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email: nicolas.fournier@univ-paris12.fr

Submitted 5 July 2006, accepted in final form 14 July 2006

AMS 2000 Subject classification: 60K35, 60J25
Keywords: Coalescence, Stochastic interacting particle systems

Abstract

We build a Markovian system of particles entirely characterized by their masses, in which each
pair of particles with masses x and y coalesce at rate K(x, y) ≃ xλ + yλ, for some λ ∈ (0, 1),
and such that the system is initially composed of infinitesimally small particles.

1 Introduction

A stochastic coalescent is a Markovian system of macroscopic particles entirely characterized
by their masses, in which each pair of particles with masses x and y merge into a single particle
with mass x + y at some given rate K(x, y). This rate K is called the coagulation kernel. We
refer to the review of Aldous [3] on stochastic coalescence, on its links with the Smoluchowski
coagulation equation.

When the initial state consists of a finite number of particles, the stochastic coalescent ob-
viously exists without any assumption on K, and is known as the Marcus-Lushnikov process
[9, 8]. When there are initially infinitely many particles, stochastic coalescence with constant,
additive, and multiplicative kernels have been extensively studied, see Kingman [7], Aldous-
Pitman [2], Aldous [1]. The case of general coagulation kernels has first been studied by
Evans-Pitman [4], and their results have recently been completed in [5, 6].

Of particular importance seems to be the standard version of the stochastic coalescent, that is
the stochastic coalescent which starts from dust. By dust we mean a state with positive total
mass in which all the particles have an infinitesimally small mass. Indeed, such a version of
stochastic coalescence should describe a sort of typical behaviour, since it starts with a non
really specified initial datum. There are also some possible links between such a standard
stochastic coalescent and the Smoluchowski coagulation equation for large times, see Aldous
[3, Open Problem 14].
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The well-known Kingman coalescent [7] is a stochastic coalescent with constant kernel K(x, y) =
1 starting from dust at time t = 0. The standard additive (resp. multiplicative) coalescent ,
see [2] (resp. [1]) is a stochastic coalescent with kernel K(x, y) = x + y (resp. K(x, y) = xy)
starting from dust at time t = −∞. It seems that no result is available for general kernels. Our
aim in this paper is to show the existence of a standard coalescent for kernels K(x, y) ≃ xλ+yλ,
for λ ∈ (0, 1), by using a refinement of the methods introduced in [5].

We have no uniqueness result, but the process we build is however a Markov process. The
method we use is very restrictive: we are not able to study, for example, the case K(x, y) =
(xy)λ/2, for λ ∈ (0, 1).

In Section 2, we introduce our notations, recall the main result of [5], and state our result.
The proofs are handled in Section 3.

2 Main result

We denote by S↓ the set of non-increasing sequences m = (mk)k≥1 with values in [0,∞). A
state m ∈ S↓ represents the ordered masses in a particle system. For α > 0 and m ∈ S↓, we
denote ||m||α :=

∑∞
k=1 mα

k . Remark that the total mass of a state m ∈ S↓ is simply given by
||m||1.
We will use, for λ ∈ (0, 1], the set of states with total mass 1 and with a finite moment of order
λ:

ℓλ =
{

m = (mk)k≥1 ∈ S↓, ||m||1 = 1, ||m||λ < ∞
}

. (2.1)

We also consider the sets of finite particle systems with total mass 1:

ℓ0 =
{

m = (mk)k≥1 ∈ S↓, ||m||1 = 1, inf{k ≥ 1, mk = 0} < ∞
}

. (2.2)

Remark that for 0 < λ1 < λ2, the inclusions ℓ0 ⊂ ℓλ1
⊂ ℓλ2

hold.

For i < j, the coalescence between the i-th and j-th particles is described by the map cij :
S↓ 7→ S↓, with

cij(m) = reorder(m1, ..., mi−1, mi + mj , mi+1, ..., mj−1, mj+1, ...). (2.3)

A coagulation kernel is a function K on [0,∞)2 such that 0 ≤ K(x, y) = K(y, x).

Remark 2.1 Consider a coagulation kernel K. For any m ∈ ℓ0, there obviously exists a
unique (in law) strong Markov ℓ0-valued process (M(m, t))t≥0 with infinitesimal generator L
defined, for all Φ : ℓ0 7→ R, all µ ∈ ℓ0, by

LΦ(µ) =
∑

1≤i<j<∞

K(µi, µj) [Φ(cij(µ)) − Φ(µ)] . (2.4)

The process (M(m, t))t≥0 is known as the Marcus-Lushnikov process.

Notice that (2.4) is well-defined for all functions Φ since the sum is actually finite. Indeed,
cij(µ) = µ as soon as µj = 0. We refer to Aldous [3] for many details on this process.
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To state our main result, we finally need to introduce some notations: for λ ∈ (0, 1), and for
m, m̃ ∈ ℓλ, we consider the distance

dλ(m, m̃) =
∑

k≥1

∣

∣mλ
k − m̃λ

k

∣

∣ . (2.5)

Remark that for mn, m in ℓλ,

lim
n

dλ(mn, m) = 0 ⇐⇒ lim
n

∑

i≥1

|mn
i − mi|

λ = 0. (2.6)

The main result of [5, Corollary 2.5] (see also [6, Theorem 2.2]) is the following.

Theorem 2.2 Let K be a coagulation kernel satisfying, for some λ ∈ (0, 1] and some a ∈
(0,∞), for all x, y, z ∈ [0, 1],

|K(x, y) − K(x, z)| ≤ a|yλ − zλ|. (2.7)

Endow ℓλ with the distance dλ.
(i) For any m ∈ ℓλ, there exists a unique (in law) strong Markov process (M(m, t))t≥0 ∈
D([0,∞), ℓλ) enjoying the following property. For any sequence of initial states mn ∈ ℓ0 such
that limn→∞ dλ(mn, m) = 0, the sequence of Marcus-Lushnikov processes (M(mn, t))t≥0 con-
verges in law, in D([0,∞), ℓλ), to (M(m, t))t≥0.
(ii) The obtained process is Feller in the sense that for all t ≥ 0, the application m 7→
Law(M(m, t)) is continuous from ℓλ into P(ℓλ).

Notation 2.3 Under the assumptions of Theorem 2.2, we will denote by (PK
t )t≥0 the Markov

semi-group of (M(m, t))t≥0,m∈ℓλ
: for t ≥ 0, for Φ : ℓλ 7→ R measurable and bounded, and for

m ∈ ℓλ, PK
t Φ(m) := E[Φ(M(m, t))].

The result we will prove in the present paper is the following.

Theorem 2.4 Let K be a coagulation kernel satisfying for some λ ∈ (0, 1), some a ∈ (0,∞)
and some ε > 0, for all x, y, z ∈ [0,∞),

|K(x, y) − K(x, z)| ≤ a|yλ − zλ| and K(x, y) ≥ ε(xλ + yλ). (2.8)

There exists a Markov process (M∗(t))t∈(0,∞) with semi-group (PK
s )s≥0, belonging a.s. to

D((0,∞), ℓλ), such that a.s., limt→0+ M∗
1 (t) = 0, where M∗(t) = (M∗

1 (t), M∗
2 (t), ...) ∈ ℓλ.

This result is not obvious, because clearly, M∗(t) goes out of ℓλ as t decreases to 0+. Indeed,
we have

∑

i M∗
i (t) = 1 for all t > 0, and limt→0+ supi M∗

i (t) = 0, so that necessarily, since
λ ∈ (0, 1) lim supt→0+ ||M∗(t)||λ = ∞.

The main ideas of the proof are the following: first, there is a regularization of the moment of
order λ. This means that in some sense, even if the moment of order λ is infinite at time 0, it
becomes finite for all positive times.
Next, we prove a refined version of the Feller property obtained in [5], which shows that
the map m 7→ Law(M(m, t)) is actually continuous for the distance d1 on the level sets
{m ∈ ℓλ, ||m||λ ≤ A}. We conclude using that these level sets are compact in ℓ1 endowed with
d1.
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3 Proof

Let us first recall the following easy compactness result.

Lemma 3.1 For any A > 0, any λ ∈ (0, 1), the set

ℓλ(A) = {m ∈ ℓλ, ||m||λ ≤ A} (3.1)

is compact in (ℓ1, d1): for any sequence (mn)n≥1 of elements of ℓλ(A), we may find m ∈ ℓλ(A)
and a subsequence (mnk)k≥1 such that limk d1(m

nk , m) = 0.

We now check that under a suitable lowerbound assumption on the coagulation kernel, there
is a regularization property for the moment of order λ of the stochastic coalescent.

Lemma 3.2 Let λ ∈ (0, 1) be fixed, and consider a coagulation kernel K satisfying, for some
ε ∈ (0,∞), for all x, y ∈ [0, 1],

K(x, y) ≥ ε(xλ + yλ). (3.2)

For each m ∈ ℓ0, consider the Marcus-Lushnikov process (M(m, t))t≥0. There exists a constant
C, depending only on λ and ε, such that for all t > 0,

sup
m∈ℓ0

[

sup
s≥t

||M(m, s)||λ

]

≤ C

(

1 ∨
1

t

)

(3.3)

Proof First of all notice that since λ ∈ (0, 1), we have for all 1 ≤ i < j, for all m ∈ ℓλ,
||cij(m)||λ = ||m||λ + (mi + mj)

λ − mλ
i − mλ

j ≤ ||m||λ. Hence the moment of order λ of
M(m, t) decreases a.s. at each coalescence. Thus for any m ∈ ℓ0, the map t 7→ ||M(m, t)||λ
is a.s. non-increasing. It thus suffices to check that for some constant C > 0, for all t > 0,
supm∈ℓ0 E [Φ(M(m, t))] ≤ C

(

1 ∨ 1
t

)

, where Φ : ℓλ 7→ R+ is defined by Φ(m) = ||m||λ.
An easy computation shows that for 0 ≤ y ≤ x,

xλ + yλ − (x + y)λ = x
[

xλ−1 − (x + y)λ−1
]

+ y
[

yλ−1 − (x + y)λ−1
]

≥ y
[

yλ−1 − (y + y)λ−1
]

≥ (1 − 2λ−1)yλ. (3.4)

Using furthermore (2.4) and (3.2), we get, for any m ∈ ℓ0, since for i < j, 0 ≤ mj ≤ mi,

LΦ(m) = −
∑

i<j

K(mi, mj)[m
λ
i + mλ

j − (mi + mj)
λ]

≤ −ε(1 − 2λ−1)
∑

i<j

(mλ
i + mλ

j )mλ
j . (3.5)

Setting c = ε(1 − 2λ−1)/2, we obtain, using that mi ≤ 1 for all i,

LΦ(m) ≤ −2c
∑

i<j

mλ
i mλ

j = c
∑

i6=j

mλ
i mλ

j = −c















∑

i≥1

mλ
i





2

−
∑

i≥1

m2λ
i











≤ −c
(

Φ2(m) − Φ(m)
)

. (3.6)
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Using the Cauchy-Schwarz inequality, we deduce that for all t ≥ 0, all m ∈ ℓ0,

d

dt
E [Φ(M(m, t))] = E [LΦ(M(m, t))]

≤ −c
(

E [Φ(M(m, t))]2 − E [Φ(M(m, t))]
)

. (3.7)

Using finally that E [Φ(M(m, 0))] = ||m||λ ∈ [1,∞) since m ∈ ℓ0, we easily deduce from this
differential inequality that for all t > 0, E[Φ(M(m, t))] ≤ (1 − e−ct)−1. For some constant
C > 0 depending only on c, we obtain the bound E[Φ(M(m, t))] ≤ C(1 ∨ 1

t ). �

We next prove a sort of refined version of the Feller property obtained in [5].

Lemma 3.3 Let λ ∈ (0, 1) be fixed, and consider a coagulation kernel K satisfying, for some
a ∈ (0,∞), for all x, y, z ∈ [0, 1],

|K(x, y) − K(x, z)| ≤ a|yλ − zλ|. (3.8)

It is possible to build simultaneously all the processes (M(m, t))t≥0, for all m ∈ ℓλ, in such a
way that for all t ≥ 0, all m, m̃ ∈ ℓλ,

[

sup
[0,t]

d1(M(m, s), M(m̃, s))

]

≤ d1(m, m̃)e8a(||m||λ+||m̃||λ)t. (3.9)

Proof We use here [5, Definition 2.1] and [5, Theorem 2.4]. We set K̄ = sup(x,y)∈[0,1]2 K(x, y).

We consider a Poisson measure N(dt, d(i, j), dz) on [0,∞) × {(i, j) ∈ N
2, i < j} × [0, K̄] with

intensity measure dt
(

∑

1≤k<l<∞ δ(k,l)

)

dz, and denote by {Ft}t≥0 the associated canonical

filtration.
For m ∈ ℓλ, we know from [5] that there exists a unique ℓλ-valued càdlàg {Ft}t≥0-adapted
process (M(m, t))t≥0 such that a.s., for all t ≥ 0,

M(m, t) = m +

∫ t

0

∫

i<j

∫ K̄

0

[cij(M(m, s−)) − M(m, s−)] (3.10)

11{z≤K(Mi(m,s−),Mj(m,s−))}N(ds, d(i, j), dz).

Furthermore, this process (M(m, t))t≥0 is a Markov process starting from m with semi-group
(PK

s )s≥0 defined in Notation 2.3.
Remark here that the processes (M(m, t))t≥0 for different initial data are coupled, in the sense
that they are all built with the same Poisson measure N .
Before handling the computations, let us recall the following estimates, that can be found in
[5, Corollary 3.2]: for all 1 ≤ i < j, all m, m̃ ∈ ℓ1,

d1(cij(m), cij(m̃)) ≤ d1(m, m̃), (3.11)

d1(cij(m), m̃) ≤ d1(m, m̃) + 2mj. (3.12)

We may now compute. Let thus m, m̃ ∈ ℓλ. We have, for any t ≥ 0,

d1(M(m, t), M(m̃, t)) = d1(m, m̃) + At + B1
t + B2

t , (3.13)
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where, setting ∆ij(s) := d1(cij(M(m, s)), cij(M(m̃, s))) − d1(M(m, s), M(m̃, s)),

At =

∫ t

0

∫

i<j

∫ K̄

0

11{z≤K(Mi(m,s−),Mj(m,s−))∧K(Mi(m̃,s−),Mj(m̃,s−))}

∆ij(s−)N(ds, d(i, j), dz), (3.14)

while, setting Γij(s) := d1(cij(M(m, s)), M(m̃, s)) − d1(M(m, s), M(m̃, s)),

B1
t =

∫ t

0

∫

i<j

∫ K̄

0

11{K(Mi(m̃,s−),Mj(m̃,s−))≤z≤K(Mi(m,s−),Mj(m,s−))}

Γij(s−)N(ds, d(i, j), dz), (3.15)

and where B2
t is the same as B1

t permuting the roles of m and m̃.
Due to (3.11), we know that At ≤ 0 for all t ≥ 0 a.s. Next, using (3.12) and (3.8), we conclude
that, setting (x)+ = max(x, 0),

E

[

sup
[0,t]

B1
s

]

≤

∫ t

0

dsE
[

∑

i<j

2Mj(m, s)

(

K(Mi(m, s), Mj(m, s)) − K(Mi(m̃, s), Mj(m̃, s))
)

+

]

≤ 2a

∫ t

0

dsE
[

∑

i<j

Mj(m, s) (3.16)

(

|Mi(m, s)λ − Mi(m̃, s)λ| + |Mj(m, s)λ − Mj(m̃, s)λ|
)]

.

But one easily checks that (x1−λ + y1−λ)|xλ − yλ| ≤ 2|x− y| for all x, y ∈ [0,∞), so that, since
Mj(m, s) ≤ Mi(m, s) for all i < j,

∑

i<j

Mj(m, s)|Mi(m, s)λ − Mi(m̃, s)λ|

≤
∑

i<j

Mj(m, s)λ(Mi(m, s)1−λ + Mi(m̃, s)1−λ)|Mi(m, s)λ − Mi(m̃, s)λ|

≤ 2||M(m, s)||λ × d1(M(m, s), M(m̃, s)). (3.17)

By the same way,

∑

i<j

Mj(m, s)|Mj(m, s)λ − Mj(m̃, s)λ|

≤
∑

i<j

Mi(m, s)λ(Mj(m, s)1−λ + Mj(m̃, s)1−λ)|Mj(m, s)λ − Mj(m̃, s)λ|

≤ 2||M(m, s)||λ × d1(M(m, s), M(m̃, s)). (3.18)

We conclude that for all t ≥ 0,

E

[

sup
[0,t]

B1
s

]

≤ 8a

∫ t

0

E [||M(m, s)||λ × d1(M(m, s), M(m̃, s))] ds. (3.19)
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Using the same computation for B2
t and the fact that the maps t 7→ ||M(m, t)||λ and t 7→

||M(m̃, t)||λ are a.s. non-increasing, we finally get

E

[

sup
[0,t]

d1(M(m, s), M(m̃, s))

]

≤ d1(m, m̃) (3.20)

+8a (||m||λ + ||m̃||λ)

∫ t

0

dsE [d1(M(m, s), M(m̃, s))] .

The Gronwall Lemma allows us to conclude. �

We may finally handle the

Proof of Theorem 2.4 We divide the proof into several steps.

Step 1. For each n ∈ N, let mn = (1/n, ..., 1/n, 0, ...) ∈ ℓ0, which is an approximation of dust.
We then consider, for each n ∈ N, the Marcus-Lushnikov process (M(mn, t))t≥0. For each
t > 0, using Lemma 3.2 and the notations of Lemma 3.1, we obtain

lim
A→∞

inf
n∈N

P (M(mn, t) ∈ ℓλ(A)) = 1. (3.21)

Due to Lemma 3.1, we deduce that for each t > 0, we may find a subsequence nk such that
(M(mnk , t), ||M(mnk , t)||λ) converges in law in ℓ1× [0,∞), ℓ1 being endowed with the distance
d1. By (3.3) and the Fatou Lemma, the limit belongs a.s. to ℓλ × [0,∞).

Step 2. Consider now a decreasing sequence (tl)l≥1 of positive numbers such that liml→∞ tl =
0. Using a diagonal extraction, we deduce from Step 1 that we may find a subsequence nk such
that for all l ≥ 1, (M(mnk , tl), ||M(mnk , tl)||λ) converges in law, in ℓ1 × [0,∞). We denote
by (M l, X l) the limit, which belongs a.s. to ℓλ × [0,∞). We thus may consider, using The-
orem 2.2, the Markov process (M l,∗(t))t≥tl

, belonging a.s. to D([tl,∞), ℓλ), with semi-group
(PK

s )s≥0 starting at time tl with the initial condition M l.

Step 3. We now prove that for all l ≥ 1, (M(mnk , t))t≥tl
goes in law to (M l,∗(t))t≥tl

as k
tends to infinity, the convergence holding in D([tl,∞), ℓ1), ℓ1 being equipped d1.
Using the Skorokhod representation Theorem, we may assume that as k tends to infinity,
(M(mnk , tl), ||M(mnk , tl)||λ) goes a.s. to (M l, X l) in ℓ1 × [0,∞). This implies that a.s. for all
T > tl,

lim
k→∞

d1

(

M(mnk , tl), M
l
)

e8a(||M(mnk ,tl)||λ+||Ml||λ)(T−tl) = 0. (3.22)

Lemma 3.3 allows us to conclude.

Step 4. We deduce from Step 3, by uniqueness of the limit, that for p > l ≥ 1 (so that
0 < tp < tl), the processes (Mp,∗(t))t≥tl

and (M l,∗(t))t≥tl
have the same law. We may thus

define a process (M∗(t))t>0 (using for example the Kolmogorov Theorem) in such a way that
for all l ≥ 1, the processes (M∗(t))t≥tl

and (M l,∗(t))t≥tl
have the same law. This process

(M∗(t))t∈(0,∞) is obviously a Markov process with semi-group (PK
s )s≥0 belonging a.s. to

D([0,∞), ℓλ).
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Step 5. It only remains to prove that a.s., limt→0+ M∗
1 (t) = 0. By nature, the map t 7→

M∗
1 (t) is a.s. non-decreasing, non-negative, and bounded by 1. It thus suffices to prove that

limt→0+ E[M∗
1 (t)2] = 0. But for all t > 0, M∗

1 (t) is the limit in law, as k → ∞, of M1(m
nk , t).

An easy computation, using (2.4) shows that for all n ≥ 1,

E[M1(m
n, t)2] =

1

n2
+

∫ t

0

dsE
[

∑

i<j

K(Mi(m
n, s), Mj(m

n, s))

(

[Mi(m
n, s) + Mj(m

n, s)]2 − M1(m
n, s)2

)

+

]

≤
1

n2
+ 3K̄

∫ t

0

dsE
[

∑

i<j

Mi(m
n, s)Mj(m

n, s)
]

≤
1

n2
+ 3K̄t, (3.23)

where K̄ = sup[0,1]2 K(x, y). We have used that for 1 ≤ i < j, Mj(m
n, s) ≤ Mi(m

n, s) ≤

M1(m
n, s) and that

∑

i≥1 Mi(m
n, s) = 1. Thus for all t > 0, E[M∗

1 (t)2] ≤ 3K̄t, from which
the conclusion follows. �

Remark 3.4 For the kernel K = (xy)λ/2 Lemma 3.3 still holds. However, instead of Lemma
3.2, we are only able to prove a regularization of the moment of order α, for any α ∈ (λ, 1).
Since the continuity property stated in Lemma 3.3 involves the moment of order λ, the proof
breaks down.
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