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Statistical Modeling for Practical Pooled
Testing During the COVID-19 Pandemic
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Abstract. Pooled testing offers an efficient solution to the unprecedented
testing demands of the COVID-19 pandemic, despite their potentially lower
sensitivity and increased costs to implementation in certain settings. Assess-
ments of this trade-off typically assume the underlying infection statuses of
pooled specimens to be independent and identically distributed. Yet, in the
context of COVID-19, these assumptions are often violated: testing done on
networks (housemates, spouses, co-workers) captures individuals with cor-
related infection statuses and risk, while infection risk varies substantially
across time, place and individuals. Neglecting dependencies and heterogene-
ity may bias established optimality grids and induce a sub-optimal imple-
mentation of the procedure. As a lesson learned from this pandemic, this
paper highlights the necessity of integrating field sampling information with
statistical modeling to efficiently optimize pooled testing. Using real data,
we show that (a) greater gains can be achieved at low logistical cost by ex-
ploiting natural correlations (nonindependence) between samples—allowing
improvements in sensitivity and efficiency of up to 30% and 90%, respec-
tively; and (b) these gains are robust despite substantial heterogeneity across
pools (nonidentical). Our modeling results complement and extend the ob-
servations of Barak et al. (Sci. Transl. Med. 13 (2021) 1–8) who report an
empirical sensitivity well beyond expectations. Finally, we provide an inter-
active tool for selecting an optimal pool size using contextual information.1

Key words and phrases: COVID-19, pooled testing, correlations, hetero-
geneity.

With an estimated 16% to 40% of asymptomatic SARS-
CoV-2 cases and 50% of detection occurring prior to
symptom onset (He et al., 2020, Oran and Topol, 2020,
Pollock and Lancaster, 2020, Ma et al., 2021), widespread
surveillance testing plays a crucial role in monitoring and
controlling the spread of SARS-CoV-2 (Larremore et al.,
2020, Gandhi, Yokoe and Havlir, 2020, Mina, Parker and
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Larremore, 2020, Dhillon et al., 2015, Nouvellet et al.,
2015, Rannan-Eliya et al., 2021). Yet in practice, the in-
herent logistical costs of widespread testing have severely
limited its deployment at scale. Throughout the pandemic,
testing needs have outstripped availability: in Novem-
ber 2020, the United States fell short of its COVID-19
testing objective by 48%, performing a daily average of
1,193,000 tests out of the 2.3 million set as a minimum
target (Collins, 2020). Testing shortages continue to per-
sist globally, as reported during the Spring 2021 surge in
India (Frayer, 2021), during the “third wave” through-
out Africa in Summer 2021 (Mwai, 2021), and during
the Winter 2021/22 Omicron-variant fueled surge in the
U.S. (Heilweil, 2021, Pietsch, 2021). The unprecedented
surge in testing demand has also strained the broader lab-
oratory supply chain; from September 2020 through Jan-
uary 2021 in the U.S., shortages of testing materials (e.g.,
reagents, consumables, etc.) significantly impacted day-
to-day testing for both COVID-19 and other infectious
diseases (ASM, 2021). Consequently, despite rising vac-
cination rates, the threats of new variants, waning immu-
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nity, and localized outbreaks make the deployment of ro-
bust and continued large scale testing a priority.

In this context, pooled (or group) testing procedures
have generated increasing interest during the pandemic
(Abdalhamid et al., 2020). First proposed by Dorfman
(1943) to screen soldiers for syphilis, the simplest form
of pooled testing is a two-stage hierarchical procedure in
which multiple laboratory specimens are first combined
and tested. Only samples from positive pools are then sub-
sequently individually retested. Since then, pooled testing
has been successfully employed in a number of applica-
tions, ranging from the testing for low prevalence diseases
(including HIV, chlamydia, and gonorrhea (McMahan,
Tebbs and Bilder, 2012a, Wein and Zenios, 1996, Tu, Lit-
vak and Pagano, 1995, Gaydos, 2005), to the detection of
genetically modified organisms in crops (Yamamura and
Hino, 2007).

Despite limited prior use of pooled testing for
widespread epidemic management, the American Food
and Drug Administration (FDA) approved its use for cer-
tain SARS-CoV-2 diagnostic tests in Summer 2020, with
some restrictions. According to these guidelines, the sen-
sitivity of the pooled procedure should be maintained
above the threshold of 85% (FDA, 2020). This desider-
atum must also be weighed against logistical feasibil-
ity of implementing pooled testing—a tension recently
described by the College of American Pathologists and
which can be summarized along the following two axes
(CAPS, 2020):

(a) Logistics. Prior to the pandemic, a substantial body
of literature already considered the problem of optimizing
pooled designs—either by grouping specimens accord-
ing to a set of covariates (McMahan, Tebbs and Bilder,
2012a, Chen, Tebbs and Bilder, 2009, Bilder, Tebbs and
Chen, 2010), or by placing the samples into an array ma-
trix and pooling by combinations of rows and columns
(McMahan, Tebbs and Bilder, 2012b) to allow the imme-
diate identification of contaminated specimens and mini-
mize individual retesting. A more nuanced approach, “in-
formative array testing”, combines these two methods and
incorporates knowledge of population heterogeneity and
covariates with an array scheme (McMahan, Tebbs and
Bilder, 2012b). While these procedures can yield impres-
sive efficiency gains from a purely statistical perspec-
tive, they simultaneously introduce more room for er-
rors in specimen handling: if performed manually, speci-
men pooling can increase risk of specimen confusion and
cross-contamination while increasing lab handling times.
Automated robots become essential for aliquoting and at-
tributing samples to pools following complex optimal de-
signs. Thus, while mathematically optimal, these solu-
tions are often difficult to implement without state-of-the-
art (and often expensive) equipment.

(b) Context-dependent efficiency and sensitivity. The
sensitivity and efficiency (number of tests per sample)

of pooled testing are known to be functions of the pool
size and disease prevalence. The latter determines the
probability that a pool contains at least one positive in-
dividual, and therefore, that all individuals in the pool
require retesting (Gastwirth, 2000). Larger pool sizes
in low prevalence regimes ensure that fewer tests have
to be carried out, while high prevalence levels imply
higher risks for a majority of pools to require resam-
pling and the pooling strategies to be rendered ineffi-
cient. Concurrently, pooling dilutes the amount of viral
genetic material present in positive samples, thereby po-
tentially reducing the sensitivity of the procedure. Pre-
vious studies have investigated the sensitivity of pooled
testing under different prevalence levels in order to de-
velop coarse recommendations for selecting an appro-
priate pool size at a given prevalence level (Kim et al.,
2007, McMahan, Tebbs and Bilder, 2012a). Such stud-
ies typically assume independently and identically dis-
tributed (i.i.d) samples when estimating the appropriate
pool size. However, such i.i.d assumptions may not be
reasonable for SARS-CoV-2 given widespread commu-
nity transmission and specimen collection procedures that
capture highly connected networks—a phenomenon vir-
tually unique to such a widespread epidemic scenario, and
irrelevant to the low-prevalence-disease monitoring that
pooled testing has historically been used for.

In fact, in many SARS-CoV-2 collection scenarios, in-
fections and positive specimens are clustered, such as
when testing students in dorms, coworkers in an office,
individuals in households, or classrooms of children on
a weekly basis (Eunjung Cha, 2021, Adam et al., 2020,
Zhang et al., 2020). Transmission rates in these networks
may be much higher than in less connected networks (Ta-
ble 6 in the Appendix). By way of illustration, household
transmission rates are estimated to vary from 4% to 55%
(Koh et al., 2020)—highlighting transmission rates within
close communities greater than the overall prevalence by
orders of magnitude, but with significant uncertainty and
heterogeneity. This leads us to a first lesson that we draw
from our analysis.

LESSON 1. The unprecedented data collection and
sampling processes deployed during the pandemic have
severely compromised the validity of classical statistical
pipelines for the analysis of data—thereby leading to an
inaccurate evaluation of pooled testing and potentially
suboptimal deployment of this method. Statistical model-
ing is key to rapidly and efficiently re-adapting existing
procedures to this novel setting, but its relevance is con-
tingent on being able to bridge the gap between statistics-
based optimality—which strives to make the greatest ef-
ficiency gains—and field-based optimality—which is in-
formed by practical constraints and logistical considera-
tions.
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To adapt to this novel situation, several studies have be-
gun investigating the impact of deviations from the i.i.d.
setting on the sensitivity and efficiency of pooled testing.
To account for nonindependence, Rewley (2020) simu-
lated correlations between consecutive persons in a test-
ing queue, assuming an additive increased chance of a
positive test given the previous person in line was pos-
itive. The simulations suggested that as the likelihood
of clustered infections increased, pooling efficiency also
increased, even with rising prevalence. Other simulation
studies have similarly concluded that the Dorfman two-
stage procedure is optimal when testing is performed on
clusters of correlated individuals (Deckert, Bärnighausen
and Kyei, 2020, Lin et al., 2020). So far, many of these
studies have necessarily relied on simulating simplified
settings, with arbitrary parameterisations and distribu-
tions and ignoring variability across pools. Few simula-
tion studies have attempted to capture deviations from the
identically distributed hypothesis, in part because there
is minimal practical applicability for incorporating infor-
mation on individual level covariates relevant to infection
risk.

Taking an experimental data-driven approach, Barak
et al. (2021) examined Dorfman-based pooled testing on
over 130,000 SARS-CoV-2 samples. Pool size was adap-
tively chosen based on predicted prevalence levels in
the community. They found that the rate of positives in
pooled samples was best predicted by sorting samples into
batches according to their source (such as by colleges,
nursing homes or health care personnel) and also incorpo-
rating epidemiological information about the probability
of infection in these different sources. Overall, they ob-
served that pooled testing performance exceeded expec-
tations both in terms of efficiency and sensitivity, which
they attributed solely to the fact that there is a nonrandom
distribution of positive samples in pools. Real-world data
consequently supports the push to develop easily adapt-
able pooled testing strategies that exploit the non-i.i.d. na-
ture of samples. Due to rapidly changing SARS-CoV-2
prevalence, laboratories require practical tools that allow
them to adapt their procedures to the context and popula-
tions they treat.

At the time of writing, the study of optimal pooled test-
ing under dependencies is made even more relevant by
its increasing adoption across many real-world settings.
Pooling has been proposed as a strategy for performing
mass-testing at lower costs in K-12 schools (Simas et al.,
2021). A cluster randomised trial examining pooled test-
ing in German elementary schools found that pooled test-
ing is an effective method for detecting positive cases, and
is robust to different choices of sampling techniques (e.g.,
pooled saliva samples vs. oropharyngeal swabs) (Joachim
et al., 2021). In Washington DC, pooled testing was per-
formed during the 2020–2021 school year at an indepen-
dent K-12 school on all staff and students using aver-
age pools of size 7.4 based on shared classes or work

assignments. After the program was initiated, the pro-
portion of students in remote learning decreased by be-
tween roughly 60% and 99%, depending on the grade/age
of students, and the average cost of testing per student
decreased (Berke et al., 2021). Pooled testing programs
have also been instituted in California public schools
on pods of five to twenty-five students (Jones, 2021)
and in Massachusetts public schools on pools of maxi-
mum 10 samples using a Dorfman two-stage procedure
(Massachussets, Department of Education, 2022, MASS.
gov, 2021, Pollock et al., 2021). While these implemen-
tations implicitly take advantage of social relations and
nonindependence (e.g., by grouping co-workers and chil-
dren who share a classroom), the precise benefits of this
method have not yet been formalized.

Objectives. We have two primary objectives:

1. Show how a simple pooling method and accounting for
correlated specimens in statistical modeling can yield
unexpectedly efficient solutions. To this end, we pro-
vide a straight-forward model that measures the effi-
ciency of pooled testing under correlations, as well as
formalizes and extends the lessons from Barak et al.
(2021) in practical pooled sampling.

2. Investigate and produce actionable recommendations
that are ready for deployment during the COVID-19
pandemic. For this reason, we focus on the Dorfman
two-stage procedure rather than more mathematically
optimal, but unscalable, pooling procedures.

We organize our discussion around three main lessons
that our investigation of pooled testing for SARS-CoV-2
samples has taught us: (1) the importance of leveraging
setting-specific information to optimize testing, (2) the
necessity of evaluating efficiency through a set of prac-
tically meaningful measures, and (3) the importance of
modeling the impact of uncertainty and/or heterogeneity.
We show that pooled testing can efficiently identify in-
fectious individuals despite natural deviations from i.i.d.
hypotheses in the specimen collection process, with little
detrimental effect on the accuracy of the procedure. Gains
in sensitivity and efficiency can in fact be as much as 30%
and 90% respectively compared to i.i.d. settings. In con-
trast to existing studies, our modeling of correlations (i) is
focused on understanding pooled sampling’s heightened
sensitivity through its effect on the viral load of the sam-
ple, (ii) is informed by real data and practical constraints
and above all, (iii) allows for the simultaneous considera-
tion of nonindependence and population heterogeneity.

1. LEVERAGING CORRELATIONS AND THE
HITCHHIKER EFFECT

This section focuses on a three-fold approach to un-
derstanding the impact of deviations from the i.i.d. hy-
potheses on the viral load of the sample (1) We introduce
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a model that accounts for positive correlations between
samples; (2) We provide a mathematical framework to
quantify the observation by Barak et al. (2021) that pooled
testing achieves higher than expected sensitivity due to
the “hitchhiker effect”—a phenomenon whereby the de-
tection of weakly positive tests is improved by borrow-
ing strength from strongly positive tests; and (3) We use
this framework to show how positive correlations between
samples can improve the sensitivity of the pooling proce-
dure beyond what is expected in an uncorrelated setting.

1.1 A Network Model for Pooled Specimens

Modeling Nonindependence (Network Effect). Consider
that there are n samples in each pool. We assume that all
the specimens are sampled from a network (co-workers,
classroom, household, etc.) modeled by a fully connected
graph on n nodes with edges indicating potential trans-
mission between a given node and its neighbors (Fig-
ure 1). We denote by τ the network transmission prob-
ability between individuals in the pool (that is, the prob-
ability that an infected member infects another subject in
the network), so that each edge weight eij = τ represents
the probability that node i, if infected, transmits the dis-
ease to node j ; in epidemiology, this parameter is com-
monly referred to as the secondary attack rate (SAR). The
community transmission probability, or equivalently, the
prevalence in the general population, is denoted by π . Let
us denote as Yi the indicator variable that specimen i is in-
fected (Yi = 1 if individual i infected, 0 otherwise). Since
transmission can occur within the network or in the com-
munity, we decompose Yi as follows: (1) Let T

(cmty)
i be

the random variable indicating infection of individual i

from outside the group (community transmission), and (2)
Let T

(ntw)
i indicate infection from within the group (net-

work transmission). The existence of a network effect is
captured by writing the infectious status of individual i as
the sum

Yi = T
(cmty)
i + (

1 − T
(cmty)
i

)
T

(ntw)
i

with Ti ∈ {0,1}, T (cmty)
i ⊥⊥ T

(ntw)
i (M1)

so that P[Yi = 1] = P
[{

T
(cmty)
i = 1

} ∪ {
T

(ntw)
i = 1

}]
.

Network and community transmissions are themselves
modeled as Bernoulli variables and tied to the SAR τ and
prevalence π through the relations

P
[
T

(cmty)
1 = 1

] = π

and

P
[
T

(ntw)
1 = 1|T (cmty)

2 , . . . , T (cmty)
n

]
= 1 − (1 − τ)

∑n
i=2 T

(cmty)
i .

In other words, network transmission is modeled as inde-
pendent Bernoulli(τ ) variables across edges, so that the

FIG. 1. Representation of the network effect on the infectious status
for any given node. This highlights the higher risk of sample i testing
positive as soon as another sample in the network is also positive.

probability that this transmission route fails is the product
of the probability of failure across each edge: P[T (ntw)

1 =
0|T (cmty)

2 , . . . , T
(cmty)
n ] = (1 − τ)

∑n
i=2 T

(cmty)
i . A given pool

can have a total of K ≤ n positive samples, k of which
are infected from the community and K − k of which are
infected from within the network.

Modeling Nonidentical Distributions (Heterogeneous
Infection Probabilities). Individuals within a network are
exposed to various levels of community transmission risk
depending on a number of covariates, including age, pro-
fession, and lifestyle. This risk also varies considerably
with time and epidemic kinetics (new variants, vaccina-
tion levels, etc.). At the granular level, this can be cap-
tured by introducing node covariates Xi’s and allowing
heterogeneous community infection rates,

∀i, P
[
T

(cmty)
i = 1

] = π + f (Xi) + εi,

where π is the general community prevalence level,
f (Xi) reflects deviations from this baseline level depend-
ing on a set of covariates (e.g., profession, lifestyle), and
εi is a noise term capturing the stochasticity of the preva-
lence (e.g., temporal effects) and/or potential subject ef-
fects. Several studies have investigated using subject-level
covariates to inform the risk function f , by classifying
individuals either as high/low risk (McMahan, Tebbs and
Bilder, 2012a, Bilder, Tebbs and McMahan, 2019, Donnat
et al., 2020), or to inform retesting (Bilder and Tebbs,
2012). However, in the context of the COVID-19 pan-
demic, and due to the necessary volume and frequency of
testing, introducing individual subject covariates yields
impractical solutions: the collection of subject-level data
and dispatching of samples in pools according to indi-
vidual risk slows down the procedure and yields intri-
cate pooling designs which are not feasible at scale. As
such, we propose simply leveraging the specimen collec-
tion process to assume similar behaviors and covariates
across pooled specimens (f (Xi) ≈ f (Xj ) ∀i, j ), so that
pools on any given day can be considered homogeneous.
In this case, random effects—due for instance to temporal
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variations, different variants, etc—are at the pool (instead
of the individual subject) level:

∀i, P
[
T

(cmty)
i = 1

] = π + εpool.

Null and Alternative Models. This simple model allows us
to capture a variety of situations. In particular, (i) the value
of the SAR τ drives the balance between community and
network transmission: the higher the value of τ , the more
likely that any community transmission will yield more
than one secondary infection in the pool. Conversely, for
τ = 0, there is no network transmissions and the samples
are independent. (ii) Assuming this notation, the standard
i.i.d. case studied in the literature is a homogeneous, fixed
effect model and assumes ε = 0 (so that ∀i, πi = π ) and
τ = 0. We refer to the uncorrelated, i.i.d. scenario with
prevalence π and pool size n as our null model H0(π,n),
and to the correlated, heterogeneous one as the alternative
Ha(π,n, τ ). (iii) This model allows us to study the law
of the number of infected samples in the pool. As we will
describe in subsequent subsections, the shift in probability
distribution leads to improved performance of the pooling
procedure. In Table 1, we summarize the properties of the
distribution of number of positive samples per pool under
both models.

Since (as in Table 1), the probability of the number of
positive samples per pool is a complex polynomial func-
tion of τ , we propose an approximation when the preva-
lence is small. This allows us to gain greater insight into
the intricate interplay between τ and π , without hinder-
ing the utility of the analysis since pooled sampling is
predominantly deployed in low prevalence settings. More
precisely, we make the following assumption.

ASSUMPTION 1 (Low Prevalence). Throughout our
analysis, whenever we make use of approximations to de-
rive greater insights into pooled sampling, we assume that
the prevalence is such that πn ≤ 0.10. To put this number
into context, this scenario is aligned with situations ob-
served in Summer 2020 or Spring 2021 in Europe and
the United States: in early June 2021 for instance, the re-
ported prevalence of COVID-19 in the United Kingdom
was estimated around 0.70%, which would allow us to
look at pool sizes of up to 15, or to sizes of up to 50
for low prevalence levels under 0.2% observed in some
parts of the world (such as for instance Israel in late June
2021 (Ritchie et al., 2020) 1). This is a convenient thresh-
old that allow us to simplify the analysis while still pro-
viding insight into the interplay between community and
network transmission, as highlighted by the following ob-
servations that are a consequence of Assumption 1.

1Chart of percentage of positive samples per test is provided in Fig-
ure 1 in the Supplementary Material (Comess et al., 2022).

OBSERVATION 1 (Number of positive samples per pool
in the low-prevalence regime under H0). Under As-
sumption 1 (πn ≤ 0.10), the probability that under H0
(i.e., no correlation), there are two or more infected sam-
ples in the pool is less than 0.01. This follows from the
following simplification:

PH0

[
n∑

i=1

Yi > 1

]

= 1 − (1 − π)n − nπ(1 − π)n−1

= 1 − (1 − π)n−1(
1 + (n − 1)π

)
≤ 1 −

(
1 − (n − 1)π + (n − 1)(n − 2)

2
π2

− (n − 1)(n − 2)(n − 3)

6
π3

)
× (

1 + (n − 1)π
)

= n(n − 1)

2
π2 − n

(n − 1)(n − 2)

3
π3

+ (n − 1)2(n − 2)(n − 3)

6
π4

≤ (nπ)2

2
+ n4π4

6
≤ 0.006.

Similarly, in a pool with at least one infected sample,
we can show that

P[S ≥ 2|S ≥ 1] ≤ n

2
π ≤ 0.05

(see Supplementary Material (Comess et al., 2022), equa-
tion (4)). This means that with 95% confidence, an in-
fected pool contains only a single infected sample. This
fact is useful for simplifying our computations in subse-
quent paragraphs.

OBSERVATION 2 (Number of positive samples per pool
in the low-prevalence regime under Ha). Concurrently,
in this scenario, the number of positive samples per pool
with correlation (under Ha) can be approximated by:

EHa

[
n∑

i=1

Yi

]
= nπ + n(1 − π)

(
1 − (1 − τπ)n−1)

while the probability that there are more than one infected
samples in the pool is

PHa

[
n∑

i=1

Yi > 1

]

= 1 − (1 − π)n − nπ(1 − π)n−1(1 − τ)n−1

= PH0

[
n∑

i=1

Yi > 1

]
+ (

1 − (1 − τ)n−1)
nπ(1 − π)n−1

This illustrates the striking difference in behavior between
the distribution of positive samples with and without cor-
relation: the probability of having more than two samples
in a correlated pool increases rapidly as τ increases.
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TABLE 1
Comparison of the properties of number of infected samples per pool (size = n), with and without correlation (derivations provided in the

Supplementary Material (Comess et al., 2022)). Note the shift in expected number of samples as a function of the network transmission rate (or
SAR), τ

Quantity H0(π,n) Ha(π,n, τ )

Distribution of # of
∑n

i=1 Yi ∼ Binomial(n,π)
∑n

i=1 T
(cmty)
i + Binomial(n − ∑n

i=1 T
(cmty)
i , τ )

contaminated samples with
∑n

i=1 T
(cmty)
i ∼ Binomial(n,π)∑n

i=1 Yi

P[Yi = 1] π 1 − (1 − π)(1 − πτ)n−1

Correlation c(Yi , Yj ) 0 (1−π)2[(1−π+(1−τ)2π)n−2−(1−πτ)2n−2]
(1−(1−π)(1−πτ)n−1)((1−π)(1−πτ)n−1)

= (1 + 1−τ
1+(n−1)τ

)τ + o(τ)

Average number of nπ nπ + ∑n−1
k=1

( n
k

)
πk(1 − π)n−k(1 − (1 − τ )k)(n − k)

positive samples per pool = nπ(1 + (n − 1)τ ) + o(nπ)

Average number of nπ
1−(1−π)n

1 + ∑n−1
k=1

( n
k

)πk(1−π)n−k

1−(1−π)n
(1 − (1 − τ )k)(n − k)

positive samples ≈ 1 ≈ (1 + (n − 1)τ )

per contaminated pool

P[∑n
i=1 Yi = 0] (1 − π)n (1 − π)n

P[∑n
i=1 Yi = k], k > 0

( n
k

)
πk(1 − π)n−k ∑k

j=1
( n
j

)
πj (1 − π)n−j

( n−j

k−j

)
(1 − (1 − τ )j )k−j (1 − τ )j (n−k)

To illustrate the relative effect of the correlation τ on
this probability, let us consider the Taylor expansion of
the previous equation around π = 0 in the low-prevalence
regime of Assumption 1. In this case, we can show that

PHa

[
n∑

i=1

Yi > 1

]

= PH0

[
n∑

i=1

Yi > 1

](
1 + 2(1 − (1 − τ)n−1)

(n − 1)π

− 2((n + 1)((1 − τ)n−1 − 1))

3(n − 1)
+ o(nπ)

)

Lower bounding (1 − τ)n−1 by 1 − (n − 1)τ , this means
that a lower bound for the probability of having strictly
more than one positive sample in a pool under Ha has
leading term (1 + 2τ

π
)PH0[

∑n
i=1 Yi > 1], which is linear

with τ . This illustrates the nonnegligible effect of the pool
correlation τ on the likelihood of getting several contam-
inated samples.

OBSERVATION 3 (Expectation of the number of pos-
itive samples in infected pools in the low prevalence
regime). Conditional on the pool being positive, the ex-
pectation of number of positive samples per pool with cor-
relation can be well approximated by: EHa [

∑n
i=1 Yi] =

1 + (n − 1)τ + O(nπ) (proof in the Supplementary Ma-
terial (Comess et al., 2022))—we note that this simpli-
fied approximation makes sense in that we expect τ to be

much greater than π in low-prevalence regimes. Conse-
quently, the mode of the number of infected samples (con-
ditional on

∑n
i=1 Yi > 1) is shifted from 1 under H0 (with

95% confidence) to (roughly) 1 + (n − 1)τ with correla-
tions. This further supports the observation by Barak et al.
(2021) regarding the existence of positive correlations be-
tween samples: our relationship quantifies the effect and
the strength of the interactions on the distribution of the
number of positive samples per pool.

Our simple model thus highlights the fact that with
moderate correlations between samples, observing more
than one sample becomes in fact highly probable—
whereas it is unlikely with high probability (0.95) under
the i.i.d. null.

1.2 Modeling the Hitchhiker Effect

Armed with the previous set of observations, we now
turn to the quantification of the “hitchhiker effect” ob-
served by Barak et al. (2021)—a phenomenon whereby
the detection of weakly positive samples borrows strength
from strongly positive samples in the pool, thus increasing
their chances of detection. This requires us to model the
influence of the number of contaminated samples in the
pool on the viral load present in the sample, as detailed in
the generative model presented in Figure 2.

For the purpose of our study, we consider a reverse
transcription polymerase chain reaction (RT-PCR) test, as
it has been an FDA-approved gold standard for SARS-
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FIG. 2. Graphical model for the procedure: the probability of a posi-
tive pooled test is a function of the number of infected samples (through
community and network transmission) through the pooled Ct value.

CoV-2 detection throughout the pandemic, due to its gen-
erally high sensitivity (probability of detecting true pos-
itive cases) and specificity (probability of detecting true
negative cases) (Giri et al., 2021, FDA, 2020). RT-PCR
identifies the presence of even small quantities of SARS-
CoV-2 genetic material by increasing the amount of viral
nucleic acid present through repeated “amplification cy-
cles” (Public Health England, 2020). The amount of viral
material in a sample (or pool of samples) after RT-PCR
is quantified using the cycle threshold (Ct ) of the sample,
which measures the number of cycles in an RT-PCR assay
needed to amplify viral RNA to detectable levels (Public
Health England, 2020). Specifically, the Ct value refers
to the number of cycles needed to amplify viral RNA to
reach a fixed background level T of fluorescence at which
the diagnostic result of the real-time PCR changes from
negative (not detectable) to positive (detectable) (Tom and
Mina, 2020). Since at every cycle the amount of viral
RNA is (roughly) doubled, the Ct value is thus an indi-
rect measure of the viral load n(0) in the sample

T = n(0)2Ct =⇒ Ct = log2
(
T/n(0)).

Effect of Dilution on Ct Values. The amount of viral mate-
rial determines the sensitivity of the test: lowering the ini-
tial amount of viral material in the sample n(0) increases
the Ct value, potentially below the Limit Of Detection
(LOD) and consequently decreases the sensitivity of the
test. Let us begin to formalize and quantify the extent of
this phenomenon. Denoting the individual samples’ Ct

values as C(i)
t (corresponding to respective initial viral

loads n
(0)
i ), we can write the overall Ct value for the pool

(denoted C(dilution)
t ) as

C
(dilution)
t = log2(T ) − log2

(∑n
i=1 n

(0)
i

n

)

= log2(T ) − log2

(∑n
i=1 T Yi2−C

(i)
t

n

)

= − log2

(
n∑

i=1

Yi2
−C

(i)
t

)
+ log2(n).

(1)

Consequently, as shown in equation (1), the sensitivity of
the pooled test depends on the Ct values of the individ-
ual samples. Note that while the samples’ infection status

Y are correlated, given the Yi ’s, the Ct values can them-
selves be considered as independent—that is, there is no
evidence (at least, at the time of writing) of the value of
the Ct depending on context (e.g., a sample’s correspond-
ing age, gender or genetics). To study the efficiency of this
procedure, we consider the C

(dilution)
t value in the follow-

ing two sufficient and mutually exclusive scenarios:

1. For
∑n

i=1 Yi = 1 infected sample in the pool. If
we assume (without loss of generality) the first sample
is positive, then the Ct of the dilution is distributed as

Cdilution
t

D= C
(1)
t + log2(n): that is, the dilution translates

the distribution of the Ct value by log2(n), and the impact
on the sensitivity can be computed directly by translating
the sensitivity curve by log2(n). For example, in a pool of
size n = 8, an individual sample with with Ct = 40 has
an effective pooled Ct value of 43. Equivalently, we can
consider how much greater the viral load would need to
be in order to detect a positive sample in a diluted pool: if
the limit of detection for an individual sample is Ct = 40,
then a pool of size n with only one positive sample is de-
tected only if that specimen has Ct = 40 − log2(n); with
n = 8, the positive sample must have Ct ≤ 37, or for a
pool size of n = 20, Ct ≤ 35.

2. For
∑n

i=1 Yi = k ≥ 2 infected samples in the pool. In
this case, the analysis of the Ct value of the pooled sam-
ple becomes more difficult to formalize in closed form. In
this case, we resort to the following approximation to gain
further insights into the hitchhiker mechanism. Assuming
without loss of generality that the k first samples are pos-
itive, a Taylor expansion around the minimum Ct yields
an approximation of the pooled Ct as

C
pooled
t

D≈ min
j∈[1,k]C

(j)
t + log2(n)

− 1

log(2)

∑
i �=argminC

(j)
t

2minj∈[1,k]{C(j)
t }−C

(i)
t .

(See the Supplementary Material (Comess et al., 2022)
for details.) Empirical data has shown that the distribu-
tion of the Ct values tends to be heavily skewed right, and

2minj∈[1,k] C(j)
t −C

(i)
t � 1 with high probability. It then fol-

lows that the dilution Ct roughly behaves as: Cdilution
t

D=
minj∈[1,k] C(j)

t + log2(n). This fact is simply a formaliza-
tion of the observations by Barak et al. (2021) according
to which the Ct value of the pooled sample is dominated
by the value of the minimum. Thus, for a weakly positive
sample (high Ct ) to be detected, it is sufficient for it to be
combined with a strongly positive sample. We further add
to this argument that as the number of positive samples
k in the pool increases, we expect the distribution of the
dilution to be increasingly small and eventually counter-
balance the log2(n) offset.
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Applications to Reference Population. We now apply
our previous findings regarding the effect of dilution on
Ct value to a reference population, using data provided by
Wang et al. (2021). These data consist of Ct values from
naso- and oro-pharyngeal swab samples collected from
both symptomatic and asymptomatic inpatients and out-
patients presenting to Stanford-affiliated medical facilities
in the San Francisco Bay Area, California, in the summer
of 2020 (Wang et al., 2021) (details in the Appendix).

To visualize the relationship between quantity of viral
material, Ct value, and probability of detection, we fit
a probit curve to the dataset of Stanford samples Wang
et al. (2021). We create a probabilistic model of this rela-
tionship (see the Appendix for visualization plots), where
specimens with Ct greater than the limit of detection are
assigned a decreasing probability of detection based on
the probit regression curve. We further observe in this
population that in a random sample of kCt values, the dis-
tribution of the minimum Ct has a a decreasing mode and
variance as k increases (Figure 3(a)). While this figure

FIG. 3. Distribution of minimum Ct and C
(dilution)
t in the Stanford

reference population data.

uses data from a specific population, we expect this phe-
nomenon to generalize across other populations, since Ct

values are known to exhibit important spread (Tso et al.,
2021) (see the Supplementary Material (Comess et al.,
2022)). This leads to the following observation for the
hitchhiker effect when the independence assumption is vi-
olated (under Assumption 1 (πn < 0.10)).

OBSERVATION 4(A) (Distribution of the pooled Ct

value in the i.i.d. case). For a pool size n, by the total
law of probability formula, the Ct value of the dilution
behaves as a mixture of n distributions:

C
(pooled)
t = log2(n) +

n∑
k=1

1∑n
i=1 Yi=kC

(pooled)
t [k,n],

where C
(pooled)
t [k,n] is the Ct of the pool with k infected

samples. Since in this setting, given that the pool is pos-
itive, the probability of having more than two samples is
below 0.01, we have

Ct

D≈ log2(n) + C
(1)
t

so that the C(pooled)
t value behaves roughly like a trans-

lated Ct curve. In other words, in low prevalence set-
tings, the limit of detection for pooled samples would
be T − log2(n), and the pooled sample procedure is thus
likely to miss contaminated samples with high initial in-
dividual Ct .

To quantify the hitchhiker effect under correlation, we
use Monte Carlo simulations to model the behavior of the
dilution’s Ct . We display the results in Figure 3(b), where
we show the distribution of the Ct values in our reference
population under varying levels of dilution (pool sizes)
and different number of positive samples per pool. Note
that for as few as k = 2 samples, the distribution of the
Ct is comparable to the distribution of individual Ct , and,
for these pool sizes, having three positive samples in the
pool yields a Ct distribution for the dilution with a smaller
mode. This again leads to the following observation for
the hitchhiker effect when the independence assumption
is violated (under Assumption 1 (πn < 0.10)).

OBSERVATION 4(B) (Distribution of the pooled Ct

value with network effects). Assuming positive correla-
tions between samples, by Observation 3, we know that
we expect (n − 1)τ more positive samples than under
the null scenario H0. This means that the distribution of
the minimum Ct is more heavily skewed towards strongly
positive samples, thus ensuring a better probability of de-
tection in the pool. In fact, we show in the Supplemen-
tary Material (Comess et al., 2022, equation (7)) how to
compute the probability that a pooled Ct with K positive
samples exceeds the average individual Ct .

In this population, the probability that the Ct value of
the mixture is greater than the expected Ct of the indi-
vidual samples is less than 0.67 for K = 2, and 0.45 for
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K = 3 (assuming worse case n = 100). Thus, after K = 2
to 3 positive samples, the hitchhiker effect ensures that the
Ct value of the mixture will be favorable. While this re-
sult uses data from our reference study, we expect the be-
haviour exhibited here to generalize across populations, as
similar phenomena were empirically observed by Barak
et al. (2021).

To summarize, in this section, we have shown through
simple derivations, backed by simulations, that the dilu-
tion only induces a significant drop in sensitivity if a sin-
gle sample is positive, but that this effect shrinks as the
number of positive samples in the pool increases—thus
confirming and quantifying empirical observations made
by Barak et al. (2021). This allows us to conclude:

LESSON 2. Simple models tailored to the relevant sta-
tistical assumptions are useful. The realization that corre-
lated/clustered specimen sampling could yield such con-
siderable gains in Ct value is only possible through a
careful consideration of practical field constraints and
observed measurements.

2. EVALUATING PRACTICAL EFFICIENCY

2.1 Metrics of Interest and Benchmarks

Having studied the impact of the network transmission
on the amount of viral material present in the sample, we
now assess the impact of these departures from the tra-
ditional framework on our metrics of interest. To mea-
sure the efficiency of pooled testing under correlations,
we introduce a set of four performance metrics, consistent
with the group testing literature: the sensitivity (s), rela-
tive sensitivity (sr ) (which compares individual to pooled
testing procedures), expected number of tests per sample
(η), and proportion of missed cases per sample.

Sensitivity (s) and Relative Sensitivity (sr ). Sensitivity
(s) is the proportion of true-positives that are detected by
the test, that is, the probability of a positive test result
given that there is at least one positive sample in the pool.
Sensitivity:

s = P

[
test is positive |

n∑
i=1

Yi ≥ 1

]

=
∑n

k=1 P[test is positive ∩ {∑n
i=1 Yi = k}]

P[∑n
i=1 Yi ≥ 1]

=
∑n

k=1 P[test is positive | ∑n
i=1 Yi = k]pk

P[∑n
i=1 Yi ≥ 1] ,

with pk = P[∑n
i=1 Yi = k]. We assume that specificity

(probability of a false positive) is zero.
However, tests are inherently imperfect, and such sen-

sitivity might not be realistically achievable. As such, a
more informative metric is the sensitivity of the pooled
procedure, compared to individual testing (which we

consider to be our “gold-standard”). Relative sensitivity
serves as a comparison of the probability of a positive test
result in a pooled testing scenario to an individual testing
scenario which might differ as a product of the dilution
effect.

Relative Sensitivity:

sr = P[test is positive | ∑n
i=1 Yi ≥ 1]

P[Individual test is positive | Y1 = 1] .

Contrary to the sensitivity, this measure can take values in
R

+: a relative sensitivity lower than one indicates a lower
sensitivity of the pooled procedure relative to individual
testing, whereas a value of sr greater than one would in-
dicate a better sensitivity in the case of pooled testing with
respect to individual testing.

Both sensitivities can be decomposed as a function of
number of positive samples per pool and Ct value as fol-
lows: ∀x,

P[s > x]
=

∫
P[s > x | Ct ]p(Ct) dCt

=
∫ n∑

k=1

P[s > x | Ct ]p
(
Ct,

n∑
i=1

Yi = k

)
dCt

=
n∑

k=1

P

[
n∑

i=1

Yi = k

]

×
∫

P[s > x | Ct ]p
(
Ct |

n∑
i=1

Yi = k

)
dCt

︸ ︷︷ ︸
=sk, by definition

=
n∑

k=1

pksk,

where we have considered here the sensitivity of the test
sk to be a function of the number of positives (marginal-
ized over Ct values). In light of our discussion of the ef-
fect of the network effects on the Ct value of the dilution,
we conclude that the existence of correlations has a posi-
tive effect on the sensitivities.

Expected Number of Tests per Sample (η). This mea-
sures the efficiency of the pooled testing procedure. Since
in the two-step Dorfman procedure every sample has to
be retested if the pool is tested positive, the efficiency (as-
suming 100% sensitivity of the test) is

η = 1

n
E

[
1 + nP[test is positive]]

= 1

n
+ P[test is positive]

= 1

n
+

n∑
k=1

P

[
test is positive | ∑

i

Yi = k

]
pk.
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This measure has to be compared against the benchmark
value of η0 = 1, which is the efficiency of the individual
testing procedure (pool size n = 1). However, it is impor-
tant to note that the expected number of tests per sample
must be considered in conjunction with other metrics, as
it is only a partial indicator of the validity of the proce-
dure. Indeed, a faulty test which is always negative will
achieve the best efficacy η = 1

n
, but with zero sensitivity.

Proportion of Missed Cases per Sample. We also con-
sider the proportion of cases that the grouped testing pro-
cedure fails to detect per test:

=
∑n

k=1 kP[test is positive | ∑n
i=1 Yi = k](1 − pk)

1
n

+ P[test is positive] .

Simulations. To illustrate our analysis, we perform
Monte Carlo simulations and calculate our metrics of in-
terest at varying pool sizes and values of π and τ . We
simulate two-stage pooled testing setting where individ-
uals’ infection statuses (positive vs. negative) are corre-
lated, and compare this to our null model of assuming
uncorrelated individuals. To make our analysis more real-
istic, the values of π and τ are informed by fitting Beta
distributions to published literature and data. For τ , we
fit Beta distributions to SAR values reported for a range
of settings, including households with symptomatic index
cases, households with asymptomatic index cases, trans-
mission between spouses, healthcare settings, and from
a child index case. For π , we fit Beta distributions to
prevalence data at differing times over the course of the
pandemic and geographic locations in the United States.
The chosen time points and geographic locations are in-
tended to be representative of varying prevalence levels
and stages of the pandemic (e.g., rising cases, falling
cases, etc.). Details of the methodology for fitting the dis-
tributions, as well as information on the settings and dis-
tribution parameters are described in the Appendix. Pool
sizes range from n of 1 to n of 30.

To compute the sensitivity of the PCR test given a pool
of size n containing 1, . . . , n positive samples, we use
empirically collected data on the distribution of Ct val-
ues from Wang et al. (2021), which is best represented by
a Weibull distribution with shape parameter s = 4.5 and
scale η = 30. The distribution of the Ct values depends on
a number of factors, including the population tested (i.e.,
hospital admissions vs. general population, COVID vari-
ant, etc.). To create a realistic distribution of Ct values
with the appropriate amount of spread, we sample and
shift the Weibull distribution of Wang et al. (2021): we
sample from their fitted distribution to create a mock dis-
tribution of individual Ct values, and shift it to model a
population in which 30% of samples are above Ct = 35.

For each combination of π , τ , and pool size, we cal-
culate the metrics of interest (sensitivity, relative sensi-
tivity, expected number of tests per sample, missed cases

per sample), weighted by the probability of observing k

positives in that particular pool. We simulate the situation
of testing a population of correlated individuals, where
we either ignore correlation and erroneously treat the in-
dividuals as independent (H0), or correctly consider net-
works of correlated individuals (Ha). In the null model,
we make i.i.d. assumptions and the expected number of
positives per pool has a binomial distribution (probability
of observing K positives in n trials (pool size) with suc-
cess probability π and τ = 0. For the alternative model
Ha , the probability of K positives is computed exactly
using the Poisson Binomial distribution (Appendix).

Discussion of Simulation Results. Across all prevalence
settings and levels of network transmission, the model
that accounts for network transmission (correlations in
pools) performs better in terms of higher sensitivity and
fewer missed cases per sample than the null model (which
ignores correlations) (Figure 4). Accounting for correla-
tions between individuals can result in large percentage
increases in sensitivity over the null model; for example,
for spousal network transmission in both low prevalence
(e.g., Maine October 2020) and high prevalence (e.g., Al-
abama January 2021) settings, we observe 31.25% and
19.14% increases in sensitivity, respectively, compared to
the null model (Table 2).

Comparing the sensitivity of the pooled procedure to in-
dividual testing, high levels of network transmission (such
as observed between spouses and in a household with a
symptomatic index case) results in sensitivity greater than
the individual test, and far exceeding the minimum FDA
threshold (0.85). In low prevalence settings or weak net-
work transmission (such as healthcare settings or house-
holds with an asymptomatic index case), the sensitivity
of the pooled testing procedure may fall below the FDA
threshold (0.85) at large pool sizes. At sufficiently high
prevalence levels (such as observed in Alabama in Jan-
uary 2021), pools of all sizes (including as large as 30)
exceed the FDA threshold for pooled testing sensitivity.

The pooled procedure also results in large decreases in
the number of tests needed per sample, when compared to
individual testing. Implementing pooled testing in Maine
during October 2020 (low prevalence) among households
with asymptomatic index cases, households with symp-
tomatic index cases, and spouses could reduce the num-
ber of tests per sample by over 92% in all three network
transmission settings (Table 2). In higher prevalence set-
tings, reductions in testing associated with pooled testing
are more modest, but still upwards of 20% (Table 2). From
these results, we draw the following conclusion.

LESSON 3. The utility of pooled testing is context de-
pendent, but statistical models informed by observed data
in a range of prevalence and network settings demonstrate
that accounting for non-i.i.d. settings uniformly improves
the expected performance of the procedure.
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FIG. 4. Fixed Model: Model-estimated parameters (sensitivity, relative sensitivity, expected tests per sample, missed cases per sample) by pool
size, prevalence (π ), and network transmission probability (τ ). Null (no correlation) model, individual testing, and FDA sensitivity threshold are
also indicated, where relevant.

3. TESTING UNDER UNCERTAINTY

So far, our discussion has focused on situations where
the prevalence and the transmission levels are fixed,
known quantities. As such, all the quantities that we have
computed are conditional expectations given τ,π . How-
ever, in practice, these are estimates with associated lev-
els of uncertainty and thus can themselves be modeled as
random variables, whose variability has to be taken into
account as we compute metrics of interest. Given the non-
linear nature of the model and the wide uncertainty around
the value of the network transmission rate (or SAR) τ , it
is important to evaluate how much this added variabil-
ity affects our estimates of the performance of pooled
sampling. Uncertainty and heterogeneity are crucial as-
pects of COVID-19 kinetics that need to be accounted
for to ensure accurate epidemiological predictions (Cirillo

and Taleb, 2020, Cave, 2020, Gómez-Carballa et al.,
2020, Zhang et al., 2020): most COVID-19 forecasting
models—whether geared towards the prediction of the in-
cidence rate, underascertainment bias, or towards the per-
formance of pooled testing, such as the one considered
in this paper—are indeed nonlinear functions of many
unknown and/or highly variable quantities. When solely
considering the average rather than accounting for the dis-
tributional nature of these variables, the error can rapidly
amplify, and thus needs to be appropriately characterized
and controlled (Donnat and Holmes, 2021). In this sec-
tion, we (a) show that in the prevalence/SAR regimes that
we are considering, the main driver of the heterogeneity
lies in the uncertainty around network transmission and
is a function of the behavior of the distribution at the tail,
rather than of its variability, (b) highlight ranges of pa-
rameters (n,π, τ ) which are robust to this heterogeneity,
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TABLE 2
Expected performance of pooled testing for the fixed model under select prevalence, network transmission, and pool size scenarios

Fixed Model

Network Transmission (τ ) Prevalence (π )
% Increase Sensitivity

Relative to H0

% Decrease Tests/Sample
Relative to Individual Testing

Po
ol

Si
ze

n
=

5 Household Asympt. (0.012) Maine Oct. 2020 (0.2%) 0.62 79.35
Alabama Jan. 2021 (5.4%) 0.57 58.92

Household Symptomatic (0.18) Maine Oct. 2020 (0.2%) 7.77 79.31
Alabama Jan. 2021 (5.4%) 7.11 57.54

Spouses (0.38) Maine Oct. 2020 (0.2%) 13.02 79.28
Alabama Jan. 2021 (5.4%) 11.85 56.55

Po
ol

Si
ze

n
=

20 Household Asympt. (0.012) Maine Oct. 2020 (0.2%) 4.46 92.63
Alabama Jan. 2021 (5.4%) 3.12 36.88

Household Symptomatic (0.18) Maine Oct. 2020 (0.2%) 28.85 92.07
Alabama Jan. 2021 (5.4%) 17.87 28.57

Spouses (0.38) Maine Oct. 2020 (0.2%) 31.25 92.02
Alabama Jan. 2021 (5.4%) 19.14 27.86

Percent increase in sensitivity relative to H0 = 100 ∗ (SensHa
− SensH0)/(SensH0); Percent decrease in tests per sample relative to individual

testing = 100 ∗ (TestsHa
− n)/(n), (n = pool size).

and (c) show via experiments how to construct (and inter-
pret) prediction intervals for the performance of pooled
sampling under uncertainty.

OBSERVATION 5 (The sensitivity and efficiency (tests
per sample) of the alternative model can never be worse
than the null model). This is due to the fact that the
(true) effective number of tests per samples can be written
as

η = 1 + P[∑n
i=1 Yi > 0]
n

= 1

n
+ 1 − (1 − π)n

n

= 1

n
+ π + o(π)

in both scenarios. From this formulation, we observe that
the efficiency is not a function of the network transmis-
sion, and depends only on community transmission rates.
As such, results on the efficiency are robust for all pa-
rameterizations and levels of uncertainty in the value of
τ , but will solely depend on the uncertainty for π . This
fact also highlights the necessity of having accurate esti-
mates of the prevalence, tailored to the population at hand
in order to correctly optimize pooled testing. In this con-
text, estimates of the prevalence for the sampling popu-
lation, using hyper-local data and/or additional covariates
such as vaccination rates can be crucial in further reduc-
ing this uncertainty (Stevens et al., 2021, Cramer et al.,
2021, Donnat et al., 2021, Zhou et al., 2020).

For the sensitivity, since correlations can only increase
the number of positive samples per pool and sensitivity is
an increasing function of the Ct , the sensitivity can only
be improved by taking into account correlations between
individuals in the alternative model.

OBSERVATION 6 (We can identify settings in which
pooled sampling will have worse sensitivity than indi-
vidual testing). Since under correlations, the number of
positive samples per infected pool is well approximated
by 1 + Binomial(n − 1, τ ) (since with 95% probability,
community transmission yields only one infected sam-
ple), the number of infected samples can vary quite sub-
stantially:

VHa

[
n∑

i=1

Yi |
n∑

i=1

Yi > 0

]

= E

[
VHa

[
n∑

i=1

Yi | τ,
n∑

i=1

Yi > 0

]]

+V

[
EHa

[
n∑

i=1

Yi | τ,
n∑

i=1

Yi > 0

]]

≈ E
[
(n − 1)τ (1 − τ)

] +V
[
1 + τ(n − 1)

]
≈ (n − 1)(n − 2)σ 2

τ + (n − 1)μτ (1 − μτ ),

where μτ and στ 2 are respectively the mean and variance
of τ . We can now examine the effect of this variance on
the sensitivity. As seen in the first section, the sensitiv-
ity is impacted if the number of positive samples in in-
fected pools falls below 2. This would mean that network
transmission only accounts for a single additional infected
sample in the pool. This event, which has (by property
of the binomial) probability equal to (n − 1)τ (1 − τ)n−2

can be deemed highly unlikely as long as it happens with
probability less than 0.05. This allows us to solve for re-
gions � of the parameter space for τ where we expect ro-
bust performances of pooled testing, which improve upon
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FIG. 5. Proportion of simulated results with sensitivity equal to or greater than the FDA threshold for pooled testing (0.85), using the Random
Prevalence/Random Network Effect Model.

individual testing:

� = {
τ ∈ [0,1] : (n − 1)τ (1 − τ)n−2 ≤ 0.05

}
.

This allows the user to select a pool size such that, with
probability 1 − P[τ ∈ �], the procedure is better than in-
dividual testing. Choosing the value of η is setting a tol-
erance threshold, and should be defined by the user.

Experiments

We adapt our simulations in the previous section to ac-
count for heterogeneity and uncertainty in π and τ by per-
forming the simulations under three further settings:

Setting 1—Fixed π , Random τ (Fixed Prevalence,
Random Network Effect): Sample τ from a Beta prior
distribution and calculate the corresponding probability
of k positives due to network transmission. π assumed
fixed and equal to the point estimate.

Setting 2—Random π , Fixed τ (Random Prevalence,
Fixed Network Effect). Sample π from a Beta prior dis-
tribution. τ assumed fixed and equal to the point estimate.

Setting 3—Random π , Random τ (Random
Prevalence, Random Network Effect): Sample both π and
τ , as described above.

When sampling π and τ , for each point estimate and
group size, we perform B = 100 simulations of sampling
from the prior distribution.

The results of the Monte Carlo simulations for Ran-
dom τ and π (Random Prevalence/Random Network Ef-
fect) are shown in Figure 6; results for random τ (Fixed
Prevalence/Random Network Effect) and random π (Ran-
dom Prevalence/Fixed Network Effect) are presented in

the Appendix, Figures 10(a) and 10(b). These simulations
inform the following observation.

LESSON 4. These findings highlight the importance
of developing adaptive pooled testing procedures. With
reasonably specified models for prevalence and network
transmission, the optimal pool size can be chosen to max-
imize sensitivity and ensure minimum FDA thresholds are
met. However, even with significant uncertainty and het-
erogeneity in pools, results are robust.

In settings with high network transmission (e.g., child
index cases, spouses, and household symptomatic in-
dex cases), all of the simulation results have sensitivity
greater than the FDA threshold for sensitivity (Figure 5).
For low network transmission settings (e.g., healthcare
or household asymptomatic index cases), pooled testing
with small pools (n ≤ 5) may still meet minimum FDA
standards, but larger pools may not be appropriate (Fig-
ure 5). Supporting our previous observations, heterogene-
ity in results is primarily driven by uncertainty in τ , not
in π .

Additionally, adaptability of the overall model is criti-
cal in a pandemic setting, where transmissibility and sus-
ceptibility vary over time and space as a function of the
particular viral variants circulating and the prevalence of
vaccination (and efficacy of vaccines against variants).
The simulations presented in this paper can easily be
adapted to settings where more transmissible variants are
widespread (by increasing the value of the transmission
parameter) or as vaccination rates increase (by decreasing
the value of the prevalence parameter). The robustness of
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results to significant uncertainty in parameter values is es-
pecially critical in this setting.

Considering the efficiency of the pooled testing proce-
dure, there is very little variation in expected tests per
sample across different specifications of the model and
parameters (Figures 6; Table 3). In all cases, the pooled
sampling procedure results in significant reductions in
tests per sample relative to the individual sampling pro-
cedure.

4. CONCLUSION

Violations of i.i.d. assumptions and high prevalence
settings have typically been considered impediments to
using pooled testing; however, we demonstrate, mathe-
matically and via simulation, that significant gains can
be made in terms of testing efficiency and sensitivity by
taking advantage of correlated samples and high prob-
abilities of positive samples. Clustering multiple posi-
tive samples in a single pool improves both efficiency
(by focusing retesting in a directed fashion) and sensitiv-
ity (by increasing the concentration of viral genetic ma-
terial). We also investigate the effects of heterogeneity
in the input parameters—specifically prevalence and net-
work transmission—on the outcome metrics of interest.
We find that our overall findings are robust to heterogene-
ity. This suggests that these methods can be useful even
in real-world settings where precise values of prevalence
and network transmission may not be known.

For example, at the peak of the pandemic in Alabama
in January 2021, pooled samples of size 5 collected from
households with symptomatic index cases could have re-
duced testing needs by 58%; at that time, the positive test
rate in Alabama exceeded 20%, and greater testing capac-
ity was urgently needed. Pooling in this setting and with
this pool size is predicted to have sensitivity far exceed-
ing individual tests, even when accounting for uncertainty
in both prevalence and network transmission rates. Even
greater savings can be observed in other settings, such as
Maine in October 2020, a period when prevalence was
low: pooled testing in pools of size 20 would have re-
duced testing requirements by over 90% relative to indi-
vidual testing in both high and low network transmission
settings. For moderately high values of network transmis-
sion (household transmission with a symptomatic index
case and spouses), the sensitivity of this procedure again
exceeds individual testing.

In conclusion, as a lesson learned from the pandemic,
we highlight the importance of “field-aware” statistical
modeling and the importance of adaptive models. To de-
velop an actionable response to the pandemic and its un-
precedented conditions, it is important to develop statisti-
cal model that accurately optimize procedures to the pop-
ulation at hand. This development has to be done in close
collaboration with clinicians, to ensure the feasibility and

scalability of the proposed solution. Here, we demonstrate
that leveraging correlations in specimen collection pro-
cedures and incorporating knowledge about local preva-
lence and network transmission parameters can lead to
better informed, logistically-feasible, and adaptive pooled
testing.

APPENDIX: SIMULATIONS

A.1 Mathematical Formulations of Probability Laws

In computing the metrics of interest, we must also com-
pute pk = P [∑n

i=1 Yi = K], the probability of K posi-
tives in a pool of size n. The probability law for com-
puting this depends on whether we invoke the null or al-
ternative (network transmission) models, that is, whether
we account for correlation between members of a pool. In
the null model, the probability of observing K positives
in a pool of size n is given by the binomial distribution:
pk ∼ Binom(K,n). When independence assumptions are
violated (correlated individuals), we calculate the proba-
bility of having K total positives in a pool of size n, k of
which are infected in the community (where probability
of infection equals prevalence, π ) and K − k of which
are infected via network transmission (where probability
of infection equals a homogeneous network transmission
probability between all individuals, τ ). We calculate the
total probability over all possible values of k (Equation
(1)).

If we allow τ to be heterogeneous between groups, but
homogeneous within a group (i.e., each groups has its own
τi) and then consider the probability of seeing K positives
average over the total number of groups (ngroup), we ob-
tain Equation (2), where P(τ = τi) = 1

ngroups
.

Similarly, we can further account for heterogeneity in
risk among individuals by allowing π to vary, reflecting
the fact that individuals may have greater or less risk of
being infected from the community depending on their
behaviors, profession, etc. (Equation (3)), where P(π =
πi) = 1

ngroups
.

Combining equations (2) and (3) represents the model
in which we account for heterogeneity in both τ and π .

A.2 Ct Value Data

We use empirically collected data on the distribution
of Ct values from Wang et al. (2021). Briefly, nasopha-
ryngeal or oropharyngeal swab specimens obtained for
SARS-CoV-2 testing were obtained by the Stanford Clini-
cal Virology Laboratory from tertiary-care academic hos-
pitals and affiliated outpatient facilities in the San Fran-
cisco Bay Area, California, from June 10–June 19, 2020
and July 6–July 23, 2020. Samples were collected both
from symptomatic and asymptomatic inpatients and out-
patients, either for clinical care or via COVID-related
surveillance studies and drug trials.
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FIG. 6. Random Prevalence/Random Network Effect Model: Model-estimated parameters (sensitivity, relative sensitivity, expected tests per sam-
ple, missed cases per sample) by pool size, prevalence (π ), and network transmission (τ ) when π and τ are sampled from Beta distributions
corresponding to the specified scenario. Shaded area indicates the empirical 95 percent credible prediction interval. Proportion of samples with Ct

above the 95% LoD (held constant at LoD = 35) is constant, equal to 25%. The null (no correlation) model, individual testing, and FDA sensitivity
threshold are also indicated, where relevant.

FIG. 7. Probabilistic model for sensitivity of the test as a function of
the Ct value in our reference population.

The distribution of Ct values is best represented by a
Weibull distribution with shape parameter s = 4.5 and
scale η = 30. The distribution of the Ct values depends
on a number of factors, including the population tested
(i.e., hospital admissions vs. general population, COVID
variant, etc.). To create a realistic distribution of Ct val-
ues with the appropriate amount of spread, we sample and
shift the Weibull distribution of Wang et al.: we sample
from their fitted distribution to create a mock distribution
of individual Ct values, and shift it so that 25.0% of sam-
ples are above Ct = 35.

A.3 Prior Distributions on π and τ

To sample π and τ from informed priors, we fit Beta
distributions to published data on prevalence and SAR,
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TABLE 3
Expected performance of pooled testing under select prevalence, network transmission, model type, and pool size scenarios

Model

Random Prevalence/Fixed
Network Transmission

Random Prevalence/Random
Network Transmission

Network Transmission (τ ) Prevalence (π )

% Increase
Sensitivity

Relative to H0

% Decrease
Tests/Sample
Relative to
Individual

Testing

% Increase
Sensitivity

Relative to H0

% Decrease
Tests/Sample
Relative to
Individual

Testing

Po
ol

Si
ze

n
=

5 Household Asympt. (0.012) Maine Oct. 2020 (0.2%) 0.52 79.34 0.58 79.36
Alabama Jan. 2021 (5.4%) 0.50 58.77 0.53 58.92

Household Symptomatic (0.18) Maine Oct. 2020 (0.2%) 7.71 79.31 7.86 79.31
Alabama Jan. 2021 (5.4%) 7.04 58.00 7.19 57.52

Spouses (0.38) Maine Oct. 2020 (0.2%) 12.8 79.28 13.09 79.27
Alabama Jan. 2021 (5.4%) 11.67 56.94 11.92 56.54

Po
ol

Si
ze

n
=

20 Household Asympt. (0.012) Maine Oct. 2020 (0.2%) 3.62 92.60 3.94 92.64
Alabama Jan. 2021 (5.4%) 2.55 37.74 2.71 37.12

Household Symptomatic (0.18) Maine Oct. 2020 (0.2%) 28.69 92.07 28.86 92.07
Alabama Jan. 2021 (5.4%) 17.76 30.51 17.88 28.57

Spouses (0.38) Maine Oct. 2020 (0.2%) 31.17 92.03 31.20 92.02
Alabama Jan. 2021 (5.4%) 19.09 29.70 19.11 27.87

Percent increase in sensitivity relative to H0 = 100 × (SensHa
− SensH0)/(SensH0); Percent decrease in tests per sample relative to individual

testing = 100 × (TestsHa
− n)/(n), where n = pool size.

TABLE 4
Probability laws for number of positive samples in a pool

Scenario Equation Reference

Homogeneous τ , π P (
∑

Yi = K) = ∑K
k=1

(( n
k

)
πk(1 − π)n−k

( n−k
K−k

)
(1 − (1 − τ )k)K−k((1 − τ )k)(n−K)

)
Eq. (1)

Heterogeneous τ P (
∑

Yi = K) = ∑K
k=1

(( n
k

)
πk(1 − π)n−k ∑ngroups

τi=1 P(τ = τi)
( n−k
K−k

)
(1 − (1 − τi)

k)K−k((1 − τi)
k)(n−K)

)
Eq. (2)

Heterogeneous π P (
∑

Yi = K) = ∑K
k=1

(∑ngroups
pii=1 P(π = πi)

( n
k

)
πk

i (1 − πi)
n−k

( n−k
K−k

)
(1 − (1 − τi)

k)K−k((1 − τi)
k)(n−K)

)
Eq. (3)

TABLE 5
Parameters for select Beta prior distributions for community

prevalence π in different settings. The Beta parameters (α,β) are
estimated from the 95% confidence intervals of the mean estimated

active cases in a given state and month, obtained from covidestim.org

Setting
Mean Monthly

Prevalence (95% CI) Beta(α,β)

Georgia, July 2020 1.3% (0.7, 2.0) Beta(16.67, 1282.88)
Maine, October 2020 0.2% (0.07, 0.3) Beta(9.94, 6561.33)
Iowa, November 2020 3.4% (2.0, 5.2) Beta(16.99, 477.12)
Alabama, January 2021 5.4% (3.0, 8.4) Beta(14.38, 251.01)
Oregon, April 2021 0.5% (0.2, 0.7) Beta(13.06, 2836.41)
Idaho, May 2021 0.4% (0.1, 0.7) Beta(5.77, 1543.33)

respectively. Beta distributions to the 95% confidence in-
tervals of reported metrics of interest (prevalence, SAR)
using the publicly available beta.params.from.
quantiles function (Joseph and Belisle, 2017).

To estimate distributions for the community prevalence,
we fit a Beta distribution to reported 95% confidence in-
tervals on the estimated rates of COVID-19 infections
over time in every U.S. state. Specifically, we use the es-
timate of true number of infections, which is adjusted for
reporting delays and potential under-counting, provided
by https://covidestim.org/. The methodology for adjust-
ing case counts is described in a preprint paper by the au-
thors (Chitwood et al., 2021). Data extend from the first
reported case (January 13, 2020) through present (data
downloaded 28 May 2021). We only consider states for
which 95% CI data are available, and then further sub-

http://covidestim.org
https://covidestim.org/
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FIG. 8. Density plots of the Beta prior distributions for π , corresponding to all fitted models (top) and the parameters and settings selected for
the simulation study and included in Table 5.

set to consider a single representative state from each ge-
ographic division as defined by the U.S. census bureau.
Prior to fitting the distribution, we normalize raw infec-
tion counts by the state population for 2019 (Census. gov,
2021) and sum over the past ten days of data to estimate
active cases. Finally, we average the number of active
cases by month for each state. After fitting Beta distri-
butions to the resulting data, we observed that many prior
distributions have very similar α,β parameters. Thus, we
select six representative distributions corresponding to
different stages in the pandemic (e.g., large surge, small
surge, peak of surge, low cases, declining cases), and
varying time points and geographic regions. The selected
time points and regions, as well as corresponding fitted

distributions, are presented in Table 5; density plots for all
fitted distributions and those selected for use in the simu-
lations are presented in Figure 8.

To estimate distributions for network transmission, we
followed a similar procedure as described above for com-
munity prevalence. Beta distributions were fit to the 95%
confidence intervals of SAR estimates reported in pub-
lished meta-analyses for different settings. Again, many
fitted distributions were similarly specified and so six rep-
resentative distributions were selected (Figure 9). The set-
tings and corresponding parameters of the selected dis-
tributions are presented in Table 6; density plots of all
fitted distributions and the representative selected distri-
butions for use in the simulations are presented in Fig-
ure 9.
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TABLE 6
Parameters for select Beta prior distributions for network transmission τ in select settings. The Beta parameters (α,β) are estimated from the 95%

confidence intervals of secondary attack rate (SAR) values in the literature

Setting SAR (95% CI) Beta(α,β) Citation

Child Index Case 13.40% (5.7–21.1) Beta(8.38, 59.43) Spielberger et al. (2021)
Healthcare Setting 0.7% (0.4–1.0) Beta(8.3, 359.61) Koh et al. (2020)
Household (Spouses) 37.8% (25.8–50.5) Beta(21.78, 35.92) Madewell et al. (2020)
Household (Asymptomatic Index Case) 0.7% (0–4.9) Beta(0.74, 62.23) Madewell et al. (2020)
Household (Symptomatic Index Case) 18.0% (14.2–22.1) Beta(64.95, 296.26) Madewell et al. (2020)
Household (General) 30% (0–67) Beta(0.45, 2.37) Curmei et al. (2020)

A.4 Implementing Simulations

We perform simulations under four distinct settings:

• Fixed (point estimates of π and τ ): Deterministic π and
τ , probability calculated as in Equation (1)

• τ Graph Effect (Random τ , Fixed π ): Sample τ from a
Beta prior, probability calculated as in Equation (2)

• π Graph Effect (Random π , Fixed τ ): Sample π from
a Beta prior, probability calculated as in Equation (3)

• All (τ and π ) Graph Effect (Random τ , Random π ):
Sample both π and τ , combining Equations (2) and (3).

Results for All Graph Effect and Fixed model are pre-
sented in the main paper; results for the τ Graph Effect
and π Graph Effect are presented in Figures 10(a) and
10(b).

FIG. 9. Density plots of the Beta prior distributions for τ , corresponding to all fitted models (top) and the parameters and settings selected for
the simulation study and included in Table 6.
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FIG. 10. Model-estimated parameters (sensitivity, relative sensitivity, expected tests per sample, missed cases per sample) by pool size, prevalence
(π ), and network transmission probability (τ ). Shaded area indicates the empirical 95% credible prediction interval. Proportion of samples with Ct

above the 95% LoD (held constant at LoD = 35) is constant, equal to 25%. The null (no correlation) model, individual testing, and FDA sensitivity
threshold are also indicated, where relevant.
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