed process, and that for each k the restriction of the suppressed process
to Wk can be identified with the interchange process on Gn−1. For k with 1 ≤ k ≤ n, define

Ek(f, f) =
1

2(n − 1)!

∑

π1,π2∈Wk

(f(π1) − f(π2))
2Q(π1, π2),

and define

vark(f) =
1

(n − 1)!

∑

π∈Wk

f(π)2.

(Note that for every k we have
∑

π∈Wk
f(x) = 0.)

By the induction hypothesis, the spectral gap for the interchange process on Gn−1 is at least
αn−1. Hence for every k with 1 ≤ k ≤ n we have

Ek(f, f) ≥ αn−1vark(f) ≥ αnvark(f).
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It follows that

n!E(f, f) ≥ 1
2

n∑

k=1

∑

π1,π2∈Wk

(f(π1) − f(π2))
2Q(π1, π2) (4)

=

n∑

k=1

(n − 1)!Ek(f, f) (5)

≥
n∑

k=1

αn(n − 1)!vark(f) (6)

= αn

n∑

k=1

∑

π∈Wk

f(π)2 (7)

= αnn!var(f). (8)

Combining this with equation (2) gives λ ≥ αn.

Remark: Theorem 2 is optimal if the vertices are labeled in such a way that λRW(Gk) is
nonincreasing in k, in which case it gives λIP(G) = λRW(G). Since any tree can be built
up from smaller trees (with larger spectral gaps), we recover the result proved in [7] that
λIP(T ) = λRW(T ) if T is a tree.

Our main application of Lemma 2 is the following asymptotic version of Aldous’s conjecture
in the special case where G is a box in Zd.

Corollary 3. Let BL = {0, . . . , L}d be a box of side length L in Zd. Then the spectral gap for

the interchange process on BL is asymptotic to π2/L2.

Proof: In order to use Lemma 2 we need to label the vertices of BL in some way. Our
goal is to label in such a way that for every k the quantity λRW(Gk) (i.e., the spectral gap
corresponding to the subgraph of BL induced by the vertices 1, . . . , k) is not too much smaller
than λRW(BL). So our task is to build BL, one vertex at a time, in such a way that the
spectral gaps of the intermediate graphs don’t get too small.
We shall build BL by inductively building BL−1 and then building BL from BL−1. Since
λRW(BL) ↓ 0, it is enough to show that

βL

λRW(BL)
→ 1,

where βL is the minimum spectral gap for any intermediate graph between BL−1 and BL.
For a graph H, let V (H) denote the set of vertices in H. For j ≥ 0, let Lj = {0, . . . , j} be the
line graph with j +1 vertices. Define γL = λRW(LL). It is well known that γL is decreasing in
L and asymptotic to π2/L2 as L → ∞. It is also well known that if H and H ′ are graphs and
× denotes Cartesian product, then λRW(H ×H ′) = min(λRW(H), λRW(H ′)). Since BL = Ld

L,
it follows that λRW(BL) = γL.
We construct BL from BL−1 using intermediate graphs H0, . . . ,Hd, where for k with 1 ≤ k ≤ d
we define Hk = Lk

L×Ld−k
L−1. Note that H0 = BL−1 and Hd = BL. We obtain Hk from Hk−1 by

adding vertices to lengthen Hk−1 by one unit in direction k. The order in which the vertices
in V (Hk) − V (Hk−1) are added is arbitrary.
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Fix k with 1 ≤ k ≤ d, and define G′ = G′(L, k) as follows. Let

V ′ = V (Hk), E′ = {(u, v) : either u or v is a vertex in Hk−1},

and let G′ = (V ′, E′). It is well known and easily shown that if H is a graph, then adding edges
to H cannot decrease λRW(H), nor can removing pendant edges. Since each intermediate graph
G̃ between Hk−1 and Hk can be obtained from G′ by adding edges and removing pendant edges,
it follows that for any such graph G̃ we have λRW(G̃) ≥ λRW(G′). Thus, it is enough to bound
λRW(G′) from below. We shall show that for any ǫ > 0 we have λRW(G′(L, k)) ≥ (1 − ǫ)γL if
L is sufficiently large.
Let ek be the unit vector in direction k. Let

S = V (Hk−1); ∂S = V ′ − S.

Let Xt be the continuous-time random walk on G′, with transition rate matrix Q. Fix f :
V ′ → R with Qf = −λf for some λ > 0. For x ∈ Zd, let gk(x) denote the component of x
in the kth coordinate. Note that gk(Xt) is the continuous-time random walk on LL. Let Q′

be the transition rate matrix for gk(Xt). Proposition 1 implies that if h : {0, . . . , L} → R is
defined by h(j) =

∑
x∈V ′

gk(x)=j

f(x), then Q′h = −λh. Thus if λ < γL, then g is identically zero

and hence
∑

x∈S f(x) = 0. Define

E(f, f) =
1

2|V ′|

∑

x,y∈V ′

(f(x) − f(y))2Q(x, y),

and let ES(f, f) be defined analogously, but with only vertices in S included in the sum. Note
that E(f, f) ≥ ES(f, f). Since

∑
x∈S f(x) = 0, we have

ES(f, f)∑
x∈S f(x)2

≥ λRW(Hk−1) ≥ γL, (9)

where the second inequality follows from the fact that Hk−1 is a Cartesian product of d graphs,
each of which is either LL−1 or LL.
Fix ǫ > 0 and let M be a positive integer large enough so that (1 − 4M−1)−1 ≤ (1 − ǫ)−1/2.
For each x ∈ ∂S, say that x is good if there is a y ∈ S such that x = y + iek for some
i ≤ M and |f(y)| ≤ |f(x)|/2. Otherwise say that x is bad. Let G and B denote the set of
good and bad vertices, respectively, in ∂S. Note that if x is bad and M ≤ L then f(x)2 ≤
4
M

∑M
j=1 f(x − jek)2. Summing this over bad x gives

∑

x∈B

f(x)2 ≤
4

M

∑

x∈V ′

f(x)2 (10)

Note that if x is good, then there must be an x′ ∈ S of the form x − iek such that |f(x′) −
f(x′ + ek)| > f(x)/2M . It follows that

E(f, f)∑
x∈G f(x)2

≥ 1/4M2. (11)

Since V ′ = S ∪ B ∪ G, combining equations (11), (9) and (10) gives
∑

x∈V ′

f(x)2 ≤ (γ−1
L + 4M2)E(f, f) + 4M−1

∑

x∈V ′

f(x)2,
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and hence ∑

x∈V ′

f(x)2 ≤ (1 − 4M−1)−1(γ−1
L + 4M2)E(f, f). (12)

Recall that (1 − 4M−1)−1 ≤ (1 − ǫ)−
1
2 , and note that since γL → 0 as L → ∞, we have

γ−1
L + 4M2 ≤ (1 − ǫ)−

1
2 γ−1

L for sufficiently large L. Combining this with equation (12) gives

E(f, f)∑
x∈V ′ f(x)2

≥ (1 − ǫ)γL,

for sufficiently large L. It follows that λRW(G′) ≥ (1− ǫ)γL for sufficiently large L and so the
proof is complete.
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