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Abstract

Exact expressions of the stochastic oscillatory integrals with phase function
∫ T

0
(
∫ T

t
w(s)ds)2dt,

{w(t)}t≥0 being the 1-dimensional Brownian motion, are given. As an application, the density
function of the distribution of the half of the Wiener functional is given.

1 Introduction and statement of result

The study of quadratic Wiener functionals, i.e., elements in the space of Wiener chaos of order
2, goes back to Cameron-Martin [1, 2] and Lévy [8]. While a stochastic oscillatory integral
with quadratic Wiener functional as phase function has a general representation via Carleman-
Fredholm determinant ([3, 6, 10]), in our knowledge, a few examples, where the integrals are
represented with more concrete functions like the ones used by Cameron-Martin and Lévy, are
available. See [1, 2, 8, 6, 10] and references therein. In this paper, we study a new quadratic
Wiener functional which admits a concrete expression of stochastic oscillatory integral, and
apply the expression to compute the density function of the Wiener functional.
Let T > 0, W be the space of all R-valued continuous functions w on [0, T ] with w(0) = 0,
and P be the Wiener measure on W. The Wiener functional investigated in this paper is

q(w) =

∫ T

0

(∫ T

t

w(s)ds

)2

dt, w ∈ W.

The functional q interests us because it is a key ingredient in the study of asymptotic theory
on W. Namely, recall the Wiener functional

q0(w) =

∫ T

0

w(t)2dt, w ∈ W,
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which was studied first by Cameron-Martin [1, 2, 8]. As is well-known ([15]), the stochastic
oscillatory integral

∫

W

exp(ζq0/2)δy(w(T ))dP,

where δy(w(T )) is Watanabe’s pull back of the Dirac measure δy concentrated at y ∈ R via
w(T ), relates to the fundamental solution to the heat equation associated with the Schrödinger
operator (1/2){(d/dx)2+ζx2}, which describes the quantum mechanics of harmonic oscillator.
If we denote by H the Cameron-Martin subspace of W (≡ the subspace of all absolutely

continuous h ∈ W with square integrable derivative ḣ) and set 〈h, g〉H =
∫ T

0
ḣ(t)ġ(t)dt and

‖h‖2H = 〈h, h〉H for h, g ∈ H, then it is straightforward to see that

q =
1

4
‖∇q0‖2H,

where ∇ denotes the Malliavin gradient. Thus q determines the stationary points of q0. It
should be noted that, in the context of the Malliavin calculus, the set of stationary points of
q0, i.e. the set {∇q0 = 0} = {q = 0} is determined uniquely up to equivalence of quasi-surely
exceptional sets. On account of the stationary phase method on finite dimensional spaces
(cf.[4]), q would play an important role in the study of asymptotic behavior of the stochastic
oscillatory integral

∫

W
exp(ζq0)ψdP with amplitude function ψ (cf. [9, 11, 12], in particular

[13, 14]).
The aim of this paper is to show

Theorem 1. (i) For sufficiently small λ > 0, the following identities hold.

∫

W

exp(λq/2) dP =

{

1

cosh(λ1/4T ) cos(λ1/4T )

}1/2

, (1)

∫

W

exp(λq/2)δ0(w(T )) dP

=
λ1/8

√
π
{

sin(λ1/4T ) cosh(λ1/4T ) + sinh(λ1/4T ) cos(λ1/4T )
}1/2

. (2)

(ii) Define θ(u;x) and pT (x) for u ∈ [0, π/2] and x ≥ 0 by

θ(u;x) =

∞
∑

k=−∞

(−1)k {u+ (2k + 1)π}3e−x{u+(2k+1)π}4/T 4

√

cosh(u+ (2k + 1)π)
,

pT (x) =
4

πT 4

∫ π/2

0

θ(u;x)√
cosu

du.

Then pT is the density function of the distribution of q/2 on R;

P (q/2 ∈ dx) = pT (x)χ[0,∞)(x)dx, (3)

where χ[0,∞) denotes the indicator function of [0,∞).

The assertion (i) of Theorem 1 will be shown in Section 2 and (ii) will be proved in Section 3.
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2 Proof of Theorem 1 (i)

In this section, we shall show the identities (1) and (2). The proof is broken into several steps,
each being a lemma. We first show

Lemma 1. Define the Hilbert-Schmidt operator A : H → H by

Ah(t) =

∫ t

0

ds

∫ T

s

du

∫ u

0

dv

∫ T

v

da h(a), h ∈ H, t ∈ [0, T ].

Then it holds that

q = QA +
T 4

6
, (4)

where QA = (∇∗)2A, ∇∗ being the adjoint operator of the Malliavin gradient ∇. Moreover, A
is of trace class and trA = T 4/6. In particular, q = QA + trA.

Proof. Due to the integration by parts on [0, T ], it is easily seen that

〈∇2q, h⊗ k〉H⊗2 = 2

∫ T

0

(∫ T

t

h(s)ds

)(∫ T

t

k(s)ds

)

dt = 2〈Ah, k〉H (5)

for h, k ∈ H, where H⊗2 denotes the Hilbert space of all Hilbert-Schmidt operators on H, and
〈·, ·〉H⊗2 does its inner product. Hence

∇2q = 2A. (6)

Let C2 be the space of Wiener chaos of order 2. Since

w(s)w(u)− s = w(s)2 − s+ w(s){w(u)− w(s)} ∈ C2 for u ≥ s,

we have that

q − T 4

6
= 2

∫ T

0

∫ T

t

∫ T

s

(w(s)w(u)− s)dudsdt ∈ C2.

From this and (6), we can conclude the identity (4).
Let {hn}∞n=1 be an orthonormal basis of H, and define kt ∈ H, t ∈ [0, T ], by

kt(s) =

∫ s

0

(T −max{t, u})du, s ∈ [0, T ].

Since
∫ T

t
hn(s)ds = 〈kt, hn〉H, due to (5), we obtain that

∞
∑

n=1

〈Ahn, hn〉H =

∫ T

0

∞
∑

n=1

〈kt, hn〉2Hdt =
∫ T

0

‖kt‖2Hdt =
T 4

6
.

Thus A is of trace class and trA = T 4/6.

We next recall the following assertion achieved in [5, 7].
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Lemma 2. Let U : H → H be a Hilbert-Schmidt operator admitting a decomposition U =
UV + UF with a Volterra operator UV : H → H and a bounded operator UF : H → H
possessing the finite-dimensional range R(UF ).
(i) For sufficiently small λ ∈ R, it holds that

∫

W

exp(λQU/2)dP =
{

det
(

I − λUF (I − λUV )−1
)}−1/2

e−(λ/2)trUF . (7)

(ii) Let E be a subspace of R(UF ) and {η1, . . . , ηd} be a basis of E. Define the Wiener
functional η :W → Rd by η = (∇∗η1, . . . ,∇∗ηd). Then, for sufficiently small λ ∈ R, it holds
that

∫

W

exp(λQU/2)δ0(η) dP

=
1

√

(2π)d detC(η)
{det(I − λU \

1(I − λUV )−1)}−1/2e−(λ/2)trUF , (8)

where U \
1 = −πEUV + (I − πE)UF , πE : H → H being the orthogonal projection onto E, and

C(η) =
(

〈ηi, ηj〉H
)

1≤i,j≤d
.

Proof. The essential part of the proof can be found in [5, 7]. For the completeness, we give
the proof.
Due to the splitting property of the Wiener measure, it holds that

∫

W

exp(λQU/2)dP =
{

det2(I − λU)
}−1/2

,

where det2 denotes the Carleman-Fredholm determinant. For example, see [3, 7]. Observe
that, for Hilbert-Schmidt operators C,D : H → H such that C is of trace class, it holds that

det2(I + C)(I +D) = det(I + C)det2(I +D)e−trC(I+D). (9)

Since det2(I − λUV ) = 1, substituting C = −λUF (I − λUV )
−1 and D = −λUV into (9), we

obtain that
det2(I − λU) = det(I − λUF (I − λUV )−1)eλtrUF .

Thus (7) has been shown.
Put U0 = (I − πE)U(I − πE) and U1 = πEUπE . Then it holds ([7, 12]) that

∫

W

exp(λQU/2)δ0(η) dP =
1

√

(2π)d detC(η)
{det2(I − λU0)}−1/2e−(λ/2)trU1 .

Setting U \ = (I − πE)U , and substituting C = −λU \
1(I − λUV )

−1 and D = −λUV into (9),
we see that

det2(I − λU0) = det2(I − λU \) = det(I − λU \
1(I − λUV )−1)eλtrU

\
1 .

Since trU \
1 + trU1 = trUF , we obtain (8).
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It is not known if, by just watching specific shape of quadratic Wiener functional, one can tell
that the associated Hilbert-Schmidt operator admits a decomposition as a sum of a Volterra
operator and a bounded operator with finite dimensional range. However, in our situation, we
know a priori that the operator A admits such a decomposition. Namely, the Hilbert-Schmidt
operator B associated with q0 admits such a decomposition ([7]). Being equal to the square
of B (see Remark 1 below), so does A. The following lemma gives the concrete expression of
the decomposition of A.

Lemma 3. Define I, AV , AF : H → H by

Ih(t) =
∫ t

0

h(s)ds, t ∈ [0, T ],

AV h = I4h, AFh =
{T 2

2
Ih(T )− I3h(T )

}

η1 −
1

6
Ih(T )η2, h ∈ H,

where ηj(t) = t2j−1, t ∈ [0, T ], j = 1, 2. Then (i) A = AV +AF , (ii) AV is a Volterra operator,
(iii) R(AF ) = {aη1 + bη2 | a, b ∈ R}, (iv) trAF = trA, and (v) for λ > 0, it holds that

(I − λAV )
−1h(t) =

1

2

∫ t

0

ḣ(s)
{

cosh(λ1/4(t− s)) + cos(λ1/4(t− s))
}

ds,

h ∈ H, t ∈ [0, T ]. (10)

Proof. The assertions (i) and (ii) follow from the very definitions of A and AV . The assertion
(iv) is an immediate consequence of these and Lemma 1. By the definition of AF , the inclusion
R(AF ) ⊂ {aη1 + bη2 | a, b ∈ R} is obvious. To see the converse inclusion, it suffices to notice
that AF η1 = (5T 4/24)η1 − (T 2/12)η2 and AF η2 = (7T 6/60)η1 − (T 4/24)η2. Thus (iii) has
been verified.
To see (v), let (I − λAV )g = h and f = I4g. It then holds that f (4) − λf = h, where
f (n) = (d/dt)nf . This leads us to the ordinary differential equation;

d

dt









f
f (1)

f (2)

f (3)









=









0 1 0 0
0 0 1 0
0 0 0 1
λ 0 0 0

















f
f (1)

f (2)

f (3)









+









0
0
0
h









,









f(0)
f (1)(0)
f (2)(0)
f (3)(0)









=









0
0
0
0









.

It is then easily seen that

f (3)(t) =
1

2

∫ t

0

h(s){cosh(λ1/4(t− s)) + cos(λ1/4(t− s))}ds.

Since g = f (4), this implies the identity (10).

Lemma 4. The identity (1) holds.

Proof. Let η1, η2 ∈ H be as described in Lemma 3, and put fj = (I − λAV )
−1ηj , j = 1, 2. By

virtue of Lemma 3, we have that

If1(t) =
λ−1/2

2
{cosh(λ1/4t)− cos(λ1/4t)},

I3f1(t) =
λ−1

2
{cosh(λ1/4t) + cos(λ1/4t)− 2},

If2(t) = 3λ−1{cosh(λ1/4t) + cos(λ1/4t)− 2},
I3f2(t) = 3λ−3/2{cosh(λ1/4t)− cos(λ1/4t)} − 3λ−1t2.
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Hence, if we set αλ = cosh(λ1/4T ) and βλ = cos(λ1/4T ), then

(I − λAF (I − λAV )
−1)η1

=
{

−T
2λ1/2

4
(αλ − βλ) +

1

2
(αλ + βλ)

}

η1 +
λ1/2

12
(αλ − βλ)η2,

(I − λAF (I − λAV )
−1)η2

=
{

−3T 2

2
(αλ + βλ) + 3λ−1/2(αλ − βλ)

}

η1 +
1

2
(αλ + βλ)η2,

Thus, by virtue of (iii), it holds that

det
(

I − λAF (I − λAV )
−1
)

= det

(

−T 2λ1/2

4 (αλ − βλ) + 1
2 (αλ + βλ)

λ1/2

12 (αλ − βλ)
− 3T 2

2 (αλ + βλ) + 3λ−1/2(αλ − βλ) 1
2 (αλ + βλ)

)

= αλβλ.

This implies the identity (1), because Lemmas 1, 2, and 3 yield that
∫

W

exp(λq/2)dP = {det(I − λAF (I − λAV )
−1)}−1/2.

Lemma 5. The identity (2) holds.

Proof. Let ηj , j = 1, 2, be as in Lemma 3 (iii), and E = {cη1 | c ∈ R}. Define A\
1 as described

in Lemma 2 with U = A, UV = AV , and UF = AF . Since πEh = (h(T )/T )η1 for any h ∈ H,
we have that

A\
1h =

{

− 1

T
I4h(T ) + T 2

6
Ih(T )

}

η1 −
1

6
Ih(T ) η2.

Let f1, f2 be as in the proof of Lemma 4. Then we see that

I4f1(t) =
λ−5/4

2
{sinh(λ1/4t) + sin(λ1/4t)} − λ−1t,

I4f2(t) = 3λ−7/4{sinh(λ1/4t)− sin(λ1/4t)} − λ−1t3.

Hence, if we put σλ = sinh(λ1/4T ) and τλ = sin(λ1/4T ), then

(I − λA\
1(I − λAV )

−1)η1

=
{λ−1/4

2T
(σλ + τλ)−

T 2λ1/2

12
(αλ − βλ)

}

η1 +
λ1/2

12
(αλ − βλ)η2,

(I − λA\
1(I − λAV )

−1)η2

=
{λ−3/4

T
(σλ − τλ)−

T 2

2
(αλ + βλ)

}

η1 +
1

2
(αλ + βλ)η2.

Since R(A\
1) ⊂ R(AF ), by Lemma 3 (ii), this yields that

det(I − λA\
1(I − λAV )

−1)

= det

(

λ−1/4

2T (σλ + τλ)− T 2λ1/2

12 (αλ − βλ) λ1/2

12 (αλ − βλ)
λ−3/4

T (σλ − τλ)− T 2

2 (αλ + βλ)
1
2 (αλ + βλ)

)

=
λ−1/4

2T
{σλβλ + τλαλ}.
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The identity (2) follows from this, because Lemmas 1, 2, and 3 imply that

∫

W

exp(λq/2)δ0(w(T ))dP =

∫

W

exp(λQA/2)δ0(∇∗η1)dP e(λ/2)trA

=
1√
2πT

{det(I − λA\
1(I − λAV )

−1)}−1/2.

Remark 1. It may be interesting to see that (1) is also shown by using the infinite product
expression. Namely, define B : H → H by

Bh(t) =

∫ t

0

∫ T

s

h(u)du ds, h ∈ H, t ∈ [0, T ].

Then there exists an orthonormal basis {hn}∞n=0 of H so that

B =

∞
∑

n=0

(

T

(n+ 1
2 )π

)2

hn ⊗ hn.

See [10]. Since A = B2, it holds that

A =
∞
∑

n=0

(

T

(n+ 1
2 )π

)4

hn ⊗ hn. (11)

In conjunction with Lemma 1, this implies that

q = QA + trA =

∞
∑

n=0

(

T

(n+ 1
2 )π

)4

(∇∗hn)2.

Due to the splitting property of the Wiener measure, we then obtain that

∫

W

exp(λq/2)dP =

(

∞
∏

n=0

{

1− λ
(

T

(n+ 1
2 )π

)4}
)−1/2

=

(

∞
∏

n=0

{

1 + λ1/2
(

T

(n+ 1
2 )π

)2} ∞
∏

n=0

{

1− λ1/2
(

T

(n+ 1
2 )π

)2}
)−1/2

.

Due to the infinite product expressions of coshx and cosx, this implies (1).

3 Proof of Theorem 1 (ii)

In this section, we shall show Theorem 1 (ii).
We first describe how we realize {cosh z cos z}1/2 for complex number z. Represent z ∈ C

as z = reiθ with r ≥ 0 and − 1
2π ≤ θ < 3

2π to define
√
z = r1/2eiθ/2, where i2 = −1. The
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Riemann surface of the 2-valued function z1/2 is realized by switching
√
z and −√z on the

half line consisting of iξ, ξ < 0. Set

G(z) =































√
cos z, if a) |Re z| < π

2 , or

b) Im z > 0, − 3π
2 + 4kπ ≤ Re z < π

2 + 4kπ (k ∈ Z), or

c) Im z < 0, −π
2 + 4kπ ≤ Re z < 3π

2 + 4kπ (k ∈ Z),

−√cos z, if a) Im z > 0, π2 + 4kπ ≤ Re z < 5π
2 + 4kπ (k ∈ Z), or

b) Im z < 0, 3π2 + 4kπ ≤ Re z < 7π
2 + 4kπ (k ∈ Z).

Then G is holomorphic on C \ {ξ | ξ ∈ R, |ξ| ≥ π/2}, and realizes {cos z}1/2. Hence G(z)G(iz)
is holomorphic on D0 ≡ C \ {ξ, iξ | ξ ∈ R, |ξ| ≥ π/2} and does not vanish in D0. Recalling
that cosh z = cos(iz), we write {cosh z cos z}1/2 for G(z)G(iz).
We next extend the identity (1) holomorphically. Since there exists δ > 0 such that exp(δq/2)
is integrable with respect to P and q ≥ 0, the mapping

{z ∈ C |Re z < δ} 3 z 7→
∫

W

exp(zq/2)dP

is holomorphic. {cosh(zT ) cos(zT )}−1/2 being holomorphic inD0, we can find a domainD ⊂ C

such that

D ⊃
{

reiθ
∣

∣

∣
r ≥ 0, θ ∈

3
⋃

k=0

[π

8
+
kπ

2
,
3π

8
+
kπ

2

]}

, and

∫

W

exp(z4q/2)dP =
1

{cosh(zT ) cos(zT )}1/2 for every z ∈ D. (12)

By (11) and Lemma 1, as an easy application of the Malliavin calculus, we see that the
distribution of q/2 on R admits a smooth density function pT (x) ([14, Lemma 3.1]). Since
q ≥ 0, pT (x) = 0 for x ≤ 0. Hence, in what follows, we always assume that x > 0. By the
inverse Fourier transformation, we have that

pT (x) =
1

2π

∫

R

e−ixtI(t)dt, where I(t) =

∫

W

exp(itq/2)dP. (13)

For R > 0, let Γ+(R) (resp. Γ−(R)) be the directed line segment in C starting at the origin
and ending at Reiπ/8 (resp. Re−iπ/8). Then, parameterizing Γ±(R) by t

1/4e±iπ/8, t ∈ [0, R4],
we have that

∫

Γ±(R)

f(z4)z3dz = ± i
4

∫ R4

0

f(±it)dt

for any piecewise continuous function f on iR, where and in the sequel, the symbol ± takes
+ or − simultaneously. Plugging this into (13), and then substituting (12), we obtain that

2πpT (x) = lim
R→∞

{

4i

∫

Γ−(R)

z3e−xz
4

{cosh(zT ) cos(zT )}1/2 dz

− 4i

∫

Γ+(R)

z3e−xz
4

{cosh(zT ) cos(zT )}1/2 dz
}

. (14)
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Thanks to the estimation that

| cosh(u+ iv) cos(u+ iv)|2 ≥ sinh2 umax{cos2 u, sinh2 v},

it is a routine exercise of complex analysis to show that

lim
R→∞

∫

Γ±(R)

z3e−xz
4

{cosh(zT ) cos(zT )}1/2 dz

=

∫ ∞

0

u3e−xu
4

limh↓0{cosh(uT ± ih) cos(uT ± ih)}1/2
du. (15)

Moreover, by the definition of {cosh z cos z}1/2, we have that

lim
h↓0
{cosh(uT ± ih) cos(uT ± ih)}1/2

=

{

√

cosh(uT ) cos(uT ), if − π − (±π
2 ) + 4kπ ≤ uT < π − (±π

2 ) + 4kπ,

−
√

cosh(uT ) cos(uT ), if π − (±π
2 ) + 4kπ ≤ uT < 3π − (±π

2 ) + 4kπ,

Substitute this and (15) into (14) to see that

2πpT (x) = 8i

∞
∑

k=0

∫ {(3π/2)+2kπ}/T

{(π/2)+2kπ}/T

(−1)ku3e−xu4

√

cosh(uT ) cos(uT )
du.

This implies Theorem 1 (ii), because

∫ {(3π/2)+2kπ}/T

{(π/2)+2kπ}/T

u3e−xu
4

√

cosh(uT ) cos(uT )
du

=
1

iT 4

∫ π/2

0

{v + (2k + 1)π}3e−x{v+(2k+1)π}4/T 4

√

cosh{v + (2k + 1)π} cos v
dv

− 1

iT 4

∫ π/2

0

{v − (2k + 1)π}3e−x{v−(2k+1)π}4/T 4

√

cosh{v − (2k + 1)π} cos v
dv.
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[8] P. Lévy, Wiener’s random function, and other Laplacian random functions, in “Proc. Sec-
ond Berkeley Symp. Math. Stat. Prob. II”, pp.171–186, U.C. Press, Berkeley, 1950.

[9] Malliavin, P. and Taniguchi, S., Analytic functions, Cauchy formula and stationary phase
on a real abstract Wiener space, J. Funct. Anal. 143 (1997), 470–528.

[10] H. Matsumoto and S. Taniguchi, Wiener functionals of second order and their Lévy mea-
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