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Abstract

S.G. Bobkov and C. Houdré recently posed the following question on the Internet ([1]): Let X,
Y be symmetric i.i.d. random variables such that:

IP{ |X + Y |√
2
≥ t} ≤ IP{|X| ≥ t},

for each t > 0. Does it follow that X has finite second moment (which then easily implies that
X is Gaussian)? In this note we give an affirmative answer to this problem and present a
proof. Using a different method K. Oleszkiewicz has found another proof of this conjecture, as
well as further related results.

We prove the following:

Theorem. Let X, Y be symmetric i.i.d random variables. If, for each t > 0,

IP{|X + Y | ≥
√

2t} ≤ IP{|X| ≥ t}, (1)

then X is Gaussian.

Proof. Step 1. IE{|X|p} <∞ for 0 ≤ p < 2.
For this purpose it will suffice to show that, for p < 2, X has finite weak p’th moment, i.e.,
that there are constants Cp such that

IP{|X| ≥ t} ≤ Cpt−p.

To do so, it is enough to show that, for ε > 0, δ > 0, we can find t0 such that, for t ≥ t0, we
have

7

DOI: 10.1214/ECP.v1-972

1

http://dx.doi.org/10.1214/ECP.v1-972


8 Electronic Communications in Probability

IP{|X| ≥ (
√

2 + ε)t} ≤ 1

2− δ IP{|X| ≥ t}. (2)

Fix ε > 0. Then:

IP{|X + Y | ≥
√

2t} = 2IP{X + Y ≥
√

2t}
≥ 2IP{X ≥ (

√
2 + ε)t, Y ≥ −εt, or Y ≥ (

√
2 + ε)t, X ≥ −εt}

= 2(2IP{X ≥ (
√

2 + ε)t}IP{Y ≥ −εt} − IP{X ≥ (
√

2 + ε)t}IP{Y ≥ (
√

2 + ε)t})

= 2IP{|X| ≥ (
√

2 + ε)t}(IP{Y ≥ −εt} − 1

2
IP{X ≥ (

√
2 + ε)t})

≥ (2− δ)IP{|X| ≥ (
√

2 + ε)t},

where δ > 0 may be taken arbitrarily small for t large enough. Using (1) we obtain inequality
(2).

Step 2. Let α1, ..., αn be real numbers such that α2
1+...+α2

n ≤ 1 and let (Xi)
∞
i=1 be i.i.d. copies

of X; then
IE{|α1X1 + ...+ αnXn|} ≤

√
2IE{|X|}.

We shall repeatedly use the following result:

Fact: Let S and T be symmetric random variables such that IP{|S| ≥ t) ≤ IP{|T | ≥ t), for all
t > 0, and let the random variable X be independent of S and T . Then

IE{|S +X|} ≤ IE{|T +X|}.

Indeed, for fixed x ∈ IR, the function h(s) = |s+x|+|s−x|
2 is symmetric and non-decreasing in

s ∈ IR+ and therefore

IE{|S + x|} = IE{ |S + x|+ |S − x|
2

} ≤ IE{ |T + x|+ |T − x|
2

} = IE‖T + x|}.

Now take a sequence β1, ..., βn ∈ {2−k/2 : k ∈ IN0}, such that αi ≤ βi <
√

2αi. Then
β2

1 + ...+ β2
n ≤ 2 and

IE{|α1X1 + ...+ αnXn|} ≤ IE{|β1X1 + ...+ βnXn|}.

If there is i 6= j with βi = βj we may replace β1, . . . , βn by γ1, . . . , γn−1 with
∑n
i=1 β

2
i =∑n−1

j=1 γ
2
j and

IE{|
n∑
i=1

βiXi|} ≤ IE{|
n−1∑
j=1

γjXj|}. (3)

Indeed, supposing without loss of generality that i = n − 1 and j = n we let γi = βi, for
i = 1, . . . , n− 2 and γn−1 =

√
2βn−1 =

√
2βn. With this definition we obtain (3) from (1) and

the above mentioned fact.
Applying the above argument a finite number of times we end up with 1 ≤ m ≤ n and numbers
(γj)

m
j=1 in {2−k/2 : k ∈ IN0}, γi 6= γj , for i 6= j, satisfying

∑m
j=1 γ

2
j ≤ 2 and

IE{|
n∑
i=1

αiXi|} ≤ IE{|
m∑
j=1

γjXj|}.
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To estimate this last expression it suffices to consider the extreme case γj = 2−(j−1)/2, for
j = 1, . . . , m. In this case — applying again repeatedly the argument used to obtain (3):

IE{|
m∑
j=1

2−(j−1)/2Xj|} ≤ IE{|
m−1∑
j=1

2−(j−1)/2Xj + 2−(m−1)/2Xm|}

≤ IE{|
m−2∑
j=1

2−(j−1)/2Xj + 2−(m−2)/2Xm|}

≤ IE{|X1 +X2|} ≤ IE{|
√

2X1|} =
√

2IE{|X1|}.

Step 3. IE{X2} <∞.
We deduce from Step 2 that for a sequence (αi)

∞
i=1 with

∑∞
i=1 α

2
i <∞ the series

∞∑
i=1

αiXi

converges in mean and therefore almost surely. Using the notation

[S] =

{
S if |S| ≤ 1,
sign(S) if |S| ≥ 1.

for a random variable S, we deduce from Kolmogorov’s three series theorem that

∞∑
i=1

IE{[αiXi]2} <∞.

Suppose now that IE{X2} =∞; this implies that for every C > 0, we can find α > 0 such that

IE{[αX]2} ≥ Cα2.

¿From this inequality it is straightforward to construct a sequence (αi)
∞
i=1 such that

∞∑
i=1

IE{[αiXi]2} =∞, while
∞∑
i=1

α2
i <∞,

a contradiction proving Step 3.

Step 4. Finally, we show how IE{X2} <∞ implies that X is normal. We follow the argument
of Bobkov and Houdré [2].
The finiteness of the second moment implies that we must have equality in the assumption of
the theorem, i.e.,

IP{|X + Y | ≥
√

2t} = IP{|X| ≥ t}.
Indeed, assuming that there is strict inequality in (1) for some t > 0, we would obtain that
the second moment of X +Y is strictly smaller than the second moment of

√
2X, which leads

to a contradiction:

2IE{X2} > IE{(X + Y )2} = IE{X2}+ IE{Y 2} = 2IE{X2}.

Hence, 2−n/2(X1 + . . .+X2n) has the same distribution as X and we deduce from the Central
Limit Theorem that X is Gaussian.
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