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Abstract

By Girsanov’s theorem and using the existing log-Harnack inequality for distribution
independent SDEs, the log-Harnack inequality is derived for path-distribution depen-
dent stochastic Hamiltonian system. As an application, the exponential ergodicity
in relative entropy is obtained by combining with transportation cost inequality. In
addition, the quantitative propagation of chaos in the sense of Wasserstein distance
is obtained, which together with the coupling by change of measure implies the
quantitative propagation of chaos in total variation norm as well as relative entropy.
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1 Introduction

The stochastic Hamiltonian system (SHS), which includes the kinetic Fokker-Planck
equation (see [31]), has been extensively investigated in [6, 11, 15, 17, 34, 35, 37, 38] and
references therein. More precisely, [11] has studied the regularity of stochastic kinetic
equations; [15] investigated Bismut formula, gradient estimate and Harnack inequality
for SHS by using coupling by change of measure; the derivative formula is extended to
the case that the degenerate part is not linear by using Malliavin calculus in [35] and
[37]; moreover, [37] derived the stochastic flows for SHS with linear degenerate part,
and the diffusion only depends on the degenerate part; see also [38] for the results on
the stochastic flows with singular coefficients; we refer to [34] for the hypercontractivity
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Exponential ergodicity and propagation of chaos

for SHS. For the path-dependent SHS, the derivative formula and Harnack inequality
are established in [6], see also [17] for Harnack inequalities with singular drifts.

Recently, along with the application in nonlinear Fokker-Planck-Kolmogorov equa-
tions, McKean-Vlasov stochastic differential equations (SDEs), presented in [22], have
gained much attention. There are plentiful results on these type SDEs, see for instance,
[3, 4, 9, 16, 21, 29, 39] and references therein. In [28], the exponential ergodicity
of McKean-Vlasov SDEs in relative entropy is derived by log-Harnack inequality and
transportation cost inequality. The log-Harnack inequality for non-degenerate McKean-
Vlasov SDEs is investigated in [33] by coupling by change of measure. One can also
refer to [18] for the log-Harnack inequality of non-degenerate McKean-Vlasov SDEs with
memory. In addition, there are lots of references on the well-posedness of McKean-Vlasov
SDEs with singular coefficients, for instance, [9, 16, 19, 21, 24, 29, 39] and references
therein. Since in this paper we do not plan to pay attention in the well-posedness for
McKean-Vlasov SDEs with singular coefficients, we will not characterize the details of
the well-posedness results in the above references and we will give the well-posedness
result using the appendix in Section A.

To obtain the log-Harnack inequality for the path-distribution dependent SHS, we
will adopt Girsanov’s transform and combine with the existing log-Harnack inequality in
[32] and [17].

McKean-Vlasov SDEs can be viewed as the limit of the mean field interacting particle
system. The so called propagation of chaos ([30]) means that the joint distribution of
finite many particles converges to the product of the distribution of McKean-Vlasov SDEs
as the number of interacting particle system tends to infinity, see [14, Definition 4.1] for
more details. For the propagation of chaos, [21] obtain the convergence of the interacting
particle system with non-degenerate noise in the total variation distance. In this paper,
we obtain the convergence of the interacting particle system in the sense of Wasserstein
distance, total variation norm and relative entropy, see Theorem 4.2 below. Since Cm+d

is an infinite dimensional space, to obtain the quantitative propagation of chaos, we
assume that the coefficients are Lipschitz continuous in WΓ

θ instead of Lθ-Wasserstein
distance. For more results on the propagation of chaos, see [2, 7, 13, 14, 20, 25, 30] and
references therein.

The main contributions of this paper mainly include: (1) The diffusion is degenerate.
(2) The model is assumed to be both path and distribution dependent. (3) The quantitative
propagation of chaos in the sense of total variation norm and relative entropy is obtained.

The paper is organized as follows: In Section 2, we prove the log-Harnack inequality
for path-distribution dependent SHS; The exponential ergodicity in relative entropy is
derived in Section 3, where the transportation cost inequality for the invariant probability
measure is also investigated under the dissipative condition; in Section 4, the quantitative
propagation of chaos for path-distribution dependent SHS is studied. Finally, the well-
posedness for general path-distribution dependent SDEs and mean field interacting
particle system is provided in Section A.

Throughout the paper, fix a constant r > 0. For any n ∈ N+, let C n = C([−r, 0];Rn)

be equipped with the uniform norm ‖ξ‖∞ =: sups∈[−r,0] |ξ(s)|. For any f ∈ C([−r,∞);Rn),
t ≥ 0, define ft ∈ C n as ft(s) = f(t+ s), s ∈ [−r, 0], which is called the segment process.
Let P(C n) be the set of all probability measures in C n equipped with the weak topology.
For θ ≥ 1, define

Pθ(C
n) =

{
µ ∈P(C n) : µ(‖ · ‖θ∞) <∞

}
.

It is well known that Pθ(C n) is a Polish space under the Wasserstein distance

Wθ(µ, ν) := inf
π∈C(µ,ν)

(∫
Cn×Cn

‖ξ − η‖θ∞π(dξ,dη)

) 1
θ

, µ, ν ∈Pθ(C
n),
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Exponential ergodicity and propagation of chaos

where C(µ, ν) is the set of all couplings of µ and ν.
Recall that for two probability measures µ, ν on some measurable space (E,E ), the

entropy and total variation norm are defined as follows:

Ent(ν|µ) :=

{∫
E

(log dν
dµ )dν, if ν is absolutely continuous with respect to µ,

∞, otherwise;

and

‖µ− ν‖var := sup
|f |≤1

|µ(f)− ν(f))|.

By Pinsker’s inequality (see [26]),

‖µ− ν‖2var ≤ 2 Ent(ν|µ), µ, ν ∈P(E), (1.1)

here P(E) denotes all probability measures on (E,E ). Throughout the paper, we will
use C or c as a constant, the values of which may change from one place to another. For
n, k ∈ N+, let 0n and 0n×k denote the n dimensional vector and n × k matrix with all
components being 0.

2 Log-Harnack inequality

The log-Harnack inequality provides an estimate of the relative entropy for two
probability measures, see for instance [32, Theorem 1.4.2 (2)]. For the path dependent
SHS, the log-Harnack inequality has been established in [32, Theorem 4.4.5], see also
[17] for the case with singular drifts. [18] studied log-Harnack inequality for path-
distribution dependent SDEs with non-degenerate noise and the result is extended to the
path-distribution dependent SDEs with singular drift in [16]. Moreover, by Girsanov’s
transform and Young’s inequality, the log-Harnack inequality is obtained in [19], where
the semi-linear SPDE with Dini continuous drift and non-degenerate noise is considered.
In this section, we extend the method in [19] to the path-distribution dependent case
including the path-distribution SHS. To this end, we first give a general result as follows.

2.1 A general result

Let T > r and n, k ∈ N+. Consider SDE on Rn:

dX(t) = H0(t,Xt)dt+ Σ(t,Xt)H(t,Xt,LXt)dt+ Σ(t,Xt)dW (t), (2.1)

where H0 : [0,∞)×C n → Rn, H : [0,∞)×C n×P(C n)→ Rk, Σ : [0,∞)×C n → Rn⊗Rk
are measurable and W (t) is a k-dimensional Brownian motion on some complete filtration
probability space (Ω,F , (Ft)t≥0,P).

Let P̂(C n) be a subset of P(C n) containing all Dirac measures and it is equipped
with some topology. Assume that (2.1) is well-posed in P̂(C n), see Definition A.1 and
Theorem A.1 for general result on the well-posedness of path-distribution depedndent
SDEs. For any µ0 ∈ P̂(C n), letXµ0

t be the unique solution to (2.1) with initial distribution
µ0 and define

Ptf(µ0) = (P ∗t µ0)(f) = Ef(Xµ0

t ), f ∈ Bb(C
n), t ≥ 0. (2.2)

For any µ ∈ C([0, T ]; P̂(C n)) and any F0-measurable random variable X0 with LX0
∈

P̂(C n), suppose that the decoupled SDE

dXX0,µ(t) = H0(t,XX0,µ
t )dt+ Σ(t,XX0,µ

t )H(t,XX0,µ
t , µt)dt+ Σ(t,XX0,µ

t )dW (t) (2.3)
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with XX0,µ
0 = X0 has a unique strong solution. Note that (2.3) reduces to a path

dependent classical SDE, see [17, 36, 38] and references therein for the well-posedness
with singular coefficients. Let Pµt be the associated semigroup to (2.3), i.e.

Pµt f(ξ) = Ef(Xξ,µ
t ), ξ ∈ C n, f ∈ Bb(C

n), t ≥ 0.

For ν ∈ C([0, T ]; P̂(C n)), let

ζµ,νt = H(t,XX0,µ
t , µt)−H(t,XX0,µ

t , νt),

Rµ,νt = exp

{
−
∫ t

0

〈ζµ,νs ,dW (s)〉 − 1

2

∫ t

0

|ζµ,νs |2ds

}
, t ∈ [0, T ].

Theorem 2.1. Assume that for any µ, ν ∈ C([0, T ], P̂(C n)), {Rµ,νt }t∈[0,T ] is a martingale
and P νt satisfies the log-Harnack inequality, i.e. there exists a function C : (r,∞)→ (0,∞)

such that for any f ∈ Bb(C n) with f > 0

P νt log f(ξ) ≤ logP νt f(η) + C(t)‖ξ − η‖2∞, r < t ≤ T, ξ, η ∈ C n. (2.4)

Then we have

Pt log f(ν0) ≤ logPtf(µ0)

+ 2C(t)W2(µ0, ν0)2 + logE(Rµ,νt )2, r < t ≤ T, µ0, ν0 ∈ P̂(C n). (2.5)

Consequently,

1

2
‖P ∗t µ0 − P ∗t ν0‖2var ≤ Ent(P ∗t µ0|P ∗t ν0) ≤ 2C(t)W2(µ0, ν0)2 + logE(Rµ,νt )2, r < t ≤ T.

Proof. By [32, Theorem 1.4.2 (2)] and (1.1), it is sufficient to prove the log-Harnack
inequality (2.5).

Let X0 satisfy LX0
= µ0 and let µt = P ∗t µ0 and νt = P ∗t ν0, W̄ (t) = W (t) +

∫ t
0
ζµ,νs ds,

t ∈ [0, T ]. Since {Rµ,νt }t∈[0,T ] is a martingale, it follows from Girsanov’s theorem that
{W̄ (t)}t∈[0,T ] is a k-dimensional Brownian motion under QT = Rµ,νT P. So, (2.3) can be
rewritten as

dXX0,µ(t)=H0(t,XX0,µ
t )+Σ(t,XX0,µ

t )H(t,XX0,µ
t , νt)dt+ Σ(t,XX0,µ

t )dW̄ (t), XX0,µ
0 =X0.

Letting µ̄t = L
X
X0,µ
t
|QT and noting that {Rµ,νt }t∈[0,T ] is a martingale, we derive

µ̄t(f) = EQT f(XX0,µ
t ) = E(Rµ,νt f(XX0,µ

t )), f ∈ Bb(C
n), t ∈ [0, T ],

which implies that for any t ∈ [0, T ], P-a.s.

dµ̄t
dµt

(XX0,µ
t ) = E(Rµ,νt |X

X0,µ
t ).

By Jensen’s inequality for conditional expectation, we get

µ̄t

(
dµ̄t
dµt

)
= E(E(Rµ,νt |X

X0,µ
t )2) ≤ E(Rµ,νt )2, t ∈ [0, T ]. (2.6)

On the other hand, taking expectation in (2.4) with respect to any π ∈ C(ν0, µ0), using
Jensen’s inequality and then taking infimum in π ∈ C(ν0, µ0), we get

(P ∗t ν0)(log f) ≤ log µ̄t(f) + C(t)W2(µ0, ν0)2, r < t ≤ T.
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This together with [32, Theorem 1.4.2 (2)] implies that

Ent(P ∗t ν0|µ̄t) = µ̄t

(
dP ∗t ν0

dµ̄t
log

dP ∗t ν0

dµ̄t

)
≤ C(t)W2(µ0, ν0)2.

It follows from Young’s inequality (see for instance [1, Lemma 2.4]) and (2.6) that

Pt log f(ν0) = µt

(
dµ̄t
dµt

dP ∗t ν0

dµ̄t
log f

)
≤ logPtf(µ0) + µt

(
dµ̄t
dµt

dP ∗t ν0

dµ̄t
log

(
dµ̄t
dµt

dP ∗t ν0

dµ̄t

))
= logPtf(µ0) + µ̄t

(
dP ∗t ν0

dµ̄t
log

dµ̄t
dµt

)
+ µ̄t

(
dP ∗t ν0

dµ̄t
log

dP ∗t ν0

dµ̄t

)
≤ logPtf(µ0) + log µ̄t

(
dµ̄t
dµt

)
+ 2µ̄t

(
dP ∗t ν0

dµ̄t
log

dP ∗t ν0

dµ̄t

)
≤ logPtf(µ0) + logE(Rµ,νt )2 + 2C(t)W2(µ0, ν0)2.

Therefore, we complete the proof.

2.2 Log-Harnack inequality and regularity for path-distribution dependent
SHS

Let m, d ∈ N+. In this section, consider the following path-distribution dependent
stochastic Hamiltonian system on Rm+d:{

dX(t) = {AX(t) +MY (t)}dt,
dY (t) = {Z(X(t), Y (t),L(Xt,Yt)) +B(Xt, Yt,L(Xt,Yt))}dt+ σdW (t),

(2.7)

where W = (W (t))t≥0 is a d-dimensional standard Brownian motion with respect to
a complete filtration probability space (Ω,F , {Ft}t≥0,P), A is an m × m matrix, M
is an m × d matrix, σ is a d × d matrix, Z : Rm+d × P(Cm+d) → Rd, B : Cm+d ×
P(Cm+d)→ Rd. We should remark that the reason why we assume that the coefficients
are time independent is only to coincide with the assertion in Section 3 and the result
in Theorem 2.2 below can also be available in the time dependent case. To obtain the
log-Harnack inequality, we make the following assumptions:

(A1) σ is invertible.

(A2) There exists θ ≥ 1 and KZ > 0 such that

|Z(z, γ)− Z(z̄, γ̄)| ≤ KZ(|z − z̄|+Wθ(γ, γ̄)), z, z̄ ∈ Rm+d, γ, γ̄ ∈Pθ(C
m+d).

(A3) Let θ be in (A2). There exists a constant KB > 0 such that

|B(ξ, γ)−B(η, γ̄)| ≤ KB(‖ξ − η‖∞ +Wθ(γ, γ̄)), ξ, η ∈ Cm+d, γ, γ̄ ∈Pθ(C
m+d).

(A4) There exists an integer l with 0 ≤ l ≤ m− 1 such that

Rank[M,AM, . . . , AlM ] = m.

According to Remark A.2 below, under (A1)–(A3), (2.7) is well-posed in Pθ(Cm+d).
Denote the solution to (2.7) with L(X0,Y0) = µ0 ∈ Pθ(Cm+d) by (Xµ0

t , Y µ0

t ). Let Pt and
P ∗t be defined in the same way as in (2.2) for (Xµ0

t , Y µ0

t ) replacing Xµ0

t there. The next
result characterizes the log-Harnack inequality for (2.7).
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Theorem 2.2. Assume (A1)–(A4) and let t > r. Then for any µ0, ν0 ∈ Pθ(Cm+d) and
positive f ∈ Bb(Cm+d),

Pt log f(µ0) ≤ logPtf(ν0) + C2

∫ t

0

e2CsdsWθ(µ0, ν0)2 + Σ(t, r, ‖M‖, l)W2(µ0, ν0)2,

where

Σ(t, r, ‖M‖, l) = C

{( 1

(t− r) ∧ 1
+

‖M‖
(t− r)(4l+3) ∧ 1

)
+
(

1 +
‖M‖

(t− r)2l+1 ∧ 1

)2
}
,

and C > 0 is a constant. Consequently, it holds

1

2
‖P ∗t µ0 − P ∗t ν0‖2var ≤ Ent(P ∗t µ0|P ∗t ν0)

≤ C2

∫ t

0

e2CsdsWθ(µ0, ν0)2 + Σ(t, r, ‖M‖, l)W2(µ0, ν0)2. (2.8)

Proof. Let n = m+ d, k = d,

H0(x, y) =

(
Ax+My

0d

)
, H = σ−1(Z +B), Σ =

(
0m×d
σ

)
, x ∈ Rm, y ∈ Rd.

Let µt = P ∗t µ0 and νt = P ∗t ν0. For simplicity, we denote (Xs, Ys) = (Xµ0
s , Y µ0

s ). Set

ζµ,νs = σ−1[Z(X(s), Y (s), µs) +B(Xs, Ys, µs)− Z(X(s), Y (s), νs)−B(Xs, Ys, νs)].

By (A2)–(A3) and Remark A.2 below, there exists a constant C > 0 such that

|ζµ,νs | ≤ ‖σ−1‖(KZ +KB)Wθ(µs, νs) ≤ CeCsWθ(µ0, ν0), s ∈ [0, t].

Recalling the definition of Rµ,νt in Theorem 2.1, we arrive at

logE(Rµ,νt )2 ≤ log esssupΩe
∫ t
0
|ζµ,νs |2ds ≤

∫ t

0

C2e2CsWθ(µ0, ν0)2ds.

On the other hand, by [32, Theorem 4.4.5], we know

P νt log f(ξ) ≤ logP νt f(η) + Σ(t, r, ‖M‖, k)‖ξ − η‖2∞.

So, applying Theorem 2.1, we complete the proof.

3 Exponential ergodicity

In this section, we investigate the exponential ergodicity of (2.7) in L2-Wasserstein
distance as well as in relative entropy. To this end, we assume

(C) There exist λ1 > 0, λ2, λ3 ≥ 0 with λ2 + λ3 < supδ∈[0,λ1] δe
−δr such that for any

ξ = (ξ(1), ξ(2)), ξ̄ = (ξ̄(1), ξ̄(2)) ∈ Cm+d, γ, γ̄ ∈P2(Cm+d),

2〈A(ξ(1)(0)− ξ̄(1)(0)) +M(ξ(2)(0)− ξ̄(2)(0)), ξ(1)(0)− ξ̄(1)(0)〉,

+ 2〈Z(ξ(0), γ)− Z(ξ̄(0), γ̄) +B(ξ, γ)−B(ξ̄, γ̄), ξ(2)(0)− ξ̄(2)(0)〉
≤ −λ1|ξ(0)− ξ̄(0)|2 + λ2‖ξ − ξ̄‖2∞ + λ3W2(γ, γ̄)2.

Theorem 3.1. Assume (C) and (A1)–(A4) with θ = 2. Then P ∗t has a unique invariant
probability measure µ∗ ∈P2(Cm+d) with

max(W2(P ∗t ν, µ
∗)2,Ent(P ∗t ν|µ∗))

≤ ce−2κt min(W2(ν, µ∗)2,Ent(ν|µ∗)), ν ∈P2(Cm+d), t > 2r

for some constants c, κ > 0.
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Proof. By [18, Remark 2.1], (C) implies that there exist constants c0, κ > 0 such that

W2(P ∗t µ0, P
∗
t ν0) ≤ c0e−κtW2(µ0, ν0), µ0, ν0 ∈P2(Cm+d), t > 0.

Then it is standard to prove that P ∗t has a unique invariant probability measure µ∗ ∈
P2(Cm+d) with

W2(P ∗t ν, µ
∗)2 ≤ c20e−2κtW2(ν, µ∗)2, ν ∈P2(Cm+d), t > 0. (3.1)

Combining this with (2.8) for t = 2r and (3.2) below, we complete the proof by using [28,
Theorem 2.1].

3.1 Transportation cost inequality

To obtain the exponential ergodicity in relative entropy, we also need to prove the
transportation cost inequality for µ∗. [5] give a proof of transportation cost inequality
for the solution to path dependent SDEs starting from dirac measure and the technique
used there is also available in the present case. Furthermore, under the dissipative
condition (C), we can derive a uniform constant with respect to time variable T in
the transportation cost inequality for the solution to (2.7) on [0, T ] starting from dirac
measure, see (3.6) below. Then applying [10, Lemma 2.1] and [10, Lemma 2.2], the
stability of transportation cost inequality, µ∗ satisfies the transportation cost inequality
due to (3.1).

Theorem 3.2. Assume (C). Then the transportation cost inequality holds for the invari-
ant probability measure µ∗, i.e.

W2(ν, µ∗)2 ≤ 2e(λ1−ε)r ‖σ‖
2

ε
Ent(ν|µ∗), ν ∈P2(Cm+d) (3.2)

with some constant ε ∈ (0, λ1).

Proof. Let ξ ∈ Cm+d and X(t) = (X1(t), X2(t)) solve{
dX1(t) = {AX1(t) +MX2(t)}dt,
dX2(t) = {Z(X(t), µ∗) +B(Xt, µ

∗)}dt+ σdW (t)
(3.3)

with X0 = (X1
0 , X

2
0 ) = ξ. Let Pµ

∗

t (ξ,dη) = LXt(dη). According to (C) and [18, Remark
2.1], µ∗ is the unique invariant probability measure of (3.3) and there exist constants
c̃, κ̃ > 0 such that

W2(Pµ
∗

t (ξ, ·), µ∗) ≤ c̃e−κ̃tW2(δξ, µ
∗). (3.4)

As in the proof of [5, Lemma 2.2], denote by ΠT
ξ as the distribution of (Xt)t∈[0,T ]. Define

the distance
ρT∞(V, Ṽ ) = sup

t∈[0,T ]

‖Vt − Ṽt‖∞, V, Ṽ ∈ C([0, T ]; Cm+d).

Let (h(t))t∈[0,T ] be an Rd-valued Ft-predictable process and Y (t) = (Y 1(t), Y 2(t)) solve{
dY 1(t) = {AY 1(t) +MY 2(t)}dt,
dY 2(t) = {Z(Y (t), µ∗) +B(Yt, µ

∗)}dt− σh(t)dt+ σdW (t)

with Y0 = (Y 1
0 , Y

2
0 ) = ξ. Let α(ε) := 2e(λ1−ε)r ‖σ‖

2

ε , ε ∈ (0, λ1). We claim that [5, Lemma
2.2] holds for α(ε) with some constant ε ∈ (0, λ1) replacing α(T ). To this end, it is
sufficient to prove [5, (14)] for α(ε) with some constant ε ∈ (0, λ1) instead of α(T ), i.e.

sup
s∈[0,t]

‖Xs − Ys‖2∞ ≤ e(λ1−ε)r ‖σ‖
2

ε

∫ t

0

|h(s)|2ds, t ≥ 0. (3.5)

EJP 28 (2023), paper 134.
Page 7/20

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1027
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Exponential ergodicity and propagation of chaos

In fact, it follows from Itô’s formula and (C) that

d|X(t)− Y (t)|2 ≤ ‖σ‖
2

ε
|h(t)|2dt+ (ε− λ1)|X(t)− Y (t)|2dt+ λ2‖Xt − Yt‖2∞dt, ε ∈ (0, λ1).

So, we get

d[e(λ1−ε)t|X(t)− Y (t)|2] ≤ e(λ1−ε)t ‖σ‖
2

ε
|h(t)|2dt+ e(λ1−ε)tλ2‖Xt − Yt‖2∞dt.

Let ηt = sups∈[0,t] e(λ1−ε)s|X(s)− Y (s)|2. It follows from X0 = Y0 that

ηt ≤
∫ t

0

e(λ1−ε)s ‖σ‖
2

ε
|h(s)|2ds+ λ2e(λ1−ε)r

∫ t

0

ηsds.

Gronwall’s inequality implies that

ηt ≤
∫ t

0

exp{λ2e(λ1−ε)r(t− s)}e(λ1−ε)s ‖σ‖
2

ε
|h(s)|2ds

=

∫ t

0

exp{λ2e(λ1−ε)rt}e[(λ1−ε)−λ2e(λ1−ε)r]s ‖σ‖2

ε
|h(s)|2ds.

Noting that ηt ≥ e(λ1−ε)(t−r)‖Xt − Yt‖2∞, we arrive at

‖Xt − Yt‖2∞ ≤ e(λ1−ε)r ‖σ‖
2

ε

∫ t

0

e−e(λ1−ε)r[(λ1−ε)e−(λ1−ε)r−λ2](t−s)|h(s)|2ds.

Since λ2 < supδ∈[0,λ1] δe
−δr and δ → δe−δr is a continuous function, there exists a

constant ε ∈ (0, λ1) such that (λ1 − ε)e−(λ1−ε)r − λ2 > 0. In the following, we fix this ε.
We derive

‖Xt − Yt‖2∞ ≤ e(λ1−ε)r ‖σ‖
2

ε

∫ t

0

|h(s)|2ds, t ≥ 0,

which gives (3.5). So, [5, Lemma 2.2] holds for α(ε) replacing α(T ). Therefore, by [5,
(7)] with cµ = 0, the transportation cost inequality for ΠT

ξ holds, i.e.

W2,ρT∞
(νT ,ΠT

ξ )2 ≤ 2e(λ1−ε)r ‖σ‖
2

ε
Ent(νT |ΠT

ξ ) (3.6)

for any probability measure νT on C([0, T ]; Cm+d) with νT (supt∈[0,T ] ‖vt‖2∞) <∞.

Define the projection mapping πT : C([0, T ]; Cm+d) → Cm+d as πT (v) = vT , v ∈
C([0, T ]; Cm+d). Then by (3.6) and [10, Lemma 2.1] for Φ = πT , we obtain

W2(ν, Pµ
∗

T (ξ, ·))2 ≤ 2e(λ1−ε)r ‖σ‖
2

ε
Ent(ν|Pµ

∗

T (ξ, ·)), ν ∈P2(Cm+d).

Finally, in view of (3.4) and [10, Lemma 2.2], we complete the proof.

4 Propagation of chaos

In this section, we consider path-distribution dependent SHS on Rm+d:

dX(t) =

(
b(t,Xt,LXt)

B(t,Xt,LXt)

)
dt+

(
0m×d

σ(t,Xt,LXt)

)
dW (t), (4.1)

where W = (W (t))t≥0 is a d-dimensional standard Brownian motion with respect to a
complete filtration probability space (Ω,F , {Ft}t≥0,P), b : [0,∞)×Cm+d×P(Cm+d)→
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Exponential ergodicity and propagation of chaos

Rm, B : [0,∞)× Cm+d ×P(Cm+d)→ Rd and σ : [0,∞)× Cm+d ×P(Cm+d)→ Rd ⊗Rd
are measurable. Throughout this section, we fix T > 0 and consider the solution for (4.1)
on time interval [0, T ].

Let X0 be an F0-measurable Cm+d-valued random variable, N ≥ 1 be an integer and
(Xi

0,W
i(t))1≤i≤N be i.i.d. copies of (X0,W (t)). Consider the following non-interacting

particle system:

dXi(t) =

(
b(t,Xi

t , µ
i
t)

B(t,Xi
t , µ

i
t)

)
dt+

(
0m×d

σ(t,Xi
t , µ

i
t)

)
dW i(t), 1 ≤ i ≤ N, (4.2)

where µit := LXit
, and the mean field interacting particle system

dXi,N (t) =

(
b(t,Xi,N

t , µ̂Nt )

B(t,Xi,N
t , µ̂Nt )

)
dt+

(
0m×d

σ(t,Xi,N
t , µ̂Nt )

)
dW i(t), Xi,N

0 = Xi
0, (4.3)

where µ̂Nt is the empirical distribution of X1,N
t , . . . , XN,N

t , i.e.

µ̂Nt =
1

N

N∑
j=1

δXj,Nt
.

To obtain the propagation of chaos, we make the following assumptions.

(H) There exist constants K > 0 and θ ≥ 1 such that the following conditions hold for
all t ∈ [0, T ] and γ ∈Pθ(Cm+d):

(H1) For any ξ, η ∈ Cm+d,

|b(t, ξ, γ)− b(t, η, γ)|+ |B(t, ξ, γ)−B(t, η, γ)|+ ‖σ(t, ξ, γ)− σ(t, η, γ)‖ ≤ K‖ξ − η‖∞.

(H2) For any ξ ∈ Cm+d and γ̄, γ̃ ∈Pθ(Cm+d),

|b(t, ξ, γ̄)− b(t, ξ, γ̃)|+ ‖σ(t, ξ, γ̄)− σ(t, ξ, γ̃)‖+ |B(t, ξ, γ̄)−B(t, ξ, γ̃)| ≤ KWθ(γ̄, γ̃),

|b(t, 0, δ0)|+ |B(t, 0, δ0)|+ |σ(t, 0, δ0)| ≤ K.

Under (H), the well-posedness in Pθ(Cm+d) for (4.1) holds due to Remark A.2 below,
which means that µit in (4.2) does not depend on i and we denote µt = µit, t ∈ [0, T ].
Moreover, by Theorem A.3 below, (4.3) is also well-posed.

To prove the propagation of chaos, we need the following lemma, which may be a
known result. Since we have not found some references, we give a brief proof in the
following.

Lemma 4.1. Let {Zi}i≥1 be a sequence of i.i.d. non-negative random variables with

E(Z1) <∞. Then { 1
N

∑N
i=1 Zi}N≥1 is uniformly integrable.

Proof. Since E(Z1) <∞, it follows from the strong law of large number that P-a.s.

lim
N→∞

1

N

N∑
i=1

Zi = E(Z1),

which yields P-a.s.

sup
N≥1

{
1

N

N∑
i=1

Zi

}
<∞.
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Exponential ergodicity and propagation of chaos

This together with the fact that {Zi}i≥1 are i.i.d., E(Z1) <∞ and the dominated conver-
gence theorem yields that

lim
M→∞

sup
N≥1

E

{(
1

N

N∑
i=1

Zi

)
1{ 1

N

∑N
i=1 Zi≥M}

}
= lim
M→∞

sup
N≥1

E
{
Z11{ 1

N

∑N
i=1 Zi≥M}

}
≤ lim
M→∞

E
{
Z11{supN≥1{ 1

N

∑N
i=1 Zi}≥M}

}
= 0.

So, we complete the proof.

To derive the quantitative propagation of chaos, we introduce the projection mappings

π(s)(ξ) = ξ(s), s ∈ [−r, 0], ξ ∈ Cm+d

and define µs = µ ◦ π(s)−1, µ ∈ P(Cm+d). Then for any µ ∈ P(Cm+d), s ∈ [−r, 0], µs is
a probability measure on Rm+d. Let W0

θ be the Lθ-Wasserstein distance on Pθ(R
m+d),

the collection of all probability measures with finite θ-th moment on Rm+d. Let Γ be a
probability measure on [−r, 0] and define

WΓ
θ (γ, γ̄) :=

∫ 0

−r
W0

θ(γ
s, γ̄s)Γ(ds), γ, γ̄ ∈Pθ(C

m+d). (4.4)

Noting that for any γ, γ̄ ∈Pθ(Cm+d), it holds

|W0
θ(γ

t, γ̄t)−W0
θ(γ

s, γ̄s)| ≤ |W0
θ(γ

t, γ̄t)−W0
θ(γ

t, γ̄s)|+ |W0
θ(γ

t, γ̄s)−W0
θ(γ

s, γ̄s)|
≤W0

θ(γ̄
t, γ̄s) +W0

θ(γ
t, γs), s, t ∈ [−r, 0].

So,W0
θ(γ

s, γ̄s) is continuous in s and the right hand side of (4.4) is well-defined. Moreover,
it is clear that

WΓ
θ (γ1, γ2) ≤Wθ(γ1, γ2), γ1, γ2 ∈Pθ(C

m+d). (4.5)

In particular, when Γ = δ0, WΓ
θ (γ, γ̄) = W0

θ(γ
0, γ̄0). The main result in this section is as

follows.

Theorem 4.2. Assume (H) and E‖Xi
0‖θ∞ <∞. Then the following assertions hold.

(1) It holds

lim
N→∞

E sup
t∈[0,T ]

|Xi(t)−Xi,N (t)|θ = 0. (4.6)

Consequently,

lim
N→∞

E sup
t∈[0,T ]

Wθ(µ̂
N
t , µt)

θ = 0. (4.7)

If in addition, b(t, ξ, γ) and σ(t, ξ, γ) do not depend on γ and there exists a constant
K0 > 0 such that

|B(t, ξ, γ)−B(t, ξ, γ̃)| ≤ K0[Wθ(γ, γ̃) ∧ 1],

‖σ(t, ξ)−1‖ < K0, (t, ξ) ∈ [0, T ]× Cm+d, γ, γ̃ ∈Pθ(C
m+d), (4.8)

then for any k ≥ 1,

lim
N→∞

sup
t∈[0,T ]

‖L(X1,N
t ,X2,N

t ,...,Xk,Nt ) − µ
⊗k
t ‖2var

≤ 2 lim
N→∞

sup
t∈[0,T ]

Ent
(
L(X1,N

t ,X2,N
t ,...,Xk,Nt )|µ

⊗k
t

)
= 0, (4.9)

where µ⊗kt =
∏k
i=1 µt, the k-independent product of µt.
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Exponential ergodicity and propagation of chaos

(2) Assume that one of the following conditions hold:

(i) θ ≥ 2,
(ii) θ ∈ [1, 2) and σ(t, ξ, γ) does not depend on γ.

If E‖Xi
0‖q∞ <∞ for some q > θ and there exists a probability measure Γ on [−r, 0]

such that (H2) holds for WΓ
θ replacing Wθ, then there exists a constant C > 0

depending only on θ, q,m+ d, T and E‖Xi
0‖q∞ such that

E sup
t∈[0,T ]

|Xi(t)−Xi,N (t)|θ ≤ CRm+d(N), (4.10)

where

Rm+d(N) =


N−

1
2 +N−

q−θ
q , θ > m+d

2 , q 6= 2θ,

N−
1
2 log(1 +N) +N−

q−θ
q , θ = m+d

2 , q 6= 2θ,

N−
θ

m+d +N−
q−θ
q , θ ∈ [1, m+d

2 ), q 6= m+d
m+d−θ ,

and consequently

sup
t∈[0,T ]

EWΓ
θ (µ̂Nt , µt)

θ ≤ CRm+d(N). (4.11)

If in addition, b(t, ξ, γ) and σ(t, ξ, γ) do not depend on γ and (4.8) holds for WΓ
θ

replacing Wθ, then there exists a constant C > 0 depending on θ, q,m+ d, T and
E‖Xi

0‖q∞ such that for any k ≥ 1,

sup
t∈[0,T ]

‖L(X1,N
t ,X2,N

t ,...,Xk,Nt ) − µ
⊗k
t ‖2var

≤ 2 sup
t∈[0,T ]

Ent
(
L(X1,N

t ,X2,N
t ,...,Xk,Nt )|µ

⊗k
t

)
≤ CkRm+d(N)1{θ∈[1,2)} + CkRm+d(N)

2
θ 1{θ≥2}.

(4.12)

Proof. (1) If E‖Xi
0‖p∞ <∞ for some p ≥ θ, it is standard to derive from (H) that

E sup
t∈[0,T ]

‖Xi
t‖p∞ < C0(1 + E(‖Xi

0‖p∞)) (4.13)

for some constant C0 > 0. Let ηi,N (t) = sups∈[0,t] |Xi,N (s) −Xi(s)|. Applying the BDG
inequality and Hölder’s inequality, we derive from (H) that

Eηi,N (t)θ ≤ c0
∫ t

0

E(ηi,N (s)θ +Wθ(µ̂
N
s , µs)

θ)ds

+ c0E

(∫ t

0

(ηi,N (s) +Wθ(µ̂
N
s , µs))

2ds

) θ
2

(4.14)

for some constant c0 > 0. Let µ̃Nt = 1
N

∑N
j=1 δXjt

. Noting that

Wθ(µ̂
N
s , µ̃

N
s ) ≤

(
1

N

N∑
i=1

‖Xi,N
s −Xi

s‖θ∞

) 1
θ

, (4.15)

we obtain

Wθ(µ̂
N
s , µs) ≤Wθ(µ̂

N
s , µ̃

N
s ) +Wθ(µ̃

N
s , µs)

≤

(
1

N

N∑
i=1

‖Xi,N
s −Xi

s‖θ∞

) 1
θ

+Wθ(µ̃
N
s , µs).

(4.16)
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Next, we divide into two cases: θ ≥ 2 and θ ∈ [1, 2) to estimate the second term on the
right hand side of (4.14).

If θ ≥ 2, by Hölder’s inequality, we have

c0E

(∫ t

0

(ηi,N (s) +Wθ(µ̂
N
s , µs))

2ds

) θ
2

≤ c1
∫ t

0

Eηi,N (s)θds+ c1E

∫ t

0

Wθ(µ̂
N
s , µs)

θds

for some constant c1 > 0. This together with (4.14) and (4.16) implies that there exists a
constant c2 > 0 such that

Eηi,N (t)θ ≤ c2
∫ t

0

Eηi,N (s)θds+ c2E

∫ t

0

Wθ(µ̃
N
s , µs)

θds.

(4.13) for p = θ and Gronwall’s inequality give

Eηi,N (t)θ ≤ c3E
∫ t

0

Wθ(µ̃
N
s , µs)

θds (4.17)

for some constant c3 > 0.
If θ ∈ [1, 2), it follows from (4.16), the inequality

√
|ab| ≤ |a|+|b|2 and Hölder’s inequal-

ity that

c0E

(∫ t

0

(ηi,N (s) +Wθ(µ̂
N
s , µs))

2ds

) θ
2

≤ c0E

∫ t

0

ηi,N (s) +

(
1

N

N∑
i=1

‖Xi,N
s −Xi

s‖θ∞

) 1
θ

+Wθ(µ̃
N
s , µs)

2

ds


θ
2

≤ c′1
∫ t

0

Eηi,N (s)θds+
1

2
Eηi,N (t)θ + c′1E

(∫ t

0

Wθ(µ̃
N
s , µs)

2ds

) θ
2

(4.18)

for some constant c′1 > 0. So, this combined with (4.14) and (4.16) derives

Eηi,N (t)θ ≤ c′2
∫ t

0

Eηi,N (s)θds+ c′2E

∫ t

0

Wθ(µ̃
N
s , µs)

θds

+ c′2E

(∫ t

0

Wθ(µ̃
N
s , µs)

2ds

) θ
2

(4.19)

for some constant c′2 > 0. Therefore, using Grönwall’s inequality for (4.19), there exists
a constant c′3 > 0 such that

Eηi,N (t)θ ≤ c′3E
∫ t

0

Wθ(µ̃
N
s , µs)

θds+ c′3E

(∫ t

0

Wθ(µ̃
N
s , µs)

2ds

) θ
2

. (4.20)

Let Cm+d
T = C([−r, T ];Rm+d) be equipped with the uniform norm and P(Cm+d

T ) be the
set of the probability measures on Cm+d

T . Define

Pθ(C
m+d
T ) =

{
µT ∈P(Cm+d

T ) :

∫
Cm+d
T

sup
s∈[−r,T ]

|ξ(s)|θµT (dξ) <∞

}

and denote Wθ,T as the Lθ-Wasserstein distance on Pθ(C
m+d
T ). So, (Pθ(C

m+d
T ),Wθ,T )

is a Polish space.
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Next, by the triangle inequality, we arrive at

sup
s∈[0,T ]

Wθ(µ̃
N
s , µs) ≤Wθ,T

(
1

N

N∑
i=1

δXi([−r,T ]),LXi([−r,T ])

)

≤Wθ,T

(
1

N

N∑
i=1

δXi([−r,T ]), δ0

)
+Wθ,T

(
δ0,LXi([−r,T ])

)
(4.21)

≤

(
1

N

N∑
i=1

sup
s∈[0,T ]

‖Xi
s‖θ∞

) 1
θ

+

(
E sup
s∈[0,T ]

‖Xi
s‖θ∞

) 1
θ

.

Thanks to the generalized Glivenko-Cantelli-Varadarajan theorem, see for instance [27,
Corollary 12.2.2], it holds P-a.s.

lim
N→∞

Wθ,T

(
1

N

N∑
i=1

δXi([−r,T ]),LXi([−r,T ])

)
= 0. (4.22)

Therefore, it follows from (4.13) for p = θ, (4.21), (4.22), Lemma 4.1 for Zi =

sups∈[0,T ] ‖Xi
s‖θ∞ and the dominated convergence theorem that

lim
N→∞

E sup
s∈[0,T ]

Wθ(µ̃
N
s , µs)

θ

≤ lim
N→∞

E

Wθ,T

(
1

N

N∑
i=1

δXi([−r,T ]),LXi([−r,T ])

)θ = 0. (4.23)

This together with (4.17) or (4.20) derives (4.6). Finally, by (4.6), (4.23) and (4.16), we
get (4.7).

When b(t, ξ, γ) and σ(t, ξ, γ) do not depend on γ, we can rewrite (4.2) as

dXi(t) =

(
b(t,Xi

t)

B(t,Xi
t ,

1
N

∑N
i=1 δXit )

)
dt+

(
0m×d
σ(t,Xi

t)

)
dW̃ i(t), 1 ≤ i ≤ N,

with

dW̃ i(t) = dW i(t)− Γ̃i(t)dt, 1 ≤ i ≤ N

and

Γ̃i(t) = σ(t,Xi
t)
−1[B(t,Xi

t ,
1

N

N∑
i=1

δXit )−B(t,Xi
t , µt)], 1 ≤ i ≤ N.

It follows from (4.8) that

|Γ̃i(t)| ≤ K2
0 (Wθ(

1

N

N∑
i=1

δXit , µt) ∧ 1), t ∈ [0, T ], 1 ≤ i ≤ N. (4.24)

Let

Rt = exp

{
N∑
i=1

∫ t

0

〈Γ̃i(s),dW i(s)〉 − 1

2

N∑
i=1

∫ t

0

|Γ̃i(s)|2ds

}
, t ∈ [0, T ].

(4.24) and Girsanov’s theorem imply that {Rt}t∈[0,T ] is a martingale and

((W̃ i(t))1≤i≤N )t∈[0,T ] is an Nd-dimensional Brownian motion under QT = RTP and

L(X1
t ,X

2
t ,...,X

N
t )|QT = L(X1,N

t ,X2,N
t ,...,XN,Nt )|P, t ∈ [0, T ].
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This implies that

E[f(X1,N
t , X2,N

t , . . . , XN,N
t )] = E[RT f(X1

t , X
2
t , . . . , X

N
t )]

= E[Rtf(X1
t , X

2
t , . . . , X

N
t )], f ∈ Bb(C

N(m+d)), t ∈ [0, T ].

So, there exists a constant C > 0 such that

Ent(L(X1,N
t ,X2,N

t ,...,XN,Nt )|P|µ
⊗N
t )

≤ E(Rt logRt) =
1

2

N∑
i=1

∫ t

0

EQT |Γ̃i(s)|2ds

≤ C2N

∫ t

0

EQT (Wθ(
1

N

N∑
i=1

δXis , µs) ∧ 1)2ds

= C2N

∫ t

0

E(Wθ(
1

N

N∑
i=1

δXi,Ns , µs) ∧ 1)2ds

= C2N

∫ t

0

E(Wθ(µ̂
N
s , µs) ∧ 1)2ds, t ∈ [0, T ].

This together with [23, Lemma 3.9] implies that for any k ≥ 1 and N ≥ k,

Ent(L(X1,N
t ,X2,N

t ,...,Xk,Nt )|µ
⊗k
t ) ≤ 2C2k

∫ t

0

E(Wθ(µ̂
N
s , µs) ∧ 1)2ds.

So, Pinsker’s inequality (1.1) yields

‖L(X1,N
t ,X2,N

t ,...,Xk,Nt ) − µ
⊗k
t ‖2var ≤ 2 Ent(L(X1,N

t ,X2,N
t ,...,Xk,Nt )|µ

⊗k
t )

≤ 4C2k

∫ t

0

E(Wθ(µ̂
N
s , µs) ∧ 1)2ds. (4.25)

Note that

E(Wθ(µ̂
N
s , µs) ∧ 1)2 ≤ E(Wθ(µ̂

N
s , µs)

θ)1{θ∈[1,2)} +
(
EWθ(µ̂

N
s , µs)

θ
) 2
θ 1{θ≥2}. (4.26)

By (4.7) and (4.25), we prove (4.9).

(2) Assume that (H2) holds for WΓ
θ replacing Wθ. When θ ≥ 2, repeating the proof to

get (4.17), we derive

Eηi,N (t)θ ≤ c4
∫ t

0

EWΓ
θ (µ̃Ns , µs)

θds (4.27)

for some constant c4 > 0. When θ ∈ [1, 2) and σ(t, ξ, γ) does not depend on γ, (4.18) is
replaced by

c0E

(∫ t

0

ηi,N (s)2ds

) θ
2

≤ c′4
∫ t

0

Eηi,N (s)θds+
1

2
Eηi,N (t)θ

for some constant c′4 > 0. Then (4.27) instead of (4.20) holds. Next, by the definition of
WΓ

θ , we have

EWΓ
θ (µ̃Ns , µs)

θ ≤
∫ 0

−r
E

W0
θ

(
1

N

N∑
i=1

δXis(u),LXis(u)

)θΓ(du). (4.28)
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Note that supt∈[0,T ] µt(‖ · ‖q∞) < ∞ due to (4.13) for p = q. By [12, Theorem 1] for
p = θ, q = q, see [8, Theorem 5.8] for the special case θ = 2, q > 4, there exists a constant
C0 > 0 depending only on θ, q,m+ d such that

E

W0
θ

(
1

N

N∑
i=1

δXis(u),LXis(u)

)θ
≤ C0

(
sup
t∈[0,T ]

µt(‖ · ‖q∞)

) θ
q

Rm+d(N), s ∈ [0, T ], u ∈ [−r, 0].

Substituting this into (4.28), we derive from (4.13) for p = q that there exists a constant
C > 0 depending only on θ, q,m+ d, T and E‖Xi

0‖q∞ such that

sup
s∈[0,T ]

EWΓ
θ (µ̃Ns , µs)

θ ≤ C0

(
sup
t∈[0,T ]

µt(‖ · ‖q∞)

) θ
q

Rm+d(N) ≤ CRm+d(N). (4.29)

So, (4.10) follows from (4.27) and (4.29). Moreover, it follows from (4.5) and (4.15) that

WΓ
θ (µ̂Ns , µs)

θ ≤ 2θ−1WΓ
θ (µ̂Ns , µ̃

N
s )θ + 2θ−1WΓ

θ (µ̃Ns , µs)
θ

≤ 2θ−1Wθ(µ̂
N
s , µ̃

N
s )θ + 2θ−1WΓ

θ (µ̃Ns , µs)
θ

≤ 2θ−1 1

N

N∑
i=1

‖Xi,N
s −Xi

s‖θ∞ + 2θ−1WΓ
θ (µ̃Ns , µs)

θ,

which implies (4.11) due to (4.10) and (4.29).
Finally, if b(t, ξ, γ) and σ(t, ξ, γ) do not depend on γ and (4.8) holds for WΓ

θ replacing
Wθ, then (4.25) holds for WΓ

θ replacing Wθ. Moreover, by (4.26) for WΓ
θ replacing Wθ

and (4.11), we derive (4.12) and the proof is completed.

A Appendix

In this section, we give the well-posedness of general path-distribution dependent
SDEs as well as mean field interacting particle system, and then apply it to the path-
distribution dependent SHS. Fix T > 0. Let n, k ∈ N+ and θ ≥ 1. Consider path-
distribution dependent SDEs on Rn:

dX(t) = H(t,Xt,LXt)dt+ Σ(t,Xt,LXt)dW (t), t ∈ [0, T ]. (A.1)

where H : [0, T ]×C n×P(C n)→ Rn, Σ : [0, T ]×C n×P(C n)→ Rn⊗Rk are measurable
and W (t) is a k-dimensional Brownian motion on some complete filtration probability
space (Ω,F , (Ft)t≥0,P). Let P̂(C n) be a subset of P(C n) and it is equipped with some
topology.

Definition A.1. The SDE (A.1) is called well-posed for distributions in P̂(C n), if for any
F0-measurable initial value X0 with LX0

∈ P̂(C n) (respectively any initial distribution
γ ∈ P̂(C n)), it has a unique strong solution (respectively weak solution) such that LX· ∈
C([0, T ]; P̂(C n)), the space of continuous maps from [0, T ] to P̂(C n). In particular, (A.1)
is called well-posed for distributions in Pθ(C n), if the above holds for (Pθ(C n),Wθ)

replacing P̂(C n).

Theorem A.1. Assume that there exists some constant K ≥ 0 such that

|H(s, ξ, γ1)−H(s, η, γ2)|+ |Σ(s, ξ, γ1)− Σ(s, η, γ2)| ≤ K(‖ξ − η‖∞ +Wθ(γ1, γ2)),

|H(s, 0, δ0)|+ |Σ(s, 0, δ0)| ≤ K, s ∈ [0, T ], ξ, η ∈ C n, γ1, γ2 ∈Pθ(C
n). (A.2)
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Then (A.1) is strongly well-posed in Pθ(C n) and there exists a constant C > 0 such that

Wθ(P
∗
t µ0, P

∗
t ν0) ≤ CeCtWθ(µ0, ν0), t ∈ [0, T ], µ0, ν0 ∈Pθ(C

n),

here P ∗t µ0 is the distribution of the solution to (A.1) with initial distribution µ0 ∈Pθ(C n).

Proof. It follows from (A.2) that for any µ ∈ C([0, T ],Pθ(C n)), the classical SDE

dXµ(t) = H(t,Xµ
t , µt)dt+ Σ(t,Xµ

t , µt)dW (t), t ∈ [0, T ] (A.3)

is well-posed. For any F0-measurable random variable X0 with LX0
∈ Pθ(C n), let

Xµ,X0

t be the unique solution to (A.3) starting from X0. Define the mapping ΦX0 :

C([0, T ],Pθ(C n))→ C([0, T ],Pθ(C n)) as

ΦX0
t (µ) = L

X
µ,X0
t

, t ∈ [0, T ].

By (A.2) and the inequality

(|a|+ |b|+ |c|)θ ≤ 3θ−1(|a|θ + |b|θ + |c|θ),

we arrive at

|Xν,X̃0(t)−Xµ,X0(t)|θ ≤ 3θ−1|X̃(0)−X(0)|θ

+ 3θ−1

∣∣∣∣∫ t

0

[H(s,Xν,X̃0
s , νs)−H(s,Xµ,X0

s , µs)]ds

∣∣∣∣θ (A.4)

+ 3θ−1

∣∣∣∣∫ t

0

[Σ(s,Xν,X̃0
s , νs)− Σ(s,Xµ,X0

s , µs)]dW (s)

∣∣∣∣θ .
Let ξt = sups∈[−r,t] |Xµ,X0(s)−Xν,X̃0(s)|. By (A.2), it follows from BDG’s inequality, the

inequality
√
|ab| ≤ |a|+|b|2 and Hölder’s inequality that

3θ−1E sup
v∈[0,t]

∣∣∣∣∫ v

0

{Σ(s,Xµ,X0
s , µs)− Σ(s,Xν,X̃0

s , νs)}dW (s)

∣∣∣∣θ

≤ C0E

(∫ t

0

(ξ2
s +Wθ(µs, νs)

2)ds

) θ
2

≤ 1

2
Eξθt + +C1

∫ t

0

Eξθsds+ C1

(∫ t

0

Wθ(µs, νs)
2ds

) θ
2

for some constant C1 > 0. Again by (A.2) and Hölder’s inequality, there exists a constant
C2 > 0 such that

3θ−1E sup
v∈[0,t]

∣∣∣∣∫ v

0

[H(s,Xµ,X0
s , µs)−H(s,Xν,X̃0

s , νs)]ds

∣∣∣∣θ ≤ C2E

∫ t

0

(ξθs +Wθ(µs, νs)
θ)ds.

As a result, we obtain from (A.4) and Hölder’s inequality that

Eξθt ≤ 2θ−1E‖X0 − X̃0‖θ∞ + 2θ−1E sup
s∈[0,t]

|Xµ,X0(s)−Xν,X̃0(s)|θ

≤ C3E‖X0 − X̃0‖θ∞ + C3

∫ t

0

Eξθsds+ C3

∫ t

0

Wθ(µs, νs)
θds+ C3

(∫ t

0

Wθ(µs, νs)
2ds

) θ
2

EJP 28 (2023), paper 134.
Page 16/20

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1027
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Exponential ergodicity and propagation of chaos

for some constant C3 > 0. So, Gronwall’s inequality yields that there exists a constant
C4 > 0 such that

Wθ(Φ
X0
t (µ),ΦX̃0

t (ν))θ ≤ Eξθt ≤ C4E‖X0 − X̃0‖θ∞ + C4

∫ t

0

Wθ(µs, νs)
θds

+ C4

(∫ t

0

Wθ(µs, νs)
2ds

) θ
2

, t ∈ [0, T ]. (A.5)

Therefore, for any δ > 0, we have

sup
t∈[0,T ]

e−δθtWθ(Φ
X0
t (µ),ΦX0

t (ν))θ ≤ sup
t∈[0,T ]

e−δθtWθ(µt, νt)
θC4[(δθ)−1 + (2δ)−

θ
2 ].

Take δ0 satisfying
(
C4[(δ0θ)

−1 + (2δ0)−
θ
2 ]
) 1
θ

< 1
2 and let EX0 := {µ ∈ C([0, T ]; Pθ(C n)) :

µ0 = LX0
} equipped with the complete metric

ρδ0(ν, µ) := sup
t∈[0,T ]

e−δ0tWθ(νt, µt), µ, ν ∈ EX0 .

Then we conclude that

ρδ0(ΦX0
· (µ),ΦX0

· (ν)) <
1

2
ρδ0(µ, ν), µ, ν ∈ EX0 ,

and the Banach fixed point theorem yields that

ΦX0
t (µ) = µt, t ∈ [0, T ]

has a unique solution µ ∈ EX0 . This means that (A.1) has a unique strong solution on
[0, T ] with initial value X0.

Next, applying (A.5) for µt = P ∗t µ0, νt = P ∗t ν0 and X0, X̃0 satisfying LX0
= µ0,LX̃0

=

ν0 and noting that

C4

(∫ t

0

Wθ(µs, νs)
2ds

) θ
2

≤ 1

2
sup
s∈[0,t]

Wθ(P
∗
s µ0, P

∗
s ν0)θ + C5

(∫ t

0

Wθ(P
∗
s µ0, P

∗
s ν0)ds

)θ
≤ 1

2
sup
s∈[0,t]

Wθ(P
∗
s µ0, P

∗
s ν0)θ + C6

∫ t

0

Wθ(P
∗
s µ0, P

∗
s ν0)θds

for some constant C6 > 0, there exists a constant C7 > 0 such that

sup
s∈[0,t]

Wθ(P
∗
s µ0, P

∗
s ν0)θ ≤ C7E‖X0 − X̃0‖θ∞ + C7

∫ t

0

Wθ(P
∗
s µ0, P

∗
s ν0)θds, t ∈ [0, T ].

So, by Grönwall inequality and taking infimum for all X0, X̃0 satisfying LX0
= µ0,LX̃0

=

ν0, we complete the proof.

Remark A.2. Under (A2)–(A3), the assertions in Theorem A.1 hold for (2.7) replac-
ing (A.1) by applying Theorem A.1 for n = m+ d, k = d and

H(t, ξ, γ) =

(
Aξ(1)(0) +Mξ(2)(0)

Z(ξ(0), γ) +B(ξ, γ)

)
, Σ =

(
0m×d
σ

)
.

Similarly, under (H), the assertions in Theorem A.1 hold for (4.1) replacing (A.1).
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Next, consider the mean field interacting particle system:

dXi,N (t) = H(t,Xi,N
t , µ̂Nt ) + Σ(t,Xi,N

t , µ̂Nt )dW i(t), 1 ≤ i ≤ N, (A.6)

with µ̂Nt = 1
N

∑N
i=1 δXi,Nt

and (W i)1≤i≤N are independent k-dimensional standard Brown-
ian motions. We give a result on the well-posedness of (A.6).

Theorem A.3. Under (A.2), (A.6) is well-posed.

Proof. For any ξ =

 ξ1
ξ2
· · ·
ξN

 ∈ (C n)N , let µξN = 1
N

∑N
i=1 δξi and define

H̃(t, ξ) =


H(t, ξ1, µ

ξ
N )

H(t, ξ2, µ
ξ
N )

· · ·
H(t, ξN , µ

ξ
N )

 , Σ̃(t, ξ) =


Σ(t, ξ1, µ

ξ
N ) 0n×k · · · 0n×k

0n×k Σ(t, ξ2, µ
ξ
N ) · · · 0n×k

· · · · · · · · · · · ·
0n×k 0n×k · · · Σ(t, ξN , µ

ξ
N )

 .

Note that for ξ, η ∈ (C n)N , it holds

Wθ(µ
ξ
N , µ

η
N ) = Wθ

(
1

N

N∑
i=1

δξi ,
1

N

N∑
i=1

δηi

)

≤

(
1

N

N∑
i=1

‖ξi − ηi‖θ∞

) 1
θ

≤ c(θ,N)‖ξ − η‖∞ (A.7)

for some constant c(θ,N) > 0. Consider path dependent SDE on RnN :

dX(t) = H̃(t,Xt)dt+ Σ̃(t,Xt)dWN (t), (A.8)

where WN =

W 1

W 2

· · ·
WN

 is a kN -dimensional Brownian motion. By (A.2) and (A.7), we have

|H̃(t, ξ)− H̃(t, η)|+ ‖Σ̃(t, ξ)− Σ̃(t, η)‖ ≤ C‖ξ − η‖∞, ξ, η ∈ (C n)N .

So, it is standard that (A.8) is well-posed and so is (A.6).
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