
Elect. Comm. in Probab. 11 (2006), 64–77

ELECTRONIC

COMMUNICATIONS

in PROBABILITY

INTEGRAL CRITERIA FOR TRANSPORTATION-COST
INEQUALITIES

NATHAEL GOZLAN
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Abstract

In this paper, we provide a characterization of a large class of transportation-cost inequalities in
terms of exponential integrability of the cost function under the reference probability measure.
Our results completely extend the previous works by Djellout, Guillin and Wu [8] and Bolley
and Villani [3].

1 Introduction

In all the paper, (X , d) will be a polish space equipped with its Borel σ-field. The set of
probability measures on X will be denoted by P(X ).

1.1 Norm-entropy inequalities and transportation cost inequalities

The aim of this paper is to give necessary and sufficient conditions for inequalities of the
following form :

∀ν ∈ P(X ), α (‖ν − µ‖∗Φ) ≤ H(ν | µ), (1.1)

where

• α : R
+ → R

+ ∪ {+∞} is a convex lower semi-continuous function vanishing at 0,

• The semi-norm ‖ν − µ‖∗Φ is defined by

‖ν − µ‖∗Φ := sup
ϕ∈Φ

{∫

X
ϕdν −

∫

X
ϕdµ

}
, (1.2)

where Φ is a set of bounded measurable functions on X which is symmetric, i.e.

ϕ ∈ Φ ⇒ −ϕ ∈ Φ,
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• The quantity H(ν | µ) is the relative entropy of ν with respect to µ defined by

H(ν | µ) =

∫

X
log

dν

dµ
dν,

if ν is absolutely continuous with respect to µ and +∞ otherwise.

Inequalities of the form (1.1) were introduced by C. Léonard and the author in [12]. They
are called norm-entropy inequalities. An important particular case, is when Φ is the set of all
bounded 1-Lipschitz functions on X : Φ = BLip1(X , d). Indeed, in that case ‖ν − µ‖∗Φ is the
optimal transportation cost between ν and µ associated to the metric cost function d(x, y).
Let us recall that if c : X × X → R

+ is a lower semi-continuous function, then the optimal
transportation cost between ν ∈ P(X ) and µ ∈ P(X ) is defined by

Tc(ν, µ) = inf

∫

X 2

c(x, y) dπ(x, y) (1.3)

where π describes the set Π(ν, µ) of all probability measures on X × X having ν for first
marginal and µ for second marginal. According to Kantorovich-Rubinstein duality theorem
(see e.g Theorem 1.3 of [18]), if the cost function c is the metric d, the following identity holds

Td(ν, µ) = sup
ϕ∈BLip1(X ,d)

{∫

X
ϕdν −

∫

X
ϕdµ

}
. (1.4)

In this setting, inequality (1.1) becomes

∀ν ∈ P(X ), α (Td(ν, µ)) ≤ H(ν | µ) (1.5)

Such an inequality is called a convex transportation-cost inequality (convex T.C.I).

1.2 Applications of transportation-cost inequalities

After the seminal works of K. Marton [14, 15] and M. Talagrand [17], new efforts have been
made in order to understand this kind of inequalities. The reason of this interest is the
link between T.C.I and concentration of measure inequalities. Namely, according to a general
argument due to K. Marton, if µ satisfies (1.5), then µ has the following concentration property

∀A ⊂ X s.t. µ(A) ≥ 1

2
, ∀ε ≥ r, µ(Aε) ≥ 1 − e−α(ε−r),

with r = α−1(log(2)) and Aε = {x ∈ X : d(x,A) ≤ ε}. For a proof of this fact, see e.g.
Theorem 9 of [12]. Other applications of T.C.Is were investigated in [8], [3], [2] and [12]. In
these papers, it was shown that T.C.Is are an efficient way for deriving precise deviations results
for Markov chains and empirical processes. One can also consult [5] and [10] for applications
of norm-entropy inequalities to the study of conditional principles of Gibbs type for empirical
measures and random weighted measures.
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1.3 Necessary and sufficient conditions for norm-entropy inequalities

Our main result gives necessary and sufficient conditions on µ for (1.1) to be satisfied. Before
to state it, let us introduce some notations. In all what follows, C will denote the set of convex
functions α : R

+ → R
+ ∪ {+∞} which are lower semi continuous and such that α(0) = 0. For

a given α, the monotone convex conjugate of α will be denoted by α~. It is defined by

∀s ≥ 0, α~(s) = sup
t≥0

{st − α(t)} .

Note that, if α belongs to C, then α~ also belongs to C. Furthermore, one has the relation
α~ ~ = α. If α is in C, the Orlicz space Lτα

(X , µ) associated to the function τα := eα − 1 is
defined by

Lτα
(X , µ) =

{
f : X → R such that ∃λ > 0,

∫

X
τα

(
f

λ

)
dµ < +∞

}
,

where µ almost everywhere equal functions are identified. The space Lτα
(X , µ) is equipped

with its classical Luxemburg norm ‖ . ‖τα
, i.e

∀f ∈ Lτα
(X , µ), ‖f‖τα

= inf

{
λ > 0 such that

∫

X
τα

(
f

λ

)
dµ ≤ 1

}
.

We will need the following assumptions on α :

Assumptions.

(A1) The effective domain of α~ is open on the right, i.e {s ∈ R
+ : α~(s) < +∞} = [0, b[, for

some b > 0.
(A2) The function α~ is super-quadratic near 0, i.e

∃sα~ > 0, cα~ > 0, ∀s ∈ [0, sα~ ], α~(s) ≥ cα~s2. (1.6)

We can now state the main result of this paper, which will be proved in section 2.

Theorem 1.7. Let α ∈ C satisfy assumptions (A1) and (A2) and µ ∈ P(X ). The following
statements are equivalent :

1. ∃a > 0 such that , ∀ν ∈ P(X ), α

(‖ν − µ‖∗Φ
a

)
≤ H(ν | µ)

2. ∃M > 0 such that , ∀ϕ ∈ Φ, ‖ϕ − 〈ϕ, µ〉‖τα
≤ M .

More precisely, if (1) holds true then one can take M = 3a. Conversely, if (2) holds true, then
one can take a =

√
2mαM , with mα defined by

mα = emin

{
max

(
1

α−1(2)
√

c
α~ (1−u)

, 1
u

)
: u ∈]0, 1[ such that u√

1−u
≤ sα~

√
c~
α and u3

1−u ≤ 2

}
,

where the constants sα~ and cα~ are given by (1.6).
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Remark 1.8.

• If Φ contains an element which is not µ-a.e constant, and if inequality (1.1) holds for
some α ∈ C, then α satisfies assumption A2 (see Lemma 2.1).

• The constant a =
√

2mαM is not optimal. This can be easily checked by considering the
celebrated Pinsker inequality, i.e

∀ν ∈ P(X ),
‖ν − µ‖2

TV

2
≤ H(ν | µ), (1.9)

where ‖ν − µ‖TV is the total-variation norm which is defined by

‖ν − µ‖TV = sup

{∫

X
ϕdν −

∫

X
ϕdµ, |ϕ| ≤ 1

}
.

In this example, α(x) = x2 and the optimal constant is a0 =
√

2. On the other hand,
Theorem 1.7 yields the constant a1 =

√
2mx2M , with M = sup|ϕ|≤1 ‖ϕ − 〈ϕ, µ〉‖τ

x2
. It

is easy to check that mx2 = 2e and that 1

2
√

log(2)
≤ M ≤ 2√

log(2)
, thus e√

log(2)
≤ a1

a0
≤

4e√
log(2)

.

In order to prove Theorem 1.7, we will take advantage of the dual formulation of norm-entropy
inequalities developed in [12]. Namely, according to Theorem 3.15 of [12], we have the following
result :

Theorem 1.10. The inequality

∀ν ∈ P(X ), α

(‖ν − µ‖∗Φ
a

)
≤ H(ν | µ),

with α ∈ C is equivalent to the following condition :

∀ϕ ∈ Φ, ∀s ∈ R
+,

∫

X
esϕ dµ ≤ es〈ϕ,µ〉+α~(as). (1.11)

According to (1.11), the only thing to know is how to majorize the Laplace transform of a
centered random variable X knowing that this random variable satisfies an Orlicz integrability

condition of the form : E

[
eα(X

λ )
]

< +∞, for some λ > 0. Estimates of this kind are very

useful in probability theory, because they enable us to control the deviation probabilities of
sums of independent and identically distributed random variables. In [12], we have shown how
to deduce Pinsker inequality from the classical Hoeffding estimate (see Section 2.3 of [12]).
We also proved that the weighted version of Pinsker inequality (1.21) recently obtained by
Bolley and Villani in [3] is a consequence of Bernstein estimate (see Corollaries 3.23 and 3.24
of [12]). Here, Theorem 1.7 will follow very easily from the following theorem which is due to
Kozachenko and Ostrovskii (see [13] and [4] p. 63-68) :

Theorem 1.12. Suppose that α ∈ C satisfies Assumptions (A1) and (A2), then for all f ∈
Lτα

(X , µ) such that
∫
X f dµ = 0, the following holds

∀s ≥ 0,

∫

X
esf dµ ≤ eα~(as),

with a =
√

2mα‖f‖τα
, where mα is the constant defined in Theorem 1.7.
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For further informations on the preceding result, we refer to Chapter VII of [11] (p. 193-197)
where a complete detailed proof is given. Before proving Theorem 1.7, we discuss below some
of its applications.

1.4 Applications to T.C.Is

Applying the preceding theorem to the case where Φ is the Lipschitz ball BLip1(X , d), one
obtains the following result.

Theorem 1.13. Let α ∈ C satisfy assumptions (A1) and (A2) and µ ∈ P(X ) be such that∫
X d(x0, x) dµ(x) < +∞ for all x0 ∈ X . The following statements are equivalent :

1. ∃a > 0 such that ∀ν ∈ P(X ), α

(Td(ν, µ)

a

)
≤ H(ν | µ).

2. For all x0 ∈ X , the function d(x0, . ) ∈ Lτα
(X , µ).

More precisely, if (2) holds true, then one can take a = 2
√

2mα infx0∈X ‖d(x0, . )‖τα
, where

mα was defined in Theorem 1.7.

Remark 1.14. In other words, µ satisfies the transportation-cost inequality (1) if and only
if there is some δ > 0 such that

∫
X eα(δd(x0,x)) dµ(x) < +∞, for some (equivalently, for all)

x0 ∈ X .

Actually, other transportation cost inequalities can be deduced from Theorem 1.7. Using a
majorization technique developed by F. Bolley and C. Villani in [3], we will prove the following
result :

Theorem 1.15. Let c( . , . ) be a cost function such that c(x, y) = q(d(x, y)), where q : R
+ →

R
+ is an increasing convex function satisfying the ∆2-condition, i.e

∃K > 0, ∀x ∈ R
+, q(2x) ≤ Kq(x). (1.16)

If α ∈ C satisfies assumptions (A1) and (A2), then for all µ ∈ P(X ) such that
∫
X c(x0, x) dµ(x) <

+∞ for all x0 ∈ X , the following statements are equivalent :

1. ∃a > 0, ∀ν ∈ P(X ), α

(Tc(ν, µ)

a

)
≤ H(ν | µ),

2. For all x0 ∈ X , the function c(x0, . ) ∈ Lτα
(X , µ).

More precisely, if (2) holds true then one can take a =
√

2Kmα infx0∈X ‖c(x0, . )‖τα
. Further-

more, if dom α = R
+ then the following inequality holds

∀ν ∈ P(X ), Tc(ν, µ) ≤
√

2Kmα inf
x0∈X , δ>0

1

δ

(
1 +

log
∫
X eδα(c(x0,x)) dµ(x)

log 2

)
α−1 (H(ν | µ))

(1.17)

Contrary to what happens in the case where c is the metric d, a transportation-cost inequality
α (Tc(ν, µ)) ≤ H(ν | µ) can hold even if α does not satisfy Assumption (A2). The most known
example is Talagrand inequality, also called T2-inequality. Let us recall that a probability
measure µ on R

n satisfies the Talagrand inequality T2(a) if

∀ν ∈ P(X ), Td2(ν, µ) ≤ aH(ν | µ), (1.18)
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where d(x, y) =
√∑n

i=1(xi − yi)2. Gaussian measures do satisfy a T2-inequality. This was
first shown by Talagrand in [17]. In this case, the corresponding α is a linear function and
hence its monotone conjugate α~ does not satisfy (A2). Sufficient conditions are known for
Talagrand inequality. In [16], it was shown by F. Otto and C. Villani that if dµ = e−Φdx
is a probability measure on R

n satisfying a logarithmic Sobolev inequality with constant a,
then it also satisfies the inequality T2(a). Furthermore, if µ satisfies T2(a), then it satisfies the
Poincaré inequality with a constant a/2. An alternative proof of these facts was proposed in [1]
by S.G. Bobkov, I. Gentil and M. Ledoux. In a recent paper P. Cattiaux and A. Guillin gave
an example of a probability measure satisfying T2 but not the logarithmic Sobolev inequality
(see [6]). A necessary and sufficient condition for T2 is not yet known. Other examples of
transportation-cost inequalities involving a linear α can be found in [1], [9] and [6]. The
common feature of these T2-like inequalities is that they enjoy a dimension free tensorization
property (see e.g Theorem 4.12 of [12]) which in turn implies a dimension free concentration
phenomenon.

1.5 About the literature

Theorems 1.15 and 1.13 extend previous results obtained by H. Djellout, A. Guillin and L.
Wu in [8] and by F. Bolley and C. Villani in [3].
In [8], H. Djellout, A. Guillin and L. Wu obtained the first integral criteria for the so called
T1-inequality. Let us recall that a probability measure µ on X is said to satisfy the inequality
T1(a) if

∀ν ∈ P(X ), Td(ν, µ)2 ≤ aH(ν | µ). (1.19)

According to Jensen inequality, Td(ν, µ)2 ≤ Td2(ν, µ), and thus T2(a) ⇒ T1(a). The inequality
T1 is weaker than T2 and it is also considerably easier to study. According to Theorem 3.1 of
[8], the following propositions are equivalent :

1. ∃a > 0, such that µ satisfies T1(a)

2. ∃δ > 0 such that

∫

X 2

eδd(x,y)2 dµ(x)dµ(y) < +∞

More precisely, if

∫

X 2

eδd(x,y)2 dµ(x)dµ(y) < +∞ for some δ > 0, then one can take

a =
4

δ2
sup
k≥1

(
(k!)2

(2k!)

)1/k [∫

X 2

eδ2d(x,y)2 dµ(x)dµ(y)

]1/k

< +∞. (1.20)

The link between the constants a and δ was then improved by F. Bolley and C. Villani in [3]
(see (1.25) bellow).

In [3], F. Bolley and C. Villani obtained the following weighted versions of Pinsker inequality
: if χ : X → R

+, is a measurable function, then for all ν ∈ P(X ),

‖χ · (ν − µ)‖TV ≤
(

3

2
+ log

∫

X
e2χ dµ

)(√
H(ν | µ) +

1

2
H(ν | µ)

)
(1.21)

‖χ · (ν − µ)‖TV ≤
√

1 + log

∫

X
eχ2 dµ

√
2H(ν | µ) (1.22)
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Using the following upper bound (see [18], prop. 7.10)

Tdp(ν, µ) ≤ 2p−1‖d(x0, . )p · (ν − µ)‖TV , (1.23)

they deduce from (1.21) and (1.22) the following transportation cost inequalities involving cost
functions of the form c(x, y) = d(x, y)p with p ≥ 1 : ∀ν ∈ P(X ),

Tdp(ν, µ)1/p ≤ 2 inf
x0∈X , δ>0

[
1

δ

(
3

2
+ log

∫

X
eδd(x0,x)p

dµ(x)

)]1/p

·
[
H(ν | µ)1/p +

(
H(ν | µ)

2

)1/2p
]

,

(1.24)

Tdp(ν, µ) ≤ 2 inf
x0∈X , δ>0

[
1

2δ

(
1 + log

∫

X
eδd(x0,x)2p

dµ(x)

)]1/2p

· H(ν | µ)1/2p. (1.25)

Note that for p = 1, the constant in (1.25) is sharper than (1.20). Note also that, up to
numerical factors, (1.24) and (1.25) are particular cases of (1.17).

In order to derive T.C.Is from norm-entropy inequalities, we will follow the lines of [3]. To
do this, we will deduce from Theorem 1.7 a general version of weighted Pinsker inequality
(see Theorem 2.7). Theorem 1.15 will follow from Theorem 2.7 and from Lemma 3.2 which
generalizes inequality (1.23).

2 Necessary and sufficient conditions for norm-entropy

inequalities.

Let us begin with a remark on Assumption (A2).

Lemma 2.1. Suppose that Φ contains a function ϕ0 which is not µ-almost everywhere con-
stant. If µ satisfies the inequality

∀ν ∈ P(X ), α (‖ν − µ‖∗Φ) ≤ H(ν | µ),

then α satisfies Assumption (A2).

Proof. (See also [12], Proposition 2) Let us define Λϕ0
(s) = log

∫
X esϕ0 dµ, for all s ∈ R.

According to Theorem 1.10, we have ∀s ≥ 0, Λϕ0
(s) − s〈ϕ0, µ〉 ≤ α~(s). It is well known

that lims→0+

Λϕ0
(s)−s〈ϕ0,µ〉

s2 = 1
2 Varµ(ϕ0) > 0. From this follows that lim inf

s→0+

α~(s)

s2
> 0, which

easily implies (1.6).

Remark 2.2. Note that if all the elements of Φ are µ-almost everywhere constant, then
‖ν − µ‖∗Φ = 0 for all ν � µ. Inequality (1.1) is thus satisfied, for all α ∈ C.

The rest of this section is devoted to the proof of Theorem 1.7. The following lemma will be
useful in the sequel :

Lemma 2.3. Let X be a random variable such that E
[
eδ|X|] < +∞, for some δ > 0. Let us

denote by ΛX the Log-Laplace of X, which is defined by ΛX(s) = log E
[
esX

]
, and by Λ∗

X its
Cramér transform defined by Λ∗

X(t) = sups∈R
{st − ΛX(s)}, then the following upper-bound

holds :

∀ε ∈ [0, 1[, E

[
eεΛ∗

X(X)
]
≤ 1 + ε

1 − ε
.
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Proof. (See also Lemma 5.1.14 of [7].) Let a < b with a ∈ R∪{−∞} and b ∈ R∪{+∞} be the
endpoints of dom Λ∗

X . Since Λ∗
X is convex and lower semi-continuous, {Λ∗

X ≤ t} is an interval
with endpoints a ≤ a(t) ≤ b(t) ≤ b, for all t ≥ 0. As a consequence,

∀t ≥ 0, P(Λ∗
X(X) > t) = P(X < a(t)) + P(X > b(t)).

Let m = E[X]. Since Λ∗
X(m) = 0, a(t) ≤ m. But for all u ≤ m, it is well known that

P(X ≤ u) ≤ exp(−Λ∗
X(u)) (2.4)

If a(t) > a, the continuity of Λ∗
X on ]a, b[ easily implies that Λ∗

X(a(t)) = t. Thus, according to
(2.4),

P(X < a(t)) ≤ e−t.

If a(t) = a, then

P(X < a) = lim
n→+∞

P(X < a − 1/n)
(i)

≤ lim
n→+∞

exp(−Λ∗
X(a − 1/n))

(ii)
= lim

n→+∞
0 = 0,

where (i) comes from (2.4) and (ii) from a − 1/n /∈ dom Λ∗
X .

Therefore, in all cases P(X < a(t)) ≤ e−t. In the same way, we have P(X > b(t)) ≤ e−t. As a
consequence,

∀t ≥ 0, P (Λ∗
X(X) > t) ≤ 2e−t. (2.5)

Finally, integrating by parts and using (2.5) in (∗) bellow, we get

E

[
eεΛ∗

X(X)
]

=

∫ +∞

−∞
et

P (Λ∗
X(X) > t/ε) dt =

∫ 0

−∞
et dt +

∫ +∞

0

et
P(Λ∗

X(X) > t/ε) dt

(∗)
≤ 1 + 2

∫ +∞

0

e(1−1/ε)t dt =
1 + ε

1 − ε
.

Now, let us prove Theorem 1.7.

Proof of Theorem 1.7. Let us show that (1) implies (2). For ϕ ∈ Φ, according to Theorem
1.10 and using the fact that −ϕ ∈ Φ, we have

∀s ∈ R, log

∫

X
es(ϕ−〈ϕ,µ〉 dµ ≤ α~(|as|). (2.6)

Define ϕ̃ := ϕ − 〈ϕ, µ〉 and Λeϕ(s) := log
∫
X es(ϕ−〈ϕ,µ〉 dµ. Equation (2.6) immediately yields

∀t ∈ R, α

( |t|
a

)
= sup

s∈R

{
st − α~(|as|)

}
≤ sup

s∈R

{st − Λeϕ(s)} = Λ∗
eϕ(t).

According to Lemma 2.3,
∫
X eεΛ∗

eϕ(eϕ) dµ ≤ 1+ε
1−ε , for all ε ∈ [0, 1[. Thus

∫
X eεα( eϕ

a ) dµ ≤ 1+ε
1−ε .

Since α
(

| . |
a

)
is convex and α(0) = 0, we have α

(
ε|t|
a

)
≤ εα

(
|t|
a

)
. Therefore,

∫
X eα( ε| eϕ|

a )dµ ≤
1+ε
1−ε . In other words,

∀ϕ ∈ Φ, ∀ε ∈ [0, 1[,

∫

X
τα

(
εϕ̃

a

)
dµ ≤ 2ε

1 − ε
.
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It is now easy to see that ‖ϕ̃‖τα
≤ 3a, for all ϕ ∈ Φ.

Now let us show that (2) implies (1). According to Theorem 1.12,

∀s ≥ 0,

∫

X
esϕ dµ ≤ es〈ϕ,µ〉+α~(

√
2mα‖ϕ−〈ϕ,µ〉‖τα s),

for all ϕ ∈ Φ. As it is assumed that ‖ϕ − 〈ϕ, µ〉‖τα
≤ M , for all ϕ ∈ Φ, we thus have

∀ϕ ∈ Φ, ∀s ≥ 0,

∫

X
esϕ dµ ≤ es〈ϕ,µ〉+α~(as),

with a =
√

2mαM . According to Theorem 1.10, this implies that µ satisfies the inequality

∀ν ∈ P(X ), α

(‖ν − µ‖∗Φ
a

)
≤ H(ν | µ).

Example : Weighted Pinsker inequalities. Let χ : X → R
+ be a measurable function

and let Φχ be the set of bounded measurable functions ϕ on X such that |ϕ| ≤ χ. In this
framework, it is easily seen that

‖ν − µ‖∗Φχ
= ‖χ · (ν − µ)‖TV ,

where ‖γ‖TV denotes the total-variation of the signed measure γ.

Theorem 2.7. Suppose that
∫
X χ dµ < +∞ and that α ∈ C satisfies Assumptions (A1) and

(A2), then the following propositions are equivalent :

1. ∃a > 0, such that ∀ν ∈ P(X ), α

(‖χ · (ν − µ)‖TV

a

)
≤ H(ν | µ),

2. χ ∈ Lτα
(X , µ).

More precisely, if χ ∈ Lτα
(X , µ), then one can take a = 2

√
2mα‖χ‖τα

. Conversely, if (1)
holds true, then

‖χ‖τα
≤
{

3a, if µ has no atoms
3a +

∫
X χ dµ · ‖1I‖τα

, otherwise

Furthermore, the Luxemburg norm ‖χ‖τα
can be estimated in the following way :

• If dom α = R
+, then ‖χ‖τα

≤ inf
δ>0

{
1

δ

(
1 +

log
∫
X eα(δχ)dµ

log 2

)}

• If dom α = [0, rα[ or [0, rα], then Lτα
(X , µ) = L∞(X , µ) and

r−1
α ‖χ‖∞ ≤ ‖χ‖τα

≤ sup {t > 0 : α(t) ≤ log 2}−1 · ‖χ‖∞.
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Remark 2.8. If α ∈ C satisfies Assumptions (A1) and (A2) and is such that dom α = R
+,

we have thus shown the following weighted version of Pinsker inequality :

∀ν ∈ P(X ), ‖χ ·(ν−µ)‖TV ≤ 2
√

2mα inf
δ>0

{
1

δ

(
1 +

log
∫
X eα(δχ)dµ

log 2

)}
α−1 (H(ν | µ)) (2.9)

Inequality (2.9) completely extends Bolley and Villani’s results (1.21) and (1.22). The proof of
Bolley and Villani is very different from ours. Roughly speaking, it relies on a direct comparison

of the two integrals
∫
X χ

∣∣∣ dν
dµ − 1

∣∣∣ dµ and
∫
X

dν
dµ log dν

dµdµ.

Proof of Theorem 2.7. According to Theorem 1.7, it suffices to show that

2‖χ‖τα
≥ sup

ϕ∈Φχ

{‖ϕ − 〈ϕ, µ〉‖τα
} ≥

{
‖χ‖τα

if µ is non-atomic
‖χ‖τα

−
∫
X χ dµ · ‖1I‖τα

otherwise.
(2.10)

Let us prove the first inequality of (2.10) : If ϕ ∈ Φχ, then |ϕ| ≤ χ, thus ‖ϕ − 〈ϕ, µ〉‖τα
≤

‖χ‖τα
+ ‖〈ϕ, µ〉‖τα

. Thanks to Jensen inequality, for all λ > 0, we have
∫
X τα

(
〈ϕ,µ〉

λ

)
dµ ≤

∫
X τα

(
ϕ
λ

)
dµ. Thus, ‖〈ϕ, µ〉‖τα

≤ ‖ϕ‖τα
, which proves the desired inequality.

Thanks to triangle inequality supϕ∈Φχ
‖ϕ−〈ϕ, µ〉‖τα

≥ ‖χ−〈χ, µ〉‖τα
≥ ‖χ‖τα

−‖
∫
X χ dµ‖τα

=

‖χ‖τα
−
∫
X χ dµ · ‖1I‖τα

.

Suppose that µ has no atoms, then χ · µ has no atoms too. As a consequence, there exists a
measurable set A ⊂ X such that

∫
A

χ dµ = 1
2

∫
X χ dµ. Define χ̃ = χ1IA − χ1IAc . Then |χ̃| = χ

and 〈χ̃, µ〉 = 0. Thus supϕ∈Φχ
‖ϕ − 〈ϕ, µ〉‖τα

≥ ‖χ̃ − 〈χ̃, µ〉‖τα
= ‖χ̃‖τα

= ‖χ‖τα
.

Now, let us explain how to majorize the Luxemburg norms. Suppose that dom α = R
+.

Let δ > 0 be fixed and assume that ‖χ‖τα
≥ 1

δ and that

∫

X
eα(δχ) dµ < +∞. Then, denoting

λ = ‖χ‖τα
, we have

2δλ (i)
=

[∫

X
exp α

(χ

λ

)
dµ

]δλ (ii)

≤
∫

X
exp δλα

(χ

λ

)
dµ

(iii)

≤
∫

X
exp α (δχ) dµ

where (i) come from the definition of λ = ‖χ‖τα
, (ii) from Jensen inequality and (iii) from

the inequality α(x/M) ≤ α(x)/M , for all M ≥ 1. Taking the log in both side of the above
inequality yields λ ≤ 1

δ log 2

∫
X exp α (δχ) dµ and a fortiori,

λ ≤ 1

δ
+

1

δ log 2

∫

X
expα (δχ) dµ.

If ‖χ‖τα
≤ 1

δ or if

∫

X
eα(δχ) dµ = +∞, the preceding inequality remains true. Optimizing in

δ > 0 gives the desired result.

The case where dom α is a bounded interval is left to the reader.

Remark 2.11. It is easy to show that when α(x) = x2, the Luxemburg norm ‖χ‖τx2
can be

estimated in the following way :

‖χ‖τx2
≤ inf

δ>0

1

δ

√

1 +
log
∫
X eδ2χ2 dµ

log 2
.
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With this upper-bound, and using the fact that mx2 = 2e (left to the reader), one obtains

‖χ · (ν − µ)‖TV ≤ 4e inf
δ>0

1

δ

√

1 +
log
∫
X eδ2χ2 dµ

log 2
·
√

2H(ν | µ), (2.12)

which differs from (1.22) only by numerical factors. However the proof of (2.12) relies on
Theorem 1.12 which is a non trivial result. In the following proposition, we improve the
constants in (2.12), using this time only elementary computations.

Proposition 2.13. For every measurable function χ : X → R
+, the following inequality holds

‖χ · (ν − µ)‖TV ≤ inf
δ>0

1

δ

√
1 + 4 log

∫

X
eδ2χ2 dµ ·

√
2H(ν | µ). (2.14)

Proof. First let us show that if X is a real random variable such that E

[
eX2

]
< +∞ one has

the following upper bound :

∀s ≥ 0, E

[
es(X−E[X])

]
≤ es2/2 · E

[
eX2

]2s2

. (2.15)

Let X̃ be an independent copy of X. According to Jensen inequality, we have E
[
es(X−E[X])

]
≤

E

[
es(X− eX)

]
. The random variable X − X̃ is symmetric, thus E

[
(X − X̃)2k+1

]
= 0, for all k.

Consequently,

E

[
es(X−E[X])

]
≤ E

[
es(X− eX)

]
=

+∞∑

k=0

s2k
E

[
(X − X̃)2k

]

(2k)!

≤
+∞∑

k=0

s2k
E

[
(X − X̃)2k

]

2k · k!
= E

[
es2(X− eX)2/2

]
.

It is easily seen that E

[
es2(X− eX)2/2

]
≤ E

[
es2X2

]2
, and if s ≤ 1, E

[
es2X2

]2
≤ E

[
eX2

]2s2

.

Hence,

∀s ≤ 1, E

[
es(X−E[X])

]
≤ E

[
eX2

]2s2

.

But if s ≥ 1, one has

E

[
es(X−E[X])

]
≤ E

[
es(X− eX)

]
≤ E

[
es2/2+(X− eX)2/2

]
≤ es2/2 · E

[
eX2

]2
≤ es2/2 · E

[
eX2

]2s2

.

So, the inequality E
[
es(X−E[X])

]
≤ es2/2 · E

[
eX2

]2s2

holds for all s ≥ 0.

Let ϕ be a bounded measurable function such that |ϕ| ≤ χ. Applying inequality (2.15), one
obtains immediately ∫

X
es(ϕ−〈ϕ,µ〉) dµ ≤ es2M2/2,
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with M =
√

1 + 4 log
∫
X eχ2 dµ. Thus, according to Theorem 1.10 the following norm-entropy

inequality holds :

‖χ · (ν − µ)‖TV ≤
√

1 + 4 log

∫

X
eχ2 dµ ·

√
2H(ν | µ).

Replacing χ by δχ and using homogeneity one obtains (2.14).

Remark 2.16. Note that (2.14) is sharper than (2.12). But (1.22) is still sharper than (2.14).

3 Applications to transportation cost inequalities.

In this section, we will see how to derive transportation-cost inequalities from norm-entropy
inequalities. Let us begin with the proof of Theorem 1.13.

Proof of Theorem 1.13. First let us show that (1) implies (2). According to Theorem 1.7, one
has supϕ∈BLip1(X ,d) ‖ϕ−〈ϕ, µ〉‖τα

≤ 3a. In particular, using an easy approximation technique,
‖d(x0, . ) − 〈d(x0, . ), µ〉‖τα

≤ 3a, and thus d(x0, . ) ∈ Lτα
(X , µ).

Now let us see that (2) implies (1). Let x0 ∈ X ; observe that Td(ν, µ) = ‖ν − µ‖Φx0
, with

Φx0
= {ϕ ∈ BLip1(X , d) : ϕ(x0) = 0}. But Φx0

⊂ Φ̃x0
:= {ϕ : ∀x ∈ X , |ϕ(x)| ≤ d(x0, x)}.

Thus, Td(ν, µ) ≤ ‖ν − µ‖eΦx0

= ‖d(x0, . ) · (ν − µ)‖TV . Applying Theorem 2.7, one concludes

that if d(x0, . ) ∈ Lτα
(X , µ), then the inequality ∀ν ∈ P(X ), α

(
Td(ν,µ)

a

)
≤ H(ν | µ) holds

with a = 2
√

2mα‖d(x0, . )‖τα
. As this is true for all x0 ∈ X , the same inequality holds for

a = 2
√

2mα infx0∈X ‖d(x0, . )‖τα
.

When the cost function is of the form c(x, y) = q(d(x, y)), we will use the following result
which is adapted from Proposition 7.10 of [18] :

Lemma 3.1. Let c be a cost function on X of the form c(x, y) = q(d(x, y)), with q : R
+ → R

+

an increasing convex function. Let x0 ∈ X and define χx0
(x) = 1

2q(2d(x, x0)), for all x ∈ X .
Then the following inequality holds :

∀ν ∈ P(X ), q (Td(ν, µ)) ≤ Tc(ν, µ) ≤ ‖χx0
· (ν − µ)‖TV . (3.2)

Proof. Applying Jensen inequality, one gets q

(∫

X 2

d(x, y) dπ(x, y)

)
≤
∫

X 2

q(d(x, y)) dπ(x, y),

for all π ∈ Π(ν, µ). Thus according to the definition of Tc(ν, µ) (see (1.3)), one deduces imme-
diately the first inequality in (3.2). It follows from the triangle inequality and the convexity
of q that

c(x, y) = q(d(x, y)) ≤ q(d(x, x0)+d(y, y0)) ≤
1

2
[q(2d(x, x0)) + q(2d(y, x0))] = χx0

(x)+χx0
(y).

Thus c(x, y) ≤ dχx0
(x, y), with dχx0

(x, y) = (χx0
(x)+χx0

(y))1I{x6=y} and consequently Tc(ν, µ) ≤
Tdχx0

(ν, µ). But Tdχx0
(ν, µ) = ‖χx0

· (ν − µ)‖TV (see for instance, Prop. VI.7 p. 154 of [11]),

which proves the second part of (3.2).
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Using the second part of inequality (3.2) together with Theorem 2.7, one immediately derives
the following result which is the first half of Theorem 1.15 :

Proposition 3.3. Let c be a cost function on X of the form c(x, y) = q(d(x, y)), with q :
R

+ → R
+ an increasing convex function and α ∈ C satisfying Assumptions (A1) and (A2).

Then the following T.C.I holds

∀ν ∈ P(X ), α

(Tc(ν, µ)

a

)
≤ H(ν | µ), (3.4)

with a =
√

2mα inf
x0∈X

‖q(2d(x0, . ))‖τα
. Furthermore, if q satisfies the ∆2-condition (1.16) with

constant K > 0, then one can take a =
√

2Kmα inf
x0∈X

‖c(x0, . )‖τα
.

Remark 3.5. If q satisfies the ∆2-condition and dom α = R
+, then µ satisfies the following

T.C.I :

∀ν ∈ P(X ), Tc(ν, µ) ≤
√

2Kmα inf
x0∈X , δ>0

1

δ

(
1 +

log
∫
X eδα(c(x0,x)) dµ(x)

log 2

)
α−1 (H(ν | µ))

Now, let us prove the second half of Theorem 1.15 :

Proposition 3.6. Let c be a cost function on X of the form c(x, y) = q(d(x, y)), with q :
R

+ → R
+ an increasing convex function satisfying the ∆2-condition (1.16) with a constant

K > 0 and let α ∈ C satisfy Assumption (A1). If
∫
X c(x0, x) dµ(x) < +∞ for all x0 ∈ X and

if the T.C.I (3.4) holds for some a > 0, then the function c(x0, . ) belongs to Lτα
(X , µ) for all

x0 ∈ X .

Proof. According to the first part of inequality (3.2), q (Td(ν, µ)) ≤ Tc(ν, µ), thus, if (3.4)

holds for some a > 0, then α̃ (Td(ν, µ)) ≤ H(ν | µ), for all ν ∈ P(X ), where α̃(x) = α
(

q(x)
a

)
.

According to Theorem 1.7, this implies that sup
ϕ∈BLip1(X ,d)

‖ϕ − 〈ϕ, µ〉‖τeα
≤ 3. In particular,

using an easy approximation argument, it is easy to see that ‖d(x0, . ) − 〈d(x0, . ), µ〉‖τeα
≤ 3,

which implies that d(x0, . ) ∈ Lτeα
(X , µ). Let λ > 0 be such that

∫
X τeα

(
d(x0,x)

λ

)
dµ(x) < +∞

and let n be a positive integer such that 2n ≥ λ. Then, according to the ∆2 condition satisfied

by q, one has q
(

x
λ

)
≥ q

(
x
2n

)
≥ 1

Kn q(x), for all x ∈ R
+. Consequently, τeα

(
x
λ

)
≥ τα

(
q(x)
aKn

)
, for

all x ∈ R
+. From this follows that

∫

X
τα

(
c(x0, x)

aKn

)
dµ(x) =

∫

X
τα

(
q(d(x, x0))

aKn

)
dµ(x) ≤

∫

X
τeα

(
d(x0, x)

λ

)
dµ(x) < +∞

and thus c(x0, . ) ∈ Lτα
(X , µ).

Proof of Theorem 1.15. Theorem 1.15 follows immediately from Propositions 3.3 and 3.6.
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