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Abstract

We show that a one-dimensional regular continuous Markov process X with scale
function s is a Feller–Dynkin process precisely if the space transformed process s(X)

is a martingale when stopped at the boundaries of its state space. As a consequence,
the Feller–Dynkin and the martingale property are equivalent for regular diffusions
on natural scale with open state space. By means of a counterexample, we also show
that this equivalence fails for multidimensional diffusions. Moreover, for Itô diffusions
we discuss relations to Cauchy problems.
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1 The Feller–Dynkin and the martingale property of diffusions

1.1 The setting

Let J ⊂ R be a non-empty closed, open or half open possibly unbounded interval.
We denote the interior of J by J◦, the closure of J in [−∞,∞] by cl(J) and its boundary
cl(J)\J◦ by ∂J . Using the classical sextuple notation of Blumenthal and Getoor, let

M , (Ω,F ,Ft : t ≥ 0,Xt : t ≥ 0, θt : t ≥ 0,Px : x ∈ J)

be a (path-)continuous (temporally homogeneous) conservative strong Markov process
(called diffusion in the following) with state space (J,B(J)). Throughout this paper we
assume that M is regular, i.e., Px(τy <∞) > 0 for every x ∈ J◦ and y ∈ J , where

τy , inf(t ∈ R+ : Xt = y).

We denote the scale function of M by s and its speed measure by m. For precise
definitions and properties we refer to the classical monographs [2, 23, 25]. The regular
diffusion M is said to be on natural scale in case its scale function is the identity, i.e.,
s = Id. Finally, let us recall the boundary terminology used in this paper (which is taken
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Feller–Dynkin and martingale property of diffusions

from the monograph [2]). We fix a reference point c ∈ J◦ and define for x ∈ J◦

u(x) ,


∫

(c,x]

m((c, z])s(dz), for x ≥ c,∫
(x,c]

m((z, c])s(dz), for x ≤ c,

v(x) ,


∫

(c,x]

(s(y)− s(c))m(dy), for x ≥ c,∫
(x,c]

(s(c)− s(y))m(dy), for x ≤ c.

(1.1)

Moreover, for b ∈ ∂J we write u(b) , limJ◦3x→b u(x) and v(b) , limJ◦3x→b v(x). A
boundary point b ∈ ∂J is called

regular if u(b) <∞ and v(b) <∞,
exit if u(b) <∞ and v(b) =∞,

entrance if u(b) =∞ and v(b) <∞,
natural if u(b) =∞ and v(b) =∞.

These definitions are independent of the choice of the reference point c ∈ J◦. Regular
and exit boundaries are called closed or accessible, and entrance and natural boundaries
are called open or inaccessible. As already indicated by the names, open boundaries
are not in the state space J while closed ones are. We call a regular boundary point b
absorbing if m({b}) =∞ and reflecting if m({b}) <∞.

1.2 Equivalence of the Feller–Dynkin and the martingale property

As M is a (strong) Markov process, we can define a semigroup (Tt)t≥0 via

Ttf(x) , Ex
[
f(Xt)

]
, (t, f, x) ∈ R+ × Cb(J)× J.

Let C0(J) be the space of continuous functions from J into R that are vanishing at
infinity. We endow C0(J) with the sup-norm which renders it into a Banach space. As J
is an interval, the space C0(J) has a simple representation given by

C0(J) =
{
f ∈ C(J) : lim

x→b
f(x) = 0 for all b ∈ ∂J\J

}
. (1.2)

The process X is called a Feller–Dynkin (FD) process if the semigroup (Tt)t≥0 is a strongly
continuous semigroup on C0(J). We define the stopping time

ζ , inf(t ∈ R+ : Xt 6∈ J◦).

It is well-known ([25, Corollary V.46.15]) that the stopped process Y , s(X·∧ζ) is a local
Px-martingale for all x ∈ J◦. The following theorem is our main result.

Theorem 1.1. The following are equivalent:

(i) X is an FD process.

(ii) Y is a Px-martingale for every x ∈ J◦.
(iii) Every open boundary point is natural.

As an immediate consequence of Theorem 1.1, we obtain the following:

Corollary 1.2. Suppose that M is on natural scale and that all regular boundaries are
absorbing. Then, X is an FD process if and only if it is a Px-martingale for all x ∈ J◦.
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Proof. We recall that exit boundaries are always absorbing in the sense that they cannot
be left by the diffusion, see [2, Problem 14, p. 370]. Hence, under the assumption that
all regular boundaries are absorbing, we have a.s. X = X·∧ζ . Thanks to this observation,
the claim follows directly from Theorem 1.1.

Remark 1.3. In case M is on natural scale but allowed to have a reflecting boundary
point, the equivalence from Corollary 1.2 fails. Indeed, consider Brownian motion
reflected at the origin, which is no martingale but an FD process. This example also
motivates the necessity to consider the stopped process Y = s(X·∧ζ) in Theorem 1.1.

Remark 1.4. Urusov and Zervos [26] proved that (iii) in Theorem 1.1 is equivalent to
the martingale properties of the so-called r-excessive local martingales. By virtue of
Theorem 1.1, their result provides another characterization of the FD property in terms
of martingale properties.

Remark 1.5. A standard example for a non-FD process is the three-dimensional Bessel
process (denoted Bes3; [23, Section VI.3]) and its inverse is a standard example for a
strict local martingale. These examples are connected via Theorem 1.1 as s(x) = −1/x

for x > 0 is a scale function of Bes3. We emphasize that the state space of Bes3 is
necessarily (0,∞) as it is otherwise no regular diffusion.

Our contribution in Theorem 1.1 is the equivalence of (i) and (ii), which we think is
quite surprising. In Section 1.3 below we comment in detail on related literature. In
the proof of Theorem 1.1, which is given in Section 2 below, we will see that Y is a true
martingale if X needs a long time to get close to open boundary points and that X is an
FD process if it needs a long time to get away from them. It seems to be a coincidence
that these properties are equivalent. Indeed, as we discuss in Section 1.4 below, the
equivalence of the FD and the martingale property is a one-dimensional phenomenon.

It is well-known ([16, Theorem 33.9] or [25, Theorem V.47.1]) that any regular
diffusion on natural scale is a time change of Brownian motion. On page 280 of their
monograph [24], Rogers and Williams write the following: Deciding whether or not
the FD property is preserved under probabilistic operations such as time-substitution
is generally a very difficult problem. In the same spirit, it is well-known that the
semimartingale property, but not necessarily the martingale property, is preserved
by changes of time. Thanks to these observations, the equivalence of (i) and (ii) in
Theorem 1.1 can be seen as follows: The time change related to the diffusion X preserves
the martingale property of the underlying Brownian motion precisely when it preserves
its FD property.

1.3 Comments on related literature

The question when a non-negative Itô diffusion with dynamics

dXt = σ(Xt)dWt, W = Brownian motion,

is a true martingale is, e.g., interesting for mathematical finance, where the martingale
property decides about the absence and existence of certain arbitrage opportunities.
Motivated by such an application, Delbaen and Shirakawa [9] proved an analytic integral
test for the martingale property. Later, Kotani [19] and Hulley [14] gave answers for
general regular diffusions on natural scale via integral tests depending on the speed
measure. More precisely, the equivalence of (ii) and (iii) in Theorem 1.1 is their result.

The quite different question whether an Itô diffusion with drift is an FD process was
studied by Feller [12] and Clément and Timmermans [7] from an analytic perspective,
and by Azencott [1] from a more probabilistic point of view. We emphasis that Azen-
cott was also interested in higher dimensional settings. These references provide the
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equivalence of (i) and (iii) in Theorem 1.1 for certain Itô diffusions. In their monograph,
Ethier and Kurtz ([11, Theorem 8.1.1]) present several Itô type generators of strongly
continuous semigroups on C(cl(J)) and they attribute these results to Mandl [20]. For
Itô diffusions with sufficiently regular coefficients, these yield the implication (iii)⇒ (i)
from Theorem 1.1 and also a representation of the generator, see [11, Corollary 8.1.2].
Furthermore, Kallenberg ([16, Theorem 33.13]) proved the following related result:
Form J via attaching entrance boundaries of X to J . Then, X extends to an FD process
on J . As J = J in case all open boundary points are natural, this theorem also implies
the implication (iii)⇒ (i) from Theorem 1.1.

Among many other things, for a regular second order differential operator L on
C∞c (J◦), Eberle [10] (for 1 ≤ p <∞) and Wu and Zhang [28] (for p =∞) studied whether
the closure of L generates a strongly continuous semigroup on Lp(m) (with a suitable
topology), where m denotes the speed measure associated to L. In this case, L is said
to be Lp-unique. Eberle proved that all infinite boundaries are natural if and only if
Lp-uniqueness holds for all p > 1, and Wu and Zhang proved that the same condition
is equivalent to L∞-uniqueness. These results are related to Theorem 1.1 in the sense
that, roughly speaking, uniqueness of FD semigroups can be viewed as some limit of
Lp-uniqueness as p→∞, see [10, Remark, p. 3].

Our main observation is the equivalence of (i) and (ii) in Theorem 1.1. The purpose of
this paper is to report this phenomenon and, as we find it not intuitive, to explain it via
a complete and (mainly) self-contained proof, which borrows and connects many ideas
from [1, 14, 19].

1.4 A counterexample for the multidimensional case

It is natural to ask whether the equivalence of (i) and (ii) from Theorem 1.1 also holds
in a multidimensional setting. In this section we give an example, inspired by a comment
on page 238 in [1], which shows that this is not the case. In other words, the equivalence
of the FD and the martingale property is a one-dimensional phenomenon.

Take d ≥ 2, define Ω , C(R+,R
d) and denote the coordinate process by X = (Xt)t≥0.

Let F and (Ft)t≥0 be the σ-field and the (right-continuous) filtration generated by X.
Furthermore, let Wx be the d-dimensional Wiener measure with starting point x ∈ Rd.
Let D ⊂ Rd be a nonempty domain of finite Lebesgue measure. A point o ∈ ∂D is called
irregular if Wo(τD = 0) = 0 with τD , inf(t > 0: Xt 6∈ D). Irregularity can also be
defined via the Dirichlet problem, see [22, Theorem 4.2.2]. The set of irregular points is
denoted by I. Note that Wo(τD = 0) = 1 for all o ∈ ∂D\I by Blumenthal’s zero-one law.

Example 1.6. (i) If D ≡ {x ∈ Rd : 0 < ‖x‖ < 1}, then I = {0}.
(ii) An example for a domain with a connected boundary containing an irregular point

is Lebesgue’s thorn, see [17, Example 4.2.17].

Define
D′ , cl(D)\I, Px ,Wx ◦ X−1

·∧τD : x ∈ D′.

Finally, we set

M , (Ω,F ,Ft : t ≥ 0,Xt : t ≥ 0, θt : t ≥ 0,Px : x ∈ D′),

where (θt)t≥0 is the usual shift operator on Ω, i.e., θsω(t) = ω(t+s) for ω ∈ Ω and s, t ∈ R+.

Theorem 1.7. M is a strong Markov process with state space (D′,B(D′)) and X is a
Px-martingale for every x ∈ D. Moreover, M is an FD process if and only if I = ∅.

Discussion. To see the connection of Theorems 1.1 and 1.7, notice that an irregular
boundary point can be viewed as a multidimensional version of an entrance boundary:
Brownian motion started in an irregular point o ∈ ∂D enters D immediately and stays
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there for some time. Further, as I is a polar set ([22, Theorem 2.6.3]), Brownian motion
never hits I when started in D′. Hence, roughly speaking, Theorem 1.7 shows that M
is an FD process if and only if there are no entrance boundary points, which is also
the equivalence of (i) and (iii) in Theorem 1.1. We point to the difference that entrance
boundaries are necessarily infinite for diffusions on natural scale, while irregular points
are elements of Rd. This is related to the well-known fact ([22, Proposition 2.3.2]) that
there are no irregular points in the one-dimensional case. Indeed, for d = 1 the system
M is also known to be an FD process (this is confirmed by Theorem 1.1). In contrast to
the FD property, irregular points do not affect the martingale property.

To get an intuition for the influence of the dimension d, let us discuss the example of
a Brownian motion in the punctured domain Rd\{0}. This example is related to part (i)
of Example 1.6 although, strictly speaking, it is not covered by Theorem 1.7. Let W be a
d-dimensional Brownian motion starting in x 6= 0. A straightforward application of Itô’s
formula yields that

‖W‖ = ‖x‖+B +

∫ ·
0

(d− 1)dt

2‖Wt‖
,

where B ,
∫ ·

0
〈Wt, dWt〉/‖Wt‖ is a one-dimensional Brownian motion by Lévy’s character-

ization. This easy computation recovers the well-known fact that ‖W‖ is a d-dimensional
Bessel process, denoted Besd, with initial value ‖x‖ > 0. Notice that the dimension
d enters the picture through the drift coefficient. As d ≥ 2, the origin is an entrance
boundary for Besd ([20, Section II.6.3]) and latter is no FD process by Theorem 1.1.
Since ‖W‖ is a d-dimensional Bessel process, it is easy to see that this failure of the FD
property transfers to Brownian motion in Rd\{0}.

Proof of Theorem 1.7. The strong Markov property of M can be proved as in [15, Sec-
tion 3.9, pp. 102 – 103].

The martingale property follows from those of Brownian motion and the optional
stopping theorem. To see this, first note that X−1

·∧τD (Ft) ⊂ Ft∧τD for all t ∈ R+. Then, the
optional stopping theorem yields that for all s < t and G ∈ Fs we have Xt,Xs ∈ L1(Px)

and

EPx
[
Xt1G

]
= EWx

[
Xt∧τD1{X·∧τD∈G}

]
= EWx

[
Xs∧τD1{X·∧τD∈G}

]
= EPx

[
Xs1G

]
.

This is the martingale property.
If I = ∅, then M is an FD process by [18, Theorem 4.1.9]. We now show the

converse direction, i.e., we assume that I 6= ∅ and we take o ∈ I. Thanks to [22,
Proposition 4.2.14], there exists a compact set K ⊂ D such that

lim sup
x→o
x∈D

Wx(TK < τD) > 0, TK , inf(t > 0: Xt ∈ K). (1.3)

Furthermore, by [6, (X), p. 148] and the assumption that D has finite Lebesgue measure,
there exists an α > 0 such that

sup
x∈Rd

EWx
[
eατD

]
<∞. (1.4)

Using Galmarino’s test ([15, p. 86]) and the Cauchy–Schwarz inequality, for all x ∈ D we
obtain

Wx(TK < τD) = Wx(TK(X·∧τD ) < τD)

≤ EWx
[
eα(τD−TK(X·∧τD ))/2

]
≤ sup
z∈Rd

EWz
[
eατD

] 1
2EPx

[
e−αTK

] 1
2 .

(1.5)
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By [8, Remark 1], we have

M is an FD process ⇒ lim
x→o
x∈D

EPx
[
e−αTK

]
= 0. (1.6)

Finally, (1.3) – (1.6) yield that M is no FD process.

Remark 1.8. Let us also sketch a more direct idea of proof for the failure of the FD
property in case I 6= ∅. We only consider the example of Brownian motion in Rd\{0}.
Take a continuous function f : R→ [0, 1] such that f(0) = 0 and f(x) > 0 for all x 6= 0, let
(xn)n∈N ⊂ Rd be a sequence with xn → 0 and take t > 0. It is well-known that the map
x 7→Wx is continuous from Rd into the set of probability measures on (Ω,F) with the
topology of convergence in distribution. Hence,

lim
n→∞

EWxn
[
f(‖Xt‖)

]
= EW0

[
f(‖Xt‖)

]
> 0,

which shows that Brownian motion in Rd\{0} is no FD process.

1.5 Equivalence of Cauchy problems in Itô diffusion settings

It is well-known that the FD and the martingale property have close relations to
existence and uniqueness properties of Cauchy problems. Thanks to Theorem 1.1, we
can connect these relations.

Suppose that J = (l, r) for −∞ ≤ l < r ≤ ∞ and that

s(x) ,
∫ x

c

exp
(
−
∫ ξ

c

2b(z)dz

σ2(z)

)
dξ, m(dx) ,

dx

s′(x)σ2(x)
,

where c ∈ J is an arbitrary reference point and b : J → R and σ : J → R\{0} are
continuous functions. Moreover, we set

Sf , bf ′ + σ2

2 f
′′ for f ∈ D(S) ,

{
f ∈ C0(J) ∩ C2(J) : Sf ∈ C0(J)

}
.

Remark 1.9. In case X is an FD process, it is known that (S,D(S)) is its infinitesimal
generator, see [11, Corollary 8.1.2].

We start with a consequence of a main result from [3] which relates (ii) and (iii) from
Theorem 1.1 to existence and uniqueness of a classical solution to a certain Cauchy
problem with boundary datum of linear growth.

Theorem 1.10. Suppose that J = (0,∞), b ≡ 0 and that σ is locally Hölder continuous
with exponent 1/2. Then, (i) – (iii) from Theorem 1.1 are equivalent to the following:

(iv) For every continuous function g : R+ → R+ of linear growth, i.e., |g(x)| ≤ C(1 + |x|)
with C > 0, and any finite time horizon T > 0 the Cauchy problem

du
dt + σ2

2 u
′′ = 0, on (0,∞)× [0, T ),

u(0, t) = g(0), t ∈ [0, T ],

u(x, T ) = g(x), x ∈ R+,

has a unique solution u : R+ × [0, T ]→ R such that u ∈ C2,1((0,∞)× [0, T )).

Proof. The equivalence of (iii) and (iv) follows from [3, Theorem 2].

In case (iii) fails, it has been shown in [4, 5] that for appropriate boundary data the
associated Cauchy problem still has a solution which is unique among all solutions with
certain non-standard boundary behavior.
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The proof of Theorem 1.10 in [3] uses PDE theory in combination with uniform
integrability properties, which stem from the martingale property of X, i.e., item (ii) from
Theorem 1.1.

Next, we provide another characterization of (i) – (iii) from Theorem 1.1 in terms of
properties of Cauchy problems.

Theorem 1.11. (i) – (iii) from Theorem 1.1 are equivalent to each of the following:

(v) For all g ∈ D(S) the Cauchy problem

du

dt
= Su, u(0) = g,

has a unique solution u : R+ → C0(J) which is a continuously differentiable function
such that u(t) ∈ D(S) for all t > 0.

(vi) For all g ∈ D(S) there exists a continuous function u : R+ → C0(J) such that
u(0) = g, u(t) ∈ D(S) for all t > 0, Su : (0,∞)→ C0(J) is continuous, and

u(t)− u(ε) =

∫ t

ε

Su(s)ds

for all t > ε > 0.

Proof. If (iii) holds, [11, Corollary 8.1.2] and [21, Theorem 4.1.3] yield (v). Obviously, (v)
implies (vi). Suppose that (vi) holds. As C2

c (J) is dense in C0(J) and C2
c (J) ⊂ D(S), the

operator (S,D(S)) is densely defined. Furthermore, it follows from [7, Proposition 1]
that (S,D(S)) is closed and dissipative. Hence, (vi) and [11, Proposition 1.3.4] yield
that (S,D(S)) is the generator of a strongly continuous semigroup on C0(J). Now, it
follows verbatim as in the proof of [7, Lemma 3] that there exist two positive monotone
solutions ul and ur to u = Su such that limx→l ul(x) = limx→r ur(x) = 0. As in the proof
of Lemma 2.3 below, if l is not natural then there exists a positive increasing solution
u∗l to u = Su with limx→l u

∗
l (x) > 0. However, since u∗l = cul for c > 0 (see [15, p. 129]),

this yields a contradiction. The same argument shows that r is natural. The proof is
complete.

It is interesting to observe that for the Cauchy problem from (iv) uniqueness fails in
case (i) – (iii) from Theorem 1.1 fail, see the proof of [3, Theorem 2]. In other words,
existence is not the decisive property in Theorem 1.10. This is quite different for the
Cauchy problem from (v). In case it has a solution (for all initial data), then (vi) holds
and (i) – (iii) from Theorem 1.1 hold, too.

2 Proof of Theorem 1.1

As the scale function s is continuous and strictly increasing, s : J → s(J) is a homeo-
morphism and, by virtue of [23, Exercise VII.3.18], s(X) is a regular diffusion with state
space J∗ , s(J), scale function Id and speed measure m ◦ s−1. We notice the following
implications: If f ∈ C0(J) then f ◦ s−1 ∈ C0(J∗), and if f ∈ C0(J∗) then f ◦ s ∈ C0(J),
see (1.2). Thus, X and s(X) are simultaneously FD processes. We elaborate this claim
in more detail. Suppose that X is an FD process and take f ∈ C0(J∗) and t > 0. Then,
g , f ◦ s ∈ C0(J) and(

J 3 x 7→ Ex
[
f(s(Xt))

]
= Ex

[
g(Xt)

])
∈ C0(J).

Therefore, Es−1(·)[f(s(Xt))] ∈ C0(J∗), which shows that s(X) is an FD process. The
converse implication (i.e., that X is an FD process in case s(X) is an FD process) follows
the same way. With this observation in mind, we can and will w.l.o.g. assume that X is
on natural scale, i.e., we assume that s = Id.
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Lemma 2.1. (i) X is an FD process if and only if

lim
x→b

Ex
[
e−ατy

]
= 0 for all y ∈ J◦, α > 0 and any infinite b ∈ ∂J. (2.1)

(ii) X·∧ζ is a Px-martingale for all x ∈ J◦ if and only if

lim
y→b

yEx
[
e−ατy

]
= 0 for all x ∈ J◦, α > 0 and any infinite b ∈ ∂J. (2.2)

Part (i) of Lemma 2.1 is a version of [1, Proposition 3.1] and [8, Remark 1] for our
framework. In [1] the result is shown for multidimensional Itô diffusions with (locally)
Hölder coefficients and in [8] it is shown in a general martingale problem framework. The
general idea for its proof given below is taken from [1]. The argument in [1] for the only
if implication uses analytic tools. The proof given below borrows the supermartingale
argument from [8]. Part (ii) can be extracted from [14], although it has not been stated
there in this form. Furthermore, (ii) can be deduced from [26, Theorem 2.2], or [5,
Theorem 2.3], together with [19, Theorem 1]. For completeness, we give a full proof for
which we borrow arguments from the proof of [14, Theorem 3.9].

As every regular diffusion is already a Feller process, it is an FD process if and only
if Ttf vanishes at infinity for all f ∈ C0(J) and t > 0. Thus, X should be an FD process
precisely if it stays some time close to open boundaries. Part (i) of Lemma 2.1 quantifies
this intuition. At this point we stress that regular diffusions on natural scale always stay
some time close to finite open boundaries. This explains why only the infinite boundaries
are mentioned in (2.1). As we have seen in Section 1.4, this is quite different in the
multidimensional setting for which finite points make a difference.

To get an idea for part (ii), consider J = (0,∞) and note that for all y ≥ x the stopped
process X·∧τy is a bounded local Px-martingale and consequently, a Px-martingale.
The condition (2.2) can be viewed as a criterion for the uniform Px-integrability of
{Xt∧τy : y ≥ x} for every t > 0, which is necessary and sufficient for the Px-martingale
property of X. To get an intuition for this, recall the criterion of de la Vallée Poussin:
A family Π ⊂ L1 is uniformly integrable if and only if there exists a convex monotone
function H : R+ → R+ such that supX∈ΠE[H(|X|)] < ∞ and H(x)/x → ∞ as x → ∞.
The condition (2.2) mirrors this criterion with H(x) = 1/Ey[e−ατx ] for x > y.

At first glance (2.2) seems to be stronger than (2.1). For example, suppose that
g(x, y) , Ex[e−ατy ] is symmetric in x, y ∈ J◦. Then, (2.2) clearly implies (2.1). It turns
out that this situation is quite special: g is symmetric if and only if the diffusion X behaves
like a Brownian motion up to a constant scale factor in the interior of its state space J .1

In case M is a Brownian motion, it is easy to show that Ex[e−ατy ] = e−
√

2α|x−y| for all
x, y ∈ R and both (2.1) and (2.2) are satisfied. We have the following general relation:

Lemma 2.2. (2.1)⇔ (2.2)⇔ all infinite boundaries are natural.

1Let g1 and g2 be the functions from (2.3) in the proof of Lemma 2.2. Symmetry of g means that g1g2 = 1.
Let B be the Wronskian, i.e., const. ≡ B = g+1 g2 − g1g

+
2 , see [15, p. 130]. Using the product rule we obtain

0 = (g1g2)
+ = g+1 g2 + g1g

+
2 =

{
2g+1 g2 −B = 2g+1 /g1 −B,
2g1g

+
2 +B = 2g+2 /g2 +B,

which means that g+1 = Bg1/2 and g+2 = −Bg2/2. Using these identities, dg+i = 2αgidm, i = 1, 2, and
integration by parts, we obtain for all a, b ∈ J◦ with a < b that

0 =

∫
(a,b]

d(g1g2)
+ =

∫
(a,b]

g+1 dg2 +

∫
(a,b]

g2dg
+
1 +

∫
(a,b]

g+2 dg1 +

∫
(a,b]

g1dg
+
2

= 2

∫ b

a
g+1 g

+
2 dx+ 4α

∫
(a,b]

g1g2dm = −
B2

2
(b− a) + 4αm((a, b]).

Consequently, m(dx) = const. dx on (J◦,B(J◦)). Hence, X behaves like a Brownian motion up to a constant
scale factor in the interior of J .
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Feller–Dynkin and martingale property of diffusions

Lemma 2.2 shows that X approaches infinite boundaries slow enough to be a martin-
gale precisely when it needs long enough to get away from them to be an FD process.
This connection seems to be a surprising coincidence. Lemma 2.2 is known in different
formulations, see [14, Propositions 3.12 and 3.13], [15, Table 1, p. 130], [19, Lemma 3]
or [26, Theorem 2.2]. Below we give a complete and mainly analytic proof, which
borrows ideas from these references. It would also be interesting to find a proof for
the equivalence (2.1) ⇔ (2.2) without an excursion via natural boundaries. As we are
not aware of such an argument, we think that the analytic character of the proof for
Lemma 2.2 supports the impression that the equivalence of the FD and the martingale
property is quite surprising.

Proof of Theorem 1.1. Lemmata 2.1 and 2.2 imply Theorem 1.1.

Proof of Lemma 2.2. Fix α > 0 and a reference point y ∈ J◦. Using the notation of Itô
and McKean ([15, pp. 128]), for x ∈ J◦ we define

g1(x) ,

{
Ex
[
e−ατy

]
, x ≤ y,

1/Ey
[
e−ατx

]
, y < x,

g2(x) ,

{
1/Ey

[
e−ατx

]
, x ≤ y,

Ex
[
e−ατy

]
, y < x.

(2.3)

It is well-known ([25, Proposition V.50.3]) that g1 and g2 are strictly convex, continuous,
strictly monotone, and positive and finite (throughout J◦). More precisely, g1 is strictly
increasing and g2 is strictly decreasing. Furthermore, g1 and g2 both solve the differential
equation

1

2α

d

dm

d+g

dx
= g,

that is for z, y ∈ J◦ with z < y

d+g

dx
(y)− d+g

dx
(z) = 2α

∫
(z,y]

g(u)m(du).

Case 1: ∞ is a boundary point of J . Clearly, for b = ∞ the property (2.1) means that
g2(∞) , limx→∞ g2(x) = 0, and (2.2) means that

lim
x→∞

x

g1(x)
= 0. (2.4)

We now translate (2.4) to a property of g+
1 , d+g1/dx. As g1 is convex, we have

g1(x)− g1(z)

x− z
≤ g+

1 (x), x, z ∈ J◦, x > z,

which shows that (2.4) implies g+
1 (∞) , limx→∞ g+

1 (x) = ∞. Conversely, L’Hopital’s
rule (see [27, Theorem 3] for a suitable version with right derivatives) yields that (2.4) is
implied by g+

1 (∞) =∞. Thus, (2.4) is equivalent to g+
1 (∞) =∞. We claim the following:

g+
1 (∞) =∞ ⇒ g2(∞) = 0 ⇒ ∞ is natural ⇒ g+

1 (∞) =∞. (2.5)

These implications yield the equivalences in Lemma 2.2 for the boundary point∞.

Proof of 1st implication in (2.5): By [25, Theorem V.50.7] (or [15, p. 130]), the Wronskian
is constant, i.e., g2g

+
1 − g1g

+
2 ≡ constant , B. Now, g2g

+
1 ≤ B shows that g+

1 (∞) =∞⇒
g2(∞) = 0.

Proof of 2nd implication in (2.5):
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Lemma 2.3. If∞ is not natural, then there exists a continuous and decreasing function

g : J◦ → [1,∞) such that 1
2α

d
dm

d+g
dx = g and limx→∞ g(x) , g(∞) = 1.

Proof. We mimic the proof of [17, Lemma 5.5.26] (see also [20, Section II.2]). Assume
that∞ is not natural. Set u0 = 1 and

un(x) ,
∫ ∞
x

∫
(y,∞)

un−1(z)m(dz)dy =

∫
(x,∞)

(z − x)un−1(z)m(dz),

for x ∈ J◦ and n = 1, 2, . . . . We stress that u1, u2, . . . are well-defined, continuous and
decreasing, because∞ is not natural. Induction shows that

un ≤
un1
n!
, n = 1, 2, . . . . (2.6)

Indeed, the case n = 1 is clear and if the inequality holds for n ∈ N, then

un+1 =

∫ ∞
·

∫
(y,∞)

un(z)m(dz)dy ≤ 1

n!

∫ ∞
·

un1 (y)m((y,∞))dy

=
−1

n!

∫ ∞
·

un1 (y)u1(dy) =
un+1

1

(n+ 1)!
.

Using (2.6), we also get∣∣∣d+un
dx

∣∣∣ ≤ un−1
1

(n− 1)!
m(( · ,∞)), n = 1, 2, . . . . (2.7)

Thanks again to (2.6), g ,
∑∞
n=0(2α)nun defines a continuous and decreasing function.

We also see that 1 + 2αu1 ≤ g ≤ e2αu1 and consequently, g(∞) = 1. Moreover, using (2.7),
we get

d+g

dx
=

∞∑
n=1

(2α)n
d+un
dx

=

∞∑
n=1

(2α)n(−1)

∫
(·,∞)

un−1(z)m(dz)

= −2α

∫
(·,∞)

∞∑
n=0

(2α)nun(z)m(dz) = −2α

∫
(·,∞)

g(z)m(dz).

For y, z ∈ J◦ with y < z this shows that

d+g

dx
(z)− d+g

dx
(y) = 2α

∫
(y,z]

g(x)m(dx),

which is nothing else than 1
2α

d
dm

d+g
dx = g. In summary, g has all claimed properties.

Assume that ∞ is not natural and take g as in Lemma 2.3. Then, the uniqueness
theorem [2, Theorem 16.69] implies that g = c g2 for a constant c > 0. Thus, g2(∞) > 0

and we conclude that g2(∞) = 0⇒∞ is natural.

Proof of 3rd implication in (2.5): Assume that g+
1 (∞) <∞. Then, using the subdifferen-

tial inequality, we obtain for every a ∈ J◦ that∫
(a,∞)

(z − a)m(dz) ≤
∫

(a,∞)

g1(z)m(dz)

g+
1 (a)

=
g+

1 (∞)− g+
1 (a)

2αg+
1 (a)

<∞.

Consequently,∞ cannot be natural. We conclude that∞ is natural⇒ g+
1 (∞) =∞.
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Case 2: −∞ is a boundary point of J . In this case (2.1) means that g1(−∞) ,
limx→−∞ g1(x) = 0, and (2.2) means that limx→−∞

x
g2(x) = 0. As in the previous case, we

see that
lim

x→−∞

x

g2(x)
= 0 ⇔ g+

2 (−∞) = −∞.

The following implications also follow as in the previous case:

g+
2 (−∞) = −∞ ⇒ g1(−∞) = 0 ⇒ −∞ is natural ⇒ g+

2 (−∞) = −∞.

Hence, the equivalence in Lemma 2.2 holds for the boundary point −∞. The proof is
complete.

Proof of Lemma 2.1 (i). First, assume that X is an FD process. Fix y ∈ J◦, α > 0 and let
g ∈ C0(J) be such that g(J) ⊂ [0, 1] and g(y) = 1. Furthermore, define

Rαg ,
∫ ∞

0

e−αsTsg ds.

It is well-known ([23, Section III.2.6]) that Rαg ∈ C0(J) and that e−α·Rαg(X) is a Px-
supermartingale for every x ∈ J . Moreover, as t 7→ Tt is continuous in the origin, we also
see that Rαg(y) > 0. The optional stopping theorem yields that

Rαg(x) ≥ Ex
[
e−ατyRαg(Xτy )1{τy<∞}

]
= Rαg(y)Ex

[
e−ατy

]
. (2.8)

As Rαg ∈ C0(J), this inequality implies (2.1). As a referee has pointed out, the inequality
in (2.8) can also be deduced from the strong Markov property:

Rαg(x) ≥ Ex
[ ∫ ∞

τy

e−αsg(Xs)ds1{τy<∞}

]
= Ex

[ ∫ ∞
0

e−α(s+τy)Ex
[
g(Xs+τy )|Fτy

]
ds1{τy<∞}

]
= Ex

[ ∫ ∞
0

e−α(s+τy)EXτy

[
g(Xs)

]
ds1{τy<∞}

]
= Rαg(y)Ex

[
e−ατy

]
.

The argument based on the optional stopping theorem also works when X is a (not
necessarily strong) Markov process.

Conversely, assume that (2.1) holds. By [23, Proposition III.2.4], X is an FD process if
and only if Tt(C0(J)) ⊂ C0(J) for all t > 0. As X is a Feller process, we only need to show
that Ttf vanishes at infinity for every f ∈ C0(J) and t > 0. Of course, for this property
we can restrict our attention to open boundaries, cf. (1.2).

Denote the left boundary point of J by l and the right boundary point by r. Let g1 be
as in the proof of Lemma 2.2 and assume that l is open and finite. For l < x < r a little
calculus yields that

∞ > (x− l)g+
1 (x) + g1(l)− g1(x) =

∫ x

l

(
g+

1 (x)− g+
1 (z)

)
dz

=

∫ x

l

∫
(z,x]

2αg1(u)m(du)dz

≥ 2αg1(l)

∫ x

l

m((z, x])dz.

As l is open (i.e., u(l) = ∞, where u is as in (1.1)), this inequality yields g1(l) = 0.
Similarly, g2(r) = 0 holds in case r is open and finite. In summary, (2.1) holds for all open
boundaries irrespective whether these are finite or infinite.
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Take f ∈ C0(J) and α, ε > 0. For l < y < x < r we have

Px(Xα < y) ≤ Px(τy < α) ≤ eα
2

Ex
[
e−ατy

]
. (2.9)

Suppose that the right boundary r is open. Then, as f ∈ C0(J), there exists a z ∈ J◦
such that |f(x)| ≤ ε for all z ≤ x. Now, taking (2.1) and (2.9) into account, we obtain

|Tαf(x)| ≤ Ex
[
|f(Xα)|1{Xα≥z}

]
+ Ex

[
|f(Xα)|1{Xα<z}

]
≤ ε+ ‖f‖∞Px(Xα < z)→ ε as x→ r.

This implies that Tαf(x)→ 0 as x→ r.
Similarly, when the left boundary l is open it follows that Tαf(x) → 0 as x → l. We

conclude that Tαf vanishes at infinity. The proof is complete.

Proof of Lemma 2.1 (ii). By Lemma 2.2, (2.2) holds if and only if all infinite boundary
points are natural. Thus, (2.2) holds for the diffusions X and X·∧ζ simultaneously. Conse-
quently, we can w.l.o.g. assume that X = X·∧ζ .

Let l be the left boundary point of J and let r be the right boundary point. In case
−∞ < l < r < +∞ the process X = X·∧ζ is bounded and the claim of Lemma 2.1
(ii) is obvious. Below we distinguish between the cases where −∞ < l < r = ∞ and
−∞ = l < r =∞. The remaining case −∞ = l < r <∞ is similar to the former.

If Xt ∈ L1(Px) for all t > 0, then the Markov property yields that

Px-a.s. Ex
[
Xt|Fs

]
= EXs

[
Xt−s

]
, 0 ≤ s < t.

Hence, as martingales always have constant expectation, we have the following:

Lemma 2.4. X is a Px-martingale for all x ∈ J◦ if and only if Xt ∈ L1(Px) and Ex[Xt] = x

for all x ∈ J◦ and t > 0.

In the following we prove that the latter condition from Lemma 2.4 is equivalent
to (2.2).

Case 1: −∞ < l < r = ∞. Fix x ∈ J◦ = (l,∞) and t > 0. First of all, Xt ∈ L1(Px)

follows from Fatou’s lemma as X is a local martingale which is bounded from below.
For x < y < r = ∞ the stopped process X·∧τy is Px-a.s. bounded and consequently, a
Px-martingale. As Xt ∈ L1(Px), the dominated convergence theorem yields that

Ex
[
Xt
]

= lim
y→∞

Ex
[
Xt1{τy>t}

]
= lim
y→∞

(
Ex
[
Xt∧τy

]
− Ex

[
Xτy1{τy≤t}

])
= x− lim

y→∞
yPx(τy ≤ t).

Thus, by Lemma 2.4, X is a Px-martingale for all x ∈ J◦ if and only if

lim
y→∞

yPx(τy ≤ t) = 0

for all x ∈ J◦ and t > 0. Taking this observation into consideration, the next lemma
completes the proof of Lemma 2.1 (ii) for the current case.

Lemma 2.5. Let x ∈ J◦. Then, limy→∞ yPx(τy ≤ t) = 0 for all t > 0 if and only if
limy→∞ yEx[e−ατy ] = 0 for all α > 0.

Proof. Take α > 0. Fubini’s theorem yields that∫ ∞
0

e−αtPx(τy ≤ t)dt =

∫∫ ∞
u

e−αtdtPx(τy ∈ du) = 1
αEx

[
e−ατy

]
.
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Furthermore, for every y ≥ x we have

(y − l)Px(τy ≤ t) = Ex
[
(Xt∧τy − l)1{τy≤t}

]
≤ Ex

[
Xt∧τy

]
− l = x− l,

which implies |y|Px(τy ≤ t) ≤ x − l + |l|. Thus, if limy→∞ yPx(τy ≤ t) = 0 for all t > 0,
then the dominated convergence theorem yields

lim
y→∞

yEy
[
e−ατy

]
= lim
y→∞

∫ ∞
0

αe−αtyPx(τy ≤ t)dt = 0.

This is the only if implication.
Conversely, if limy→∞ yEx[e−ατy ] = 0, then

lim
y→∞

yPx(τy ≤ α) ≤ eα
2

lim
y→∞

yEx
[
e−ατy

]
= 0. (2.10)

This gives the if implication. The proof is complete.

Case 2: −∞ = l < r =∞. We start with a version of [19, Lemma 1]:

Lemma 2.6. For all t > 0 and x ∈ J = R we have Xt ∈ L1(Px).

For completeness, we provide a proof for Lemma 2.6 at the end of this section.
Suppose now that (2.2) holds and take x ∈ R. As in (2.10), we obtain

lim
y→∞

yPx(τy ≤ t) = lim
y→∞

yPx(τ−y ≤ t) = 0, t > 0.

Now, by virtue of Lemma 2.6, the dominated convergence theorem yields that

Ex
[
Xt
]

= lim
y→∞

Ex
[
Xt1{τy∧τ−y>t}

]
= lim
y→∞

(
Ex
[
Xt∧τy∧τy−

]
− Ex

[
Xτy∧τ−y1{τy∧τ−y≤t}

])
= x− lim

y→∞

(
yPx(τy ≤ t, τy < τ−y)− yPx(τ−y ≤ t, τ−y < τy)

)
= x

for all t > 0. Hence, the process X is a Px-martingale by Lemma 2.4.
Conversely, assume that X is a Px-martingale for all x ∈ R and take a ∈ R. By the

optional stopping theorem, the stopped process X·∧τa is a Px-martingale for all x ∈ R.
For suitable initial values, X·∧τa is a diffusion with state space [a,∞) (or with state space
(−∞, a]). Notice that X·∧τa has the same boundary behavior at ∞ (or at −∞) as the
unstopped process X, see [15, Section 3.9, pp. 102 – 105]. Now, the previous case and
Lemma 2.2 yield that∞ and −∞ are natural. Hence, again by Lemma 2.2, (2.2) holds
and the proof is complete.

Proof of Lemma 2.6. We use a suitable Lyapunov function. Such a function was also used
in the proof of [19, Lemma 1], but it was not given explicitly. Let −∞ < a < 0 < b <∞
and let g : R→ [0, 1] be a continuous function such that g ≡ 0 off [a, b] and g > 0 on [a, b].
Furthermore, define

f(x) ,


∫ x

0

∫
(0,y]

2g(z)m(dz)dy, for x ≥ 0,∫ 0

x

∫
(y,0]

2g(z)m(dz)dy, for x ≤ 0.

Notice that 1
2
d
dm

d+f
dx = g, limx→∞ f(x)/x > 0 and limx→−∞ f(x)/(−x) > 0.
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Take y > (−a)∨ b. As 1
2
d
dm

d+

dx is the generator of the stopped diffusion X·∧τy∧τ−y and f
is in its domain (see [13, Section 2.7]), Dynkin’s formula ([13, Lemma 48, p. 119]) yields

Ex
[
f(Xt∧τy∧τ−y )

]
= f(x) + Ex

[ ∫ t∧τy∧τ−y

0

g(Xs)ds
]
≤ f(x) + t‖g‖∞.

Finally, letting y → ∞ and using Fatou’s lemma yields that f(Xt) ∈ L1(Px). As
limx→∞ f(x)/x > 0 and limx→−∞ f(x)/(−x) > 0, this implies Xt ∈ L1(Px) and the proof
is complete.
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