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Abstract

[BYY19] established central limit theorems for geometric statistics of point processes
having fast decay of dependence. As limit theorems are of limited use unless we
understand their errors involved in the approximation, in this paper, we consider the
rates of a normal approximation in terms of the Wasserstein distance for statistics of
point processes on Rd satisfying fast decay of dependence. We demonstrate the use
of the theorems for statistics arising from two families of point processes: the rarified
Gibbs point processes and the determinantal point processes with kernels decaying
fast enough.
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1 Introduction

Random events in space and time can be represented as point processes, and statistics
arising from such random events are often of the form

∑
x∈Υ∩A η(x,Υ), where Υ is a

point process on Rd, A ⊂ Rd is a bounded Borel set, and η is a real valued function
defined on (x,Υ). The function η(x,Υ) is often called a score function, and it represents
the interaction between the point at x and the point process Υ. The form dates back to
[BHH59, S81] with Υ as a binomial point process and [AB93] with Υ being a Poisson
point process. As the density of points or the size of the observation window A increases,
various limit theorems of the functionals have been established since then, see, e.g.,
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Convergence rate for geometric statistics of point processes

[S12, S16, LSY19] and references therein. If η(x,Υ) = 1x∈Υ and Υ is an α-determinantal
point process with some condition on α, [S02, ST03, NS12] proved that the counting
statistics are asymptotically normal. The asymptotic normality also holds when the input
process Υ is a Gibbsian point process [SY13, XY15]. The common feature leading to these
limit theorems is the local dependence [CS04, p. 133] in the sense that each summand is
affected by a small neighbourhood only, hence making a nearly independent contribution
to the statistics of interest. More generally, when the underlying point process Υ is
a stationary point process and has fast decay of dependence, and the score function
η(x,Υ) is determined by points of Υ not too far away from x, it is possible to establish
central limit theorems for such statistics [BYY19]. In this paper, we aim to quantify the
errors associated with the limit theorems in [BYY19] because the limit theorems are of
limited practical value unless we understand the magnitude of the errors involved in the
approximation of these statistics. To the best of our knowledge, the only quantified error
bounds for the normal approximation to geometric functionals driven by non-Poisson
and non-binomial point processes are in [SY13, XY15] for a Gibbs point process input,
in [CRX21] for a Ginibre point process input, and [F20] for a Gibbs or determinantal
point process input. For the Gibbs point process input, the Poisson-like property plays
the pivotal role, and for the Ginibre point process input, the proof relies on the special
structure of its first order Palm processes. [F20] can be viewed as a sequential work of
[BYY19] with conditions too onerous to satisfy in applications.

The local influence of the score function η can be controlled through the concept of
stabilisation [BX01, PY01, PY03, PY05, P07a, P07b, SY13, XY15]. As the distribution of a
simple point process is determined by its correlation functions [BYY19, p. 840], the fast
decay of dependence of the input simple point process can be controlled by the fast decay
of its correlations [BYY19, Definition 1.2]. The proofs of the limit theorems in [BYY19]
hinge on the Marcinkiewicz theorem [S02, Lemma 3] and the method of cumulants. The
Marcinkiewicz theorem is a handy tool to prove the central limit theorems, but when we
aim for the errors of approximation, it seems impractical to use the cumulants to control
the errors because these quantities are hard to obtain in applications. For error bounds
under the setup in [BYY19], [F20] assumed variance and moment growth conditions
which are hard to verify for unbounded score functions with a non-Poisson input. For
this reason, we impose the condition of the decay of dependence through the β-mixing
coefficient in Assumption 2.0 Exponential Decay of Dependence (EDD), which is slightly
stronger than the condition based on the α-mixing coefficient used in [BYY19].

We use the Palm theory of point processes [K83, §10.1] and Stein’s method for
the normal approximation [S72, CGS11] to establish the bounds. Stein’s method was
pioneered by [S72] for normal approximation of dependent random variables, and it
was subsequently adapted to deal with Poisson approximation [C75], Poisson process
approximation [B88, BB92], multivariate normal approximation [G91], and many other
distributional approximations, see, e.g., [S86, BHJ92, CGS11]. The logic flow of the
proof is: (1) to employ Stein’s method to transform the comparison of the distribution
of the sum and the normal distribution into the assessment of the differences between
the sum and a functional form of the sum; (2) with controllable costs, to apply the
stabilising condition to truncate the summands and remove the segments having long-
range dependence on the point configuration, and, (3) to use the fast decay of dependence
of the point process for the remaining parts of the summands so that they make nearly
independent contributions to the sum. For a large class of stationary simple point
processes, it is possible to work with their first order Palm distributions. However,
except in some special cases, higher order Palm distributions [K83, p. 110] are generally
beyond our reach. To avoid conditions of the Palm distributions of all orders imposed
in [BYY19], our bounds are in terms of the first order Palm distributions at the cost of
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Convergence rate for geometric statistics of point processes

higher moments. The edge effects of the score functions play a significant role in the
error bounds. Our score functions allow a variety of edge effects, including those studied
in [BYY19].

In Section 2, we introduce the definitions and concepts that are needed in the paper,
and state the main theorems. We will show in Section 3 that the Gibbs point processes
with nearly finite range potentials, a class of the determinantal point processes with
kernels decaying fast enough, the r-dependent point processes and the Boolean models
all possess the EDD property. In Section 4, we demonstrate the use of the theorems for
statistics arising from the rarified Gibbs point processes and the determinantal point
processes with kernels decaying fast enough. For ease of reading, we postpone the
proofs of the main results to Section 5.

The asymptotic normality depends on the lower bound of the variance of the statistics,
and showing the order of the variance is itself an interesting but hard topic [BYY19, (1.26)
and Remark (iii) after Theorem 1.14]. In an attempt to recover the volume order of the
variances, we obtained Theorem 2.12, which is an analogue of [BYY19, Theorem 1.15].

2 General results

To start with, we recall the definition of the marked point processes on (Rd,B(Rd))

with marks in a measurable space (T,T ), where Rd is equipped with the Euclidean norm
‖ · ‖ and the Borel σ-algebra B(Rd), and T is a σ-algebra on T . Let S := Rd × T be
equipped with the product σ-field S := B(Rd)×T . We use CS to denote the space of
all locally finite (with respect to the first coordinate in Rd) non-negative integer-valued
measures ξ, often called configurations, on S such that ξ({x}×T ) ≤ 1 for all x ∈ Rd. The
space CS is endowed with the σ-field CS generated by the vague topology [K83, p. 169].
A marked point process Ξ on Rd is a measurable mapping from (Ω,F ,P) to (CS ,CS)

[K17, p. 49]. The induced point process Ξ(·) := Ξ(· × T ) is called the ground process
[DV08, p. 3] or projection [K17, p. 17] of the marked point process Ξ on Rd. The point
process Ξ is simple, i.e., P(Ξ({x}) ∈ {0, 1} for all x ∈ Rd) = 1. We use Mx to denote the
mark of Ξ at x for x ∈ Ξ.

For a marked point process Ξ, let ΞA be the restriction of Ξ to A × T defined as
ΞA(B ×D) := Ξ((A∩B)×D), and let Ξx be the shifted point process of Ξ by −x defined
as Ξx(B×D) := Ξ((B+x)×D) for all x ∈ Rd, D ∈ T and A, B ∈ B(Rd). We say that the

marked point process Ξ is stationary if Ξ
d
= Ξx for all x ∈ Rd, where

d
= stands for ‘equal

in distribution’. To avoid using the Palm distributions of all orders and all cumulants in
the approximation bounds, in this paper, the fast decay of dependence of the marked
point process Ξ is quantified through its β-mixing coefficient [VR59, R17] (also known
as strong mixing coefficient [I82]): for A1, A2 ∈ B(Rd) such that A1 ∩A2 = ∅,

βA1,A2 :=
1

2

∫
ζ1∈CA1×T

∫
ζ2∈CA2×T

|P (ΞA1 ∈ dζ1,ΞA2 ∈ dζ2)− P (ΞA1 ∈ dζ1)P (ΞA2 ∈ dζ2)|

=dTV

(
L (ΞA1∪A2

),L (ΞA1
+ Ξ̃A2

)
)
,

where here and in the following, Ξ̃ denotes the independent copy of Ξ, CAi×T and CAi×T
are defined in the same way as CS and CS with S replaced by Ai × T , i = 1, 2.

To define the decay of dependence, we set diam(A) := sup{‖x − y‖; x, y ∈ A},
d(A,B) := inf{‖x− y‖;x ∈ A, y ∈ B} for A,B ∈ B(Rd), where we used the convention
sup{∅} = 0 and inf{∅} =∞. We use ∨ to stand for the maximum.

Assumption 2.0 Exponential Decay of Dependence
We say that the marked point process Ξ has the exponential decay of dependence

(EDD) if there exist constants θ0 ∈ R0 := [0,∞), θi ∈ R+ := (0,∞), 1 ≤ i ≤ 4, such that
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for any A, B ∈ B(Rd) with d(A,B) ≥ θ3 ln(diam(A) ∨ diam(B) ∨ θ4),

βA,B ≤ θ1(diam(A)θ0 ∨ 1)(diam(B)θ0 ∨ 1)e−θ2d(A,B). (2.1)

The idea of the EDD is that the total variation distance between the law of (ΞA,ΞB)

and the law of the independent union of ΞA and ΞB decays exponentially fast as the
distance between A and B becomes large.

The following lemma says that, in applications, it is sometimes more convenient to
verify the EDD via the volumes of the sets. To this end, let Vol(A) denote the volume of
the set A ∈ B(Rd).

Remark 2.1. If there exist constants θ′0 ∈ R0, θ′i ∈ R+, 1 ≤ i ≤ 4, such that for any A,
B ∈ B(Rd) with d(A,B) ≥ θ′3 ln(Vol(A) ∨Vol(B) ∨ θ′4),

βA,B ≤θ′1(Vol(A)θ
′
0 ∨ 1)(Vol(B)θ

′
0 ∨ 1)e−θ

′
2d(A,B)

=θ′1e
θ′0 ln((Vol(A)∨1)(Vol(B)∨1))−θ′2d(A,B),

then Ξ satisfies the EDD. This can be easily checked using the property that when d is

given, Vol(A) ≤ πd/2

2dΓ( d2 +1)
diam(A)d.

Remark 2.2. The constants θ4 in the definition of the EDD and θ′4 in Remark 2.1 are
not essential, and they can be replaced by any positive constants because the definition
of β-mixing coefficient ensures that β is non-decreasing in the sense of inclusion, i.e.,
βA,B ≤ βA′,B′ for all A,A′, B,B′ ∈ B(Rd) such that A ⊂ A′ and B ⊂ B′.

Let Ξ be a stationary marked point process on S with independent and identically
distributed (i.i.d.) marks that satisfies the EDD. Write the law of Ξ as L (Ξ) and the law
of the independent marks as LT . The functionals we study in the paper are defined

on Γα :=
[
− 1

2α
1
d , 1

2α
1
d

]d
, the cube with volume α on Rd centred at 0, having respective

forms
Wα :=

∑
(x,m)∈ΞΓα

η((x,m) ,Ξ)

and
W̄α :=

∑
(x,m)∈ΞΓα

η((x,m) ,ΞΓα ,Γα) =
∑

(x,m)∈ΞΓα

η((x,m) ,Ξ,Γα).

The function η is called a score function (resp. restricted score function), i.e., a mea-
surable function mapping (S ×CS ,S × CS) to (R,B (R)) (resp. a function mapping
S × CΓα×T ×B(Rd) to R which is (S ×CΓα×T ,S × CΓα×T ) to (R,B (R)) measurable
when the third coordinate is fixed), which represents the interaction between a point
with its mark and the configuration of the point process. The class of score functions
considered here is broader than that considered in [BYY19]. More precisely, if the score
function for the restricted case does not depend on the third argument, it reduces to
that in [BYY19]. Because the interest is in the values of the score function of the points
in a configuration, for convenience, η ((x,m),X ) (resp. η ((x,m),X ,Γα)) is understood
as 0 for all x ∈ Rd and X ∈ CS such that (x,m) /∈X .

We need Palm processes and reduced Palm processes for stating the conditions and
constructing proofs. For ease of reading, we briefly recall their definitions. Let H
be a Polish space with Borel σ-algebra B (H) and configuration space (CH ,CH), let Υ

be a point process on (H,B (H)) and write the mean measure of Υ as EΥ. The point
processes {Υx : x ∈ H} are said to be the reduced Palm processes associated with Υ if
for any measurable function f : (H ×CH ,B (H)× CH)→ (R0,B(R0)),

E

[∫
H

f(x,Υ)Υ(dx)

]
=

∫
H

Ef(x,Υx + δx)EΥ(dx), (2.2)
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[K83, § 10.1], where δx is the Dirac measure at x. The distributions of Υx and Υx + δx
are respectively called the reduced Palm distribution and the Palm distribution of Υ at x.
When the point process Υ is simple, the Palm distribution of Υx + δx can be interpreted
as the conditional distribution of Υ given Υ({x}) = 1 [K83, § 10.1].

For the stationary marked point process Ξ, since the marks are independent of each
other and the ground process, we can adapt (2.2) to the marked point process Ξ. For
f : (S ×CS ,S × CS) → (R0,B(R0)), recalling that Mx is the mark of Ξ at the point
x ∈ Ξ, we have

E

[∫
Rd
f((x,Mx),Ξ)Ξ(dx)

]
=

∫
Rd
Ef((x,M),Ξx + δ(x,M))λdx, (2.3)

where M ∼ LT , λ := E
[
Ξ(Γ1)

]
is the intensity of Ξ, Ξx is the point process obtained

by attaching the reduced Palm process Ξx of Ξ with i.i.d. marks following LT , and
M is independent of Ξx. Without loss of generality, we use the convention that Mx

is independent of Ξx throughout the paper. Hence, when we need to emphasise the
location of the mark, we can replace M with Mx on the right hand side of (2.3).

The following assumptions are adapted from those in [CX24], which were initiated in
[PY01] and further refined by [XY15].

Assumption 2.1 Stabilisation
For a locally finite configuration X and z ∈ S ∪ {∅}, write X *z+ = X if z = ∅ and

X *z+ = X ∪ {z} otherwise. We use B(x, r) to stand for the ball with centre x and radius
r ≥ 0.

Definition 2.3 (unrestricted case). A score function η on S is range-bounded (resp.
exponentially stabilising) with respect to L (Ξ) if for all x ∈ Rd, z ∈ S ∪ {∅}, and almost
all realisations X of the marked point process Ξx, there exists a radius of stabilisation

R := R(x) := R((x,mx),X *z+) ∈ (0,∞),

such that for all locally finite Y ⊂ (Rd\B(x,R))× T , we have

R
(

(x,mx) ,
[
X *z+ ∩ (B(x,R)× T )

]
∪ Y

)
=R

(
(x,mx) ,X *z+ ∩ (B(x,R)× T )

)
,

η
(

(x,mx) ,
[
X *z+ ∩ (B(x,R)× T )

]
∪ Y

)
=η
(

(x,mx) ,X *z+ ∩ (B(x,R)× T )
)
,

and the tail probability

τ(t) := sup
(x,mx)∈Rd×supp(LT)

sup
z∈S∪{∅}

P
(
R((x,mx),Ξ*z+

x + δ(x,mx)) ≥ t
)

satisfies τ(t) = 0 for some t > 0 (resp. τ(t) ≤ C1e
−C2t for all t > 0, where C1 and C2 are

positive constants independent of t).

Here and in the following, we write R or R(x) (resp. R̄ or R̄(x) in Definition 2.4) only
if it will not cause any confusion. The definition ensures that {R((x,mx),X *z+) ≤ t} is
determined by XB(x,t) for all x ∈ Rd and t ∈ R+.

For the functionals with the input of a restricted marked point process, we have the
following counterpart of stabilisation. Note that the score function for the restricted
input is not affected by points outside Γα.

Definition 2.4 (restricted case). We say that the score function η is range-bounded
(resp. exponentially stabilising) with respect to L (Ξ) if for α ∈ R+, x ∈ Γα, and
z ∈ (Γα×T )∪{∅}, almost all realisations X of the marked point process Ξx, there exists
a radius of stabilisation

R̄ := R̄(x, α) := R̄((x,mx), α,X *z+) ∈ (0,∞)
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such that for all locally finite Y ⊂ (Γα\B(x,R))× T , we have

R̄
(

(x,mx) ,
[
X

*z+
Γα
∩
(
B(x, R̄)× T

)]
∪ Y ,Γα

)
= R̄

(
(x,mx) ,X

*z+
Γα
∩
(
B(x, R̄)× T

)
,Γα

)
,

η
(

(x,mx) ,
[
X

*z+
Γα
∩
(
B(x, R̄)× T

)]
∪ Y ,Γα

)
= η

(
(x,mx) ,X

*z+
Γα
∩
(
B(x, R̄)× T

)
,Γα

)
,

and the tail probability

τ̄(t) := sup
(x,mx)∈Rd×supp(LT)

sup
α∈R+

sup
z∈(Γα×T )∪{∅}

P
(
R̄((x,mx), α,Ξ*z+

x + δ(x,mx)) ≥ t
)

satisfies τ̄(t) = 0 for some t > 0 (resp. τ̄(t) ≤ C1e
−C2t for all t > 0, where C1 and C2 are

some positive constants independent of t).

As in the unrestricted case, the definition ensures that {R̄((x,mx), α,X *z+) ≤ t} is a
function of XB(x,t)∩Γα for all x ∈ Rd and α, t ∈ R+.

Assumption 2.2 Translation Invariance
We write d(x,A) := inf{d(x, y); y ∈ A}, A ± B := {x ± y; x ∈ A, y ∈ B} for x ∈ Rd

and A,B ∈ B
(
Rd
)
. Recall that the shift operator is defined as Ξx(·×D) := Ξ((·+x)×D)

for all x ∈ Rd, D ∈ T .
Unrestricted Case: We define the translation-invariance for the unrestricted case as

in [PY01].

Definition 2.5. The score function η is translation invariant if for all locally finite
configuration X , x ∈ Rd and m ∈ T , η((0,m),X ) = η((x,m),X x) =: g(X )1(0,m)∈X .

Here, g(X ) is not affected by m since η ((x,m),X ) is understood as 0 if (x,m) /∈X .
Restricted Case: As a translation may send a configuration to the outside of Γα,

resulting in a completely different configuration inside Γα, it is necessary to focus on the
part that affects the score function. Therefore, we expect the score function to take the
same value for two configurations if the parts within their stabilising radii are completely
inside Γα and one is a translation of the other. More precisely, we have the following
definition.

Definition 2.6. A stabilising score function η with stabilisation radius R̄ is called transla-
tion invariant if for any α > 0, x ∈ Γα and X ∈ CS such that R̄((x,m), α,X ) ≤ d(x, ∂Γα),
where ∂A stands for the boundary of A, then η ((x,m),X ,Γα) = η ((x′,m),X ′,Γα′) and
R̄((x′,m), α′,X ′) = R̄((x,m), α,X ) for all α′ > 0, x′ ∈ Γα′ and X ′ ∈ CS such that

R̄((x′,m), α′,X ′) ≤ d(x′, ∂Γα′) and
(
X ′
B(x′,R̄((x,m),α,X ))

)x′
=
(
XB(x,R̄((x,m),α,X ))

)x
.

Noting that there is a tacit assumption of consistency in Definition 2.6, which implies
that if η is translation invariant in Definition 2.6, then there exists a ḡ : CS → R such
that

lim
α→∞

η ((0,m),X ,Γα) = ḡ (X )1(0,m)∈X

for LT almost all m ∈ T and almost all realisations X of the marked point process
Ξ. The existence of the limit ḡ ensures a mapping between a restricted score function
satisfying the translation-invariance in Definition 2.6 and its unrestricted counterpart.

Definition 2.7. For each restricted score function η that is translation-invariant as in
Definition 2.6, define η̄ as

η̄((x,m),X ) = ḡ(X x)1(x,m)∈X

for all (x,m) ∈ S and X ∈ CS.

It is not hard to check that, for any translation invariant score function η, the
function η̄ in Definition 2.7 is a translation invariant score function as in Definition 2.5
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and R((x,m),X ) = limα→∞ R̄((x,m), α,X ) is its stabilising radius. Consequently, η̄ is
range-bounded (resp. exponentially stabilising) in the sense of Definition 2.3 if η is
range-bounded (resp. exponentially stabilising) in the sense of Definition 2.4. Moreover,
if B(x,R(x)) ⊂ Γα, then R̄(x, α) = R(x), and if B(x,R(x)) 6⊂ Γα, then R̄(x, α) > d(x, ∂Γα),
but there is no definite relationship between R̄ and R.

Assumption 2.3 Moment condition
We need moment conditions of both the marked point process Ξ and the score

function η. We say that the marked point process Ξ satisfies the kth moment condition if
there exists a nonempty open set B ⊂ Rd such that

E
(
Ξ(B)k

)
<∞. (2.4)

For the score function η, there are two cases to consider.
Unrestricted Case: The score function η is said to satisfy the kth moment condition if

E
[∣∣η ((0,M0),Ξ0 + δ(0,M0)

)∣∣k] <∞. (2.5)

Restricted Case: The score function η is said to satisfy the kth moment condition if
there exists a positive constant C such that

sup
α∈R+

sup
x∈Γα

E
[∣∣η ((x,Mx), (Ξx)Γα + δ(x,Mx)

)∣∣k] ≤ C. (2.6)

One can verify that if η is exponentially stabilising and satisfies (2.6), then its induced
η̄ in Definition 2.7 satisfies the moment condition of the same order in the sense of (2.5).

Assumption 2.4 Variance Condition
The speed of convergence of the normal approximation is determined by the order of

Var(Wα) or Var(W̄α). We formulate the bounds of approximation errors in terms of the
following variance conditions. If f1 and f2 are two functions satisfying

lim inf
x→∞

f1(x)/f2(x) > 0,

then we write f1(x) = Ω(f2(x)) as x→∞.
Unrestricted Case: Var(Wα) = Ω(αν) for some ν ∈ ( 2

3 , 1] as α→∞.
Restricted Case: Var(W̄α) = Ω(αν) for some ν ∈ ( 2

3 , 1] as α→∞.
The above conditions are clear, but in many cases, we need to establish the order of

Var(Wα) or Var(W̄α). If we have the following conditions, we can prove that the variances
Var(Wα) and Var(W̄α) have the same order as the volume α, cf. [BYY19, (1.22)].

Unrestricted Case: The unrestricted score function is said to satisfy the variation
condition if

σ2 :=E
(
η((0,M0),Ξ0 + δ(0,M0))

2
)
λ

+ E

(∫
Γ1

∫
Rd\{x}

(
η((y,My),Ξ)Ξ(dy)− Pdy

) (
η((x,Mx),Ξ)Ξ(dx)− Pdx

))
=E

(
η((0,M0),Ξ0 + δ(0,M0))

2
)
λ

+
E
(∫
Rd\{0}

(
η((x,Mx),Ξ)Ξ(dx)− Pdx

) (
η((0,M0),Ξ)Ξ(d0)− Pd0

))
d0

> 0, (2.7)

where f(d0)
d0 := limε↓0

1
ε f(Γε) if the limit is well defined, P := λE(η((0,M0),Ξ0 + δ(0,M0))).

Restricted Case: We establish the following variation condition when the score
function is exponentially stabilising. The restricted score function η satisfies the variation
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condition if it is exponentially stabilising, and the corresponding η̄ satisfies

σ̄2 :=E
(
η̄((0,M0),Ξ0 + δ(0,M0))

2
)
λ

+ E

(∫
Γ1

∫
Rd\{x}

(
η̄((y,My),Ξ)Ξ(dy)− P̄ dy

) (
η̄((x,Mx),Ξ)Ξ(dx)− P̄ dx

))
=E

(
η̄((0,M0),Ξ0 + δ(0,M0))

2
)
λ

+
E
(∫
Rd\{0}

(
η̄((x,Mx),Ξ)Ξ(dx)− P̄ dx

) (
η̄((0,M0),Ξ)Ξ(d0)− P̄ d0

))
d0

> 0, (2.8)

where P̄ := λE(η̄((0,M0),Ξ0 + δ(0,M0))).
In the proof of Theorem 2.12 and Remark 5.12, we can see that under the conditions

of Theorem 2.12, the variation condition (2.7) (resp. (2.8)) holds if and only if Var(Wα) =

Ω(α) (resp. Var(W̄α) = Ω(α)).
The above variation conditions are still generally difficult to verify, we refer the

interested readers to the discussion at Remark (iii) of [BYY19, Theorem 1.14].
With these assumptions, we can establish the convergence rate in terms of the

Wasserstein distance defined as

dW (X,Y ) := sup
h∈FLip

E (h(X)− h(Y )) , (2.9)

where FLip is the set of all Lipschitz functions h on R such that |h(x)− h(y)| ≤ |x− y|
for all x, y ∈ R. Our main result for Wα (unrestricted case) is summarised below.

Theorem 2.8. Assume that the score function η is translation invariant in Definition 2.5
and satisfies the sixth moment condition (2.5), Ξ satisfies the EDD, the fifth moment
condition (2.4) and Var(Wα) = Ω(αν) for some ν ∈ ( 2

3 , 1] as α→∞.

(i) If η is range-bounded as in Definition 2.3, then

dW

(
Wα − EWα√

Var(Wα)
, Z

)
≤ O

(
α−

3
2ν+1

)
.

(ii) If η is exponentially stabilising as in Definition 2.3, then

dW

(
Wα − EWα√

Var(Wα)
, Z

)
≤ O

(
α−

3
2ν+1 ln(α)5d

)
.

Remark 2.9. When the variation condition (2.7) holds instead of the variance condition

Var(Wα) = Ω(αν), Theorem 2.8 holds with ν = 1, i.e., dW

(
Wα−EWα√

Var(Wα)
, Z

)
≤ O

(
α−

1
2

)
when η is range-bounded and dW

(
Wα−EWα√

Var(Wα)
, Z

)
≤ O

(
α−

1
2 ln(α)5d

)
when η is exponen-

tially stabilising.

The restricted case is of interest in many applications. By adapting the conditions
accordingly, we can show that the main result for W̄α (restricted case) also holds.

Theorem 2.10. Assume that the score function η is translation invariant in Definition 2.6
and satisfies the sixth moment condition (2.6), Ξ satisfies the EDD, the fifth moment
condition (2.4) and Var(W̄α) = Ω(αν) for some ν ∈ ( 2

3 , 1] as α→∞.

(i) If η is range-bounded as in Definition 2.4, then

dW

(
W̄α − EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

3
2ν+1

)
.
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(ii) If η is exponentially stabilising as in Definition 2.4, then

dW

(
W̄α − EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

3
2ν+1 ln(α)5d

)
.

Remark 2.11. If the variation condition (2.8) holds instead of the variance condition

Var(W̄α) = Ω(αν), Theorem 2.10 holds with ν = 1, i.e., dW

(
W̄α−EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

1
2

)
when η is range-bounded and dW

(
W̄α−EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

1
2 ln(α)5d

)
when η is exponen-

tially stabilising.

We write f1 = Θ(f2) if f1 = Ω(f2) and f2 = Ω(f1). Then in terms of the order of
Var(W̄α) and Var(Wα), we have the following results, which can be regarded as the
counterparts of [BYY19, Theorem 1.15].

Theorem 2.12. (a) (unrestricted case) Assume that Ξ satisfies the EDD and the fifth
moment condition (2.4), and the score function η satisfies the sixth moment condi-
tion (2.5). If η is exponentially stabilising in Definition 2.3, translation invariant in
Definition 2.5 and σ2 > 0, then Var(Wα) = Θ(α).

(b) (restricted case) Assume that Ξ satisfies the EDD and the fifth moment condi-
tion (2.4), and the score function η satisfies the sixth moment condition (2.6). If η
is exponentially stabilising in Definition 2.4, translation invariant in Definition 2.6
and σ̄2 > 0, then Var(W̄α) = Θ(α).

The proofs of the main and auxiliary results are postponed to Section 5, and we turn
our attention to the EDD point processes and applications of the main results first.

3 EDD point processes

The cornerstone model of point processes is the Poisson point process, where points
behave independently in different regions, and it is obvious that a Poisson point process
satisfies the EDD. A variety of extensions from Poisson point processes have been
developed to capture dependent random structures in the literature, and many of such
extensions are covered in [DV03, DV08]. In particular, significant development has been
made in the determinantal point processes and the Gibbs point processes [SKM95, S00,
BGMSS05, DV03, D19]. The connections between the two classes were investigated
in [GY05]. Both classes have also been well assessed for statistical inferences [MW04,
MW07, LMR15]. In this section, we show that the Gibbs point processes with nearly
finite range potentials, the determinantal point processes with kernels decaying fast
enough, the r-dependent point processes and the Boolean models all satisfy the EDD.
Moreover, we also show that the finite superposition of EDD point processes again
satisfies EDD.

3.1 Rarified Gibbs point process

For ease of reading, we briefly introduce the idea of perfect simulation in [SY13,
Section 3] for the infinite volume Gibbs point processes with nearly finite range potentials
Ψ. To this end, let Ψ be a [0,∞] valued functional on the finite configuration space
CRd,b := {ξ ∈ CRd : ξ(Rd) < ∞} satisfying i) translation invariant: Ψ(X ) = Ψ(x + X )

for all x ∈ Rd and X ∈ CRd,b; ii) rotation invariant: Ψ(X ) = Ψ(X ′) for all X ∈ CRd,b
and all rotations X ′ of X ; iii) non-decreasing: Ψ(X ) ≤ Ψ(X ′) for all X ,X ′ ∈ CRd,b
such that X ⊂ X ′; iv) non-degenerate: Ψ({x}) < ∞ for all x ∈ Rd. Let Dn := [−n, n]d

for n ∈ N := {1, 2, . . . }, ΨD(X ) := Ψ(X ∩D) for D ∈ B(Rd), PβΨ and PβΨ
D denote the
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Gibbs point process with inverse temperature β > 0 and potential Ψ and ΨD respectively.
Write ∆(0,X ) := ∆Ψ(0,X ) := Ψ(X ∪ {0}) − Ψ(X ), 0 6∈ X , with ∞ −∞ := 0, and
assume that ∆(0,X ) satisfies

∆[r](0,X ∩Br(0)) ≤ ∆(0,X ) ≤ ∆[r](0,X ∩Br(0))

for some non-negative, translation invariant functions ∆[r] and ∆[r], and ∆[r] and ∆[r]

are assumed to be respectively increasing and decreasing in r. We say βΨ has a nearly
finite range if there exists a decreasing continuous function ψ(β) : R+ → [0, 1] satisfying
that ψ(β)(0) = 1, ψ(β)(r) decays exponentially fast in r and

e−β∆[r](0,X ∩Br(0)) − e−β∆[r](0,X ∩Br(0)) ≤ ψβ(r)

for all r > 0 and X ∈ CRd . [SY13] established that the class of Gibbs point processes
having a nearly finite range βΨ includes

i) the point process with a pair potential function Ψ(X ) =
∑
x 6=y φ(‖x − y‖), where

φ : [0,∞)→ [0,∞) has a compact support or

φ(r)

{
≤ K1 exp(−K2r), r ∈ [r0,∞),

=∞, r ∈ (0, r0),

for constants K1, K2 ∈ R+;

ii) the point process defined by the continuum Widom-Rowlinson model for spheres of
type A having centres X and spheres of type B having centres Y :

Ψ(X ∪ Y ) =

{
α1card(X ) + α2card(Y ) + α3, d(X ,Y ) > 2a,

∞, otherwise,

where card(X ) is the cardinality of X , a is the common radii of the spheres and
αi’s are positive constants;

iii) the area interaction point process with

Ψ(X ) = Vol (∪x∈X (x+K)) + α1card(X ) + α2,

where αi’s are positive constants and K is a fixed compact convex set;

iv) the hard-core process with

Ψ(X ) =

{
α1card(X ) + α2, infx,y∈X ,x 6=y |x− y| ≥ r0,

∞, infx,y∈X ,x 6=y |x− y| < r0,

where r0 and αi’s are positive constants.

Moreover, extensions of the point process with a pair potential function have been
developed in [G99, RMO18, F22] to detect multivariate interactions in spatial point
patterns, and most of these extensions have nearly finite range potentials. [SY13,
Section 3.3] states that the infinite volume Gibbs point process PβΨ exists and is the
thermodynamic limit of PβΨ

Dn
. The next lemma says that PβΨ also satisfies the EDD.

Lemma 3.1. The Gibbs point process PβΨ with a nearly finite range potential satisfies
the EDD.

Proof. Using the idea of perfect simulation introduced in [FFG02] and [SY13, Sections 3.2
& 3.3], we can construct a stationary homogeneous free birth and death process {ρ(t)}t∈R
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such that ρ(t)
d
= PβΨ for all t. For B ∈ B(Rd), define the ancestor clan AβΨ

B (0) =: AβΨ
B

with respect to the process {ρ(t)}t∈R as the accepted births in ρ(0) ∩B, their ancestors,
the ancestors of their ancestors and so forth. From the construction, ρ(0) ∩ A and
ρ(0) ∩B are conditionally independent given AβΨ

A ∩AβΨ
B = ∅. [SY13, (3.6)] states that

the ancestor clan AβΨ
B satisfies that for all r ∈ R+,

P
[
diam(AβΨ

B ) ≥ r + diam(B)
]
≤ C(Vol(B) ∨ 1) exp(−r/C)

for some positive constant C depending on the distribution of the process PβΨ only.
Noting that the ancestor clan AβΨ

B starts from the accepted births in ρ(0)∩B, if ρ(0)∩B 6=
∅, then AβΨ

B ∩B 6= ∅, which ensures that if B is a cube in Rd with centre x and diagonal
length diam(B) := 2r, then by the rotation invariance, there is a constant C such that

P
[
AβΨ
B * B(x, 3r + r′)

]
≤ C(rd ∨ 1) exp(−r′/C) (3.1)

for all r′ ∈ R+.
For two bounded sets A, B ∈ B(Rd) with d(A,B) =: r0, without loss of generality,

we assume that r0 ≥ 1. Let Ξ
d
= PβΨ and {ρ̃(t)}t∈R be an independent copy of {ρ(t)}t∈R.

Since ρ(0)∩A and ρ(0)∩B are conditionally independent given AβΨ
A ∩A

βΨ
B = ∅, we have

βA,B

=dTV (ρ(0) ∩ (A ∪B), (ρ(0) ∩A) ∪ (ρ̃(0) ∩B))

=dTV

(
ρ(0) ∩ (A ∪B), (ρ(0) ∩A) ∪ (ρ̃(0) ∩B)

∣∣∣AβΨ
A ∩AβΨ

B = ∅
)
P(AβΨ

A ∩AβΨ
B = ∅)

+ dTV

(
ρ(0) ∩ (A ∪B), (ρ(0) ∩A) ∪ (ρ̃(0) ∩B)

∣∣∣AβΨ
A ∩AβΨ

B 6= ∅
)
P(AβΨ

A ∩AβΨ
B 6= ∅)

≤P(AβΨ
A ∩AβΨ

B 6= ∅). (3.2)

Since A and B are bounded, diam(A) and diam(B) are finite. We can find a set of
disjoint cubes {Ci,j}i∈{1,2},0≤j≤ni with diagonal length r0

16 such that A ⊂ ∪j≤n1
C1,j and

B ⊂ ∪j≤n2
C2,j for positive integers n1 ≤ C1(diam(A) ∨ 1)dr−d0 and n2 ≤ C1(diam(B)d ∨

1)r−d0 . Write the centre of Ci,j as ci,j . Then for any j1 ≤ n1, j2 ≤ n2, d(C1,j1 ,C2,j2) ≥
d(A,B)− (diam(C1,j1) + diam(C2,j2)) = 7r0

8 , it follows from (3.1) with 2r = r′ = r0
16 that

P(AβΨ
C1,j1

∩AβΨ
C2,j2

6= ∅)

≤P
(
AβΨ
C1,j1

* B

(
c1,j1 ,

5r0

32

))
+ P

(
AβΨ
C2,j2

* B

(
c2,j2 ,

5r0

32

))
≤C2r

d
0 exp(−C3r0) (3.3)

for some positive constants C2 and C3 independent of j1 and j2. Also, from the definition
of the ancestor clans, if a set B is covered by a class of sets {B1, . . . , Bn}, then AβΨ

B ⊂
∪i≤nAβΨ

Bi
. Together with (3.2) and (3.3), we have

βA,B ≤P(AβΨ
A ∩AβΨ

B 6= ∅)

≤P
((
∪j1≤n1A

βΨ
C1,j1

)
∩
(
∪j2≤n2A

βΨ
C2,j2

)
6= ∅
)

≤
∑
j1≤n1

∑
j2≤n2

P
(
AβΨ
C1,j1

∩AβΨ
C2,j2

6= ∅
)

≤n1n2C2r
d
0 exp(−C3r0) ≤ C2

1C2(diam(A)d ∨ 1)(diam(B)d ∨ 1) exp(−C3r0),

which completes the proof.
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Lemma 3.1 ensures that Theorem 2.12 is applicable to all geometric statistics arising
from a Gibbs point process PβΨ with a nearly finite range potential. In Section 4, we
demonstrate its use in two examples: the total edge length of a k-nearest neighbour
graph and the total timber volume in a given range of forest.

3.2 Determinantal point process

The determinantal point processes are a broad class of point processes such that
the distributions can be characterised by the determinants of given functions. More
precisely, we say that Ξ is a determinantal point process on space Rd with kernel K if it
is a simple point process on Rd with the joint intensities given by

ρn(x1, . . . , xn) = det [K(xi, xj)]1≤i,j≤n

for n ∈ N and x1, . . . , xn ∈ Rd [GY05]. These processes are widely used in random matrix
theory and mathematical physics.

If there is a covariance function K0 on R such that K(x, y) = K0(x−y) for all x, y ∈ R,
then the corresponding determinantal point process is stationary [LMR15, Section 3]. By
[LMR15, Theorem 1] and [BL16], there exists a class of continuous complex covariance
functions K0 such that the corresponding determinantal point processes exist, and
[LMR15, §3.3] further states that when K0 is supported on [−r, r] for some positive
constant r, then the corresponding determinantal point process Ξ satisfies that ΞA and
ΞB are independent for d(A,B) ≥ r, i.e., it is r-dependent as defined in Section 3.3,
hence it is an EDD process. In fact, this is a special case of fast decaying kernels. The
next lemma says that the determinantal point process satisfies the EDD if its kernel
function decays fast enough.

Lemma 3.2. If the kernel K of the determinantal point process Ξ satisfies ‖K‖∞ :=

supx,y∈Rd |K(x, y)| < ∞ and there exist constants Ci ∈ R+, 1 ≤ i ≤ 4, such that

|K(x, y)| ≤ C1e
−C2e

C3|x−y| for all x, y ∈ Rd such that ‖x − y‖ ≥ C4, then Ξ is an EDD
point process.

Proof. We use Remark 2.1 to prove the claim. Let pA = Vol(A) and pB = Vol(B), [P19,
Theorem 4.1] states that

βA,B ≤ 2pApB(1 + 2pA‖K‖∞)(1 + 2pB‖K‖∞)e2(pA+pB)‖K‖∞ω (d(A,B))
2
, (3.4)

where ω(r) := sup|x−y|≥r |K(x, y)|. It is easy to see that

1 + 2pA‖K‖∞ ≤ 3(pA ∨ 1)(‖K‖∞ ∨ 1) and 1 + 2pB‖K‖∞ ≤ 3(pB ∨ 1)(‖K‖∞ ∨ 1),

hence

2pApB(1 + 2pA‖K‖∞)(1 + 2pB‖K‖∞) ≤ 18(‖K‖2∞ ∨ 1)(p2
A ∨ 1)(p2

B ∨ 1). (3.5)

For the remaining part, we take C5 =
(

1 ∨ 2
C3

)(
1 ∨ ln

(
4‖K‖∞
C2

))
, then there exists an

r0 ∈ R+ such that s := d(A,B) ≥ C5 ln s for all s ≥ r0. Set θ′3 = C5 ∨ r0, θ′4 = e and
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Θ = pA ∨ pB ∨ e, if s ≥ θ′3 ln Θ, then

e2(pA+pB)‖K‖∞ω (d(A,B))
2

≤ C2
1e

4Θ‖K‖∞ exp
{
−2C2e

C3s
}

≤ C2
1e

4Θ‖K‖∞ exp
{
−C2e

C3C5 ln Θ − C2e
C3C5 ln s

}
= C2

1e
4Θ‖K‖∞ exp

{
−C2ΘC3C5 − C2s

C3C5
}

≤ C2
1e

4Θ‖K‖∞ exp
{
−C2Θ1+0.5C3C5 − C2s

}
≤ C2

1e
4Θ‖K‖∞ exp

{
−C2Θe

ln
(

4‖K‖∞
C2

)
− C2s

}
= C2

1e
−C2s, (3.6)

hence the EDD follows from combining (3.4), (3.5), (3.6) and applying Remark 2.1 with
θ′0 = 2, θ′1 = 18C2

1 (‖K‖2∞ ∨ 1) and θ′2 = C2.

Lemma 3.2 ensures that Theorem 2.12 is also applicable to all geometric statistics and
the timber volume arising from a determinantal point process with its kernel satisfying
the conditions in Lemma 3.2.

Now, we consider two more models that satisfy the EDD so that Theorem 2.12 can be
applied to geometric statistics driven by these point processes.

3.3 r-dependent point process

A point process Ξ on Rd is said to be r-dependent if for any Borel sets A, B ∈ B(Rd)

with distance d(A,B) ≥ r, ΞA and ΞB are independent. The definition implies that
βA,B = 0 for d(A,B) ≥ r, hence the following lemma is trivial.

Lemma 3.3. An r-dependent point process satisfies the EDD.

One example of the r-dependent point processes is the Matérn hard-core process
[DV03, p. 298]. Let Ξ′ :=

∑
i∈N δXi be a homogeneous Poisson point process on Rd. Then

we can construct a hard-core Poisson process by setting Ξ :=
∑
i∈N δXi1B(Xi,r/2)∩Ξ′={Xi},

then for any Borel sets A, B ∈ B(Rd) with distance d(A,B) ≥ r, σ(ΞA) ⊂ σ(Ξ′B(A,r/2))

is independent of σ(ΞB) ⊂ σ(Ξ′B(B,r/2)), where B(A, r′) := {x : d(x,A) < r′} for all

A ∈ B(Rd) and r′ ∈ R+, so Ξ is r-dependent.

3.4 Boolean model

The Boolean model is a special class of the germ-grain model (see, for example,
[HM99]). We call a point process Ξ = ∪n∈N(Xn + Ξ(n)) a germ-grain model, where
the grains {Ξ(n)}n∈N are i.i.d. point processes and germs {Xn} are independent of
{Ξ(n)}n∈N and form a stationary point process Ξ′ :=

∑
n∈N δXn . A germ-grain model is

called the Boolean model [DV03, p. 206] or the Poisson cluster process [D13, p. 101] if
Ξ′ is Poisson.

For the Boolean model, assume that Ξ(n)’s are bounded, that is, there exists some
r ∈ R+ such that P(Ξ(n) ∩B(0, r)c = ∅) = 1, then for any Borel sets A, B ∈ B(Rd) with

distance d(A,B) ≥ 4r, σ(ΞA) ⊂ σ
({

Ξ′B(A,r),Ξ(n) such that Xn ∈ B(A, r)
})

is indepen-

dent of σ(ΞB), so Ξ is a (4r)-dependent process and, consequently, it satisfies the EDD.
More generally, we have the following conclusion.

Lemma 3.4. For the Boolean model defined above, if there exist positive constants r0,
C1 and C2 such that P(Ξ(n)∩B(0, r)c 6= ∅) ≤ C1 exp(−C2r) for all r ≥ r0, then Ξ satisfies
the EDD.
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Proof. Since βA1,A2
is a non-decreasing function in the sense of inclusion (see Re-

mark 2.2), without loss of generality, we take A1 and A2 as two balls with centres O1

and O2, radii r1 and r2, set R = d(A1, A2), and we assume R ≥ 4r0. For the points Xi

in Ai contributed by Ξ(n) with its germ Xn ∈ B(Oi, ri +R/4) and Ξ(n) ∩B(0, R/4)c = ∅,
these points Xi and their dependents are in B(Oi, ri + R/2), so X1 and X2 are inde-
pendent. In other words, the contribution of dependent points is from those violating
these conditions. By abuse of notation, we write Ξ(x) as the grain of the germ at x ∈ Ξ′,

V (r) = πd/2

Γ(1+d/2)r
d as the volume of the ball with radius r, and add up the probabilities of

all possible cases leading to dependent points in A1 and A2 to get

βA1,A2
≤

2∑
i=1

∫
B(Oi,ri+R/4)

P (Ξ(x) ∩B(0, R/4)c 6= ∅)EΞ′(dx)

+

2∑
i=1

∫
B(Oi,ri+R/4)c

P (Ξ(x) ∩B(0, ‖x−Oi‖ − ri)c 6= ∅)EΞ′(dx)

≤
2∑
i=1

C1λe
−C2R/4V (ri +R/4) +

2∑
i=1

∫ ∞
ri+R/4

C1λe
−C2(r−ri)dV (r)

≤C3e
−C2R/4(R ∨ r1 ∨ r2 ∨ 1)d,

for C3 ∈ R+, where λ = EΞ′(d0)/d0. Choose R0 ≥ 1 ∨ (4r0) such that R
lnR ≥

8d
C2

for all

R ≥ R0, set θ4 = eR0 , θ3 = 1, then for R ≥ ln((2r1) ∨ (2r2) ∨ θ4), we have

βA1,A2 ≤ C3((2r1)d ∨ 1)((2r2)d ∨ 1)e−C2R/8,

which implies (2.1) with θ0 = d, θ1 = C3, θ2 = C2/8.

3.5 Finite superposition of independent EDD point processes

From the definition, the superposition of a sequence of point processes on the same
carrier space is again a point process, which is the counterpart of the sum of random
variables for point processes. Similar to the property introduced in [BYY19, F20], the
superposition of finitely many independent EDD point processes still satisfies the EDD.

Lemma 3.5. Let Ξ1, Ξ2, . . . , Ξn be n independent point processes on Rd satisfying EDD,
then Ξ := ∪1≤i≤nΞi also satisfies EDD.

Proof. Assume that the coefficients of Ξj in (2.1) are θ0,j ∈ R0, θi,j ∈ R+, 1 ≤ i ≤ 4,
1 ≤ j ≤ n, then Ξ satisfies EDD with coefficients θi := max1≤j≤n θi,j , i ∈ {0, 1, 3, 4} and
θ2 := min1≤j≤n θ2,j .

Note that the superposition of n i.i.d. determinantal point processes is called n-
determinantal point process; if each component satisfies EDD, the n-determinantal point
process also satisfies EDD according to Lemma 3.5.

4 Applications

The asymptotic behaviour of geometric functionals has been of considerable interest
in the last three decades, and our main normal approximation results can be applied
to a large class of geometric functionals on various random graphs, including the k-
nearest neighbour graph, the Voronoi graph, the sphere of influence graph, the Delaunay
triangulation, the Gabriel graph and the relative neighbourhood graph [D88, T82] with
vertices driven by a point process satisfying the EDD. The idea of checking the conditions
can be adapted from those introduced in [PY01, CX24].
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The limit theory of geometric functionals with determinantal point process input
or Gibbs point process input is investigated in [BYY19]. Error bounds of a normal
approximation in terms of the Kolmogorov distance for the geometric functions with
Gibbsian input were derived in [XY15]. To illustrate the use of the main results in
Section 2, we bound the errors of a normal approximation to the total edge length in
the k-nearest neighbour graph with vertices forming a rarified Gibbs point process or a
determinantal point process with a fast decaying kernel. We also bound the error of a
normal approximation to the total timber volume in a given range of forest with trees
following a marked Gibbs point process.

4.1 The total edge length of k-nearest neighbour graphs

The k-nearest neighbour graph NG(X ) with respect to a configuration X ∈ CRd is
a graph with vertices X and edges {x, y} such that y is one of the k points nearest to x
or x is one of the k points nearest to y in X . A variant NG′ (X ) of the NG(X ) can be
constructed by inserting directed edges x→ y if y is one of the k nearest neighbours of
x instead of the undirected edges in NG(X ). As in [SY13], we take the score function
η(x,X ,Γα) (resp. η′(x,X ,Γα)) as one half the sum of the edge lengths of edges in
NG (Γα ∩ (X ∪ {x})) (resp. NG′ (Γα ∩ (X ∪ {x}))) which are incident to x, and set

W̄α =
∑
x∈ΞΓα

η(x,Ξ,Γα) and W̄ ′α =
∑
x∈ΞΓα

η′(x,Ξ,Γα). (4.1)

We now state the error bounds for a normal approximation of the total edge lengths W̄α

and W̄ ′α of NG (ΞΓα) if Ξ follows PβΨ or a determinantal point process with fast decay
of dependence.

Theorem 4.1. (a) If Ξ is an infinite range Gibbs point process with nearly finite range
potential, then

dW

(
W̄α − EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

1
2 ln(α)5d

)
.

The statement holds if W̄α is replaced by W̄ ′α in (4.1).

(b) If Ξ is a determinantal point process with continuous kernel K satisfying the
conditions in Lemma 3.2, and the total edge length W̄α satisfies Var(W̄α) = Ω(αν)

for some ν > 2
3 , then

dW

(
W̄α − EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

3
2ν+1 ln(α)5d

)
.

The statement holds true if W̄α is replaced by W̄ ′α in (4.1).

Remark 4.2. [XY15] proved that a normal approximation error of Wα :=
∑
x∈ΞΓα

η(x,Ξ,

Γ∞) in terms of the Kolmogorov distance can be bounded above by O
(
α−

1
2 ln(α)2d

)
,

which is slightly better than the error bound for W̄α in terms of the Wasserstein distance
in Theorem 4.1 (a).

Proof of Theorem 4.1. We only show the claims for the undirected case, and the directed
case can be handled using the same idea. In this case, the total edge length W̄α can be
represented as

η (x,X ,Γα) :=
1

2

∑
y∈XΓα

‖y − x‖1{(x,y)∈NG(XΓα )}.
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The score function η is translation invariant according to the construction, and the EDD
is ensured by Lemma 3.1 for (a) and Lemma 3.2 for (b). To apply Theorem 2.10, we need
to check the stabilising condition as in Definition 2.4, the moment conditions (2.4), (2.6)
and the order of Var(W̄α).

(a) According to Lemma 3.3 in [SY13], the Gibbs point process Ξ is Poisson-like, which
means that Ξ is stochastically dominated by a Poisson point process on Rd with intensity
λ′ > 0, and there exist strictly positive constants C := C(λ′) and r1 such that for all
r ≥ r1, x ∈ Rd and X ∈ CRd\B(x,r), the conditional probability that B(x, r) is not hit by
Ξ given ΞB(x,r)c = X satisfies that

P
[
ΞB(x,r) = ∅

∣∣ΞB(x,r)c = X
]
≤ e−Cr

d

. (4.2)

Consequently, the fifth moment condition (2.4) of Ξ is ensured by the Poisson-like
property and the moment property of the Poisson point process.

To examine the remaining conditions, for simplicity, we take d = 2 and follow the
proof of Theorem 3.1 in [CX24] using the idea initiated in [PY01] to achieve the purpose.
For completeness, we recap the main steps in [CX24]. For x ∈ Γα and t > 0, we carve
the disk with centre x and radius t into six disjoint circular sectors Tj(t), 1 ≤ j ≤ 6, of
the same size with x as the centre and π

3 as their central angle. The sectors are rotated
around x such that all straight edges of the sectors have at least the minimal angle π/12

with respect to the edges of Γα. Let Tj(∞) = ∪t>0Tj(t) for 1 ≤ j ≤ 6 and define

tx,α(Ξx) = inf{t : card(Tj(t) ∩ Γα ∩ Ξx) ≥ k + 1 or Tj(t) ∩ Γα = Tj(∞) ∩ Γα, 1 ≤ j ≤ 6}

and R̄ (x, α) = 3tx,α(Ξx + δx). It was demonstrated in [CX24] that R̄ is a radius of
stabilisation. For the tail distribution of R̄, let At be an obtuse triangle with the longest
side length t and two angles π/12 and π/3, define τ := inf{t : card(Ξx ∩ At) ≥ k + 1},
then [CX24] established that P

(
R̄ (x, α) > t

)
≤ 6P (τ > t/3). We can find a constant

C1 ∈ R+ such that there are k + 1 disjoint disks {B1, . . . , Bk+1} of radius C1t such that
∪k+1
i=1Bi ⊂ At/3. Using the Poisson-like property (4.2), we obtain

P
(
R̄ (x, α) > t

)
≤ 6P (τ > t/3)

≤ 6P
(
card(Ξx ∩At/3) ≤ k

)
≤ 6P

(
∪k+1
i=1 {Ξx ∩Bi = ∅}

)
≤ 6(k + 1)e−C(C1t)

2

, (4.3)

which ensures the exponential stabilisation in Definition 2.4. For the moment condi-
tion (2.6), we again make use of the proof of Theorem 3.1 in [CX24] that

η (x, (Ξx)Γα + δx) ≤ 3.5ktx,α(Ξx + δx). (4.4)

Since R̄ (x, α) = 3tx,α(Ξx), (4.3) implies

sup
α∈R+

sup
x∈Γα

P (tx,α(Ξx + δx) > t) ≤ 6(k + 1)e−C(3C1t)
2

for all t > 0. This ensures supα∈R+
supx∈Γα E (tx,α(Ξx + δx))

6
< ∞ and the moment

condition (2.6) is an immediate consequence of (4.4). Finally, we establish (2.8). To this
end, define

η̄ (x,X ) :=
1

2

∑
y∈X

‖y − x‖1{(x,y)∈NG(X )},

and W̄∞,α =
∑
x∈ΞΓα

η̄(x,Ξ), then we can apply [XY15, Theorem 1.1] to obtain (2.8). The
proof of (a) is completed by applying Theorem 2.10 (ii) and Remark 2.11.
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(b) Since the kernel K is continuous and fast-decreasing [BYY19, p. 842], it follows
from Section 2.2.2 and Section 2.1, Remark (i) of [BYY19] that E

(
Ξ(B)k

)
is finite for all

bounded B ∈ B(Rd) and all k ∈ N, which ensures the fifth moment condition (2.4) of Ξ.
To apply Theorem 2.10, as the order of Var(W̄α) is assumed, it remains to check the

stabilising condition as in Definition 2.4 and the moment condition (2.6). For simplicity,
we again take d = 2. Following the same argument as that for (4.3) and applying
Lemma 5.6 of [BYY19, Supplement], we obtain

P
(
R̄ (x, α) > t

)
≤ 6P

(
∪k+1
i=1 {Ξx ∩Bi = ∅}

)
≤ 6(k + 1)e1/8−K(0,0)π(C1t)

2/8, (4.5)

which implies the exponential stabilisation as in Definition 2.4. For the moment condi-
tion (2.6), we again use the relationship R̄ (x, α) = 3tx,α(Ξx) and (4.5) to get

sup
α∈R+

sup
x∈Γα

P (tx,α(Ξx + δx) > t) ≤ 6(k + 1)e1/8−K(0,0)π(3C1t)
2/8

for all t > 0. The tail behaviour of tx,α(Ξx + δx) and (4.4) ensure that

sup
α∈R+

sup
x∈Γα

E
(
η (x, (Ξx)Γα + δx)

6
)
≤ (3.5k)6 sup

α∈R+

sup
x∈Γα

E
(
tx,α(Ξx + δx)6

)
<∞.

The proof of (b) is completed by applying Theorem 2.10 (ii) and Remark 2.11.

4.2 The timber volume of a forest with Gibbs point process tree locations

Marks play an important role when it is necessary to classify the points. For example,
in insurance, marks may be introduced to represent the types of claims [ZS22]; in
thinning [DV03, p. 32], marks may be used to stand for the points retained and discarded.
In this subsection, we consider the total timber volume in a random forest [CX24,
Section 3.3], where marks are used to label the species of the trees. The estimation
of the total timber volume in a given range is of great interest in forest science and
forest management [C80, LBHS15]. When modelling the natural forest, it is reasonable
to assume the locations of trees form a Gibbs point process Ξ, such as a Poisson point
process or a hard-core process. As the contribution of the timber volume from different
species of trees varies, we use marks to classify the species. That is, for x ∈ Ξ, let
Mx ∈ T := {1, . . . , n} to be the species of the tree at position x. We can assume that
the marks are independent of other marks and the locations Ξ. Then Ξ :=

∑
x∈Ξ δ(x,Mx)

forms a marked Gibbs point process recording the locations and species of trees in a
forest. We can model the timber volume of the tree at location x by a function of the
location, the species of the tree and the configuration of trees in a finite range around x,
adjusted by a quantity εx due to other unspecified factors. Formally speaking, the timber
volume of a tree at location x can be denoted by (η((x,m) ,ΞΓα ,Γα) + εx) ∨ 0, where η is
a non-negative bounded score function such that

η((x,m) ,ΞΓα ,Γα) = η((x,m) ,ΞΓα∩B(x,r),Γα)

for some positive constant r and

η((x,m) ,ΞB(x,r),Γα1
) = η((x,m) ,ΞB(x,r),Γα2

)

for all α1 and α2 with B(x, r) ⊂ Γα1∧α2 . Then we have the following result analogous to
[CX24, Theorem 3.3].

Theorem 4.3. If Ξ is an infinite range Gibbs point process with a nearly finite range
potential, εx’s are i.i.d. random variables with the sixth moment being finite and the
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positive part ε+x := εx ∨ 0 is non-degenerate (i.e., Var(ε+x ) > 0), and εx’s are independent
of Ξ, then the timber volume in the range Γα is

W̄α :=
∑
x∈ΞΓα

(η((x,m) ,ΞΓα ,Γα) + εx) ∨ 0

and it satisfies

dW

(
W̄α − EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

1
2

)
.

Proof. The proof is adapted from [CX24, Theorem 3.3]. We can construct a new marked
Gibbs point process Ξ′ :=

∑
x∈Ξ δ(x,(Mx,εx)) by replacing the marks {Mx}x∈Ξ̄ of Ξ by i.i.d.

marks {(Mx, εx)}x∈Ξ̄ on the space (T ×R,T ×B(R)) independent of the ground process

Ξ
′

= Ξ. The fifth moment condition (2.4) of Ξ′ follows from the Poisson-like property, as
shown in the proof of Theorem 4.1 (a), and the EDD is ensured by Lemma 3.1. As W̄α

can be represented as the sum of the score function

η′((x, (m, εx)),Ξ′,Γα) :=η′((x, (m, εx)),Ξ′Γα ,Γα)

:= [(η((x,m) ,ΞΓα ,Γα) + εx) ∨ 0]1(x,(m,εx))∈Ξ′Γα
,

the translation invariant property and the range-boundedness are direct results of the
construction, the sixth moment condition (2.6) is guaranteed by the boundedness of η,
the moment condition of εx’s and the Minkowski inequality. Now, we can apply [XY15,
Theorem 1.1] again to get Var(W̄α) = Ω(α), and the proof is then completed by applying
Theorem 2.10 (i).

Remark 4.4. As discussed in [CX24, Remark 3.2], if the timber volume is determined by
its k-nearest neighbouring trees, we can adjust the above proof to show the distribution

of the timber volume W̄α satisfies dW

(
W̄α−EW̄α√

Var(W̄α)
, Z

)
≤ O

(
α−

1
2 ln(α)5d

)
.

5 The proofs of the auxiliary and main results

Recalling the shift operator defined in Section 2, we can write g(X x) := η((0,m) ,X x)

= η((x,m) ,X ) (resp. gα(x,X ) := η ((x,m) ,X ,Γα)) for all configurations X with
(x,m) ∈X and α > 0, so that notations can be simplified, e.g.,

Wα =
∑

(x,m)∈ΞΓα

η((x,m) ,Ξ) =

∫
Γα

g(Ξx)Ξ(dx) =
∑
x∈ΞΓα

g(Ξx),

W̄α =
∑

(x,m)∈ΞΓα

η((x,m) ,Ξ,Γα) =

∫
Γα

gα(x,Ξ)Ξ(dx) =
∑
x∈ΞΓα

gα(x,Ξ),

where Ξ is the projection of Ξ on Rd.
We now proceed to establish a few lemmas needed in the proofs. The following

lemma bounds the difference between a normal distribution and the standard normal
distribution under the Wasserstein distance, and it can be verified directly (see also
[CM10, Lemma 2.4]).

Lemma 5.1. Let Fµ,σ be the distribution of N(µ, σ2), the normal distribution with mean
µ and variance σ2, and Φ = F0,1, then

dW (Fµ,σ,Φ) ≤ |µ|+ 2√
2π
|σ − 1|.
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The following lemma says that the cost of throwing away the terms with large radii of
stabilisation is negligible under stabilising conditions. For convenience, we define
Wα,r :=

∑
(x,m)∈ΞΓα

η((x,m) ,Ξ)1R(x)≤r, W̄α,r :=
∑

(x,m)∈ΞΓα
η((x,m) ,Ξ,Γα)1R̄(x,α)≤r,

which means that we through away the terms with stabilisation radii greater than
r from Wα and W̄α.

Lemma 5.2. (a) (unrestricted case) If the score function is exponentially stabilising in
Definition 2.3, then we have

dTV (Wα,Wα,r) ≤ C1αe
−C2r

for some positive constants C1, C2.

(b) (restricted case) The restricted counterpart of (a) with Definition 2.3 and W replaced
by Definition 2.4 and W̄ , resp., holds.

Proof. We first prove (b). Recall that Mx ∼ LT is the mark of the point x ∈ Ξ, and it is
independent of Ξx. From the construction of W̄α and W̄α,r, we can see that the event
{W̄α 6= W̄α,r} ⊂ {at least one x ∈ Ξ ∩ Γα with R̄(x, α) > r}, so from (2.3), we have

dTV (W̄α, W̄α,r) ≤P
(
{W̄α 6= W̄α,r}

)
≤P

(
{at least one x ∈ Ξ ∩ Γα such that R̄(x, α) > r}

)
≤E

∫
Γα

1R̄(x,α)>rΞ(dx)

=

∫
Γα

P
(
R̄((x,Mx), α,Ξx + δ(x,Mx)) > r

)
λdx

≤αλτ̄(r). (5.1)

This, together with the stabilisation condition in Definition 2.4, gives the claim in (b).
The claim (a) can be proved by replacing corresponding counterparts W̄α by Wα;

W̄α,r by Wα,r; R̄(x, α) by R(x); R̄((x,Mx), α,Ξx + δ(x,Mx)) by R((x,Mx),Ξx + δ(x,Mx)) and
τ̄ by τ .

The moments of Wα,r and Wα (resp. W̄α,r and W̄α) can be established using the
moment conditions required. To begin with, we first show a statement about the

moments of Ξ(Γα). Let ‖X‖p := E (|X|p)
1
p be the Lp norm of X provided it is finite.

Lemma 5.3. For k ∈ N, if the marked point process Ξ satisfies the kth moment condi-
tion (2.4), then E

(
Ξ(Γα)k

)
≤ O(αk) for α > 0.

Proof. Since Ξ(B) is non-decreasing in B in the sense of inclusion and it is also stationary,
the condition (2.4) is equivalent to that there exists an α0 > 0 such that E

(
Ξ(Γα0

)k
)

=

E
(
Ξ(Γα0

+ x)k
)

=: C <∞ for all x ∈ Rd.

We can find a cover of Γα of the form {Γα0
+ xi}i≤nα with nα =

⌈(
α
α0

) 1
d

⌉d
= O(α), it

follows from Minkowski’s inequality that

E
(
Ξ(Γα)k

)
= ‖Ξ(Γα)‖kk ≤

(
nα∑
i=1

‖Ξ(Γα0
+ xi)‖k

)k
= nkαC

k = O(αk),

as claimed.

Remark 5.4. From the proof of Lemma 5.3, we can see that for arbitrary A ∈ B
(
Rd
)
, if

A can be covered by {Γα0
+ xi}i≤nA , then E

(
Ξ(A)k

)
≤ nkAC for some positive constant

C.
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Lemma 5.5. (a) (unrestricted case) If Ξ satisfies the (2n− 1)th moment condition (2.4)
and the score function η satisfies the (2n)th moment condition (2.5), then

E
(
|Wα|k

)
∨ E

(
|Wα,r|k

)
≤ Cα2k−1

for some positive constant C for all integers 1 ≤ k ≤ n.

(b) (restricted case) The restricted counterpart of (a) with (2.5) and W replaced by (2.6)
and W̄ , resp., holds.

Proof. We start with the restricted case, and the unrestricted case follows in the same
way. For k ∈ N,

E
(
|W̄α|k

)
=E

(∣∣∣∣∫
Γα

gα(x,Ξ)Ξ(dx)

∣∣∣∣k
)

≤E

((∫
Γα

|gα(x,Ξ)|Ξ(dx)

)k)

=E

∫
Γα

· · ·
∫

Γα︸ ︷︷ ︸
k of them

|gα(x1,Ξ) . . . gα(xk,Ξ)|Ξ(dx1) . . .Ξ(dxk)

≤1

k
E

∫
Γα

· · ·
∫

Γα︸ ︷︷ ︸
k of them

(
|gα(x1,Ξ)|k + · · ·+ |gα(xk,Ξ)|k

)
dΞ(dx1) . . .Ξ(dxk)

=E

∫
Γα

Ξ(Γα)k−1 |gα(x,Ξ)|k Ξ(dx)

≤1

2
E

∫
Γα

(
Ξ(Γα)2k−2 + |gα(x,Ξ)|2k

)
Ξ(dx)

=
1

2

[
E
(
Ξ(Γα)2k−1

)
+ E

(∫
Γα

|gα(x,Ξx + δ(x,Mx))|2kλdx
)]

≤1

2
C1α

2k−1 +
1

2
C2α, (5.2)

for some positive constants C1 and C2, the second and third inequalities follow from
the fact that Πj

i=1yi ≤ 1
j

∑j
i=1 y

j
i for all yi ≥ 0, 1 ≤ i ≤ j, the last equality follows

from (2.3) and the last inequality follows from Lemma 5.3. Then we can find a common
positive constant C such that E

(
|W̄α|k

)
≤ Cα2k−1 for all integers k ≤ n. The claim

E
(
|W̄α,r|k

)
≤ Cα2k−1 can be proved by following exactly the same steps but replacing

gα(x,Ξ) with gα(x,Ξ)1R̄(x,α)≤r.
The statement for the unrestricted case is also true, which can be proved by replacing

the corresponding counterparts W̄α by Wα, W̄α,r by Wα,r, and gα by g.

Remark 5.6. The proof of Lemma 5.5 does not depend on the shape of Γα, so the claims
still hold if we replace Γα with a set A ∈ B(R) such that A satisfies the assumption in
Remark 5.4 with nA ≤ O(Vol(A)).

Remark 5.7. Using the same idea as in the proof of (5.2), for each 1 ≤ i ≤ k, by taking
the range of xi in Ai satisfying the condition in Remark 5.6 instead of Γα, we have, for
all integers 1 ≤ k ≤ n,

E

∫
A1

· · ·
∫
Ak

|gα(x1,Ξ) . . . gα(xk,Ξ)|Ξ(dx1) . . .Ξ(dxk) ≤ C max
1≤j≤k

Vol(Aj)
2k−1

for some positive constant C.
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With these preparations, we are ready to bound the differences |Var (Wα)−Var (Wα,r)|
and

∣∣Var
(
W̄α

)
−Var

(
W̄α,r

)∣∣.
Lemma 5.8. (a) (unrestricted case) Assume that Ξ satisfies the fifth moment condi-

tion (2.4) and the score function η satisfies the sixth moment condition (2.5). If η
is exponentially stabilising in Definition 2.3, then there exist positive constants α0

and C such that

|Var (Wα)−Var (Wα,r)| ≤
1

α

for all α ≥ α0 and r ≥ C ln(α).

(b) (restricted case) The restricted counterpart of (a) with (2.5), Definition 2.3 and W
replaced by (2.6), Definition 2.4 and W̄ , resp., holds.

Proof. We start with (b). From Lemma 5.5 (b), taking n = 3 and k = 1 or k = 3, we have

max
{
‖W̄α‖1, ‖W̄α,r‖1

}
≤ C0α, max

{
‖W̄α‖3, ‖W̄α,r‖3

}
≤ C0α

5
3 (5.3)

for some positive constant C0 ≥ 1. Without loss of generality, we assume α > 1. Since∣∣Var
(
W̄α

)
−Var

(
W̄α,r

)∣∣ ≤ ∣∣E (W̄ 2
α − W̄ 2

α,r

)∣∣+
∣∣∣(EW̄α

)2 − (EW̄α,r

)2∣∣∣ , (5.4)

using the assumption of stabilisation, we show that each of the terms at the right hand
side of (5.4) is bounded by 1

2α for α and r sufficiently large. Clearly, the definition of
W̄α,r implies that W̄ 2

α − W̄ 2
α,r = 0 if R̄(x, α) ≤ r for all x ∈ ΞΓα , hence it remains to

tackle Er,α := {R̄(x, α) ≤ r for all x ∈ ΞΓα}c. As shown in the proof of (5.1), P (Er,α) ≤
αC1e

−C2r, which, together with (5.3), Hölder’s inequality and Minkowski’s inequality,
ensures∣∣E (W̄ 2

α − W̄ 2
α,r

)∣∣ =
∣∣E [(W̄ 2

α − W̄ 2
α,r

)
1Er,α

]∣∣
≤ ‖W̄ 2

α − W̄ 2
α,r‖ 3

2
‖1Er,α‖3

≤
(
‖W̄ 2

α‖ 3
2

+ ‖W̄ 2
α,r‖ 3

2

)
P(Er,α)

1
3

=
(
‖W̄α‖23 + ‖W̄α,r‖23

)
P(Er,α)

1
3 ≤ 2C2

0α
10
3

(
αC1e

−C2r
) 1

3 . (5.5)

For the remaining term of (5.4), we have∣∣∣(EW̄α

)2 − (EW̄α,r

)2∣∣∣ =
∣∣EW̄α − EW̄α,r

∣∣ ∣∣EW̄α + EW̄α,r

∣∣ .
The bound (5.3) implies

∣∣EW̄α + EW̄α,r

∣∣ ≤ 2C0α. However, using Hölder’s inequality,
Minkowski’s inequality and (5.3) again, we have∣∣EW̄α − EW̄α,r

∣∣ =
∣∣E [(W̄α − W̄α,r

)
1Er,α

]∣∣
≤ ‖W̄α − W̄α,r‖3‖1Er,α‖ 3

2

≤
(
‖W̄α‖3 + ‖W̄α,r‖3

)
P(Er,α)

2
3

≤ 2C0α
5
3

(
αC1e

−C2r
) 2

3 , (5.6)

giving ∣∣∣(EW̄α

)2 − (EW̄α,r

)2∣∣∣ ≤ 4C2
0α

8
3

(
αC1e

−C2r
) 2

3 . (5.7)

We set r = C ln(α) in the upper bounds of (5.5) and (5.7) and find C such that both
bounds are bounded by 1/(2α), completing the proof of (b).

A line-by-line repetition of the above proof with W̄α and W̄α,r replaced by Wα and
Wα,r and R̄(x, α) replaced by R(x) gives (a).
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We can now establish the lower bounds for Var (Wα) and Var
(
W̄α

)
using the variation

conditions (2.7) and (2.8). To this end, we start with a lemma. Recall that P :=

λE(η((0,M0),Ξ0 + δ(0M0)) for the unrestricted case and P̄ := λE(η̄((0,M0),Ξ0 + δ(0,M0))

for the restricted case.

Lemma 5.9. (a) (unrestricted case) Assume that Ξ satisfies the EDD and the fifth
moment condition (2.4), and the score function η is translation invariant and
satisfies the sixth moment condition (2.5). If η is exponentially stabilising in
Definition 2.3, then∫

Γα

∫
Rd
E
[
(g(x,Ξ)Ξ(dx)− Pdx)(g(y,Ξ)Ξ(dy)− Pdy)

]
= ασ2 <∞.

Furthermore, for any fixed α1 > 0,∫
Γα1

∫
Rd\Γα2

E
[
(g(y,Ξ)Ξ(dy)− Pdy)(g(x,Ξ)Ξ(dx)− Pdx)

]
converges to 0 exponentially fast as α2 →∞.

(b) (restricted case) The restricted counterpart of (a) with (2.5), Definition 2.3, g and P
replaced by (2.6), Definition 2.4, ḡ and P̄ , resp., holds.

Proof. We start with the restricted case first. It is sufficient to show that, for any fixed
α1 > 0, ∫

Γα1

∫
Rd\Γα2

E
[
(ḡ(y,Ξ)Ξ(dy)− P̄ dy)(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

]
converges to 0 exponentially fast as α2 →∞. Bearing in mind Remark 5.7, at the cost of

no more than C0(α1∨1)3,without loss of generality, we may assume that α1/d
2 >

(
6α

1/d
1

)
∨2

and
α

1/d
2

ln
(
α

1/d
2 (2

√
d+1/3)

) ≥ 12θ3 with θ3 in the definition of the EDD. The space Rd\Γα2
can

be divided into sets of the form
{

Γα2(1+l)d\Γα2ld
}
l∈N =: {Al}l∈N. Then∫

Γα1

∫
Rd\Γα2

E
[
(ḡ(y,Ξ)Ξ(dy)− P̄ dy)(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

]
=
∑
l∈N

∫
Γα1

∫
Al

E
[
(ḡ(y,Ξ)Ξ(dy)− P̄ dy)(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

]
=
∑
l∈N

E

[∫
Γα1

∫
Al

(ḡ(y,Ξ)Ξ(dy)− P̄ dy)(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

]
if the sum in the last line is absolutely convergent.

For l ∈ N, diam
(
B
(
Al, lα

1/d
2 /6

))
= α

1/d
2 (
√
d(1+l)+l/3) ≥ diam

(
B
(

Γα1 , lα
1/d
2 /6

))
=

√
dα

1/d
1 + lα

1/d
2 /3, and d

(
B
(

Γα1
, lα

1/d
2 /6

)
, B
(
Al, lα

1/d
2 /6

))
=

lα
1/d
2

6 − α
1/d
1

2 ≥ lα
1/d
2

12 . Since

x/ ln(ax) for a > 0 is an increasing function of x ≥ e/a, we have

lα
1/d
2

ln
(
α

1/d
2 (
√
d(1 + l) + l/3)

) ≥ lα
1/d
2

ln
(
lα

1/d
2 (2

√
d+ 1/3)

) ≥ α
1/d
2

ln
(
α

1/d
2 (2

√
d+ 1/3)

) ≥ 12θ3,

which ensures

d
(
B
(

Γα1 , lα
1/d
2 /6

)
, B
(
Al, lα

1/d
2 /6

))
≥ θ3 ln

(
diam

(
B
(

Γα1 , lα
1/d
2 /6

))
∨ diam

(
B
(
Al, lα

1/d
2 /6

))
∨ 1
)
.
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With (2.3) we can show that E
∫
A

(ḡ(x,Ξ)Ξ(dx) − P̄ dx) = 0 for all bounded measur-

able set A ⊂ Rd. Recalling that Ξ̃ denotes an independent copy of Ξ, we have

E(
∫

Γα1
(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

∫
Al

(ḡ(y, Ξ̃)Ξ̃(dy)− P̄ dy)) = 0. For simplicity, we write SA :=∫
A
ḡ(x,Ξ)Ξ(dx), SA,r :=

∫
A
ḡ(x,Ξ)1R̄(x)≤rΞ(dx) and the corresponding counterparts with

Ξ̃ instead of Ξ as S̃A and S̃A,r for all bounded measurable sets A ⊂ Rd. Using the
stabilising condition in Definition 2.4 and the EDD, we can get an upper bound for
dTV ((SΓα1

, S̃Al), (SΓα1
, SAl)) as follows:

dTV ((SΓα1
− α1P̄ , S̃Al −Vol(Al)P̄ ), (SΓα1

− α1P̄ , SAl −Vol(Al)P̄ ))

=dTV ((SΓα1
, S̃Al), (SΓα1

, SAl))

≤P(SΓα1
6= S

Γα1
,lα

1/d
2 /6

) + 2P(S̃Al 6= S̃
Al,lα

1/d
2 /6

)

+ dTV ((S
Γα1 ,lα

1/d
2 /6

, S̃
Al,lα

1/d
2 /6

), (S
Γα1 ,lα

1/d
2 /6

, S
Al,lα

1/d
2 /6

))

≤λ(α1 + 2Vol(Al))τ̄(lα
1/d
2 /6) + β

B(Γα1 ,lα
1/d
2 /6),B(Al,lα

1/d
2 /6)

≤C3e
−C4lα

1/d
2 ,

for some positive constants C3 and C4 independent of l and α2, where the second
inequality follows from the same argument as that for (5.1), and the last inequality
follows from the stabilising condition in Definition 2.4 and the EDD.

Using [BHJ92, p. 254], we can find a suitable coupling ((X1, X2), (Y1, Y2)) of(
SΓα1

− α1P̄ , S̃Al −Vol(Al)P̄
)

and
(
SΓα1

− α1P̄ , SAl −Vol(Al)P̄
)

such that (X1, X2)
d
=
(
SΓα1

−α1P̄ , S̃Al−Vol(Al)P̄
)

, (Y1, Y2)
d
=
(
SΓα1

−α1P̄ , SAl−Vol(Al)P̄
)
,

P(E) := P((X1, X2) 6= (Y1, Y2)) ≤ C3e
−C4lα

1/d
2 . With Remark 5.6, we can see that

‖SA − Vol(A)P̄‖3 ≤ C5Vol(A)
5
3 for A = Γα or Al for l ≥ 1, α > 0 for some positive

constant C5.
From Hölder’s inequality and Remark 5.6, we can see that∣∣∣∣∣E

(∫
Γα1

(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

∫
Al

(ḡ(y,Ξ)Ξ(dy)− P̄ dy)

)∣∣∣∣∣
=

∣∣∣∣∣E
(∫

Γα1

(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

∫
Al

(ḡ(y,Ξ)Ξ(dy)− P̄ dy)

)

−E

(∫
Γα1

(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

∫
Al

(ḡ(y, Ξ̃)Ξ̃(dy)− P̄ dy)

)∣∣∣∣∣
=

∣∣∣∣∣E
(∫

Γα1

(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

∫
Al

(ḡ(y,Ξ)Ξ(dy)− P̄ dy)1E

)

−E

(∫
Γα1

(ḡ(x,Ξ)Ξ(dx)− P̄ dx)

∫
Al

(ḡ(y, Ξ̃)Ξ̃(dy)− P̄ dy)1E

)∣∣∣∣∣
≤C6e

−C7lα
1/d
2 (5.8)

for some positive constants C6 and C7. This, together with the translation invariant
property and the definition of σ̄2, completes the proof for the restricted case.

The statement for the unrestricted case can be proved by replacing corresponding
counterparts g by ḡ; R̄ by R; P̄ by P ; τ̄ by τ and σ̄2 by σ2.
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To establish the order of the variance, we need a lemma saying that we can ap-
proximate ασ2 (resp. ασ̄2) with the score function η restricted to R ≤ r (resp. R̄ ≤ r).
For convenience, let Pr := λE(η((0,M0),Ξ0 + δ(0,M0))1R((0,M0),Ξ0+δ(0,M0))≤r), P̄α,x,r :=

λE(η((x,Mx),Ξx + δ(x,Mx),Γα)1R̄((x,Mx),α,Ξx+δ(x,Mx))≤r).

Lemma 5.10. (a) (unrestricted case) If the conditions in Lemma 5.9 (a) hold and σ2 > 0,
then for a fixed sufficiently large α0 > 0, there exist positive constants α1 and C

such that

E

[∫
z+Γα0

(g(x,Ξ)1R(x)≤rΞ(dx)− Prdx)

∫
Γα

(g(y,Ξ)1R(y)≤rΞ(dy)− Prdy)

]

∈[
1

2
α0σ

2,
3

2
α0σ

2]

for all α ≥ α1 and r ≥ C ln(α), z ∈ Γα such that d(z, ∂Γα) ≥ 5r.

(b) (restricted case) If the conditions in Lemma 5.9 (b) hold and σ̄2 > 0, then for a fixed
sufficiently large α0 > 0, there exist positive constants α1 and C such that

E

[∫
z+Γα0

(gα(x,Ξ)1R̄(x)≤rΞ(dx)− P̄α,x,rdx)

∫
Γα

(gα(y,Ξ)1R̄(y)≤rΞ(dy)− P̄α,y,rdy)

]

∈[
1

2
α0σ̄

2,
3

2
α0σ̄

2]

for all α ≥ α1 and r ≥ C ln(α), z ∈ Γα such that d(z, ∂Γα) ≥ 5r.

Proof. We prove the restricted case only, and the unrestricted case can be proved
similarly.

Let P̄r := λE(ḡ(0,Ξ0 + δ(0,M0))1R̄((0,M0),α,Ξ0+δ(0,M0))≤r), then from the moment condi-

tion (2.6), we can see that maxα∈R+,r∈R+,x∈Γα{|P̄r|, |P̄α,x,r|} ≤ C1 for some positive
constant C1. By the translation-invariance, if x and r satisfy B(x, r) ⊂ Γα, then
gα(x,Ξ)1R̄(x)≤r = ḡ(x,Ξ)1R(x)≤r and P̄r = P̄α,x,r, where R(x) = limα→∞ R̄(x), see the dis-
cussion after Definition 2.6. The stabilising condition ensures that P(R̄((0,M0), α,Ξ0 +

δ(0,M0)) ≥ r) ≤ τ̄(r) decreases exponentially fast. Arguing in the same way as that
for (5.5), it follows from the moment condition (2.6) and Hölder’s inequality that
|P̄ − P̄r| ≤ α−2 for all r ≥ C2 ln(α) for some positive constant C2. Writing for brevity
Tα,r(x,Ξ, dx) := gα(x,Ξ)1R̄(x)≤rΞ(dx)−P̄α,x,rdx and Tr(x,Ξ, dx) := ḡ(x,Ξ)1R(x)≤rΞ(dx)−
P̄ dx. By pairing the two terms of Tα,r and the two terms of Tr, we can use Remark 5.7 to
show that there exists a positive constant α′1 ≥ e such that∣∣∣∣∣E

[∫
z+Γα0

Tα,r(x,Ξ, dx)

∫
B(z+Γα0 ,3r)

Tα,r(y,Ξ, dy)

]

− E

[∫
z+Γα0

Tr(x,Ξ, dx)

∫
B(z+Γα0

,3r)

Tr(y,Ξ, dy)

]∣∣∣∣∣
≤ 1

8
α0σ̄

2 (5.9)

for all α ≥ α′1, r ≥ C2 ln(α).
Following the proof of (5.1), we have P(Ec) := P

(
{R̄(x) ≤ r for all x ∈ ΞΓα}c

)
≤

ατ̄(r). Also, we can see that in the event E,∫
z+Γα0

Tr(x,Ξ, dx)

∫
B(z+Γα0

,3r)

Tr(y,Ξ, dy)
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is the same as ∫
z+Γα0

T∞(x,Ξ, dx)

∫
B(z+Γα0

,3r)

T∞(y,Ξ, dy),

where T∞(x,Ξ, dx) := ḡ(x,Ξ)Ξ(dx)− P̄ dx. Using Hölder’s inequality as for (5.5), we can
find a C3 ∈ R+ such that∣∣∣∣∣

∫
z+Γα0

Tr(x,Ξ, dx)

∫
B(z+Γα0

,3r)

Tr(y,Ξ, dy)

−
∫
z+Γα0

T∞(x,Ξ, dx)

∫
B(z+Γα0

,3r)

T∞(y,Ξ, dy)

∣∣∣∣∣
≤ 1

8
α0σ̄

2 (5.10)

for all r ≥ C3 ln(α).
Using the translation invariant property, and replacing Rd\Γα2

by Rd\B(Γα0
, 3r) in

the proof of Lemma 5.9, with necessary minor adjustments, we obtain∣∣∣∣∣E
[∫

z+Γα0

T∞(x,Ξ, dx)

∫
B(z+Γα0

,3r)

T∞(y,Ξ, dy)

]
− α0σ̄

2

∣∣∣∣∣
=

∣∣∣∣∣E
[∫

Γα0

T∞(x,Ξ, dx)

∫
B(Γα0

,3r)

T∞(y,Ξ, dy)

]
− α0σ̄

2

∣∣∣∣∣
≤ 1

8
α0σ̄

2 (5.11)

for r ≥ C4 ln(α). On the other hand, the EDD ensures that we can find an independent
copy Ξ̃ of Ξ such that

E1 := {ΞB(z+Γα0 ,r)∪(Γα\B(z+Γα0 ,2r))
6= ΞB(z+Γα0 ,r)

∪ Ξ̃Γα\B(z+Γα0 ,2r)
}

satisfies
P(E1) = βB(z+Γα0

,r),Γα\B(z+Γα0
,2r) ≤ θ1

((√
dα2θ0/d

)
∨ 1
)
e−θ2r. (5.12)

Since ETα,r(x,Ξ, dx) = 0, following the same argument as that for (5.8) and applying
Hölder’s inequality in the first inequality, the moment condition (2.6) and (5.12) in the
last inequality below, we get∣∣∣∣∣E

[∫
z+Γα0

Tα,r(x,Ξ, dx)

∫
Γα\B(z+Γα0 ,3r)

Tα,r(y,Ξ, dy)

]∣∣∣∣∣
=

∣∣∣∣∣E
[
1E1

∫
z+Γα0

Tα,r(x,Ξ, dx)

∫
Γα\B(z+Γα0

,3r)

Tα,r(y,Ξ, dy)

]

− 1E1
E

[∫
z+Γα0

Tα,r(x,Ξ, dx)

∫
Γα\B(z+Γα0

,3r)

Tα,r(y, Ξ̃, dy)

]∣∣∣∣∣
≤

∥∥∥∥∥
∫
z+Γα0

Tα,r(x,Ξ, dx)

∫
Γα\B(z+Γα0 ,3r)

Tα,r(y,Ξ, dy)

∥∥∥∥∥
3/2

P(E1)1/3

+

∥∥∥∥∥
∫
z+Γα0

Tα,r(x,Ξ, dx)

∫
Γα\B(z+Γα0 ,3r)

Tα,r(y, Ξ̃, dy)

∥∥∥∥∥
3/2

P(E1)1/3

≤ 1

8
α0σ̄

2 (5.13)
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for all z satisfying d(z, ∂Γα) ≥ 5r, r ≥ C5 ln(α) and α ≥ α′2. Collecting (5.9), (5.10), (5.11)
and (5.13), we obtain claim (b) with C = max{C2, C3, C4, C5} and α1 = max{α′1, α′2}.

The statement for the unrestricted case can be proved by replacing P̄α,x,r and P̄r by
Pα,x,r and Pr; ḡ by g; R̄ by R; τ̄ by τ ; P̄ by P .

Remark 5.11. Following the idea of the proof of Lemma 5.10, without loss of generality,
we can take α1 and C as non-decreasing functions of α0 in Lemma 5.10.

Together with the variation conditions (2.7) and (2.8), we can show that the variances
of Wα and W̄α are of the order α as claimed in Theorem 2.12.

Proof of Theorem 2.12. We show the statement for the restricted case first, and the
statement for the unrestricted case can be shown in the same way.

To begin with, we choose α′0 and C such that Lemma 5.8 holds, i.e., |Var(W̄α) −
Var(W̄α,r)| ≤ 1

α for r ≥ C ln(α) and α ≥ α′0. According to Remark 5.11, we can choose
C1 ≥ C and α1 ≥ (2α′0) ∨ e such that Lemma 5.10 (b) holds for all r ≥ C1 ln(α), α ≥ α1

and α0 in Lemma 5.10 (b) taking any value in [α′0, 2α
′
0]. In the rest of the proof, we

fix r = C1 ln(α). Replacing θ3 in the definition of the EDD with 2C1 if necessary, we
assume θ3 ≥ 2C1. Cover Γα\B(∂Γα, 5θ3 ln(α)) with disjoint cubes C1, . . . ,Cnα each with
a volume between α′0 and 2α′0 and intersects Γα\B(∂Γα, 5θ3 ln(α)), then the number of
cubes nα has the same order as α. For convenience, let Cα := ∪1≤i≤nαCi, then from
Lemma 5.10 (b) and Remark 5.11, for α ≥ α1,

E

[∫
Cα

(gα(x,Ξ)1R̄(x)≤rΞ(dx)− P̄α,x,rdx)

∫
Γα

(gα(y,Ξ)1R̄(y)≤rΞ(dy)− P̄α,y,rdy)

]
∈ [

1

2
nαα

′
0σ̄

2, 3nαα
′
0σ̄

2]. (5.14)

Next, we show that∣∣∣∣∣E
[∫

Γα\Cα
(gα(x,Ξ)1R̄(x)≤rΞ(dx)− P̄α,x,rdx)

∫
Γα

(gα(y,Ξ)1R̄(y)≤rΞ(dy)− P̄α,y,rdy)

]∣∣∣∣∣
≤ O

(
(lnα)2d+1α

d−1
d

)
. (5.15)

To this end, we choose C2 > 1 such that θ2θ3C2 ≥ 13.5 + θ0/d and C2θ3 > 2C1,

where θ0, θ2 are as in the EDD, divide Γα\Cα into at most nD = O
(
α
d−1
d ln(α)

)
cubes

{Di}1≤i≤nD having diameters between 1 and θ3 ln(α). For each x ∈ Di, T (x,Ξ, dx) :=

gα(x,Ξ)1R̄(x)≤rΞ(dx) − P̄α,x,rdx is completely determined by ΞB(Di,r) and T (y,Ξ, dy) is
completely determined by ΞΓα∩B(Di,2θ3C2 ln(α))c if x ∈ B(Di, r) and ‖y − x‖ > 4θ3C2 ln(α).

By the EDD, we can find an independent copy Ξ̃ of Ξ such that

P(Ei) :=P
(

ΞB(Di,r) ∪ ΞΓα∩B(Di,2θ3C2 ln(α))c 6= ΞB(Di,r) ∪ Ξ̃Γα∩B(Di,2θ3C2 ln(α))c

)
=βB(Di,r),Γα∩B(Di,2θ3C2 ln(α))c ≤ C3 ln(α)θ0αθ0/de−θ2θ3C2 ln(α). (5.16)

Hence, following the same steps as those for (5.8) and using Hölder’s inequality in the
first inequality, (5.16) and Remark 5.7 with k = 3 in the second inequality below, we have∣∣∣∣∣E

[∫
x∈Di

T (x,Ξ, dx)

∫
y∈Γα,‖y−x‖>4θ3C2 ln(α)

T (y,Ξ, dy)

]∣∣∣∣∣
=

∣∣∣∣∣E
[
1Ei

∫
x∈Di

T (x,Ξ, dx)

∫
y∈Γα,‖y−x‖>4θ3C2 ln(α)

T (y,Ξ, dy)

]
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− E

[
1Ei

∫
x∈Di

T (x,Ξ, dx)

∫
y∈Γα,‖y−x‖>4θ3C2 ln(α)

T (y, Ξ̃, dy)

]∣∣∣∣∣
≤

∥∥∥∥∥
∫
x∈Di

T (x,Ξ, dx)

∫
y∈Γα,‖y−x‖>4θ3C2 ln(α)

T (y,Ξ, dy)

∥∥∥∥∥
3/2

P(Ei)
1/3

+

∥∥∥∥∥
∫
x∈Di

T (x,Ξ, dx)

∫
y∈Γα,‖y−x‖>4θ3C2 ln(α)

T (y, Ξ̃, dy)

∥∥∥∥∥
3/2

P(Ei)
1/3

≤ O
(
α

5
2 +

θ0
3d−

1
3 θ2θ3C2 ln(α)θ0/3

)
≤ O

(
ln(α)θ0/3α−2

)
. (5.17)

Adding the estimates of (5.17) for 1 ≤ i ≤ nD and using the fact nD = O
(
α
d−1
d lnα

)
, we

obtain∣∣∣∣∣E
[∫

x∈Γα\Cα
T (x,Ξ, dx)

∫
y∈Γα,‖y−x‖>4θ3C2 ln(α)

T (y,Ξ, dy)

]∣∣∣∣∣ ≤ O (α−1
)
. (5.18)

For the remaining part, we have∣∣∣∣∣E
[∫∫

x∈Γα\Cα,y∈Γα,‖y−x‖≤4θ3C2 ln(α)

gα(x,Ξ)1R̄(x)≤rΞ(dx)gα(y,Ξ)1R̄(y)≤rΞ(dy)

]∣∣∣∣∣
≤ E

[∫∫
x∈Γα\Cα,y∈Γα,‖y−x‖≤4θ3C2 ln(α)

1

2

(
gα(x,Ξ)21R̄(x)≤r+gα(y,Ξ)21R̄(y)≤r

)
Ξ(dx)Ξ(dy)

]

≤ 1

2
E

[∫
x∈Γα\Cα

Ξ(B(x, 4θ3C2 ln(α)))gα(x,Ξ)21R̄(x)≤rΞ(dx)

]

+
1

2
E

[∫
y∈Γα∩B(∂Γα,9θ3C2 ln(α))

Ξ(B(y, 4θ3C2 ln(α)))gα(y,Ξ)21R̄(y)≤rΞ(dy)

]

≤ E

[∫
y∈Γα∩B(∂Γα,9θ3C2 ln(α))

Ξ(B(y, 4θ3C2 ln(α)))gα(y,Ξ)21R̄(y)≤rΞ(dy)

]

≤ E

[∫
y∈Γα∩B(∂Γα,9θ3C2 ln(α))

1

2

(
Ξ(B(y, 4θ3C2 ln(α)))2 + gα(y,Ξ)41R̄(y)≤r

)
Ξ(dy)

]

≤
∫
y∈Γα∩B(∂Γα,9θ3C2 ln(α))

((
Ξ0(B(0, 4θ3C2 ln(α))) + 1

)2
λdy + gα(y,Ξ)41R̄(y)≤rΞ(dy)

)
.

(5.19)

However, by Remark 5.4,

O
(
ln(α)3d

)
=EΞ(B(0, 8θ3C2 ln(α)))3

≥E
∫
B(0,4θ3C2 ln(α))

Ξ(B(x, 4θ3C2 ln(α)))2Ξ(dx)

=λ

∫
B(0,4θ3C2 ln(α))

E
(
Ξx(B(x, 4θ3C2 ln(α))) + 1

)2
dx

=
λ(4θ3C2 ln(α))dπd/2

Γ(1 + d/2)
E
(
Ξ0(B(0, 4θ3C2 ln(α))) + 1

)2
,

which implies

E
(
Ξ0(B(0, 4θ3C2 ln(α))) + 1

)2 ≤ O (ln(α)2d
)
. (5.20)
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Combining (2.6), (5.19) and (5.20) gives∣∣∣∣∣E
[∫∫

x∈Γα\Cα,y∈Γα,‖y−x‖≤4θ3C2 ln(α)

gα(x,Ξ)1R̄(x)≤rΞ(dx)gα(y,Ξ)1R̄(y)≤rΞ(dy)

]∣∣∣∣∣
≤ O

(
(lnα)2d+1α

d−1
d

)
. (5.21)

Direct verification using (2.6) again gives∣∣∣∣∣E
[∫∫

x∈Γα\Cα,y∈Γα,‖y−x‖≤4θ3C2 ln(α)

P̄α,x,rdxP̄α,y,rdy

]∣∣∣∣∣ ≤ O (α d−1
d ln(α)d+1

)
. (5.22)

Collecting (5.18), (5.21) and (5.22), we have (5.15).
Now, since the variance of W̄α,r can be decomposed as

Var(W̄α,r)

=E

[∫
Cα

(gα(x,Ξ)1R̄(x)≤rΞ(dx)− P̄α,x,rdx)

∫
Γα

(gα(y,Ξ)1R̄(y)≤rΞ(dy)− P̄α,y,rdy)

]
+ E

[∫
Γα\Cα

(gα(x,Ξ)1R̄(x)≤rΞ(dx)− P̄α,x,rdx)

∫
Γα

(gα(y,Ξ)1R̄(y)≤rΞ(dy)− P̄α,y,rdy)

]
,

it follows from (5.14) and (5.15) that, for α ≥ α1, Var(W̄α,r) ∈ [C4α,C5α] for some
positive constants C4, C5. This, together with |Var(W̄α)−Var(W̄α,r)| ≤ 1

α , ensures that
Var(W̄α) = Θ(Var(W̄α,r)) = Θ(α).

The statement for the unrestricted case can be proved by replacing gα by g; P̄α,x,r by
Pr; W̄α by Wα and W̄α,r by Wα,r.

Remark 5.12. Since the variance is always non-negative, the proof of this also shows
that σ2 (resp. σ̄2) defined in (2.7) (resp. (2.8)) is non-negative.

Remark 5.13. Using the same idea as in the proof of Theorem 2.12, we can see that
Var(Wα) and Var(W̄α) cannot have an order greater than α.

Proof of Theorem 2.10. Let µα := E
(
W̄α

)
, µα,r := E

(
W̄α,r

)
, σ2

α := Var
(
W̄α

)
, σ2

α,r :=

Var
(
W̄α,r

)
and Z̄α,r ∼ N

(
µα,r−µα

σα
,
σ2
α,r

σ2
α

)
, then it follows from the triangle inequality that

dW

(
W̄α − µα

σα
, Z

)
≤ dW

(
W̄α − µα

σα
,
W̄α,r − µα

σα

)
+dW

(
Z, Z̄α,r

)
+dW

(
W̄α,r − µα

σα
, Z̄α,r

)
.

(5.23)
Next, we bound the terms on the right hand side of (5.23) separately. We start with the
exponentially stabilising case (ii).

The first term of (5.23) can be bounded using Lemma 5.2 (b), the variance condition
and the property of the Wasserstein distance. Let Uα :=

(
W̄α − µα

)
/σα and Uα,r :=(

W̄α,r − µα,r
)
/σα. According to the property of the total variation distance and [BHJ92,

p. 254], we can find a coupling (Ūα, Ūα,r) of Uα and Uα,r such that Ūα
d
= Uα, Ūα,r

d
= Uα,r

and
P(Ūα 6= Ūα,r) =: P(Eα,r) = dTV (Uα, Uα,r) = dTV (W̄α, W̄α,r) ≤ C1αe

−C2r.

Then from Hölder’s inequality, the variance condition and Lemma 5.5,

dW

(
W̄α − µα

σα
,
W̄α,r − µα

σα

)
= inf
X
d
=Uα,Y

d
=Uα,r

E(|X − Y |)

≤E(|Ūα − Ūα,r|) ≤ E
(
|Ūα|1Eα,r

)
+ E

(
|Ūα,r|1Eα,r

)
≤ 1

α
, (5.24)
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for r > C3 ln(α).
For the second term of (5.23), we can establish an upper bound using Lemma 5.1. To

this end, Lemma 5.8 (b) gives ∣∣σ2
α − σ2

α,r

∣∣ ≤ 1

α
, (5.25)

which, together with the condition given in the theorem, implies

σ2
α,r = Ω(αν), σ2

α = Ω(αν), (5.26)

for r > C4 ln(α). We combine (5.6) and (5.26) to obtain

|µα − µα,r|
σα

≤ O
(
α−1

)
, (5.27)

for r > C5 ln(α). Therefore, it follows from (5.25), (5.26), (5.27) and Lemma 5.1 that

dW (Z, Z̄α,r) ≤
|µα − µα,r|

σα
+
|σα,r − σα|

σα
≤ O(α−1) (5.28)

for r > C6 ln(α).
It remains to tackle the last term of (5.23). From the definition of the Wasserstein

distance, we have

dW

(
W̄α,r − µα

σα
, Z̄α,r

)
= dW

(
W̄α,r − µα,r

σα
, Z̄α,r +

µα − µα,r
σα

)
≤ σα,r

σα
dW

(
W̄α,r − µα,r

σα,r
, Z

)
≤ 2dW (Vα,r, Z) (5.29)

for r > C4 ln(α) when α large, where Vα,r :=
(
W̄α,r − µα,r

)
/σα,r. We now use Stein’s

method to bound the Wasserstein distance between Vα,r and Z. Stein’s method for the
normal approximation hinges on a Stein equation (see [CGS11, pp. 15–16])

f ′(w)− wf(w) = h(w)−Nh, (5.30)

where Nh := Eh(Z). The solution of (5.30) is given by

fh(w) = ew
2/2

∫ w

−∞
e−t

2/2(h(t)−Nh)dt = −ew
2/2

∫ ∞
w

e−t
2/2(h(t)−Nh)dt.

Recall the definition of the Wasserstein distance (2.9), we have, for any random variable
X,

dW (X,Z) = sup
h∈FLip

|E(h(X)− h(Z))| ≤ sup
f∈F
|E (f ′(X)−Xf(X))| , (5.31)

where F :=
{
f ; R→ R, ‖f‖ ≤ 2, ‖f ′‖ ≤

√
2
π , ‖f

′′‖ ≤ 2
}

. From the definition of Vα,r,

we can represent it as Vα,r = 1
σα,r

∫
Γα

(
gα(x,Ξ)1R̄(x)≤rΞ(dx)− Pα,x,rdx

)
=:
∫

Γα
V (dx) if

this does not cause confusion. Then, from the definition of Vα,r, we have

1 = Var(Vα,r) = E

(∫
Γα

V (dx)

)2

.

To bound dW (Vα,r, Z), by (5.31), it is sufficient to bound

|E (f ′(Vα,r)− Vα,rf(Vα,r)) | (5.32)

for all f ∈ F . To do this, let’s consider the two terms separately.
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Before analysing (5.32), for large α, we can divide Γα into disjoint cubes with volumes
at least α0 ≤ α for some positive constant α0. To this end, we can find a partition of Γα,
C := {C1, . . . ,Cnα}, where Ci are cubes with edge length α1/d

b(α/α0)1/dc for all 1 ≤ i ≤ nα.

Then each cube in C has a volume no more than 2dα0, and nα has the same order as α.
Let N ′i,α,r = B(Ci, 3r) ∩ Γα and N ′′i,α,r = B(Ci, 6r) ∩ Γα, we have N ′i,α,r ⊂ B(Ci, 3r) and
N ′′i,α,r ⊂ B(Ci, 6r), so the volumes of N ′i,α,r and N ′′i,α,r are bounded by O(rd) for all 1 ≤
i ≤ nα. Define Si,α,r =

∫
Ci
V (dy), S′i,α,r =

∫
N ′i,α,r

V (dy) and S′′i,α,r =
∫
N ′′i,α,r

V (dy). Clearly,

V (dx) is a function of ΞB(x,r) ∩Γα, S′i,α,r, S
′′
i,α,r Vα,r−S′i,α,r and Vα,r−S′′i,α,r are functions

of ΞB(Ci,4r), ΞB(Ci,7r), ΞΓα\B(Ci,2r) and ΞΓα\B(Ci,5r) respectively. For convenience, we

write Ξ̃ as an independent copy of Ξ and Ṽα,r, Ṽ (dx), S̃′i,α,r, S̃
′′
i,α,r as the corresponding

counterparts of Vα,r, V (dx), S′i,α,r, S
′′
i,α,r.

For the first term in (5.32),

Ef ′(Vα,r)

=E

(∫
Γα

V (dx)

)2

Ef ′(Vα,r)

=

nα∑
i=1

E
(
Si,α,rS

′
i,α,r

)
Ef ′(Vα,r) + E

((∫
Γα

V (dx)

)2

−
nα∑
i=1

Si,α,rS
′
i,α,r

)
Ef ′(Vα,r)

=

nα∑
i=1

E
(
Si,α,rS

′
i,α,r

)
(Ef ′(Vα,r)− Ef ′(Vα,r − S′′i,α,r) + Ef ′(Vα,r − S′′i,α,r)) + ε1

=

nα∑
i=1

(
E
(
Si,α,rS

′
i,α,r

)
E

(∫ S′′i,α,r

0

f ′′(Vα,r − x)dx

))
+

nα∑
i=1

E
(
Si,α,rS

′
i,α,rf

′(Ṽα,r − S̃′′i,α,r)
)

+ ε1

=

nα∑
i=1

E
(
Si,α,rS

′
i,α,r

(
f ′(Ṽα,r − S̃′′i,α,r)− f ′(Vα,r − S′′i,α,r) + f ′(Vα,r − S′′i,α,r)

))
+ ε1 + ε2

=

nα∑
i=1

E
(
Si,α,rS

′
i,α,rf

′(Vα,r − S′′i,α,r)
)

+ ε1 + ε2 + ε3, (5.33)

where

ε1 =E

((∫
Γα

V (dx)

)2

−
nα∑
i=1

Si,α,rS
′
i,α,r

)
Ef ′(Vα,r);

ε2 =

nα∑
i=1

(
E
(
Si,α,rS

′
i,α,r

)
E

(∫ S′′i,α,r

0

f ′′(Vα,r − x)dx

))
;

ε3 =

nα∑
i=1

E
(
Si,α,rS

′
i,α,r

(
f ′(Ṽα,r − S̃′′i,α,r)− f ′(Vα,r − S′′i,α,r)

))
.

Using the same idea as in the proof of Lemma 5.10 and the fact that ‖f ′‖ ≤
√

2
π , we

have

|ε1| ≤
√

2

π

∣∣∣∣∣E
nα∑
i=1

Si,α,r

(∫
Γα

V (dx)− S′i,α,r
)∣∣∣∣∣ ≤ α−1 (5.34)

for r > C7 ln(α) for some positive constant C7.
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For ε2, using the fact that ‖f ′′‖ ≤ 2 and Remark 5.7, we have

|ε2| ≤2

nα∑
i=1

(
E
(∣∣Si,α,rS′i,α,rS′′i,α,r∣∣))

≤O(σ−3
α,rnα max

i
{Vol(N ′i,α,r),Vol(N ′′i,α,r)}5) = O(α−

3
2ν+1r5d). (5.35)

To bound ε3, we can use the coupling method. Since (Si,α,r, S
′
i,α,r) is a function of

ΞB(Ci,4r) and Vα,r − S′′i,α,r is a function of ΞΓα\B(Ci,5r), from the EDD and [BHJ92, p. 254],

there is a coupling (Xi,1, Xi,2, Xi,3) and (Yi,1, Yi,2, Yi,3) of (Si,α,r, S
′
i,α,r, f

′(Ṽα,r − S̃′′i,α,r))
and (Si,α,r, S

′
i,α,r, f

′(Vα,r−S′′i,α,r)) such thatP(Ei) :=P((Xi,1, Xi,2, Xi,3) 6=(Yi,1, Yi,2, Yi,3))≤
αθ0/dC8r

θ0e−C9r, for all 1 ≤ i ≤ nα. Then for r > C10 ln(α) where C10 is large enough,
P(Ei) ≤ C11α

−6. Now,

|ε3| ≤
nα∑
i=1

∣∣∣E(Si,α,rS′i,α,r (f ′(Ṽα,r − S̃′′i,α,r)− f ′(Vα,r − S′′i,α,r)))∣∣∣
=

nα∑
i=1

|E (Xi,1Xi,2Xi,3 − Yi,1Yi,2Yi,3)|

≤
nα∑
i=1

(|E (Xi,1Xi,2Xi,31Ei)|+ |E (Yi,1Yi,2Yi,31Ei)|) . (5.36)

However, applying Hölder’s inequality, the fact that ‖f ′‖ ≤
√

2
π ≤ 1 and Remark 5.7, we

have

|E (Xi,1Xi,2Xi,31Ei)| ≤ ‖Xi,1Xi,2‖3/2P(Ei)
1/3 ≤ O

(
r10d/3

)
σ−2
α,rP(Ei)

1/3,

|E (Yi,1Yi,2Yi,31Ei)| ≤ ‖Yi,1Yi,2‖3/2P(Ei)
1/3 ≤ O

(
r10d/3

)
σ−2
α,rP(Ei)

1/3.

Combining with (5.36), we get

|ε3| ≤ nασ−2
α,rO(r10d/3) max

1≤i≤nα
P(Ei)

1/3 ≤ O(α−1−νr10d/3). (5.37)

For the second term in (5.32), we have

EVα,rf(Vα,r)

=

nα∑
i=1

E (Si,α,rf(Vα,r))

=

nα∑
i=1

E
(
Si,α,r

(
f(Vα,r − S′i,α,r) + f(Vα,r)− f(Vα,r − S′i,α,r)

))
=

nα∑
i=1

E

(
Si,α,rS

′
i,α,r

∫ 1

0

f ′(Vα,r − uS′i,α,r)du
)

+

nα∑
i=1

E
(
Si,α,rf(Ṽα,r − S̃′i,α,r)

)
+

nα∑
i=1

E
(
Si,α,r

(
f(Vα,r − S′i,α,r)− f(Ṽα,r − S̃′i,α,r)

))
=

nα∑
i=1

E

(
Si,α,rS

′
i,α,r

∫ 1

0

f ′(Vα,r − uS′i,α,r)du
)

+ ε4 + ε5, (5.38)
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where

ε4 =

nα∑
i=1

E
(
Si,α,rf(Ṽα,r − S̃′i,α,r)

)
;

ε5 =

nα∑
i=1

E
(
Si,α,r

(
f(Vα,r − S′i,α,r)− f(Ṽα,r − S̃′i,α,r)

))
.

Since f(Ṽα,r − S̃′i,α,r) is independent of Si,α,r for all 1 ≤ i ≤ nα,

ε4 =

nα∑
i=1

E (Si,α,r)E
(
f(Ṽα,r − S̃′i,α,r)

)
= 0 (5.39)

from the definition of Si,α,r and ‖f‖ ≤ 2.
To bound ε5, we can use the same idea as that for bounding ε3, i.e., we can construct a

coupling of (Si,α,r, f(Vα,r−S′i,α,r)) and (Si,α,r, f(Ṽα,r−S̃′i,α,r)). Since Si,α,r is a function of
ΞB(Ci,r) and Vα,r − S′i,α,r is a function of ΞΓα\B(Ci,2r), from the EDD and [BHJ92, p. 254],

there is a coupling ((Xi,1, Xi,2), (Yi,1, Yi,2)) of (Si,α,r, f(Vα,r − S′i,α,r)) and (Si,α,r, f(Ṽα,r −
S̃′i,α,r)) such that P ((Xi,1, Xi,2) 6= (Yi,1, Yi,2)) =: P(E′) ≤ αθ0/dC12r

θ0e−C13r for all 1 ≤ i ≤
nα, where C12, C13 ∈ R+ are independent of i’s. Then we follow the steps as for (5.37)
to get

|ε5| ≤ O(α−1−νr10d/3), (5.40)

for r > C14 ln(α) with sufficiently large C14.
Also, from the fact that ‖f ′′‖ ≤ 2 and Remark 5.7,

|ε6| :=

∣∣∣∣∣
nα∑
i=1

E
(
Si,α,rS

′
i,α,rf

′(Vα,r − S′′i,α,r)
)
−

nα∑
i=1

E

(
Si,α,rS

′
i,α,r

∫ 1

0

f ′(Vα,r − uS′i,α,r)du
)∣∣∣∣∣

≤
nα∑
i=1

∣∣∣∣E(Si,α,rS′i,α,r ∫ 1

0

(
f ′(Vα,r − uS′i,α,r)− f ′(Vα,r − S′′i,α,r)

)
du

)∣∣∣∣
≤

nα∑
i=1

∣∣∣∣∣E
(
Si,α,rS

′
i,α,r

∫ 1

0

∫ S′′i,α,r−uS
′
i,α,r

0

f ′′(Vα,r − S′′i,α,r + v)dvdu

)∣∣∣∣∣
≤2

nα∑
i=1

E
(∣∣Si,α,rS′i,α,r∣∣ (∣∣S′′i,α,r∣∣+

∣∣S′i,α,r∣∣)) ≤ O(α−
3
2ν+1r5d). (5.41)

Combining (5.29), (5.32), (5.33), (5.34), (5.35), (5.37), (5.38), (5.39), (5.40) and (5.41),
we obtain the bound

dW

(
W̄α,r − µα

σα
, Z̄α,r

)
≤ O(α−

3
2ν+1r5d) (5.42)

for r > C15 ln(α), where C15 = max{C7, C10, C14}.
From (5.23), taking r = max{C3, C4, C6, C15} ln(α) for large α, together with the

bounds in (5.24), (5.28) and (5.42), we have

dW

(
W̄α − µα

σα
, Z

)
≤ α− 3

2ν+1 ln(α)5d.

(i) If η is range-bounded, then there exists an r1 > 0 such that W̄α,r1 = W̄α a.s. for all

α, so dW
(
W̄α−µα
σα

, Z
)

= dW

(
W̄α,r1

−µα
σα

, Z̄α,r1

)
. Since η is range-bounded, it is also expo-

nentially stabilising, (5.26) and (5.42) still hold, then dW
(
W̄α−µα
σα

, Z
)

= O(α−
3
2ν+1r5d

1 ) =

O(α−
3
2ν+1), which completes the proof.
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Proof of Theorem 2.8. The statement can be shown by replacing W̄α, W̄α,r, Z̄α, Z̄α,r,
gα(x,Ξ) and R̄(x, α) by their counterparts Wα, Wα,r, Zα, Zα,r, g(Ξx) and R(x) in the
proof of Theorem 2.10.
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