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Abstract. In this perspective, I first share some key lessons learned from
the experience of modeling the transmission dynamics of SARS-CoV-2 in
India since the beginning of the COVID-19 pandemic in 2020. Second, I dis-
cuss some interesting open problems related to COVID-19 where statisticians
have a lot to contribute to in the coming years. Finally, I emphasize the need
for having integrated and resilient public health data systems: good data cou-
pled with good models are at the heart of effective policymaking.
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INTRODUCTION

For the last two years, our research team has been mod-
eling the SARS-CoV-2 pandemic in India [10, 81, 83,
88, 104]. The work that grew out of an altruistic need to
contribute to the pandemic fight by my country of ori-
gin, gradually became a source of many interesting sta-
tistical questions and ideas. The learning curve has been
steep since we did not have prior experience in building
forecasting models for infectious diseases before the pan-
demic. After the rapid-paced “nowcasting” (a term used
for real-time forecasting) work that was primarily focused
on informing the public and the policymakers in India
subsided, we were able to focus more on other more nu-
anced statistical issues. Our team explored the electronic
health records data from Michigan Medicine to answer
different types of questions related to COVID-19 test-
ing, outcomes and risk factors [37, 87, 89, 103]. In this
perspective, my goal is to share some key lessons that
I learned through this modeling experience and discuss
some of the pressing problems where I think statisticians
have a lot to contribute to in the months and years to come.

Key Lessons

There were several key lessons that I learned which go
far beyond our knowledge of mathematical models and
emphatically depart from the standard academic approach
to research. Our goal from the very beginning was to make
real-time public health impact. The resources and stamina
one needs to attain this goal are very different in nature.
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(1) Having an interdisciplinary team: To conduct real
time forecasting you need a team who will be largely
available to link data sources, maintain software and write
code in real time. Methods development was secondary
in the initial phase as we were using existing models for
virus transmission [100]. Tuning, running, and updating
models daily are not part of the typical research projects
of a graduate student or a faculty member. The rewards
for such “chores” are very little in traditional academia.
Most of this work will not be translated into papers, but it
takes considerable time and capability to do it well. This
implies you need full-time staff programmers for day-to-
day operations. Fortunately, Michigan Biostatistics had a
cadre of excellent programmers who were willing to vol-
unteer and devote their time to this project.

(2) Public Communications: Our initial projections for
the daily new cases in India were released through a
Medium article [19] where we focused on reaching a
broader audience in a non-technical way. The article had
a link to an accompanying technical report that had the
detailed descriptions of the models we used. We could
not choose a peer-reviewed outlet as time was of essence.
A typical statistics paper, even if the review process is
quick, takes about 6-9 months to be published. That was
not the purpose of this work. The medium article had a
major impact. It was circulated widely, covered in the me-
dia worldwide and was quoted as a critical piece of evi-
dence while considering India’s national lockdown that
started on March 25, 2020. At that time there were no for-
mal projections available for India.

Since then, our research has been constantly in the me-
dia, and we have adopted various modes of communi-
cation. We never knew that the pandemic would con-
tinue this long but had the foresight to create an app
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(covind19.org) [20] that updates daily projections and epi-
demiologic metrics for India, its states and union territo-
ries. This app became a “go to” destination for policymak-
ers, journalists, epidemiologists, and the public. We also
wrote multiple newspaper articles and opinion pieces [21,
33, 71-73] with a wide reach.

Television was a new medium for me, it was daunting
at first. Through popular prime time news programs in In-
dia, we were able to relay our message and alert the public
when it was needed the most. During the devastating sec-
ond wave in 2021, we predicted it very early as well as
pointed out the dire consequences of holding unmasked
political rallies and religious festivals with little or no pub-
lic health interventions in place. I also used my social me-
dia outlets with current modeling updates to maintain a
compelling and regular data narrative. One reason why I
have continued to engage with the media though statisti-
cians often prefer to work behind the scenes is I wanted
statistics to be at the table, to be recognized as a principal
scientific discipline contributing to the pandemic. Other-
wise, we would only see economists, physicists, mathe-
maticians, and clinicians talking about epidemiology and
modeling in India. We statisticians are the ones who have
intimate and primary knowledge of modeling, and we
should claim our position.

It really helped to have formal media training and sup-
port from the University communications team. We need
to have more resources for statisticians to engage with
media, to have training in public communications and
to learn effective ways of partnering with journalists. As
the late Dr. Janet Norwood, a pioneering satistician who
worked tirelessly on data and policy said “do not just pub-
lish your research, publicize it” [29]. In the process, I be-
came trusted friends with many journalists that I currently
correspond and work with. Data journalists played a huge
role in identifying gaps and patterns in the data from India
[27, 34, 92].

(3) Keeping up with the pace of Science: The compart-
mental models traditionally used for disease transmission
have many parameters that require external information.
For example, generation interval (the time it takes for an
infected person to infect the next person, often approxi-
mated by test-to-test times) keep changing with emerging
variants [19, 100]. The generation interval has decreased
over the course of the pandemic [40], from around 5.5
days for the Alpha variant and 4.7 days for the Delta vari-
ant [41] to approximately 3 days for Omicron [3]. This
meant you had to really follow the evolving literature
on the emerging variants and change these parameters as
we progressed over time. Twitter and medrxiv were ex-
tremely helpful to keep up with the latest developments.
The incredible work that Dr. Eric Topol has done in using
his twitter handle (@EricTopol) for synthesizing evidence
by picking out key papers and preprints was invaluable

[28]. Dr. Topol served as an unofficial primary reviewer
of a large number of preprints as we were swimming in
information, often conflicting with each. I spent a signif-
icant amount of time reading the papers and followed lit-
erature in various disciplines like in evolutionary virology
journals that were closely related to our modeling work.

(4) A fair reward system: While as a senior faculty
I was able to devote a significant portion of my time
to this work which is hard to capture in a CV, my ju-
nior colleagues often asked me the question that if they
spent time doing such pro-bono and largely unfunded
COVID research, whether and how it will be consid-
ered towards their promotion. I played safe and told them
to balance between their mainstream research and their
COVID work. Similarly, I had to protect my own stu-
dents and keep them focused on their methodological re-
search. They were clearly more interested in COVID re-
search. This balancing act was a constant struggle. Fi-
nally, I decided to divide COVID research into three buck-
ets, one which is rapid nowcasting (just for public ser-
vice), applied analysis (published in public health or med-
ical journals) and methodological papers that are longer
term (published in statistical journals). I facilitated the
structure of each project in such a way that the workload
was distributed across staff, undergraduate trainees, Mas-
ters students from Statistics/Biostatistics, Masters stu-
dents from other disciplines and finally the doctoral stu-
dents. I tried to match projects with interests and with in-
centives that are most valued in each training track. While
I was pragmatic in my recommendations to junior faculty,
it also raised the question in me: “are we playing it too
safe in academia?”, it has become more of a game than a
pursuit. Perhaps the pandemic can help us all to reflect on
what we value in the academe.

(5) Humility of Knowledge: As we moved forward with
time, things changed. It was very important to quantify
the huge uncertainty in the models and state emphati-
cally that long range predictions are impossible with these
models [38, 53, 74]. They can only be used for short
term projections. Over time, things became more complex
even for short term projections (2—4 weeks of time hori-
zon), we needed a system of models: for human behav-
ior, for virus evolution, for policy measures, for vaccine
dissemination/effectiveness—just having a disease trans-
mission model was not enough. One had to be flexible
in terms of shifting pivots and changing scientific be-
liefs. For example, our notion of protective herd immunity
changed as new variants with immune evasion properties
emerged. The concept of herd immunity or endemicity of
COVID was something around which the whole commu-
nity drifted over time [6]. It was important to set the hum-
ble tone from the very beginning that we do not know
many things and are writing the playbook as we go along.
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IMPORTANT AREAS OF STATISTICAL RESEARCH

As an ardent reader of the COVID-literature, in this sec-
tion I will try to classify the principal genres of statistical
problems that are most prominent in the literature right
now. We see most of the papers in this volume of Statisti-
cal Science addressing one or more of these issues.

(a) Forecasting of infection and deaths at an aggregate
level: There are various kinds of models for disease trans-
mission [11, 35, 90], we have heard more about the com-
partmental models but there are regression models [78,
81, 82] and hybrid models [44]. Models rely on availabil-
ity of data. Some models are built on just coarse time se-
ries of cases, recoveries and death counts as that is all that
may be available for many countries at a national level.
Others decompose the compartments in terms of factors
that may determine transmission like mobility, age-sex
composition, which can be fit only if disaggregated data
are available at a more granular level. Many of these mod-
els are governed by an underlying system of differential
equations. To incorporate uncertainty around the gener-
ated forecasts, Bayesian methods are often applied. The
models need external input as the latent time between get-
ting exposed and becoming infectious or symptomatic are
key parameters and they keep changing with new emerg-
ing variants. The immune evasion, virulence and trans-
missibility properties of a new variant are important to
follow [5, 55, 64, 93] to build such models.

The other major issue for SARS-CoV-2 transmission
models is estimating the large percentage of covert/
unreported/asymptomatic infections that never get de-
tected. Many models make ad hoc assumptions about the
ascertainment rate, for example, for the index reported
case there were k number of undetected infections at the
start of the process. However, seroprevalence surveys (in
the unvaccinated) are useful tools to identify this param-
eter. Similarly, many countries have a highly incomplete
death reporting system [46, 62, 63] and models that as-
sume a fixed infection fatality rate may also perform quite
poorly. A thorough sensitivity analysis and propagation of
uncertainty on these assumed values are necessary, mak-
ing the Bayesian framework a natural avenue. Principled
use of data integration tools that use external information
are also essential.

(b) Risk prediction at an individual level: Who is at the
highest risk of hospitalization, mortality and long COVID
with and without vaccines/boosters? These are probably
some of the key questions facing us. There has been ML
and standard statistical models [17, 43, 69, 99] developed
for this task but we need to understand the data and the
science better to filter spurious associations/predictors.
Most of these models are based on electronic health
records or EHRSs in the US where the issue of selection
bias and poor phenotyping cannot be ignored. Who is

in my study and what is the target population of infer-
ence has to be carefully thought [7]. Classic concepts like
transportability and generalizability are critical to design
good prediction algorithms [16, 42, 52, 101]. Temporal
data are essential to ensure pre-diagnosis variables are
used for prediction. Often these models condition on pa-
tients testing positive for COVID-19, but that may intro-
duce bias depending on who has access to testing/care.
Choosing the right control group is key to obtaining a
valid prediction model. We have seen several designs at
play here: test negative designs, untested controls, self-
control case series, case-crossover designs [30, 60, 61,
80]. Each design has its pros and cons and assumptions
that must be justified. Similarly, who is at the risk of long
COVID and what the future entails for long COVID pa-
tients is important to characterize and understand. It is ap-
parent that we are going to deal with a sicker population
in the coming years and we need healthcare resources to
combat the post pandemic lingering of post-acute seque-
lae of COVID [13, 14, 76] and other healthcare needs.
Study of long COVID or broadly COVID survivorship is
one of the areas where statisticians have a great deal to
contribute in the coming years.

(c) Vaccine Effectiveness: Many designs have been
adopted for this purpose using real world observational
data [54]. Test negative designs that are commonly used
suffer from testing bias and for their generalizability we
need to know who is getting tested and why. As the dis-
ease progresses over time, it is hard to find people who
are tested negative or find matched untested controls. It is
important to choose historic controls or contemporaneous
controls with a plausible reference time window to index
test date and apply appropriate analytic techniques [85].
Many confusions were planted in the public mind around
the effectiveness and safety of vaccines [2, 32, 56, 57].
Misinformation spun around these confusions have prop-
agated and delayed progress with vaccinations in many
countries. For example, just counting how many patients
are in the hospital that are vaccinated and unvaccinated is
meaningless unless you calculate the rate of hospitaliza-
tion in the two groups by applying the right denomina-
tor [68]. With some countries having 80% people vacci-
nated, even a small rate of breakthrough hospitalizations
can lead to a large absolute number of hospitalizations
post vaccination. Statisticians have come forward to dis-
cuss these issues as well as pointed out the need to control
for important confounders [67] while estimating vaccine
effectiveness, including but not limited to past COVID
infection and the dominant variant actively in circulation
at the time of infection [84]. Having a common protocol
to track vaccination data worldwide was very necessary
[25] but did not happen. In many countries the testing,
vaccination, sequencing and clinical outcome databases
do not crosstalk and as a result we have no estimates of
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re-infection rates, breakthrough infection rates, hospital-
ization and death rates broken down by vaccination status.
Nations with integrated data systems and large cohorts,
like Public Health England, Clalit Health Systems in Is-
rael, the Danish cohort study [8, 22, 36, 58] have all led
to seminal observations regarding vaccine effectiveness,
waning of vaccine-induced immunity and the need for
boosters.

(d) Estimation of excess mortality attributable to
COVID-19: This is a very important area with limited sub-
national death data available for many low- and middle-
income countries and the cause of death data having mas-
sive missingness. The key questions are to quantify (a)
excess mortality during the pandemic (b) what propor-
tion is due to direct impact of COVID (c) what propor-
tion is due to delayed impact of COVID and (d) what
proportion of deaths is due to other causes related to the
pandemic for example, delay in care, lack of screening,
access to healthcare, mental health issues related to iso-
lation, transportation barriers and alike. There was also
potential reduction in deaths due to road accidents and
from other infectious diseases due to changes in human
behavior and public health interventions. Integrating di-
verse surveys to quantify excess death estimates is a key
component to understand the true extent of COVID re-
lated mortality [45]. During the Omicron wave, incidental
COVID or patients who are admitted “with COVID” or
“for COVID” was important to distinguish while estimat-
ing COVID specific death rates [75]. To quantify increase
in all-cause-mortality within 6 months of COVID diagno-
sis or within one year of COVID diagnosis are important
to understand the overall death toll of COVID.

(e) Policy evaluation: We have seen worldwide natu-
ral experiments with an ensemble of non-pharmaceutical
public health interventions (NPIs) like travel bans, fa-
cial covering, social distancing, school closing, night and
weekend curfews being rolled out. Very few causally de-
fensible estimates of the effect of these interventions are
available in the literature [65, 79]. These measures have
crushing social and economic consequences to human
life. For building a pandemic resilient future we need
geography-specific catalogs of what interventions worked
and a framework for introduction of these measures at the
right time [65]. Use of synthetic controls, matching, gen-
eration of counterfactuals, carefully developing analytic
tools from causal inference literature to characterize in-
tervention effects from observational data are needed to
tease out meaningful policy relevant inference [1, 66, 86,
95].

(f) Issues with Diagnostic Tests: When we started out
in 2020, RT-PCR tests were limited in supply. Thus, test-
ing was selective and based on priority. Only people
with symptoms, exposure, with certain occupation and
co-morbidities could get tested. This resulted in huge se-
lection biases in reported case-counts. Any fair model

needed to consider the auxiliary propensity model of who
got tested. Moreover, tests were not perfect, and had high
degree of false negatives [102]. This can influence trans-
mission models where people with a false negative test
can have a false sense of security and mingle with more
people [9, 70]. There were also cheaper rapid antigen tests
at that time which were less accurate but could be used re-
peatedly to improve detection rates. Then came the home
tests [98] to detect contagiousness. Optimal testing for
surveillance, diagnostic detection of more symptomatic
cases, optimal quarantine policies are interesting statisti-
cal questions with tests and resources being limited [26].
In 2022, with availability of self-tests, most tests remain
unreported and it is important to do random testing and
wastewater surveillance to track community prevalence
and track new variants.

(g) Evaluation of Therapeutics: Finally, we recognize
the importance of clinical trials and use of real-world
observational data to evaluate therapeutic treatments for
COVID. We have seen some classic narratives unfold and
debunked around use of hydroxycholoroquine [94, 96],
Ivermectin [31, 59], Remdesivir [4], Convalescent plasma
[50] which will serve as textbook examples in statistics
courses. Both randomized clinical trials as well as princi-
pled harnessing of real-world data are key to evaluate the
role of emerging anti-virals [39].

(h) Identifying new variants and genetics of COVID:
There is a very interesting area of evolutionary virol-
ogy which studies the phylogeny of the virus genome to
understand mutations as well as characterize their prop-
erties. The GISAID (https://www.gisaid.org/) scientists
have been constantly looking at the sequencing data from
all over the world to track new variants and classify vari-
ants of concern. A great visualization and bioinformatic
tool is available at https://nextstrain.org/ Predicting mu-
tations and their lethality require sophisticated modeling
[15]. Wastewater surveillance is another source of data
that have been collected for ecological level surveillance
and tracking [24, 51].

Then comes the study of genetics of patients with
COVID, what genetic factors are predictive for severe dis-
ease or long COVID and if there are other lifestyle or
risk factors that modify this genetic risk [91]. The inter-
action of host and virus genome is also of paramount im-
portance. This is an area of association and interaction
studies where statisticians have a wealth of knowledge to
contribute.

CONCLUSION

My experience of working in the data-poor environ-
ment in India has made me realize the importance of
robust and resilient public health data systems that are
linkable to other sources, crosstalking in real time. We
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have decent models, but we need good data. Without
linking the testing, vaccination, sequencing, and clinical
outcome data, it is hard to provide estimates of reinfec-
tion, breakthrough infection, vaccine effectiveness. Data
paucity, data opacity and data denial have harmed trans-
parent and data-driven policymaking in India and many
other countries. Dynamic statistical agencies and inte-
grated data systems have played a pivotal role in this pan-
demic. Countries with national health system, population-
based cohorts or comprehensive healthcare/insurance sys-
tems like England, Denmark and Israel have produced
seminal papers often saving millions of lives [22, 36, 58].
Official data and reporting resources like the UK Office
for National Statistics [77], UK Health Security Agency
[97], and OpenSAFELY [23] have alerted us about wan-
ing effect of boosters, transmissibility, immune evasion,
and virulence properties of emerging variants.

Just like integrated data we need more integrated view
of the pandemic and its challenges. Throughout this pan-
demic the discipline of Economics and Public health have
been pitted against each other. We need a unified frame-
work to assess the cost benefit analysis of mitigation mea-
sures. There is a significant literature on the statistical
value of life [18, 47] which can be used to translate deaths
averted by mitigation measures into a unit of economic
savings and then the two can be compared in similar units.
Such creative interdisciplinary collaborations are neces-
sary. There are many causal questions on COVID’s impact
on mental health, learning outcomes from online educa-
tion and school closing, childhood immunization rates in
developing countries, nutrition programs, impact of long
COVID on human health, changes in society and behavior
that could use the best statistical minds and the best set
of methods. Interrupted time series, difference in differ-
ence, regression discontinuity designs and various match-
ing methods are being used to answer these questions but
most papers are focused on developed countries [12, 48,
49]. We need more statistical work with a global scope.
Infectious disease was not a thrust area in many Statis-
tics/Biostatistics departments, but we need more training
opportunities in this area. Despite the devastating effect
of the pandemic, it has shifted public attention to data
and methods. The pandemic provided extremely motivat-
ing examples and context to recruit the next generation of
students and faculty to our field. Academia with all its
imperfections, gave me the degrees of freedom to dive
into a problem without seeking permission from anyone
and build a team overnight to work on COVID in India.
Very few professions have such resource and freedom. My
hope is that the last two years will push our profession to
value impact and come up with an incentive framework
that allows and rewards high risk work influencing policy
and improving human life with statistics.
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