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Abstract: The Box–Cox transformation model has been widely applied
for many years. The parametric version of this model assumes that the
random error follows a parametric distribution, say the normal distribu-
tion, and estimates the model parameters using the maximum likelihood
method. The semiparametric version assumes that the distribution of the
random error is completely unknown; existing methods either need strong
assumptions, or are less effective when the distribution of the random error
significantly deviates from the normal distribution. We adopt the semi-
parametric assumption and propose a maximum profile binomial likelihood
method. We theoretically establish the joint distribution of the estimators
of the model parameters. Through extensive numerical studies, we demon-
strate that our method has an advantage over existing methods when the
distribution of the random error deviates from the normal distribution. Fur-
thermore, we compare the performance of our method and existing methods
on an HIV data set.
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1. Introduction

Since the seminal work of [8], the Box–Cox power transformation model has
been extensively studied and applied in various disciplines. Let (Yi, Xi), i =
1, . . . , n be independent and identically distributed (i.i.d.) observations with Yi

the response and Xi = (Xi1, . . . , Xip)T the corresponding covariates. The Box–
Cox model assumes that

Y
(λ)
i = γ + XT

i β + εi, (1.1)

where Y (λ) = (Y λ − 1)/λ if λ �= 0 and log Y otherwise; λ, γ, and β are the
parameters of interest; and εi, i = 1, . . . , n, are i.i.d. mean 0 random errors.

When the distribution of εi is assumed to be known only up to an unknown
finite-dimensional parameter, we have the parametric Box–Cox power transfor-
mation model. This model has been studied extensively under the assumption
that the εi’s are i.i.d. equal-variance normal random variables; see, for exam-
ple, [8, 6, 23, 11, 33, 34, 35, 31]. The maximum likelihood principle has proved
a powerful tool, but the parametric assumption may be too strong. It could
be severely violated in many practical applications, leading to biased inference
results; see our numerical studies for details.

It is not uncommon for the distribution of the random error in the Box–Cox
transformation model to deviate from normal. For example, in survival analysis,
the well-known proportional hazard model [15, 16] is equivalent to the Box–Cox
transformation model with the error following an extreme value distribution if
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the baseline hazard function is the Weibull distribution. See [25] and [18] for
more discussion of the connection between the Box–Cox transformation model
and the proportional hazard model. The proportional odds model [4, 5] is an-
other example. It assumes that log[{1−S0(Y )}/S0(Y )] = XTβ+ ε, where S0(·)
is the baseline survival function; the random error ε follows the logistic dis-
tribution. Therefore, when log[{1 − S0(Y )}/S0(Y )] is assumed to be a power
function of Y , this is the Box–Cox transformation model with the error follow-
ing the logistic distribution. Additionally, in cases where the error distribution
is skewed or heavy-tailed, quantile regression methods have been developed; see
[9, 27, 17], and the references therein for details.

In this paper, we assume that the distribution of εi is completely unknown;
parametric models where the error distribution deviates from normal are special
cases of our approach. [3, 28, 30] have proposed quasi-likelihood estimating equa-
tion methods for this semiparametric Box–Cox power transformation model.
However, [19] showed that the root of the expectation of the corresponding es-
timating equation is generally not unique, and therefore the resulting estimator
is not consistent. They instead proposed a “minimum distance” estimator for
λ and a least-square estimator for β, and they established the joint asymptotic
distribution for these estimators.

[19] successfully established the asymptotic normality of their (λ, β) estimator
under the assumption that the distribution of εi is completely unknown. How-
ever, their approach has two limitations. First, their estimator for β is based
on the least-square method. This method performs well when the underlying
distribution of εi is close to normal; but if it is not, the estimator may have
less accurate numerical performance. This, in turn, affects the performance of
the estimator for λ. Our simulation study demonstrates this; see Section 5 for
details. Second, their method is based on the minimum distance method and
does not have a likelihood interpretation. We study model (1.1) under the same
assumptions used in [19]. In other words, we consider the case where the er-
ror distribution is completely unknown. Based on the distribution of I(Yi ≤ t),
we propose a profile binomial likelihood method. Our method has three main
advantages. (1) It is a likelihood-based method, which is known to be more
efficient than other methods in many scenarios. For example, for parametric
models, it has been proven to be efficient under mild conditions; it can also
achieve semiparametric efficiency for many semiparametric models. For further
details, see [7, 24]. (2) Our binomial likelihood is a joint objective function for
(λ, β), allowing us to estimate them simultaneously through the likelihood; in
contrast, the method proposed by [19] requires a two-stage estimation proce-
dure. (3) Our binomial likelihood incorporates all the I(Yi ≤ Yj), i = 1, . . . , n;
j = 1, . . . , n, which encompass all the rank information of the responses. Hence,
we anticipate that our method may have the benefits of rank-based methods.
Theoretically, because our binomial likelihood function is a U-process with a
plugged-in nonparametric component, existing U-process theory is not applica-
ble. With the help of the advanced empirical processes theory, we derive the joint
asymptotic normality of our estimators for λ and β. These developments may
benefit research into M-estimators with objective functions being U-processes.
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Our simulation studies demonstrate that when the distribution of εi deviates
from normal, our method achieves more accurate parameter estimates than ex-
isting methods. However, when the distribution of εi is normal, the parametric
methods perform the best, while the performance of our method and the method
proposed by [19] is mixed.

The paper is organized as follows. Section 2 gives a brief review of the meth-
ods that will be compared with our approach in the numerical studies. Section 3
proposes the maximum profile binomial likelihood method for estimating the
parameters under the Box–Cox power transformation model and presents an
algorithm for obtaining our estimates numerically. Section 4 studies the joint
asymptotic properties of our estimates. Section 5 discusses the simulation stud-
ies, Section 6 presents the HIV application, and Section 7 concludes the paper
with a discussion. For convenience of presentation, the technical details are pro-
vided in two Appendices and the supplementary material.

2. Existing methods

With a parametric assumption on the distribution of ε, the Box–Cox model (1.1)
can be analyzed by the classical maximum likelihood principle; see, for example,
[8, 6, 23, 11, 33, 34, 35, 31]. The most popular parametric assumption is that
εi, i = 1, . . . , n are i.i.d. N(0, σ2) random variables. Under this assumption,
the classical maximum likelihood estimators of (λ, γ, β, σ) maximize the log-
likelihood function given by

−1
2

n∑
i=1

(Y (λ)
i − γ −XT

i β)2/σ2 − n

2 log(2πσ2) + (λ− 1)
n∑

i=1
log Yi.

We can use existing R functions, such as the “powerTransform” function in the
package car, to compute these estimates numerically. In the numerical studies,
we will compare this parametric method with our method.

[19] proposed a semiparametric estimation approach that proceeds as follows.
For a given λ, the model parameters (γ, βT )T in Model (1.1) can be estimated
by the classical least-square principle, namely,

(
γ̂(λ), β̂T (λ)

)T
=
(

n∑
i=1

X∗
i X

∗T
i

)−1 n∑
i=1

X∗
i Y

(λ)
i ,

where X∗
i = (1, XT

i )T . Then, since P (Y ≤ t) = Fε(t(λ) − γ −XT
i β) with Fε(·)

being the cumulative distribution function (c.d.f.) of εi, λ can be estimated by
a “minimum distance” estimator that minimizes Sn(λ, γ̂(λ), β̂(λ)), where

Sn(λ, γ, β) = n−1
n∑

i=1

∫ ∞

0

{
I(Yi ≤ t) − G̃λ,β(t(λ) − γ −XT

i β)
}2

dW (t),

G̃λ,β(t) = 1
n

n∑
j=1

I
{
Y

(λ)
j − γ −XT

j β ≤ t
}
,
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and W (·) is a positive, differentiable, strictly increasing, deterministic, and
bounded weight function. In their numerical study, [19] set W (·) to a normal
density with the mean and standard derivation being the sample mean and
sample standard error of the Yi’s. Since Sn(λ, γ̂(λ), β̂(λ)) is a function of the
one-dimensional parameter λ, a grid search can be used to find this λ estimate.
In the numerical studies, we will also compare this semiparametric method with
our approach.

3. Maximum profile binomial likelihood estimation

With the observed data (Yi, Xi), i = 1, . . . , n, we consider the Box–Cox trans-
formation model (1.1). We assume that the errors εi are i.i.d. and independent
of Xi. Let F (·) be the c.d.f. of ε∗ = ε + γ. For any t > 0, we have

P (Yi ≤ t|Xi) = P
(
ε∗i ≤ t(λ) −XT

i β
∣∣∣Xi, Yj

)
= F (t(λ) −XT

i β).

Conditioning on Xi, I(Yi ≤ t) follows a Bernoulli distribution with the proba-
bility of success for this Bernoulli distribution is F (t(λ) −XT

i β); here I(·) is the
indicator function. We observe that the similar idea has been applied in other
statistical models, e.g., [29, 26, 36]. Therefore, conditioning on Xi, i = 1, . . . , n,
the log-likelihood of {I(Yi ≤ t)}ni=1 is given by

l̃(λ, β, F ; t) =
n∑

i=1

[
I(Yi ≤ t) log

{
F
(
t(λ) −XT

i β
)}

+I(Yi > t) log
{

1 − F
(
t(λ) −XT

i β
)}]

.

We suggest choosing the values of t as the observed responses {Yj}nj=1 and taking
the summation of l̃(λ, β, F ;Yj) over j; this leads to the binomial likelihood

l̃B(λ, β, F ) =
n∑

j=1

n∑
i=1

[
Ii,j log

{
F
(
Y

(λ)
j −XT

i β
)}

+(1 − Ii,j) log
{

1 − F
(
Y

(λ)
j −XT

i β
)}]

, (3.1)

where Ii,j = I(Yi ≤ Yj).
Note that F (·) is an infinite-dimensional parameter. Estimating (F, λ, β) si-

multaneously by maximizing l̃B(λ, β, F ) is possible but computationally de-
manding; this also leads to theoretical difficulties in the subsequent develop-
ment of the asymptotic distributions of the estimates ([13]). Since F (·) is the
distribution function of ε∗i , we can instead use the following profile approach to
estimate it by the empirical distribution function. For given λ and β, based on
(1.1), we have ε∗i = Y

(λ)
i −XT

i β; therefore, we consider

Ĝλ,β(t) = 1
n

n∑
i=1

I
{
Y

(λ)
i −XT

i β ≤ t
}
,
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F̂λ,β(t) =
{
Ĝλ,β(t) ∨ n−2

}
∧
(
1 − n−2) , (3.2)

where n−2 is added to ensure that F̂λ,β(·) stays away from 0 and 1 to avoid
complications in both the numerical analyses and the technical development.
Substituting (3.2) into (3.1), we obtain the profile binomial likelihood:

�(λ, β) =
n∑

j=1

n∑
i=1

[
Ii,j log

{
F̂λ,β

(
Y

(λ)
j −XT

i β
)}

+(1 − Ii,j) log
{

1 − F̂λ,β

(
Y

(λ)
j −XT

i β
)}]

. (3.3)

Consequently, we define(
λ̂, β̂T

)T
= arg max(λ,βT )T∈Θ�(λ, β), (3.4)

where Θ is a compact subset of Rp+1, and γ is then estimated by

γ̂ = 1
n

n∑
i=1

{
Y

(λ̂)
i −XT

i β̂
}
.

The estimator in (3.4) does not have an explicit form. We implemented the
following algorithm in R to compute it numerically.

Step 1. For given λ, we define

βλ = arg max
β

�(λ, β), (3.5)

which leads to the profile likelihood for λ, given by

p�(λ) = �(λ, βλ).

In our numerical studies, we solve the optimization (3.5) using optim()
with the default Nelder–Mead method. For the initial values of β, we
treated λ as a constant in the model Y (λ) = XTβ + ε and considered
two possibilities: the least-square estimate implemented by lm() and the
rank-based estimate from rfit() in the package Rfit.
Step 2. Since p�(λ) is a function of a one-dimensional parameter λ, we
compute λ̂ via a grid search maximization.
Step 3. With λ̂, we obtain β̂ from (3.5).

Remark 1. As far as we are aware, the work in the literature that is most closely
related to our work is [19]. We use the same model assumptions and have in-
cluded the component I(Yi ≤ t) in the objective functions. We incorporate this
component to establish the binomial likelihood, while [19] use it to construct the
L2-distance. We observe that they estimate (γ, β) by the least-square method
for a given λ, and in the construction of their objective function Sn(λ, γ, β)
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for the estimation of λ, they suggest the normal distribution as the weights.
These choices do not affect the convergence rates of their estimators and should
increase the estimation accuracy of the model parameters when the responses
and errors are approximately normally distributed. However, when normality
is violated, the performance of their method may be affected. In contrast, our
method estimates the model parameters by maximizing a profile binomial like-
lihood, which is unrelated to the normal distribution. We therefore expect that
the method of [19] may have better performance when both Y and the random
errors are close to the normal distribution, but our method may have the ad-
vantage when normality is violated. The observations in our numerical studies
reinforce this conjecture; see Section 5 for details.

Remark 2. Our method can be viewed as a rank-based method because the
binomial likelihood (3.3) contains Ii,j = I(Yi ≤ Yj) for all i, j = 1, . . . , n, which
carry all the rank information of the responses. Various rank-based methods for
data of the same structure as this article have been proposed in the literature;
for example, the maximum rank correlation (MRC) estimator ([21, 32]), the
monotone rank (MR) method ([12]), and the pairwise-difference rank (PDR)
method ([1, 2]). But these methods are different from our method and may not
be appropriate for the Box-Cox model for two reasons. (1) They were constructed
not for the Box-Cox model, but for the transformation model:

H(Yi) = XT
i β + εi, (3.6)

with H(·) being assumed to be a monotonic nonparametric function. If the data
are truly from the Box-Cox transformation model, the analysis results from these
methods may be less efficient. Furthermore, to be identifiable, Model (3.6) needs
an assumption on the model parameter β, ‖β‖2 = 1 say; in the other words,
the β estimates are directions, and are of different meaning from those based
on the Box-Cox models. (2) Our method is constructed based on the conditional
distribution of Iij, but other methods are not.

4. Joint asymptotic distribution of estimators

In this section, we derive the joint asymptotic distribution of
(
λ̂, β̂T

)T
defined

by (3.4). We need the following notation. Let θ = (λ, βT )T and θ̂ =
(
λ̂, β̂T

)T
;

and let θ0 = (λ0, β
T
0 )T be the true values of the corresponding parameters.

Denote Vθ = Y (λ) −XTβ, Vθ,i = Y
(λ)
i −XT

i β, and Vθ,i,j = Y
(λ)
i −XT

j β. Define

Fθ(t) = P (Y (λ) −XTβ ≤ t) = P (Vθ ≤ t).

When θ = θ0, we write F0 = Fθ0 , V0 = Vθ0 , V0,i = Vθ0,i, V0,i,j = Vθ0,i,j . Let
Ḟθ(t) = ∂Fθ(t)

∂θ and F ′
θ(t) = ∂Fθ(t)

∂t , if they exist; and denote Ḟ0(t) = Ḟθ0(t),



2324 P. Li et al.

F ′
0(t) = F ′

θ0
(t). Let

V̇θ = ∂Vθ

∂θ
=

⎧⎪⎪⎨⎪⎪⎩
(
λ−2 {λY λ log Y − Y λ + 1

}
−X

)
if λ �= 0(

(log Y )2/2
−X

)
if λ = 0

, (4.1)

and define V̇0, V̇0,i, and V̇0,i,j similarly.
Furthermore, we denote Z = (Y,X) and z = (y,x). Define

ϕ(z) = E

[
Ḟ0(V0,2,1) + F ′

0(V0,2,1)V̇0,2,1

F0(V0,2,1) {1 − F0(V0,2,1)}
{I(Y1 ≤ Y2) − F0(V0,2,1)}

∣∣∣∣Z1 = z

]
,

(4.2)

ψ(z) = −E

[
Ḟ0(V0,2,1) + F ′

0(V0,2,1)V̇0,2,1

F0(V0,2,1) {1 − F0(V0,2,1)}
I (V0,3 ≤ V0,2,1)

∣∣∣Z3 = z

]
, (4.3)

Σ1 = E

([{
Ḟ0(V0,2,1) + F ′

0(V0,2,1)V̇0,2,1
}{

Ḟ0(V0,2,1) + F ′
0(V0,2,1)V̇0,2,1

}T
F0(V0,2,1) {1 − F0(V0,2,1)}

])
,

(4.4)
Σ2 = var {ϕ(Z) + ψ(Z)} . (4.5)

The following theorem establishes the joint asymptotic distribution of
(
λ̂, β̂T

)T
.

Theorem 4.1. Assume Conditions 1–5 in Appendix A; then
√
n(θ̂ − θ0) � N(0,Σ),

where Σ = 1
4Σ−1

1 Σ2Σ−1
1 with Σ1 and Σ2 defined by (4.4) and (4.5) respectively.

Note that deriving the asymptotic properties for θ̂ is a challenging task. The
main difficulty is the complicated structure of the profile binomial likelihood
�(·) defined by (3.3). Clearly, it is a U-process, with a plugged-in nonparametric
component F̂λ,β(·). Existing U-process theory is not applicable in our context.
We use advanced empirical process theory ([37, 24]) to derive the asymptotic
normality of θ̂ presented in Theorem 4.1. For continuity of presentation, we
sketch the lengthy proof of this theorem in Appendix B and relegate the full
details to the supplementary document.

Remark 3. Our method remains applicable when λ0 is a known quantity. In
such cases, we only estimate β from the model. Theorem 4.1 still holds, but with
θ̂ and θ0 replaced by β̂ and β0, respectively. Likewise, in equations (4.2)–(4.5),
ϕ(z), ψ(z), Σ1, and Σ2 are respectively replaced by:

ϕ(z) = −E

[
{X1 −E(X)}F ′

0(V0,2,1)
F0(V0,2,1) {1 − F0(V0,2,1)}

{I(Y1 ≤ Y2) − F0(V0,2,1)}
∣∣∣∣Z1 = z

]
,

ψ(z) = E

[
{X1 − E(X)}F ′

0(V0,2,1)
F0(V0,2,1) {1 − F0(V0,2,1)}

I (V0,3 ≤ V0,2,1)
∣∣∣Z3 = z

]
,
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Σ1 = E

[
F ′ 2

0 (V0,2,1){X1 −E(X)}{X1 − E(X)}T
F0(V0,2,1) {1 − F0(V0,2,1)}

]
,

Σ2 = var {ϕ(Z) + ψ(Z)} .

Numerical examples show that, compared to the case where λ0 is unknown and
estimated from the model, when λ0 is known, the corresponding variances of the
β estimates are significantly reduced; the details are omitted. This complies with
the discussion of [6, 23].

5. Simulation study

5.1. Data simulation

We use the following simulation examples to examine the numerical performance
of our method. We compare our method (labeled “Our”) with the method of
[19] (“Foster”) and the classical parametric method (“Parametric”).

We simulate the covariates X1, X2, X3, X4 as follows. Let S1 = (S11, S12)T
and S2 = (S21, S22)T be independent random vectors from

N

((
0
0

)
,

(
1 0.6

0.6 1

))
.

Set X1 = − log{1 − Φ(S11)}, X2 = I(S21 > 0), X3 = − log{1 − Φ(S12)}, and
X4 = I(S22 > 0). Then X1 and X3 follow the Exponential(1) distribution, while
X2 and X4 follow the Bernoulli(0.5) distribution. Based on these covariates, we
consider six simulation models:

Model 1: log Y = X1 + X2 + ε;
Model 2: log Y = X1 + X2 + X3 + X4 + ε;
Model 3: Y = 4 + 2.5X1 + 2.5X2 + ε;
Model 4: Y = 4 + 1.2X1 + 1.2X2 + 1.2X3 + 1.2X4 + ε;
Model 5: 5/Y = 4 + 2.5X1 + 2.5X2 + ε;
Model 6: 5/Y = 4 + 1.2X1 + 1.2X2 + 1.2X3 + 1.2X4 + ε.

For Models 1 and 2, λ = 0; for Models 3 and 4, λ = 1; and for Models 5 and
6, λ = −1. For each model, we consider two distributions for ε, N(0, 0.52) and
0.5(χ2

1 − 1), and two sample sizes, n = 100 and n = 200. For each scenario, we
use 1000 repetitions.

5.2. Estimation results

We examine the performance of the three methods by evaluating their bias,
mean squared error (MSE), coverage proportion (CP) and average length (AL)
of the 95% bootstrap percentile confidence intervals (BPCIs) in the estimation
of the model parameters λ, β1, and β2; here β1 and β2 are the coefficients of X1
and X2 in our simulation models. The results for β3 and β4, i.e., the coefficients
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for X3 and X4 in Models 2, 4, and 6, are similar to those for β1 and β2 and are
omitted.

Table 1 presents the bias and MSE values, and Table 2 gives the CPs and ALs
of the BPCIs when ε is simulated as N(0, 0.52). From Table 1, we observe that
all the methods have small biases. The parametric method results in the smallest
MSEs in every scenario. This is not surprising since the assumption that the
random error follows the normal distribution is satisfied; the other methods do
not need this assumption. For our method and Foster: (1) when λ = 0 (Models 1
and 2), our method has slightly smaller MSEs; (2) when λ = 1 (Models 3 and 4),
Foster performs slightly better; (3) when λ = −1, the MSE values are similar.
This supports our remark in Section 3 that Foster may perform well when the
distribution of the random error is close to normal. The results presented in
Table 2 are consistent with those shown in Table 1. All methods have produced
reliable coverage probabilities for all models and parameters. The parametric
method has yielded the shortest ALs, while the ALs of our method and the
Foster method are similar.

Table 1

Bias and MSE for the estimates of λ, β1, and β2: ε ∼ N(0, 0.52). The reported MSEs for
Models 1–6 are MSE×100.

Parametric Foster Our Parametric Foster Our
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Model 1 Model 2
100 λ 0.00 0.21 0.00 0.79 0.00 0.37 0.00 0.04 0.01 0.24 0.00 0.07
100 β1 0.01 1.33 0.01 4.17 0.01 1.94 0.01 1.06 0.05 5.80 0.01 1.72
100 β2 0.00 1.49 0.00 2.64 0.00 2.01 0.01 1.66 0.03 3.81 0.01 2.16
200 λ 0.01 0.09 0.00 0.37 0.00 0.17 0.00 0.01 0.00 0.10 0.00 0.03
200 β1 0.01 0.62 0.02 2.30 0.01 0.96 0.01 0.42 0.02 2.37 0.00 0.72
200 β2 0.01 0.72 0.02 1.31 0.01 0.97 0.01 0.74 0.01 1.61 0.00 0.97

Model 3 Model 4
100 λ 0.00 0.71 0.00 1.01 −0.01 1.29 0.01 1.36 0.01 2.06 0.00 2.36
100 β1 0.05 23.01 0.04 32.75 0.05 40.13 0.07 11.61 0.08 20.47 0.08 20.56
100 β2 0.04 19.77 0.03 27.20 0.03 33.89 0.07 10.46 0.06 16.64 0.07 18.40
200 λ 0.01 0.31 0.00 0.47 0.01 0.60 0.00 0.50 −0.01 0.85 −0.01 1.05
200 β1 0.05 10.46 0.05 15.97 0.07 19.20 0.02 3.83 0.01 6.21 0.01 7.32
200 β2 0.05 8.74 0.05 13.16 0.07 16.22 0.02 3.76 0.01 5.74 0.02 6.86

Model 5 Model 6
100 λ 0.00 0.71 0.00 1.23 0.01 1.32 −0.01 1.36 −0.01 2.51 −0.01 2.37
100 β1 0.00 0.07 0.00 0.12 0.00 0.11 0.00 0.04 0.00 0.06 0.00 0.06
100 β2 0.00 0.07 0.00 0.09 0.00 0.09 0.00 0.06 0.00 0.07 0.00 0.08
200 λ −0.01 0.31 −0.01 0.55 −0.01 0.59 0.00 0.50 0.01 1.10 0.01 1.05
200 β1 0.00 0.03 0.00 0.06 0.00 0.05 0.00 0.02 0.00 0.03 0.00 0.03
200 β2 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.03 0.00 0.03 0.00 0.04

Tables 3 and 4 display the results obtained when simulating ε as 0.5(χ2
1 − 1),

resulting in a non-normal distribution of the random error. The parametric
method exhibits larger biases and MSEs than the other methods and consis-
tently yields coverage probabilities below the nominal level of 95% in all scenar-
ios. In contrast, our method and Foster’s method demonstrate small and com-
parable biases, achieving coverage probabilities close to or greater than 95%.
Our method exhibits over-coverage in some models, but it also has significantly
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Table 2

CP(× 100) and AL of BPCI of λ, β1, and β2: ε ∼ N(0, 0.52).

Parametric Foster Our Parametric Foster Our
n CP AL CP AL CP AL CP AL CP AL CP AL

Model 1 Model 2
100 λ 92.00 0.18 97.50 0.39 96.90 0.29 95.10 0.08 98.70 0.21 97.70 0.12
100 β1 93.70 0.45 96.90 0.86 95.70 0.62 94.50 0.41 98.20 0.98 97.60 0.55
100 β2 93.50 0.47 97.50 0.68 96.90 0.59 93.60 0.49 97.80 0.80 96.00 0.59
200 λ 92.60 0.11 98.40 0.25 96.40 0.18 91.70 0.05 98.80 0.14 94.20 0.07
200 β1 94.80 0.30 98.10 0.60 95.70 0.40 93.20 0.26 98.80 0.65 95.60 0.35
200 β2 93.70 0.32 97.40 0.46 94.80 0.39 95.00 0.33 97.80 0.53 95.70 0.39

Model 3 Model 4
100 λ 94.50 0.34 95.20 0.46 97.40 0.52 93.80 0.46 95.80 0.61 97.90 0.69
100 β1 95.00 1.98 95.70 2.62 97.40 2.91 93.50 1.33 96.10 1.78 97.60 1.99
100 β2 95.40 1.81 95.60 2.39 97.30 2.65 93.80 1.27 95.80 1.66 97.70 1.89
200 λ 94.30 0.22 95.40 0.29 97.40 0.33 93.40 0.29 94.50 0.39 96.60 0.43
200 β1 94.20 1.27 95.20 1.65 97.30 1.80 93.60 0.81 94.30 1.05 96.50 1.14
200 β2 94.40 1.15 95.30 1.49 96.70 1.65 93.70 0.79 94.20 0.99 97.00 1.09

Model 5 Model 6
100 λ 92.30 0.34 95.40 0.50 97.00 0.52 94.20 0.46 95.60 0.68 97.80 0.69
100 β1 93.20 0.11 95.60 0.15 96.00 0.15 93.50 0.08 94.90 0.10 96.70 0.11
100 β2 93.30 0.10 95.20 0.12 95.50 0.13 92.50 0.10 94.90 0.11 96.00 0.12
200 λ 94.80 0.22 95.20 0.32 96.80 0.33 94.70 0.29 95.50 0.43 97.60 0.43
200 β1 95.30 0.07 94.80 0.10 96.60 0.10 93.30 0.05 95.20 0.07 95.20 0.07
200 β2 94.20 0.07 95.20 0.08 95.70 0.08 94.00 0.07 94.50 0.07 95.10 0.08

smaller MSEs and comparable or smaller ALs than the other methods across
all scenarios, supporting our Remark 1.

Table 3

Bias and MSE for the estimates of λ, β1, and β2: ε ∼ 0.5(χ2
1 − 1). The reported MSEs for

Models 1–4 are MSE×100; those for Models 5 and 6 are MSE×1000.
Parametric Foster Our Parametric Foster Our

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
Model 1 Model 2

100 λ −0.18 4.15 −0.01 1.02 0.01 0.12 −0.04 0.29 −0.01 0.39 0.00 0.02
100 β1 −0.31 11.13 −0.01 4.01 0.01 0.21 −0.15 3.86 −0.01 8.32 0.01 0.33
100 β2 −0.22 6.14 −0.01 3.44 0.01 0.17 −0.10 3.36 −0.01 5.51 0.01 0.44
200 λ −0.19 4.11 −0.01 0.44 0.00 0.03 −0.04 0.23 −0.01 0.14 0.00 0.01
200 β1 −0.34 11.96 −0.01 2.09 0.00 0.05 −0.15 3.11 −0.03 2.75 0.01 0.07
200 β2 −0.22 5.73 −0.01 1.85 0.00 0.04 −0.10 2.21 −0.02 2.24 0.01 0.09

Model 3 Model 4
100 λ −0.13 3.94 0.00 0.59 0.01 0.33 −0.21 8.23 −0.01 1.39 0.02 0.64
100 β1 −0.54 59.66 0.02 15.49 0.07 10.08 −0.38 23.88 0.01 8.55 0.06 4.64
100 β2 −0.51 51.00 0.02 14.97 0.06 7.89 −0.35 21.37 0.02 10.17 0.06 4.27
200 λ −0.14 2.99 0.00 0.24 0.00 0.07 −0.21 6.63 0.00 0.48 0.01 0.16
200 β1 −0.60 53.05 −0.01 5.70 0.02 1.83 −0.41 21.59 0.00 2.90 0.03 1.04
200 β2 −0.55 44.10 −0.01 6.21 0.02 1.53 −0.38 19.10 0.00 3.52 0.03 0.93

Model 5 Model 6
100 λ 0.13 39.40 0.00 6.26 −0.01 3.31 0.21 82.28 0.01 15.22 −0.02 6.46
100 β1 0.04 2.65 0.00 0.42 0.00 0.17 0.03 1.30 0.00 0.45 0.00 0.11
100 β2 0.02 1.54 0.00 0.93 0.00 0.10 0.02 1.20 0.00 1.08 0.00 0.16
200 λ 0.14 29.93 0.00 2.57 0.00 0.69 0.21 66.28 0.01 5.32 −0.01 1.68
200 β1 0.04 2.27 0.00 0.16 0.00 0.04 0.03 1.00 0.00 0.17 0.00 0.02
200 β2 0.02 1.08 0.00 0.51 0.00 0.03 0.02 0.73 0.00 0.49 0.00 0.03
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Table 4

CP(× 100) and AL of BPCI of λ, β1, and β2: ε ∼ 0.5(χ2
1 − 1).

Parametric Foster Our Parametric Foster Our
n CP AL CP AL CP AL CP AL CP AL CP AL

Model 1 Model 2
100 λ 27.30 0.28 98.90 0.47 98.30 0.20 77.00 0.12 99.10 0.28 98.60 0.09
100 β1 23.30 0.37 98.60 0.87 98.30 0.30 77.50 0.45 98.40 1.33 98.00 0.36
100 β2 50.60 0.41 96.20 0.78 99.50 0.26 87.30 0.56 97.50 1.08 97.70 0.41
200 λ 3.60 0.21 97.00 0.29 97.20 0.10 55.60 0.09 98.80 0.17 97.70 0.04
200 β1 3.10 0.28 97.80 0.60 97.80 0.14 61.40 0.33 97.90 0.79 98.70 0.17
200 β2 25.60 0.31 94.90 0.54 98.20 0.12 80.10 0.40 95.50 0.65 97.90 0.19

Model 3 Model 4
100 λ 84.90 0.48 94.70 0.36 99.40 0.34 78.90 0.65 96.00 0.53 98.90 0.50
100 β1 83.60 1.91 95.20 1.89 99.40 1.93 77.00 1.09 95.30 1.35 99.00 1.44
100 β2 83.10 1.70 94.40 1.79 99.40 1.75 79.60 1.06 95.80 1.35 98.90 1.37
200 λ 69.20 0.35 94.10 0.21 99.70 0.16 55.30 0.48 95.10 0.31 98.90 0.24
200 β1 67.80 1.34 94.40 1.07 99.80 0.86 54.60 0.76 94.90 0.78 98.70 0.63
200 β2 64.40 1.21 94.10 1.06 99.70 0.79 57.10 0.74 93.90 0.81 98.70 0.60

Model 5 Model 6
100 λ 83.00 0.48 96.60 0.38 98.50 0.35 79.40 0.65 97.60 0.57 98.70 0.50
100 β1 79.90 0.12 96.30 0.10 97.40 0.08 81.60 0.09 95.40 0.09 98.50 0.07
100 β2 86.70 0.11 93.60 0.12 98.50 0.07 90.20 0.11 93.20 0.12 97.50 0.08
200 λ 64.80 0.35 93.80 0.22 96.80 0.15 58.80 0.48 95.40 0.33 96.80 0.23
200 β1 62.90 0.09 95.70 0.06 97.40 0.04 64.90 0.06 95.20 0.06 97.80 0.03
200 β2 79.20 0.08 94.00 0.08 97.30 0.03 83.20 0.08 93.70 0.09 97.10 0.04

To compare the computational speed of the three methods, we repeated the
simulation/estimation 10 times using a single core of the same computer for all
six models and two sample sizes (n = 100 and n = 200). The CPU times (in
seconds) to compute the estimate of λ are presented in Table 5. As expected, the
parametric method was the fastest, followed by the Foster method. Our method
was slower due to the need to maximize a non-smooth objective function �(λ, β),
which involves a second-order U-statistic with the empirical c.d.f. in each term.
However, we found that the computation time required by our method was
reasonable. With the rapid advancement of computational technology, we do
not anticipate computation speed to be an obstacle for practical application of
our method.

In summary, we observe that the performance of the parametric method relies
heavily on the distribution of the random error. Foster may be slightly better
than our method when the distribution of the random error is close to normal.
Otherwise, our method has much better performance.

6. HIV application

We now apply our method to analyze human immunodeficiency virus (HIV)
data from the AIDS Clinical Trials Group Protocol 175 (ACTG175) ([20, 39])
in which n = 2139 HIV-infected patients were enrolled. The patients were ran-
domly divided into four arms according to their treatment regimen: (I) zidovu-
dine monotherapy, (II) zidovudine + didanosine, (III) zidovudine + zalcitabine,
and (IV) didanosine monotherapy. The data record various measurements from
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Table 5

CPU time (in seconds) to compute the estimate of λ based on 10 repititions.

Parametric Foster Our Parametric Foster Our
n 100 200 100 200 100 200 100 200 100 200 100 200

Model ε ∼ N(0, 0.52) ε ∼ 0.5(χ2
1 − 1)

1 < 0.1 < 0.1 1.3 6.3 5.2 14.4 < 0.1 < 0.1 1.3 6.3 5.1 14.0
2 < 0.1 < 0.1 1.3 6.4 11.2 34.5 < 0.1 < 0.1 1.3 6.2 11.7 36.6
3 < 0.1 < 0.1 1.4 6.4 5.6 16.3 < 0.1 < 0.1 1.4 6.4 5.4 15.7
4 < 0.1 < 0.1 1.4 6.4 10.2 33.5 < 0.1 < 0.1 1.4 6.4 10.9 33.0
5 < 0.1 < 0.1 1.4 6.5 5.7 15.2 < 0.1 < 0.1 1.4 6.4 5.6 15.5
6 < 0.1 < 0.1 1.4 6.6 11.1 34.1 < 0.1 < 0.1 1.3 6.3 10.5 31.9

each patient, including age (in years), weight (in kilograms), CD4 cell count
at baseline (cd40), CD4 cell count at 20±5 weeks (cd420), CD4 cell count at
96±5 weeks (cd496), CD8 cell count at baseline (cd80), CD8 cell count at 20±5
weeks (cd820), and arm number (arms). The data are available in the R pack-
age speff2trial. The effectiveness of an HIV treatment can be assessed by
monitoring the CD4 cell counts of HIV-positive patients: an increased count
indicates an improvement in the patient’s condition. It is of particular interest
to estimate the average CD4 cell count in each arm after 96 weeks of treatment.
We take this variable (cd496) plus 1 as the response variable in our analysis. We
consider six covariates, age/10, weight/10, cd40/10, cd420/10, cd80/100, and
cd820/100, and focus on the complete data for the patients in arm IV.

We apply the three methods from our simulation study to this data set. Ta-
ble 6 summarizes the point estimate (Est), the corresponding bootstrap standard
deviation (BSD), and the 95% BPCIs. Based on the estimates of λ and β from
our method, Figure 1 shows the normal probability plot of the F estimate (3.2).
We test the normality of the residuals using the Shapiro–Wilk test, which gives a
p-value of 0.0015. Both Figure 1 and this test result suggest that the distribution
of the random error might deviate from normal. It is therefore not surprising
that in Table 6, the estimates of λ and β based on the parametric method are
significantly different from those based on the other methods; the former esti-
mates may not be reliable. Our method and Foster lead to λ estimates that are
very close to 1 and similar β estimates, but our method has much smaller BSD
values and shorter BPCIs for all the parameter estimates. Since the distribution
of the random error might deviate from normal, we expect that our method has
produced more accurate results than Foster in this real-data example.

Table 6

Analysis of ACTG data.
Parametric Foster Our

Est BSD BPCI Est BSD BPCI Est BSD BPCI
λ 0.76 0.05 (0.68, 0.89) 1.00 0.13 (0.81, 1.30) 0.95 0.08 (0.80, 1.10)
β1 −0.40 2.14 (−5.74, 3.21) −2.18 15.23 (−39.14, 21.89) −4.17 7.31 (−22.24, 7.60)
β2 1.51 1.51 (−0.92, 4.88) 4.94 10.89 (−6.26, 33.31) 3.88 5.09 (−3.59, 14.17)
β3 0.86 0.41 (0.41, 2.05) 3.36 5.10 (0.85, 18.49) 2.63 1.55 (0.85, 6.62)
β4 1.83 0.65 (1.09, 3.82) 7.63 10.09 (2.58, 38.05) 5.27 2.84 (2.20, 12.93)
β5 0.07 0.81 (−1.62, 1.38) 1.66 5.55 (−5.16, 12.50) 1.19 2.39 (−3.52, 5.87)
β6 −0.55 0.74 (−2.04, 0.67) −3.40 6.76 (−27.65, 1.85) −2.65 2.80 (−8.28, 1.05)
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Fig 1. Q-Q plot of residuals after Box–Cox transformation.

7. Discussion

We have focused on the Box–Cox model, which has been extensively studied.
Classical methods assume that the distribution of the random error is para-
metric, say normal, and apply the maximum likelihood method to estimate
the model parameters. These methods may give misleading results when the
parametric assumption is violated. Semiparametric methods assume that the
distribution of the random error is unknown. They may be based on the esti-
mating equation method [28, 30], the validity of which relies on a strong and
possibly unrealistic assumption; see [19] for a detailed discussion. Alternatively,
they may use least-square estimates [19], with lower efficiency when the distri-
bution of the random error deviates from normal; this has been observed in our
numerical studies.

We have adopted the semiparametric assumption and proposed a binomial
likelihood method for this model. Via extensive numerical analyses, we have
compared the performance of our method with the classical parametric method
and the method of [19]. When the random error is normally distributed, the
parametric method performs the best, and the method of [19] is sightly better
than our method only when λ = 1. However, when the distribution of the
random error deviates from normal, our method consistently outperforms the
other approaches.

Our proposed pseudo-likelihood (3.3) is a U-process with a nonparametric
plug-in component F̂λ,β(·). The existing theory for U-processes is not applica-
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ble, so developing the theoretical properties of the estimators is a challenging
task. We have used advanced empirical process techniques. We believe that
these developments will benefit research into M-estimators where the objective
function is a U-process. Such estimators are not uncommon; they include the
objective function from the pairwise likelihood (e.g., [22]) and that from the
binomial/multinomial likelihood [36].

There are several potential research topics for future exploration. Firstly, we
have assumed that the effect of the covariates on Y (λ) is linear. We could ex-
plore this assumption by considering models with more complicated structures.
Secondly, the Box-Cox model with the response Y right-censored can also be
considered [10, 14]. Thirdly, smoothing techniques can be incorporated into the
estimation of the nonparametric function F (·). Finally, our method may be inte-
grated with the quantile regression methods [9, 27, 17] to enhance the stability
when the random error distribution is skewed or heavy-tailed.

Appendix A: Regularity conditions

We impose the following regularity conditions to establish our asymptotic re-
sults. They are not necessarily the weakest possible.

Condition 1: θ = (λ, β) ∈ Θ, which is a compact subset of Rp+1. FX(x) is
supported on X and FY (y) is supported on Y . Z ≡ X × Y is a compact
subset of Rp+1. Furthermore, infy∈Y |y| > 0. Here FX(·) and FY (·) are the
c.d.f.s of X and Y respectively.
As a consequence, t = y(λ) − xTβ is supported on T , which is a compact
subset of R.
Condition 2: There exists η0 > 0 such that Fθ(t) is second-order continu-
ously differentiable for ‖θ − θ0‖2 ≤ η0 and t ∈ T . Furthermore,

0 < inf
z∈Z,‖θ−θ0‖2≤η0

Fθ(vθ) ≤ sup
z∈Z,‖θ−θ0‖2≤η0

Fθ(vθ) < 1

and
inf

‖θ−θ0‖2≤η0

∣∣∣∣∂Fθ(vθ)
∂θ

∣∣∣∣ > 0,

where vθ = y(λ) − xTβ.
Condition 3: For any t1, t2 ∈ R,

sup
β∈B

∣∣FXT β(t1) − FXT β(t2)
∣∣ � |t1 − t2|.

Condition 4: If Fθ(vθ) = F0(v0) almost surely in FY (y)FX(x), then θ = θ0.
Condition 5: Both Σ1 and Σ2 defined by (4.4) and (4.5) are invertible.

Appendix B: Sketch of the Proof of Theorem 4.1

We give a blueprint of the proof of Theorem 4.1; the lengthy details are relegated
to the supplementary document.
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In addition to the notation of Section 4, we need the following. Through-
out the development, “�” denotes smaller than, up to a universal constant;
C denotes a large universal constant; and c denotes a small positive universal
constant.

For any positive integer i, j, let Zi,j = (Yi, Xj) and zi,j = (yi,xj). Therefore,
Zi,i = Zi = (Yi, Xi) and likewise zi,i = zi = (yi,xi). Recall that Vθ = Y (λ) −
XTβ, Vθ,i,j = Y

(λ)
i − XT

j β and define accordingly vθ = y(λ) − xTβ, vθ,i,j =
y
(λ)
i − xT

j β. Set v0 = vθ0 , v0,i,j = vθ0,i,j .
Recalling the definition of V̇θ given by (4.1), we define accordingly

v̇θ = ∂vθ

∂θ
=

⎧⎪⎪⎨⎪⎪⎩
(
λ−2 {λyλ log y − yλ + 1

}
−x

)
if λ �= 0(

(log y)2/2
−x

)
if λ = 0

,

and we define v̇θ,i,j , v̇0 similarly.
Let {Zi}i=1,...,n be our observations; recall that we have the following defini-

tion in Section 3:

Ĝθ(t) = 1
n

n∑
i=1

I(Y (λ)
i −XT

i β ≤ t) = 1
n

n∑
i=1

I(Vθ,i ≤ t)

F̂θ(t) =
{
Ĝθ(t) ∨ n−2

}
∧ (1 − n−2).

Let F̂0(t) = F̂θ0(t).
The proof has three main steps.

Step 1: Consistency of θ̂

In Step 1, we show that
θ̂ − θ0 = op(1). (7.1)

To this end, we define

M(θ) =
∫ {

F0(y(λ0)
2 − xT

1 β0) − Fθ

(
y
(λ)
2 − xT

1 β
)}2

dFX(x1)dFY (y2).

Then, based on the arguments in [38], to show (7.1), we need only to show that

(i) M(θ̂) = op(1);
(ii) M(θ) = 0 implies that θ = θ0;
(iii) M(θ) is continuous in θ ∈ Θ.

Note that (ii) holds because of Condition 4 and (iii) holds based on Condition 2.
We need to show (i): it follows from Lemmas 1 and 2 given below, which are
Lemmas 9 and 10 of the supplementary document. Therefore, the proof of Step
1 is complete.
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We need the following notation:

γ1(y,x;F, λ, β) = 4

⎧⎪⎨⎪⎩
√√√√√ Fθ

(
y(λ) − xTβ

)
F0

(
y(λ0) − xTβ0

) − 1

⎫⎪⎬⎪⎭ ,

γ2(y,x;F, λ, β) = 4

⎧⎪⎨⎪⎩
√√√√√ 1 − Fθ

(
y(λ) − xTβ

)
1 − F0

(
y(λ0) − xTβ0

) − 1

⎫⎪⎬⎪⎭ .

Lemma 1. Assume Conditions 1 and 2. We have∫ {
F0(y(λ0)

2 − xT
1 β0) − Fθ̂

(
y
(λ̂)
2 − xT

1 β̂
)}2

dFX(x1)dFY (y2)

≤
∫ {

I(y1 ≤ y2)γ1(y2,x1; F̂ , λ̂, β̂) + I(y1 > y2)γ2(y2,x1; F̂ , λ̂, β̂)
}

×
{
dFX,Y (x1, y1)dFX,Y (x2, y2) − dFX,Y (x1, y1)dFX,Y (x2, y2)

}
+ op(1).

Lemma 2. Assume Conditions 1 and 2. We have∫ {
I(y1 ≤ y2)γ1(y2,x1; F̂ , λ̂, β̂) + I(y1 > y2)γ2(y2,x1; F̂ , λ̂, β̂)

}
×
{
dFX,Y (x1, y1)dFX,Y (x2, y2) − dFX,Y (x1, y1)dFX,Y (x2, y2)

}
= op(1).

Step 2: Root n consistency of θ̂

In Step 2, we apply Lemma 3 below to show that
√
n
(
θ̂ − θ0

)
= Op(1). (7.2)

This lemma is adapted from Theorem 3.4.1 of [37].

Lemma 3. For each n, let Mn and Mn be stochastic processes indexed by Θ.
Let 0 ≤ δn < η be arbitrary. Suppose that for every n and δn < δ ≤ η

sup
δ/2<‖θ−θ0‖2≤δ,θ∈Θ

Mn(θ) −Mn(θ0) � −δ2; (7.3)

E∗

[
sup

δ/2<‖θ−θ0‖2≤δ,θ∈Θ

√
n
{

(Mn −Mn)(θ) − (Mn −Mn)(θ0)
}+
]
� φn(δ), (7.4)

for functions φn such that δ → φn(δ)/δτ is decreasing on (δn, η), for some τ < 2.
Let rn � δ−1

n satisfy

r2
nφn

(
1
rn

)
≤

√
n, for every n. (7.5)

If θ̂n takes its values in Θ and satisfies Mn(θ̂) ≥ Mn(θ0)−Op(r−2
n ) and ‖θ̂−θ‖2

converges to zero in probability, then rn‖θ̂ − θ‖2 = O∗
p(1).
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Recalling that

�(λ, β) =
n∑

j=1

n∑
i=1

[
Ii,j log F̂θ(Vθ,j,i) + (1 − Ii,j) log

{
1 − F̂θ(Vθ,j,i)

}]
,

we define

�̃(λ, β) =
n∑

j=1

n∑
i=1

[Ii,j logFθ(Vθ,j,i) + (1 − Ii,j) log {1 − Fθ(Vθ,j,i)}] .

Accordingly,

�(λ0, β0) =
n∑

j=1

n∑
i=1

[
Ii,j log F̂0(V0,j,i) + (1 − Ii,j) log

{
1 − F̂0(V0,j,i)

}]
,

�̃(λ0, β0) =
n∑

j=1

n∑
i=1

[Ii,j logF0(V0,j,i) + (1 − Ii,j) log {1 − F0(V0,j,i)}] .

We will apply Lemma 3 to show (7.2). According to Lemma 3, Mn(θ) and Mn(θ)
are defined to be

Mn(θ) = 1
n2 �(λ, β)

Mn(θ) = 1
n2E

{
�̃(θ)
}

= E [Ii,j log {Fθ(Vθ,j,i)} + (1 − Ii,j) log {1 − Fθ(Vθ,j,i)}] .

Then, based on the definition of θ̂,

Mn(θ̂) ≥ Mn(θ0),

and we have shown the consistency of θ̂ in Step 1. To apply Lemma 3 to show
the root n consistency of β̂, we need to specify “δn, η, τ”, and verify (7.3) and
(7.4). Furthermore, for φn(δ) from (7.4), we need to verify that it satisfies (7.5)
for rn =

√
n and that φn(δ)/δτ is decreasing on (δn, η).

Note that (7.3) is verified by Lemma 4, which is Lemma 12 of the supple-
mentary document. To verify (7.4), we decompose

(Mn −Mn)(θ) − (Mn −Mn)(θ0)

= 1
n2

(
�̃(λ, β) −E

{
�̃(λ, β)

}
−
[
�̃(λ0, β0) − E

{
�̃(λ0, β0)

}])
+ 1

n2

[
�(λ, β) − �̃(λ, β) −

{
�(λ0, β0) − �̃(λ0, β0)

}]
. (7.6)

In Lemma 5, which is Lemma 13 of the supplementary document, we verify that
for any δ < η0,

E

(
sup

θ∈Θ,‖θ−θ0‖2≤δ

∣∣∣�̃(λ, β) − E
{
�̃(λ, β)

}
−
[
�̃(λ0, β0) − E

{
�̃(λ0, β0)

}]∣∣∣)
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� n + n3/2δ. (7.7)

Moreover, in Lemma 6, which is Lemma 14 of the supplementary document, we
show that

E

(
sup

θ∈Θ,‖θ−θ0‖2≤δ

[
�(λ, β) − �̃(λ, β) −

{
�(λ0, β0) − �̃(λ0, β0)

}]+)
� n

(
1 +
√

lognδα + δα
√

− log δ
)

+ n3/2δ. (7.8)

Combining (7.6)–(7.8), we verify (7.4) with

φn(δ) = 1 +
√

lognδα + δα
√
− log δ√

n
+ δ,

for α ∈ (0, 0.25). We then have that δ → φn(δ)/δ1.5 is decreasing for δ ∈ (δn, η2)
for some small η2 > 0, where δn is defined in the proof of Lemma 14 in the
supplementary document. In particular, δn = n−1/{2(1−α)} satisfies δ−1

n >
√
n.

Now set η = min{η0, η1, η2} so that it plays the role of “η” in Lemma 3, where
η0 is given by Condition 2 and η1 is defined by (74) in the proof of Lemma 14 in
the supplementary document. Clearly, rn =

√
n satisfies (7.5). We have finished

checking the conditions for Lemma 3, and this completes the proof of Step 2.

Lemma 4. Assume Condition 2. For any δ ∈ (0, η0), we have

sup
δ/2<‖θ−θ0‖2≤δ,θ∈Θ

Mn(θ) −Mn(θ0) � −δ2.

Lemma 5. Assume Conditions 1 and 2. For any δ ∈ (0, η0), we have

E

(
sup

‖θ−θ0‖2≤δ

∣∣∣�̃(λ, β)−E
{
�̃(λ, β)

}
−
[
�̃(λ0, β0) − E

{
�̃(λ0, β0)

}]∣∣∣) � n+n3/2δ.

Lemma 6. Assume Conditions 1–3. We have

E

(
sup

θ∈Θ,‖θ−θ0‖2≤δ

[
�(λ, β) − �̃(λ, β) −

{
�(λ0, β0) − �̃(λ0, β0)

}]+)
� n

(
1 +
√

lognδα + δα
√

− log δ
)

+ n3/2δ,

for some α ∈ (0, 0.25) and δn < δ < min(η0, η1) with δn = n−1/{2(1−α)}, η0
given by Condition 2, and η1 defined by (74) in the proof of this lemma (i.e.,
Lemma 14 in the supplementary document).

Step 3: Asymptotic normality of θ̂

In Step 3, we establish the asymptotic normality of θ̂. In particular, we aim to
show that √

n(θ̂ − θ0) � N(0,Σ), (7.9)
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where Σ = 1
4Σ−1

1 Σ2Σ−1
1 with Σ1 and Σ2 defined by (4.4) and (4.5) respectively.

We need Lemma 7 below, which is adapted from Theorem 14.1 in [24]; see
also Theorem 3.2.2 in [37].

Lemma 7. Let Wn, W be stochastic processes indexed by a metric space H, such
that Wn � W in L∞(H) for every compact H ⊂ H. Suppose also that almost
all sample paths h �→ M(h) are upper semicontinuous and possess a unique
maximum at a (random) point ĥ, which as a random map in H is tight. If the
sequence ĥn is uniformly tight and satisfies Wn(ĥn) ≥ suph∈H Wn(h) − op(1),
then ĥn � ĥ in H.

We apply the argmax theorem above to show (7.9). Denote ĥn =
√
n(θ̂− θ0)

and let h = (h1, h
T
2 )T , θn,h = θ0+h/

√
n, λn,h = λ0+h1/

√
n, βn,h = β0+h2/

√
n.

Define
Wn(h) = 1

n
{�(θn,h) − �(θ0)} .

Clearly, ĥn is the maximizer of Wn(h), and therefore Wn(ĥn) ≥ suph∈Rp+1 Wn(h).
In Step 2, we have shown that ĥn is uniformly tight.

For H an arbitrary compact subset of Rp+1, consider the process

Wn(h) = 1
n
{�(θh,n) − �(θ0)} = Wn,1(h) + Wn,2(h), (7.10)

with h ∈ H, where

Wn,1(h) = 1
n

[
�(θn,h) − �(θ0) −

{
�̃(θn,h) − �̃(θ0)

}]
,

Wn,2(h) = 1
n

{
�̃(θn,h) − �̃(θ0)

}
.

We consider Wn,1(h) and Wn,2(h) separately. For Wn,2(h), we show in Lemma 9,
which is Lemma 17 of the supplementary document, that∥∥Wn,2(h) −

(
hT

Gnϕ− hTΣ1h
)∥∥

h∈H
= op(1), (7.11)

where ϕ(·) is defined by (4.2) and Σ1 by (4.4). For Wn,1(h), we have

Wn,1(h) = 1
n

[
�(θh,n) − �(θ0) −

{
�̃(θh,n) − �̃(θ0)

}]
= 1

n

n∑
j=1

n∑
i=1

Ii,j log
{
F̂θn,h

(Vθn,h,j,i)F0(V0,j,i)
F̂0(V0,j,i)Fθn,h

(Vθn,h,j,i)

}

+ 1
n

n∑
j=1

n∑
i=1

(1 − Ii,j) log

⎧⎨⎩
(
1 − F̂θn,h

(Vθn,h,j,i)
)

(1 − F0(V0,j,i))(
1 − F̂0(V0,j,i)

)
(1 − Fθn,h

(Vθn,h,j,i))

⎫⎬⎭
= I5 + I6. (7.12)
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Consider I5. By the Taylor expansion for log x at x = 1, we have

I5 = 1
n

n∑
j=1

n∑
i=1

Ii,j

{
F̂θn,h

(Vθn,h,j,i)F0(V0,j,i)
F̂0(V0,j,i)Fθn,h

(Vθn,h,j,i)
− 1
}

− 1
n

n∑
j=1

n∑
i=1

Ii,j
1

2ξn,h,i,j

{
F̂θn,h

(Vθn,h,j,i)F0(V0,j,i)
F̂0(V0,j,i)Fθn,h

(Vθn,h,j,i)
− 1
}2

,

where ξn,h,i,j is between
F̂θn,h

(Vθn,h,j,i)F0(V0,j,i)
F̂0(V0,j,i)Fθn,h

(Vθn,h,j,i)
and 1. Based on Lemma 8, which

is Lemma 8 of the supplementary document, and Condition 2, when n is suffi-
ciently large, we have

sup
1≤i,j≤n;h∈H

|ξn,h,i,j − 1| ≤ sup
1≤i,j≤n;h∈H

∣∣∣∣∣ F̂θn,h
(Vθn,h,j,i)F0(V0,j,i)

F̂0(V0,j,i)Fθn,h
(Vθn,h,j,i)

− 1

∣∣∣∣∣→ 0

in probability. This implies that

sup
1≤i,j≤n;h∈H

1
ξn,h,i,j

= 1
1 − o∗p(1) ,

where o∗p(1) is uniform in 1 ≤ i, j ≤ n and h ∈ H. Therefore,∣∣∣∣∣∣I5 −
1
n

n∑
j=1

n∑
i=1

Ii,j

{
F̂θn,h

(Vθn,h,j,i)F0(V0,j,i)
F̂0(V0,j,i)Fθn,h

(Vθn,h,j,i)
− 1
}∣∣∣∣∣∣

� n

1 − o∗p(1) sup
z∈Z,h∈H

∣∣∣∣∣ F̂θn,h
(vθn,h

)F0(vθ0)
F̂0(vθ0)Fθn,h

(vθn,h
)
− 1

∣∣∣∣∣
2

.

This together with Lemmas 10 and 11, which are Lemmas 18 and 19 in the
supplementary document, leads to

sup
h∈H

∣∣I5 −
√
nGn {f1,n,h(·)}

∣∣ = op(1), (7.13)

where f1,n,h(·) comes from Lemma 11 and is given by

f1,n,h(z) = E

{
F0(V0,2,1)

Fθn,h
(Vθn,h,2,1)

I
(
vθn,h

≤ Vθn,h,2,1
)
− I (v0 ≤ V0,2,1)

}
. (7.14)

Using exactly the same derivation, we can verify that

sup
h∈H

∣∣I6 −
√
nGn {f2,n,h(·)}

∣∣ = op(1), (7.15)

with

f2,n,h(z)
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= E

[
1 − F0(V0,2,1)

1 − Fθn,h
(Vθn,h,2,1)

{
1 − I

(
vθn,h

≤ Vθn,h,2,1
)}

−{1−I (v0 ≤ V0,2,1)}
]
.

Combining (7.12), (7.13), and (7.15) we have

sup
h∈H

∣∣Wn,1(h) −
√
nGn {f1,n,h(·) + f2,n,h(·)}

∣∣ = op(1). (7.16)

Furthermore, noting that for any constant C, GnC = 0, we have

Gn {f1,n,h(·) + f2,n,h(·)} = Gnψn,h(·), (7.17)

where

ψn,h(z) = E

[{
F0(V0,2,1)

Fθn,h
(Vθn,h,2,1)

− 1 − F0(V0,2,1)
1 − Fθn,h

(Vθn,h,2,1)

}
I
(
vθn,h

≤ Vθn,h,2,1
)]

= E

[
F0(V0,2,1) − Fθn,h

(Vθn,h,2,1)
Fθn,h

(Vθn,h,2,1)
{
1 − Fθn,h

(Vθn,h,2,1)
}I (vθn,h

≤ Vθn,h,2,1
)]

.

Then, based on Lemma 12, which is Lemma 20 in the supplementary document,
we have

E
∥∥√nGnψn,h(z) − hT

Gnψ(z)
∥∥
h∈H

= o(1), (7.18)
where

ψ(z) = −E

[
Ḟ0(V0,2,1) + F ′

0(V0,2,1)V̇0,2,1

F0(V0,2,1) {1 − F0(V0,2,1)}
I (v0 ≤ V0,2,1)

]
,

as defined by (4.3). Combining (7.16), (7.17), and (7.18) we have

sup
h∈H

∣∣Wn,1(h) − hT
Gnψ(z)

∣∣ = op(1). (7.19)

This combined with (7.10) and (7.11) gives

sup
h∈H

∣∣Wn(h) − hT
Gn(ϕ + ψ) + hTΣ1h

∣∣ = op(1).

Furthermore, by the central limit theorem and the fact that Σ2 is invertible
(Condition 5), we have

Gn(ϕ + ψ) � N(0,Σ2), (7.20)
where Σ2 is given by (4.5). Now define W(h) = hTN − hTΣ1h where N is
a random vector following the N(0,Σ2) distribution; then W(h) has a unique
maximum at ĥ = 0.5Σ−1

1 N since Σ1 is invertible (Condition 5). Combining
(7.19) and (7.20), we have Wn(h) � W(h), which indicates that W(h) plays the
role of “W(h)” in Lemma 7. This immediately leads to (7.9) by an application
of Lemma 7. Our proof is complete.

Lemma 8. Assume Conditions 1 and 2. For any δ ∈ (0, η0), we have, for
large n,

√
nE

{
sup

‖θ−θ0‖2≤δ;t∈T
|F̂θ(t) − Fθ(t)|

}
� 1,
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√
nE

{
sup

‖θ−θ0‖2≤δ;t∈T
|F̂θ(t) − Fθ(t)|2

}
� 1/

√
n.

Lemma 9. Assume Conditions 1 and 2. We have∥∥∥∥ 1
n

{
�̃(θn,h) − �̃(θ0)

}
−
(
hT

Gnϕ− hTΣ1h
)∥∥∥∥

h∈H

= op(1),

where ϕ(·) is defined by (4.2) and Σ1 is defined by (4.4).

Lemma 10. Assume Conditions 1 and 2. We have

sup
z∈Z,h∈H

∣∣∣∣∣ F̂θn,h
(vθn,h

)F0(vθ0)
F̂0(vθ0)Fθn,h

(vθn,h
)
− 1

∣∣∣∣∣ = op(n−1/2).

Lemma 11. Assume Conditions 1 and 2. We have

sup
h∈H

∣∣∣∣∣∣ 1n
n∑

j=1

n∑
i=1

Ii,j

{
F̂θn,h

(Vθn,h,j,i)F0(V0,j,i)
F̂0(V0,j,i)Fθn,h

(Vθn,h,j,i)
− 1
}

−
√
nGn {f1,n,h(·)}

∣∣∣∣∣∣
= op(1),

where f1,n,h(·) is defined by (7.14).

Lemma 12. Assume Conditions 1–3. We have

E
∥∥√nGnψn,h(z) − hT

Gnψ(z)
∥∥
h∈H

= o(1),

where

ψn,h(z) = E

[
F0(V0,2,1) − Fθn,h

(Vθn,h,2,1)
Fθn,h

(Vθn,h,2,1)
{
1 − Fθn,h

(Vθn,h,2,1)
}I (vθn,h

≤ Vθn,h,2,1
)]

;

ψ(z) = −E

[
Ḟ0(V0,2,1) + F ′

0(V0,2,1)V̇0,2,1

F0(V0,2,1) {1 − F0(V0,2,1)}
I (v0 ≤ V0,2,1)

]
.

Note that the definition of ψ(z) complies with (4.3).
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