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Abstract: Regression adjustment is broadly applied in randomized trials
under the premise that it usually improves the precision of a treatment
effect estimator. However, previous work has shown that this is not always
true. To further understand this phenomenon, we develop a unified com-
parison of the asymptotic variance of a class of linear regression-adjusted
estimators. Our analysis is based on the classical theory for linear regression
with heteroscedastic errors and thus does not assume that the postulated
linear model is correct. For a randomized Bernoulli trial, we provide suffi-
cient conditions under which some regression-adjusted estimators are guar-
anteed to be more asymptotically efficient than others. We comment on the
extension of our theory to other settings such as general treatment mecha-
nisms and generalized linear models, and find that the variance dominance
phenomenon no longer occurs
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1. Introduction

Randomized experiments are the gold standard to answer questions about causal-
ity. Many researchers use multiple linear regression with a treatment indicator
and some baseline covariates to analyze randomized experiments, in which the
treatment coefficient is often interpreted as a causal effect. In some fields, this is
known as the “analysis of covariance” (ANCOVA), which was first proposed by
Fisher [3] to unify “two very widely applicable procedures known as regression
and analysis of variance”. This common practice is motivated by the belief that
regression adjustments can increase precision if covariates in the regression are
predictive of the outcome.
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However, as pointed out by many authors, this is not always true especially
when there is a lot of treatment effect heterogeneity. Regression adjustment in
randomized experiments has been studied in two different frameworks, namely
the finite-population model and the super-population model. In the former, the
experimental units are treated as fixed and the randomness comes from the pro-
cess of randomising the treatments [12, 14] whereas the latter assumes that the
experimental units are drawn independently from an infinite population [see e.g.
8, Chapter 7]. Three estimators have been extensively studied in the literature:
the simple difference-in-means or analysis of variance (ANOVA) estimator; the
ANCOVA estimator that includes covariate main effects; and the analysis of het-
erogeneous covariance (ANHECOVA)1 estimator that includes covariate main
effects and all treatment-covariate interactions. Regardless of whether the finite-
population model [4, 5, 16, 10, 7] or super-population model [9, 22, 19, 16, 15, 23]
is used, the main conclusions about the asymptotic efficiency of these estima-
tors are the same. Consider two estimators β̂1 and β̂2 that converge to the same
limit. We say that β̂1 (asymptotically) uniformly dominates β̂2 if the (asymp-
totic) variance of β̂1 is always smaller than or equal to that of β̂2, no matter
what the underlying distribution is. In both the finite-population model and the
super-population model, it has been found that ANHECOVA uniformly domi-
nates the other two, but, somewhat surprisingly, ANCOVA does not uniformly
dominate ANOVA.

A major limitation of the existing analysis of regression adjustment is that the
investigations are restricted to specific estimators and provide limited insights
into the phenomenon of uniform dominance. In particular, authors rarely discuss
whether their theory, established within the framework of Bernoulli randomized
trials or other completely randomized experiments without stratification, ex-
tends to other cases such as stratified experiments or generalized linear models.
The variance calculations are often quite technical, which further makes the
theoretical results less accessible to practitioners.

In this article, we provide a unified analysis for a large class of linear-regression
adjusted estimators in the super-population framework. Besides the estimators
mentioned above, our theory also applies to regression estimators with some
coefficients fixed (such as the difference-in-differences estimator for which the
coefficient corresponding to the baseline value of the response is included into the
covariate vector, and it is fixed to be 1) or with treatment-covariate interactions
only. By a simple application of the textbook theory for linear regression with
heteroscedastic errors, this analysis not only recovers the known relationships
between ANOVA, ANCOVA, and ANHECOVA, but also immediately provides
a sufficient condition for uniform dominance when the expectation of the covari-
ates is known (see Theorem 3.4 below). In the more practical situation when
the covariate expectation is unknown, a slightly different sufficient condition
is obtained (see Theorem 3.6 below). This condition shows that, for example,
the so-called lagged-dependent-variable regression estimator is more efficient

1The term ‘ANHECOVA’ was coined by Ye et al. [23] but the estimator was used before
by, among others, [10, 19, 20, 22].
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than the difference-in-differences estimator in randomized experiments, despite
them having a bracketing relationship in observational studies [2]. This unified
analysis allows us to explore whether the uniform dominance extends to more
complicated settings and provide numerical counterexamples. Some further re-
marks are provided at the end of this article, whereas proofs of the technical
Lemmas can be found in Appendix A.

2. Linear regression adjustment in randomized trials

Consider a random sample {(Ai, X
T
i , Yi)}ni=1 of n units, where Ai ∈ {0, 1} is a

binary treatment indicator, Xi = (Xi1, Xi2, . . . , Xip)T ∈ R
p is a vector of unit

covariates observed before treatment assignment, and Yi ∈ R is a real-valued
outcome of the unit. We assume that (Ai, X

T
i , Yi), i = 1, . . . , n are independent

and identically distributed, which is often a good approximation when the units
are randomly sampled from a large population. To simplify the notation, we
drop the subscript i when referring to a generic unit from the population.

Unless mentioned otherwise, we assume that each unit receives the treatment
independently with equal probability pr(A = 1 | X) = π, where 0 < π < 1 is
a known constant. In other words, treatment is assigned by a simple Bernoulli
trial, which approximates random sampling without replacement that is often
studied in the finite-population model [4, 5, 10]. Under this assignment mecha-
nism and standard assumptions in causal inference, the average treatment effect
βATE = E[Y (1) − Y (0)], where Y (a) is the potential outcome of unit i under
treatment level a, can be identified as [see e.g. 8, Chapter 7]:

βATE = E(Y | A = 1) −E(Y | A = 0). (1)

In this article, we consider the following class of regression adjusted estimators
of βATE. Let Γ = Γ(1) × · · · ×Γ(p) ⊆ R

p and Δ = Δ(1) × · · · ×Δ(p) ⊆ R
p be two

user-specified sets, where the individual components Γ(j) and Δ(j) are either
the real line R or a singleton. Define the constrained ordinary least squares
estimator as

θ̂ = (α̂, β̂, γ̂, δ̂) = arg min
γ∈Γ,δ∈Δ

1
n

n∑
i=1

{Yi − α− βAi − γTXi −Ai(δTXi)}2. (2)

We sometimes use the notation θ̂(Γ,Δ) (and similarly for the components of θ̂)
to emphasize the dependence of the estimator on the sets Γ and Δ. Lemma 3.1 in
Section 3.1 shows that β̂ is a reasonable estimator of βATE when the covariates
are centered, i.e. E(X) = 0; otherwise βATE can be estimated by β̃ = β̂ + δ̂T X̄,
where X̄ =

∑n
i=1 Xi/n. Before examining the asymptotic properties of β̂ and

β̃, we give several examples in the class of estimators (2).

Example 1. The ANOVA, ANCOVA, ANHECOVA estimators correspond to
setting Γ = Δ = {0}; Γ = R

p and Δ = {0}; Γ = R
p and Δ = R

p.
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Example 2. In some applications, the covariate vector X includes the baseline
value of the response before the treatment is assigned (let us call it Y0). For
simplicity, suppose the first entry of X is Y0, so X = (X1 = Y0, X2, . . . , Xp)T .
The difference-in-differences estimator corresponds to setting Γ = {1} × R

p−1

and Δ = {0} × R
p−1, while the lagged-dependent-variable regression estimator

corresponds to setting Γ ⊆ R
p and Δ = {0} × R

p−1. In observational studies,
these two estimators rely on different identification assumptions [2] and may
converge to different limits. In the randomized experiment described above,
both estimators should converge to the average treatment effect, but we are
unaware of any comparison of their statistical efficiency in presence of covariates
besides Y0.

Remark 1. The assumption that the individual components Γ(j) and Δ(j) are
either the real line R or a singleton is essential to prove the results in Theo-
rems 3.4 and 3.6. Otherwise, we would need to consider the uniform dominance
in regions defined by the intervals of Γ and Δ which would lead to the loss of
generality of our theory.

3. A unified analysis of linear regression-adjusted estimators

3.1. Covariates with known expectation

We first consider estimation of βATE when the covariates X have known expec-
tation. As will be seen in a moment, the proof of uniform dominance is fairly
straightforward in this case.

Consider the population counterpart to (2):

θ = (α, β, γ, δ) = arg min
γ∈Γ,δ∈Δ

E{Y − α− βA− γTX −A(δTX)}2. (3)

Clearly, θ = θ(Γ,Δ), and we often suppress the dependence of θ on (Γ,Δ) if it
is clear from the context.

Lemma 3.1. For any Γ and Δ of the form described in Section 2, we have
β = βATE − δTE(X).

Without loss of generality, we shall assume that E(X) = 0 for the rest of
Section 3.1; otherwise, we can simply replace X with X − E(X) since E(X) is
known. When E(X) = 0, Lemma 3.1 shows that β̂ is a reasonable estimator of
βATE. To study the asymptotic properties of β̂, we first state a classical result
for linear regression with heteroskedastic error. For a proof of this result, see
e.g. White [21].

Lemma 3.2. Consider a linear regression of an independent and identically
distributed sample of response Y ∈ R on regressors Z ∈ R

p. Let θ̂ and θ be
sample and population least squares estimators and ε(θ) = Y − θTZ. Suppose
that E(ZZT ) and E{ε(θ)2ZZT } are positive definite and Y , Z have bounded
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fourth moments. Then, as n → ∞, θ̂ −→ θ in probability and
√
n
(
θ̂ − θ

)
−→ N

(
0, {E(ZZT )}−1E(ZZT ε(θ)2){E(ZZT )}−1) in distribution.

(4)

Note that these results do not require that the linear model is correctly
specified. By applying Lemma 3.2 to our problem with Z = (1, A,XT , AXT )T
and regression error

ε = ε(θ) = Y − α− βA− γTX −A(δTX), (5)

we obtain the expression for the asymptotic variance of β̂. The proof of this
result is straightforward due to the block diagonal structure of E(ZZT ). This
is made possible by the assumption that E(X) = 0 (for details, see the proof of
Lemma 3.2 in Appendix A.3).

Lemma 3.3. Suppose that E(X) = 0 and the regularity conditions in Lemma 3.2
are satisfied. Then, as n → ∞, we have

√
n(β̂ − β) −→ N

(
0, E{(A− π)2ε2}

π2(1 − π)2

)
in distribution.

To state our first main result about uniform dominance, we introduce an
additional notation. Let U(Γ) ⊆ {1, . . . , p} denote the unrestricted dimensions
of Γ, i.e. U(Γ) = {1 � j � p : Γ(j) = R}. In words, U(Γ) represents a subset of
{1, . . . , p}, where each element j of U(Γ) corresponds to an individual compo-
nent Γ(j) ⊆ Γ, which is a real line denoted as R. Similarly, U(Δ) denotes the
unrestricted dimensions of Δ.

Theorem 3.4. Suppose E(X) = 0. Consider two estimators β̂1 and β̂2 ob-
tained from the least squares problem (2) with (Γ,Δ) = (Γ1,Δ1) and (Γ2,Δ2),
respectively, and suppose (Γ1,Δ1) �= (Γ2,Δ2). Then β̂1 uniformly dominates β̂2
if

Γ1 ⊇ Γ2, Δ1 ⊇ Δ2, and either π = 1/2 or U(Δ1) ⊇ U(Γ1). (6)

Proof. The first-order condition for the unrestricted version of the least squares
problem (3) can be written as

E(ε) = 0, E(εA) = 0, E{εXU(Γ)} = 0, E{εAXU(Δ)} = 0. (7)

Let θk = (αk, βk, γk, δk) be the solution for when (Γ,Δ) = (Γk,Δk) and εk =
Y −αk −βkA− γT

k X −A(δTk X) be the corresponding regression error, k = 1, 2.
By Lemma 3.1, ε2 = ε1 + (γ1 − γ2)TX + A(δ1 − δ2)TX. Let Vk = [E{(A −
π)2ε2k}]/{π2(1 − π)2}. Then by Lemma 3.3,

π2(1 − π)2(V2 − V1) =E{(A− π)2(ε22 − ε21)}
=E

[
(A− π)22ε1{(γ1 − γ2)TX + A(δ1 − δ2)TX}

]
+ E

[
(A− π)2{(γ1 − γ2)TX + A(δ1 − δ2)TX}2]
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≥2E
[
(A− π)2ε1{(γ1 − γ2)TX + A(δ1 − δ2)TX}

]
. (8)

Since U(Γk) contains the unrestricted dimensions of γk, k = 1, 2, and Γ1 ⊇ Γ2 by
assumption, the non-zero elements of γ1−γ2 can only appear in U(Γ1) (otherwise
the coefficients are fixed by design). Similarly, the non-zero elements of δ1 − δ2
appear in U(Δ1). By using (7) and A ⊥⊥ X, A2 = A, we have

E
[
(A− π)2ε1{(γ1 − γ2)TX + A(δ1 − δ2)TX}

]
=(γ1 − γ2)TU(Γ1)

{
E
[
(1 − 2π)ε1AXU(Γ1)

]
+ E

[
π2ε1XU(Γ1)

]}
+(δ1 − δ2)TU(Δ1)E

[
(1−π)2ε1AXU(Δ1)

]
=(γ1−γ2)TU(Γ1)E

[
(1−2π)ε1AXU(Γ1)

]
,

where the last equality follow from applying (7) to ε = ε1 and (Γ,Δ) = (Γ1,Δ1).
Finally, E

[
(1 − 2π)ε1AXU(Γ1)

]
= 0 if π = 1/2 or U(Δ1) ⊇ U(Γ1) by (7).

In words, Theorem 3.4 says that, when the expectation of the covariates
is known, one linear regression-adjusted estimator is uniformly dominated by
another if the two linear models are nested, the first estimator is obtained from
the larger model, and the larger model includes an interaction term whenever the
corresponding main effect is present; there is no such requirement for the smaller
model. The conditions in (6) can be easily applied to obtain variance orderings
among the examples in Section 2. We will discuss them in more detail after
deriving a similar sufficient condition when the expectation of X is unknown.

3.2. Covariates with unknown expectation

In most practical situations, we do not know the expectation of the covariates
and it is common to centre the covariates empirically before performing the
linear regression. Let θ̃ be the least squares estimator in (2) with Xi replaced
by Xi − X̄ where X̄ =

∑n
i=1 Xi/n, that is,

θ̃ = (α̃, β̃, γ̃, δ̃) = arg min
γ∈Γ,δ∈Δ

1
n

n∑
i=1

[
Yi−α−βAi−γT (Xi − X̄)−Ai

{
δT (Xi−X̄)

}]2
.

(9)

We have β̃ = β̂ if no interaction term is included, i.e. if Δ = {0}p, because
both (2) and (9) include an intercept term. More generally, by differentiat-
ing (9) with respect to α and β and following the proof of Lemma 3.1, it is
straightforward to verify that β̃ = β̂ + δ̂T X̄. Thus, β̃ is a reasonable estimator
of βATE = β + δTE(X). Estimator θ̃ is invariant to any shift transformation of
the covariates. In other words, θ̃ remains the same if we replace Xi by Xi + c,
i = 1, . . . , n, for any c ∈ R

p. Therefore, the statistical properties of θ̃ do not
depend on E(X) and, for simplifying the analysis, we shall assume E(X) = 0
without loss of generality. The asymptotic variance of β̃ generally differs from
that of β̂ due to the variability in X̄. The next result quantifies this difference
and it is proved in Appendix A.4.
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Table 1

Variance ordering of estimators of βATE in (1). Vk: variance of β̂k, k = 1, 2; Ṽk: variance
of β̃k, k = 1, 2.

Model 1 Model 2 V1 ≤ V2 Ṽ1 ≤ Ṽ2
∼ 1 + A + X + A : X ∼ 1 + A True: Theorem 3.4 True: Theorem 3.6
∼ 1 + A + X + A : X ∼ 1 + A + X True: Theorem 3.4 True: Theorem 3.6
∼ 1 + A + X + A : X ∼ 1 + A + A : X True: Theorem 3.4 True: Theorem 3.6
∼ 1 + A + X ∼ 1 + A Not always true: eq. (16)
∼ 1 + A + A : X ∼ 1 + A True: eq. (17) Not always true: eq. (18)

Lemma 3.5. Consider two estimators β̂ = β̂(Γ,Δ) and β̃ = β̃(Γ,Δ) for some
user-specified (Γ,Δ). Under regularity conditions in Lemma 3.2 and as n → ∞,
we have

n
{
var(β̃) − var(β̂)

}
−→ δTs Σ(2δf − δs),

where δf = δ0(Rp,Rp) and δs = δ0(Γ,Δ) are obtained by solving the population
least squares problem (3) for the full model and a sub-model defined by Γ ⊆ R

p

and Δ ⊆ R
p, respectively.

Let θ̂k and θ̃k be the solution to (2) and (9), respectively, for the choice
(Γ,Δ) = (Γk,Δk), k = 1, 2. Let Ṽk be the asymptotic variance of β̃k, that is,
Ṽk = limn→∞ nvar(β̃k). Our main goal is to derive conditions on (Γ1,Δ1) and
(Γ2,Δ2) such that Ṽ1 and Ṽ2 admit a deterministic ordering. It seems natural
to require that the models are nested: Γ1 ⊇ Γ2 and Δ1 ⊇ Δ2.

Table 1 provides a list of uniform dominance relationships in some basic
comparisons. We use the R convention to denote linear models: explanatory
variables in the regression are joined by +, 1 stands for the intercept term,
and A : X stands for the treatment-covariate interaction. Using Table 1, we
conjecture that in order for Ṽ1 � Ṽ2, the third condition in (6) needs to be
modified which is verified in the next theorem.

Theorem 3.6. Consider two estimators β̃1 and β̃2 obtained from solving (9)
with (Γ,Δ) = (Γ1,Δ1) and (Γ2,Δ2), respectively, and suppose (Γ1,Δ1)�=(Γ2,Δ2).
Then β̃1 uniformly dominates β̃2 if

Γ1 ⊇ Γ2, Δ1 ⊇ Δ2, and U(Γ1) = U(Δ1); (10)

Proof. Let dγ = γ1 − γ2 and dδ = δ1 − δ2. By applying (8) and Lemma 3.5 with
the first model treated as the full model,

Ṽ2 − Ṽ1 = (V2 − V1) + (Ṽ2 − V2) − (Ṽ1 − V1)

= 1
π2(1 − π)2E

[
(A− π)2{dTγX + AdTδ X}2]+ δT2 Σ(2δ1 − δ2) − δT1 Σδ1

=
E
[
A(A− π)2{dTγX + dTδ X}2]+ E

[
(1 −A)(A− π)2{dTγX}2]

π2(1 − π)2 −dTδ Σdδ

= 1
π

(dγ + dδ)TΣ(dγ + dδ) + 1
1 − π

dTγ Σdγ − dTδ Σdδ
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= 1
π(1 − π)

{
dTγ Σdγ + (1 − π)2dTδ Σdδ + 2(1 − π)dTγ Σdδ

}
= 1

π(1 − π){dγ + (1 − π)dδ}TΣ{dγ + (1 − π)dδ} � 0, (11)

which completes the proof.

By verifying the conditions in (10), we have the following results concerning
the examples in Section 2.

Corollary 3.7. The ANHECOVA estimator is asymptotically more efficient
than the ANOVA and ANCOVA estimators. There is no guaranteed variance
ordering between ANOVA and ANCOVA.

Corollary 3.8. The lagged-dependent-variable regression estimator is more ef-
ficient than the difference-in-differences estimator.

Results established in Theorems 3.4 and 3.6 can be used to provide practical
efficiency gains. Consider the asymptotic variances Vk, Ṽk of estimators β̂k, β̃k,
k = 1, 2. The relative efficiency of these estimators can be defined as follows

e(β̂1, β̂2) = V2/V1, ẽ(β̃1, β̃2) = Ṽ2/Ṽ1. (12)

In Section 5 we present the results of the empirical study in which we analyse
numerically the efficiency of ANECOVA versus ANOVA and ANCOVA.

Remark 2. The condition in (10) might be further weakened when π = 1/2.
In particular, the difference in (11) is exactly 0 if in addition, Γ1 = Γ2 and
π = 1/2. To show this, by differentiating (3) with respect to γU(Γ1), we have
E
[
XU(Γ1){Y − α− βA− γT

k X −A(δTk X)}
]

= 0, k = 1, 2. By subtracting the
two equations, we obtain

E
[
XU(Γ1)(X

T dγ + AXT dδ)
]

= 0. (13)

Because Γ1 = Γ2 and Δ1 ⊇ Δ2, we have γ1j = γ2j and δ1j = δ2j for j �∈
U(Γ1) = U(Δ1). Thus dγ,j = dδ,j = 0 when j �∈ U(Γ1). Together with equa-
tion (13), this shows that Σ(dγ + πdδ) = 0. Therefore, if we have π = 1/2 in
addition, the difference Ṽ2 − Ṽ1 = 0. In other words, when π = 1/2, adding or
removing (more precisely, unrestricting or restricting) an interaction term AXj

when corresponding the main effect Xj is already present in the model does not
change the asymptotic variance of β̃.

4. Variance ordering beyond linear regression

4.1. Stratified randomization experiments

One can establish the uniform dominance in case of more sophisticated random-
ization schemes. In particular, our derivations extend to stratified randomization
experiments with units grouped into B strata which is in alignment with the
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results of [11]. The authors considered two asymptotic regimes with the num-
ber of strata B or with their sample sizes increasing as the total number of
units n increases. Let S be a categorical variable with levels indicating whether
unit i belongs to stratum s, s ∈ {1, 2, . . . , B}. In this setting, for the uniform
dominance to hold, the treatment assignment should be completely randomized
within strata with allocation probability equal across strata, and the estima-
tor should be obtained using weighted regression including centred variables
A,S,X, as well as interactions of A with S and A with X.

4.2. General assignment mechanisms

In contrast, the results on the uniform dominance do not usually extend to a
more general assignment mechanism which depends on X with π(x) = p(A =
1 | X = x). Within this framework, we can identify βATE for all Γ,Δ, but
β̂ in (2), (3) and (9) do not converge to βATE. More specifically, consider a
population version of the least squares optimization problem in (3) and a general
assignment mechanism which depends on X through π(x). After setting up the
first order conditions to find an estimate for βATE (cf., the proof of Lemma A.1),
we can derive the following expression:

β =

− {E(AX)−π(x)E(X)}T γ+{E(A2X)−π(x)E(AX)}T δ+π(x)E(Y )−E(AY )
{E(A2)−π(x)E(A)} .

Due to the lack of A ⊥⊥ X, terms E(AX) and E(A2X) cannot be further
simplified which implies that β̂ does not converge to βATE .

Nevertheless, there exist at least two ways to recover (1) within a setting with
a general treatment assignment mechanism. First, one can make more stringent
assumptions on the structure of covariates used in randomization and their
relation to covariates used in the model-assisted regression in (2), (3) and (9),
cf. [23] who proved some results on the variance ordering of covariate-adjusted
estimators in the setting with discrete covariates used in the covariate-based
randomization. Second, one can use weighted estimators [17, 18] to recover (1).
In particular, let σ2(x) = π(x){1 − π(x)}, Ac = A − π(x) and Xc = X −
E{X|π(x)}. Consider the population version of the constrained linear regression
problem for θw

θw = (αw, βw, γw, δw) = arg min
γw∈Γ,δw∈Δ

E

[
{Y − αw − βwAc − γT

wX −Ac(δTXc)}2

σ2(X)

]
.

(14)

By differentiating (14) with respect to θw and solving it for αw, βw, γw, δw we
can conclude that βw converges to βATE . In addition, by using almost identical
arguments as in the proof of Lemma 3.3, see Appendix A.3, we derive that
n × var(β̂w) → E

[
σ−4(X){A− π(X)}2ε2w

]
where εw = εw(θw) = Y − αw −
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βwAc − γTXc − Ac(δTXc). However, similarly as above, due to the lack of
A ⊥⊥ X or any further simplifications of the structure of X and/or its relation
with A, the uniform dominance results as in Theorem 3.4 or Theorem 3.6 are not
available. These conclusions are supported by the numerical results in Section 5.

4.3. Generalized linear models

The result in Lemma 3.1 is tightly related to the properties of orthogonal projec-
tions and does not carry over to a wider class of generalized linear model, even
if the link function we use is collapsible [a link function is collapsible if including
independent regressors does not change the population regression coefficients,
see 6, 1, for more detials]. The most common collapsible link functions in this
setting are identity and log function; the latter is the canonical link for Poisson
regression and is frequently applied. Yet, if the link is collapsible but not the
identity, including the treatment-covariate interaction may identify a different
estimand. To exemplify this problem, let θP = (αP , βP , γP , δP ) be coefficients
within the framework of Poisson regression. Consider the population versions of
the first order conditions to find estimates of αP and βP

E
[
Y − exp{αP + βPA + γT

PX + A(δTPX)}
]

= 0,
E
(
A
[
Y − exp{αP + βPA + γT

PX + A(δTPX)}
])

= 0.

By solving these for E(Y |A = 1) and E(A|A = 0), we have

E(Y |A = 1) = exp(αP + βP ), E
[
exp{(γP + δP )TX}

]
,

E(Y |A = 0) = exp(αP )E{exp(γT
PX)},

from where it follows that

E(Y |A = 1)
E(Y |A = 0) = exp(βP )

E
[
exp{(γP + δP )TX}

]
E{exp(γT

PX)} ,

that is, even after applying the canonical link function to the left-and the right-
hand side of the expression above, coefficient βP does not identify βATE , cf.
results in Section 5. Thus, an attempt to seek the uniform dominance by com-
paring the asymptotic variance of β̂ seems to be an ill-posed research question
in this setting.

5. Simulation study

We carry out numerical simulation study to verify our theoretical developments
in previous sections and explore scenarios under which the uniform dominance
does not hold (see discussion in Section 6). We consider scenarios with potential
outcomes generated from normal and Poisson distribution. In all scenarios, the
covariate is centred and normally distributed X = Xnc − X̄, Xnc ∼ N(2, 1)
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whereas X̄ is a sample mean of observations; the observed outcome is Y =
AY (1) + (1 − A)Y (0). For linear regression, errors are normally distributed
e1, e0 ∼ N(0, 1). We consider the sample size of n = 1000. Below we describe
simulation scenarios.

Scenario 1 Treated outcomes: Y (1) ∼ 5 + 2.5AX + e1, untreated outcomes:
Y (0) ∼ 3 + X + e0, the treatment assigned using a Bernoulli trial A ∼
Bernoulli(π), βATE = 2, estimation method: linear regression.

Scenario 2 Treated outcomes: Y (1) ∼ Poisson(μ1), untreated outcomes: Y (0)
∼ Poisson(μ0), μ1 = exp(5.5 + 0.7A + 0.5X + 0.8XA), μ0 = exp(4.5 +
0.6A + 0.4X + 0.7XA), the treatment assigned using a Bernoulli trial
A ∼ Bernoulli(π), βATE = 1.2759, estimation method: Poisson regression
with the canonical link function.

Scenario 3 Treated outcomes: Y (1) ∼ 7+X+e1, untreated outcomes: Y (0) ∼
2−X +X2 +e0, the treatment assigned using a general assignment mech-
anism A ∼ Bernoulli(π(X)), π(X) = exp(4 − 2X)/(1 + exp(4 − 2X)),
βATE = 4, estimation method: linear regression with weights w(X) =
(π(X)(1 − π(X))−1.

To study the performance of the estimators of βATE, we calculated an average
bias and a standard deviation over 1000 Monte Carlo replications. On top of
that, for the estimators under Scenario 1, we calculated the relative efficiency
defined in (12). Finally, under the Poisson log model, true values of βATE was
approximated by the difference of the large sample average (n = 107) of potential
outcomes. Figure 1 shows results of simulations under Scenario 1 over different
values of π. The estimates of βATE are almost unbiased assuming any model
(top-right panel). On the other hand, the standard deviation of β̂ is the smallest
for the model with both X and AX, nevertheless adjusting for covariate only is
not beneficial for higher values of π. The relative efficiency with respect to the
ANECOVA estimator is uniformly the lowest for ANOVA estimator (between
0.36 and 0.42), and the highest for the model with both A and AX (between
0.53 and 0.61). Nevertheless, the sample size gains from using ANECOVA are
still substantial. In the bottom panel of Figure 1 we plotted the inverse of the
relative efficiency which provides a rough estimate of the multiplicative factor
by which we would need to multiply the sample sizes of ANOVA or ANCOVA to
obtain the efficiency of ANECOVA. For example, to obtain the same efficiency
as the ANECOVA fitted using 5000 observations, we would need to collect 12942
observations for the ANOVA fit and 11656 for the ANCOVA fit. When it comes
to the results under the Poisson log model in Figure 2, β̂ suffers from a significant
bias as it does not recover the estimand of interest, cf. discussion in Section 4.3.

Table 2 displays numerical performance of β̂ under Scenarios 3 for which our
theory does not hold. We can see that the estimators do not suffer from the
excessive bias, which is an indication that the weighted regression estimators
recover βATE . At the same time, we can see that the uniform dominance does
not hold which is in alignment with the discussion in Section 4.2.
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Fig 1. Performance of estimators of βATE over different values of π under Scenario 1 (top
panels), relative efficiency of estimators over different sample sizes (middle panel), and the
inverse of relative efficiency (bottom panel), SD: standard deviation.

Fig 2. Performance of estimators of βATE over different values of π under Scenario 2, SD:
standard deviation.
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Table 2

Performance of β̂. SD, standard deviation.
Scenario 3

βATE = 4, logit{π(X)} = 4 − 2X
Model bias SD
∼ 1 + A −0.007 0.159
∼ 1 + A + X 0.004 0.232
∼ 1 + A + X + A : X 0.037 0.185

6. Discussion

Linear regression model is still widely used to estimate the average treatment
effect in hope to increase the precision of the estimator. We re-established and
generalized previous results on linear-regression adjusted estimators under pos-
sible model misspecification by providing a simplified and more accessible proof
of uniform dominance. Yet, our proof has a geometric element that exploits the
linearity of the regression adjustment, and this cannot be extended to other
settings. Thus, the phenomenon of the efficiency gain seems to be limited to the
estimation problems which fit into the linear framework and to the treatment
assignment mechanisms which do not depend on X.

Appendix A: Additional proofs

A.1. Proof of Lemma 3.1

Proof. Observe that α and β are always unrestricted in (3). By taking partial
derivatives with respect to α and β, we obtain

E{Y−α−βA−γTX−A(δTX)} = 0 and E{A(Y −α−βA−γTX−A(δTX))} = 0.

By multiplying the first equation by π and subtracting the second equation, we
obtain

πE(Y ) − E(AY ) + {E(A2) − πE(A)}β
+ {E(AX) − πE(X)}T γ + {E(A2X) − πE(AX)}T δ = 0.

Finally, by using the assumption that the treatment is randomized i.e. A ⊥⊥ X
and E(A) = E(A2) = π, we find that

β = −{πE(Y ) − E(AY )} + (π − π2)δTE(X)
π − π2

= −π{πE(Y | A = 1) + (1 − π)E(Y | A = 0)} − πE(Y | A = 1)
π − π2 − δTE(X)

= βATE − δTE(X)

as desired.
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A.2. Proof of Lemma 3.2

Proof. To be able to use the results of [21], we need to check that our as-
sumptions are sufficient to evoke regularity conditions cited by the author.
Since Y and Z have bounded forth moments, there exist η and H such that
E(|ε(θ)2|η+1) < H and E(|ZjZk|η+1) < H, j, k = 1, . . . , p. By Hölder inequal-
ity, this implies that E(ε(θ)2|ZjZk|η+1) < H is also uniformly bounded. Fur-
thermore, we assumed that E(ZZt) is positive definite, that is, E(ZZt) is non-
singular and detE(ZZt) > η > 0. The same is valid for E(ε(θ)2ZZt). Thus,
Assumptions 2 and 3 of [21] are satisfied and we can use the same steps as the
author to prove the consistency and the asymptotic normality of θ̂.

A.3. Proof of Lemma 3.3

Proof. First, consider the unrestricted case where Γ = Δ = R
p. To use Lemma 3.2,

we simply need to compute E(ZZT ) and E(ZZT ε2) for Z = (1, A,XT , AXT )T .
Employing A ⊥⊥ X, E(Z) = 0, A2 = A, and E(XXT ) = Σ, we have

E(ZZT ) =

⎛
⎜⎜⎝

1 π 0 0
π π 0 0
0 0 Σ πΣ
0 0 πΣ πΣ

⎞
⎟⎟⎠ .

Using properties of block diagonal matrices, it follows that

nvar(β̂) →
[(

1 π
π π

)−1(
E(ε2) E(Aε2)
E(Aε2) E(Aε2)

)(
1 π
π π

)−1]
(22)

= E{(A− π)2ε2}
π2(1 − π)2 .

Here, [·](22) means the entry on the second row and second column of the matrix.
If some dimensions of Γ or Δ are singletons, we can simply remove the corre-

sponding entries in Z. By a similar calculation, the same formula holds and the
asymptotic variance of β̂ only differs in the regression error ε, which depends
on θ = θ(Γ,Δ).

A.4. Proof of Lemma 3.5

Proof. We fix Γ and Δ and suppress the dependence of β̂ and β̃ on (Γ,Δ). We
decompose β̃ as

β̃ = β̂ + δ̂T X̄ = β̂ + δTs X̄ + (δ̂ − δs)T X̄.

Due to the assumption E(X) = 0, we have δ̂ − δs = Op(n−1/2) and X̄ =
Op(n−1/2). Hence, the last term on the right hand side is negligible. Therefore,

n
{

var(β̃) − var(β̂)
}
→ nvar(δTs X̄) + 2ncov(β̂, δTs X̄).
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Let Z be the unrestricted variables in the linear regression. By applying the
sandwich variance formula for the following set of estimating equations

E(X − μ) = 0,
E[Zε(θ)] = 0,

we obtain

ncov
(
θ̂, X̄

)

→
{(

−I 0
0 −E(ZZT )

)−1( Σ E(XZT ε)
E(ZXT ε) E(ZZT ε2)

)(
−I 0
0 −E(ZZT )

)−T
}

(2)

=
{
E(ZZT )

}−1
E(ZXT ε),

where ε is ε(θ) = ε(θf ) + (γf − γs)TX + A(δf − δs)TX. It follows that

ncov
(
β̂, X̄

)
→
[{

E(ZZT )
}−1

E(ZXT ε)
]
(22)

=

⎡
⎢⎣
⎛
⎝1 π 0
π π 0
0 0 ∗

⎞
⎠

−1⎛
⎝ (γf − γs)TΣ + π(δf − δs)TΣ
π(γf − γs)TΣ + π(δf − δs)TΣ

∗

⎞
⎠
⎤
⎥⎦

(22)

= (δf − δs)TΣ,

where ∗ represent some unspecified matrices that are not important for deriving
the quantities of interest. Therefore,

n
{

var(β̃) − var(β̂)
}
→ nvar(δTs X̄) + 2ncov(β̂, δTs X̄)

= δTs Σδs + 2(δf − δs)TΣδs

= δTs Σ(2δf − δs).

A.5. Variance orderings in Table 1

In this section, we provide an alternative, simpler proof to derive variance or-
dering in Table 1. These conclusions can be derived from Theorems 3.4 and 3.6.
Let θf = θ0(Rp,Rp) denote the full model parameters. From the first order
condition, we have

γf = Σ−1E(XY | A = 0), δf = Σ−1{E(XY | A = 1) −E(XY | A = 0)}.
(15)

Let Vf = limn→∞ nvar(β̂f ) be the asymptotic variance of β̂f .
(a) We compare variances of β̂ in Model 1 with Z1 = (1, A,XT )T and in

Model 2 with Z1 = (1, A)T . Consider Γ1 = R
p, Δ1 = 0, Γ2 = 0 and Δ2 = 0,



A unified analysis of regression adjustment 1451

that is, β̂1 is the ANCOVA and β̂2 is the ANOVA estimator in Example 1 in
the main document. In this case, only the third condition U(Δ1) ⊇ U(Γ1) in
Theorem 1 is not satisfied. We show that V1 > V2 when πE(XY | A = 0) =
(π − 1)E(XY | A = 1), π �= 1

2 , and E(XY | A = 1) �= E(XY | A = 0).
By definition, δ1 = δ2 = γ2 = 0, and γ1 = Σ−1E(XY ) = γf + δfπ. Then, by

applying derivations in Theorem 1, we have

π2(1 − π)2(V2 − Vf ) = E
[
(A− π)2{γT

f X + AδTf X}2],
π2(1 − π)2(V1 − Vf ) = E

[
(A− π)2{(γf − γ1)TX + AδTf X}2],

= E
[
(A− π)2(γT

1 X)2
]
+ E

[
(A− π)2(γT

f X + AδTf X)2
]

− 2E
[
(A− π)2γT

1 X(γT
f X + AδTf X)

]
.

Hence, using the fact that A ⊥⊥ X,

π2(1 − π)2(V1 − V2)
=E

[
(A− π)2(γT

1 X)2
]
− 2E

[
(A− π)2γT

1 X(γT
f X + AδTf X)

]
=E

[
(A− π)2(γT

1 X)(γ1 − 2γf − 2Aδf )TX
]

=E
[
(A− π)2(γT

f X + πδTf X)(πδTf X − γT
f X − 2AδTf X)

]
=E

[
A(1 − π)2(γT

f X + πδTf X)(πδTf X − γT
f X − 2δTf X)

]
+ E

[
(1 −A)π2(γT

f X + πδTf X)(−γT
f X + πδTf X)

]
=π(1 − π)2(γf + πδf )TΣ(πδf − γf − 2δf ) + (1 − π)π2(γf + πδf )TΣ(πδf − γf )
=π(1 − π)(γf + πδf )TΣ{(3π − 2)δf − γf}.

When γf = (π − 1)δf , π �= 1
2 and δf �= 0, we have

π2(1 − π)2(V1 − V2) = π(1 − π)(2π − 1)2E(δ2
f ) > 0. (16)

Under this scenario, (Ṽ1, Ṽ2) = (V1, V2). We can thus proceed in the same way
to prove Ṽ1 > Ṽ2.

(b) We compare variances of β̂ in Model 1 with Z1 = (1, A,AXT )T and in
Model 2 with Z1 = (1, A)T . First we shall prove V2 � V1. Consider Γ1 = 0,
Δ1 = R

p, Γ2 = 0 and Δ2 = 0. In this case we have γ1 = γ2 = δ2 = 0,
δ1 = Σ−1E(XY |A = 1) and

π2(1 − π)2(V2 − V1) =E
{
(A− π)22ε1AδT1 X

}
+ E

{
(A− π)2(AδT1 X)2

}
� 0.

(17)

The first term on the right hand side in (17) is 0 by applying the sufficient
condition in Theorem 1, A ⊥⊥ X and A2 = A.

Now we prove that Ṽ1 > Ṽ2 for some cases. Let γf and δf be as defined in
equation (15), γ1 = γ2 = δ2 = 0 and δ1 = Σ−1E(XY |A = 1) = δf + γf �= 0. In
addition, let Ωl = E(XY |A = l) where l = 0, 1. When Ω0 = −1/2Ω1, we have

Ṽ1 − Ṽ2 → V1 + δT1 Σ(2δf − δ1) − V2
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= E{(A− π)2(AδT1 X)2}
π2(1 − π)2 + δT1 Σ(2δf − δ1)

=
E{(γT

f X + δTf X)2}
π

+ (δf + γf )TΣ(δf − γf )

= (δf + γf )TΣ(δf + γf ) + π(δf + γf )TΣ(δf − γf )
π

= ΩT
1 Σ−1Ω1 + πΩT

1 Σ−1(Ω1 − 2Ω0)
π

= ΩT
1 Σ−1Ω1 + 2πΩT

1 Σ−1Ω1

π
> 0.
(18)
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