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Abstract: Planned missing survey data, for example stemming from split
questionnaire designs are becoming increasingly common in survey research,
making imputation indispensable to obtain reasonably analyzable data.
However, these data can be difficult to impute due to low correlations,
many predictors, and limited sample sizes to support imputation models.
This paper presents findings from a Monte Carlo simulation, in which we
investigate the accuracy of correlations after multiple imputation using dif-
ferent imputation methods and predictor set specifications based on data
from the German Internet Panel (GIP). The results show that strategies
that simplify the imputation exercise (such as predictive mean matching
with dimensionality reduction or restricted predictor sets, linear regression
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models, or the multivariate normal model without transformation) perform
well, while especially generalized linear models for categorical data, classi-
fication trees, and imputation models with many predictor variables lead
to strong biases.

MSC2020 subject classifications: Primary 62D10; secondary 65C05,
62P25.
Keywords and phrases: Bias, Monte Carlo simulation, multiple imputa-
tion, imputation methods, split questionnaire design.
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1. Introduction

Long questionnaires pose a serious threat to the quality of survey data, trig-
gering low response rates and poor response quality [22, 41]. Recently, survey
projects such as the PISA 2012 context questionnaire [40, pp. 48-58] or the
European Values Study [34] have attempted to overcome this problem with
methods such as the split questionnaire design (SQD) [43]. In an SQD survey,
a long questionnaire is split into different overlapping, shorter questionnaires.
Consequently, respondents receive only a part of the full questionnaire while
all bivariate combinations of variables and their covariances are observed. Ob-
viously, this results in a large amount of planned missing data (i.e., data that
intentionally remain unobserved). As a result, dropping the incomplete cases
from the analysis (listwise deletion) is usually unfeasible with SQD data, since
in SQDs fully observed cases are rare or nonexistent. Therefore, SQD surveys
require appropriate methods to deal with the intentionally unobserved data.

Multiple imputation (MI) [47] is one of the state-of-the-art methods for han-
dling missing data. Based on an imputation model, MI replaces missing values
with multiple potential values drawn from the joint distribution of the data.
Given an adequately specified imputation model, data imputed via MI can be
analyzed through standard statistical techniques. Yet, from a practical perspec-
tive the responsibility of imputing SQD data cannot easily be shifted to the
data user, as only a minority of users are experts for imputation. Furthermore,
it can be argued that in the interest of transparent, replicable and cumulative
research it would be beneficial if researchers were able to work with the same
imputed data. This means that it could be beneficial if the data is published
with imputed data for general research purposes, giving data users with dif-
ferent substantive interests a reliable basis for their analysis. However, as we
argue in the following paragraphs, more research is needed to determine which
imputation strategies can adequately handle such data scenarios in practice.

A general-purpose imputation of SQD data faces the following challenges:
First, imputation models ideally should cover all variable relations studied in
an analysis model. If variable relations that are omitted in the imputation are
included in an analysis model, they will be biased towards zero unless the true
relationship is equal to zero [7]. For our scenario of a general-purpose imputa-
tion this means using all available variables as predictors, because they may be
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included in a researcher’s substantive analysis model. However, to impute large
numbers of variables with large predictor sets, large samples are needed. This
often will not be the case for SQD.

Second, because analyses of SQD data largely rely on imputed data, the
selection of the imputation strategy is crucial, for even minor misspecifications
in the imputation model could significantly damage the estimates.

Third, noisy data and especially low correlations are common features of so-
cial surveys, even though the exact conditions may vary depending on a survey’s
content and measurement scales. This complicates the definition of accurate im-
putation models since SQD data typically will contain only limited information
that can be utilized for imputation.

In sum, an adequate imputation strategy must deal with potentially huge pre-
dictor sets but limited sample sizes, comparatively little information input, and
the threat to distort relations in the overall data. Axenfeld et al. [5], for example,
observe in a Monte Carlo simulation that especially relationships between vari-
ables (more so than univariate distributions) can turn out considerably biased
in imputed SQD data. In another real-data simulation of an SQD, Bahrami et
al. [6] report regression coefficients with complete and imputed SQD data, also
revealing systematic biases in most coefficients. Hence, it is necessary to evalu-
ate which simplifying assumptions must be made in the imputation regarding
both the predictor set and the imputation method.

To answer our question how planned missing data from an SQD survey can
be imputed as a service for the research community independent of a specific
purpose of analysis, we evaluate different imputation strategies (methods and
predictor set specifications) in their ability to reproduce relations in the data.
To this end, we present findings from a Monte Carlo study simulating planned
missing data from an SQD based on real survey data that we subsequently
impute.

This paper proceeds as follows: In Section 2, we discuss the theory on planned
missing data and MI as well as different imputation methods. Section 3 explains
our data and method. In Section 4, we describe our results for the different
strategies, first for strong and then for weak relationships between variables.
Section 5 concludes with a discussion of the implications and limitations of this
study.

2. Imputation of planned missing survey data

2.1. Planned missing data

Planned missing data occur when items are intentionally removed from question-
naires for specific groups of (usually) randomly selected respondents to shorten
questionnaires and reduce respondent burden. In a simple planned missing data
design each respondent is assigned to a predetermined number of items ran-
domly selected from the complete questionnaire [38,53]. The split questionnaire
design [23, 43] is a modification of this procedure and involves allocating items
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to distinct split modules and subsequently randomly assigning each respondent
to a subset of two or more split modules. In addition, a core module with par-
ticularly important items can be assigned to all participants to avoid planned
missing data on these items.

SQDs result in a fixed share of planned missing data corresponding to the
modules omitted by design. For example, with a questionnaire split into five
modules of equal length, assigning three modules to each respondent produces
40% planned missing data. As a result, researchers wanting to analyze variables
from different split modules will oftentimes end up with an empty dataset.

In consequence, Raghunathan and Grizzle [43] and Graham et al. [23] pro-
pose completing the missing data via MI (see also [1,6,28,41,44,56]). However,
as discussed in the previous section, this may be challenging in practice: Large
proportions of the data have to be imputed, making the quality of results par-
ticularly susceptible to misspecifications of the imputation models. A further
challenge is the large number of variables in the predictor set of the imputation
models in relation to the relatively small sample sizes. Furthermore, predomi-
nantly low correlations may also mean that the uncertainty of imputed values
remains high, and many potential predictors do not improve the imputation but
only add complexity to the model.

2.2. Imputation

The past decades have produced developments that allow for properly dealing
with missing data by replacing them with several plausible values through mul-
tiple imputation [47,58]. To understand MI, suppose we have a variable Y that
contains both observed values and planned missing values identified by vector
Z = {0; 1}, where 1 indicates that a value is observed and 0 that it is missing.
Our scenario assumes that all missing data Y|(Z = 0) is planned as described
above and thus missing completely at random (MCAR). MI aims to replace
Y|(Z = 0) with m potential values that are plausible given a matrix of predic-
tor variables X [58, pp. 19-20]. To this end, we rely on an imputation model
that estimates the conditional probability distribution of Y given X using an
adequate imputation method, accounting for all variable relationships as well as
noise in the data and parameter uncertainty [58, pp. 65-68]. Multiple imputed
values are drawn randomly from this conditional distribution for each missing
value, generating m independently imputed datasets [58, p. 67]. With a properly
specified model, the imputed data should reproduce the relationships between
variables as well as uncertainty about these relationships and about the true
unobserved values [47, pp. 12-16].

To analyze imputed data, estimates can be calculated separately for each
of the m datasets with standard methods for complete data [47, p. 12]. Sub-
sequently, these estimates are combined into a single estimate using Rubin’s
Rules [47, 58, pp. 145-147], yielding one combined estimator for each estimated
parameter.
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2.3. Predictors included in imputation models

An important decision in MI is what to include in the set of predictor variables
X. The general recommendation is to include at least all variables that will
be analyzed in a model together with the imputed variable unless their true
relationship is zero [7]. Because we are interested in imputing data as a service
to other researchers, we do not know which models will be applied to the data.
In this situation, including all variables as predictors of the missing variable,
and thereby using as much information as possible, may theoretically be the
best option.

However, including all variables is often not feasible in practice [39, 58, pp.
167-170, 259-271, 70]. Each additional variable included in X makes the task of
modeling the distribution of Y conditional on X more complex. At some point,
the sample would not be sufficient anymore to support a reliable estimation of
this conditional distribution. Therefore, common recommendations are to use
at most 15 to 25 [58] or 30 to 40 [25] variables in imputation models. This is
particularly important because otherwise, unattainably huge increases in sample
sizes would be necessary.

In case predictor sets need to be restricted during the imputation of planned
missing data, we argue that predictors should cover at least all variables that
are substantively correlated with Y. These variables are essential to reduce the
uncertainty of the imputations [59], as they contribute to the variance of the
imputed variable. Under MCAR, imputation models excluding variables that
are not correlated with Y may also be the most reasonable choice regarding
their potential use in analysis models because there is no relationship to be
preserved by the imputation.

In this study we consider both restricted and unrestricted predictor set spec-
ifications.

2.4. Imputation methods

To model the conditional distribution of Y through X, we need an adequate
imputation method. In the following, we discuss several established methods,
which differ both in their distributional assumptions regarding the imputed
variable and in how its relationship to the predictor variables X is modeled.

2.4.1. Linear regression models (LRM)

First, linear regression can be used for MI [47, pp. 166-167, 58, pp. 67-74] if
Y is continuous. However, since social research often treats ordinal variables as
continuous, especially if the number of categories is high (see Wu and Leung [71]
for a broader discussion and simulation), researchers might also consider LRM
as a method to impute ordinal planned missing survey data.
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To impute data using Bayesian LRM [58, p. 67], a linear model of Y condi-
tional on X is specified:

Y = Xβ + ε , (1)

where β is a vector of Bayesian estimates of the regression coefficients for the
predictor variables in X and ε represents the residuals. Accordingly, the pos-
terior distribution P (Y|X)|(Z = 1) can be estimated, from which imputations
are randomly drawn. In an alternative frequentist setting, imputations can be
calculated by adding an error drawn from the normal distribution of errors to
a bootstrapped point estimate of Y [58, p. 67].

This procedure is associated with strong model assumptions. First, residu-
als are assumed to be normally distributed. With primarily categorical survey
data, the normality assumption is likely violated. If this assumption does not
hold, some authors recommend transformation techniques to approximate nor-
mality [26,31] while others show that outcomes can be biased with transformed
variables as well (see for example von Hippel [64]).

Furthermore, linear regression does not account for restrictions such as dis-
crete scales or logical bounds [33], potentially leading to implausible imputations
[70, 58, p. 78, 64]. For example, if Y is an ordinal, Likert scale–based variable
defined for integers from 0 to 10, non-integer and potentially even negative im-
putations would be obtained. Although the analysis results are not necessarily
negatively affected by implausible imputations [2, 63, 64], imputed data with
lots of implausible values may be considered inappropriate for publication, and
standard analysis methods for categorical variables would most likely fail with
data imputed by LRM.

In addition, all predictors are included as linear terms. This requires their
actual relationship with Y to be exclusively linear as well. If there are any
additional relationships in the data, say quadratic or interaction effects, these
must be explicitly specified in the model [50, 63].

While possibly oversimplifying the relationship between predictors and im-
puted variables, LRM have the clear advantage of only needing one parameter
(the regression coefficient) to describe the relationship of a predictor with an
outcome. This relatively simple imputation task facilitates the estimation of
many relationships considering the practical problems with the imputation de-
scribed above. In contrast, methods that attempt to address categorical data
specifically or model non-linear relationships require more parameters for the
same set of variables.

2.4.2. Categorical regression models (CRMs)

To circumvent some of the theoretical disadvantages of LRM, we might consider
using categorical regression models (CRMs) [16, 47, pp. 169-170, 60]) from the
general class of generalized linear models (GLMs). To accommodate the estima-
tion of non-normal outcomes such as categorical variables, LRMs are generalized
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through

Y = g(Xβ) , (2)

where g stands for a link function that depends on the assumed distribution
of Y. A simple example for a CRM is logistic regression for estimating the
probability of Y = 1 in binary variables, where g stands for the logit function

Pr(Y = 1) =
eXβ

1 + eXβ
. (3)

In this way, the non-normal distribution of categorical outcomes can be ac-
counted for. As a result, CRMs with a correct specification of Y’s discrete
distribution allow for directly drawing imputations that stick to empirically pos-
sible values. However, we still assume that all effects of X on the transformed Y
variable will be linear, so non-linear relationships must be explicitly modeled,
like with LRM. Similarly, we assume error terms to follow a predefined distribu-
tion, meaning that the imputation quality could be impaired if these restrictive
distributional assumptions do not hold.

CRMs can also cause new problems if the sample size is small, since modeling
categories instead of the variables themselves increases the complexity of the im-
putation model. Accordingly, van Buuren [58, p. 91] notes that the “imputation
of categorical data is more difficult than continuous data”. As a rule of thumb,
at least about ten cases per predictor category times outcome category are re-
quired for CRM to produce stable estimates [57, p. 87, 58, p. 91]. As categorical
predictors are usually represented as dummy variables, this means thousands
of respondents would be required to impute a variable with ten categories only
using one predictor with equally ten categories. Correspondingly, in a similar
context White et al. [70] report that they have found particularly structures
with several nominal variables “challenging to work with” when imputing them
by multinomial logistic regression. Furthermore, Wu et al. [72] observe that
LRMs outperform CRMs in various scenarios with binary and ordinal variables.

2.4.3. Predictive mean matching (PMM)

Another common method used in MI is predictive mean matching (PMM)
[32,46]. PMM is a two-stage method: First, a regression is applied to the data.
However, instead of drawing imputations directly, predicted values Ŷ are cal-
culated and a real observed Y value is drawn from a set of donors with similar
Ŷ. Extensions of this method add bootstrapping, propensity score matching as
a special case for categorical variables, and an alternative to draw imputations
weighted by distance instead of randomly from the donor set [30,54].

This solves several problems of conventional regression methods. First, im-
putations do not take impossible values, as all imputed values are taken from
real observations on other cases. Second, although all effects are still expected
to be linear, evidence shows that PMM is quite robust against violations of this
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assumption [30, 37, 58, pp. 77-79]. However, model misspecifications can still
result in biases [30,37,50]. For example, interaction effects must be specified ex-
plicitly [50]. Moreover, when missing cases do not have enough potential donors
nearby, PMM falls back to more distant donors to draw imputed values, which
may also result in bias [29].

2.4.4. Partial least squares PMM (PLS-PMM)

Although PMM relaxes some assumptions on the imputation, large numbers
of potential predictors could still be a problem. Robitzsch and Grund [45] im-
plement partial least squares (PLS) regression [20, 35] as a two-step method to
reduce the dimensionality of the predictor space before imputing the data. In a
first step, PLS regression is used to extract a predetermined number of k com-
ponents of X that describe the maximum possible covariance of X and Y [20].
These PLS components are uncorrelated latent variables optimized to predict
Y and ordered by decreasing importance for predicting Y. In the second step,
missing values are imputed (by default, with PMM) using the k components as
predictor set rather than the original data.

Such an approach suggests unique advantages over other methods. First, by
using comparatively few PLS components for the imputation rather than many
original predictors X, the number of parameters in the model is reduced. At
the same time, most of the information on Y is preserved, as the PLS com-
ponents were extracted from X specifically to predict Y. Second, substituting
the original variables X by their (uncorrelated) PLS components also removes
potential multicollinearity (although due to the rather small correlations, mul-
ticollinearity should be low). Third, by using PMM to draw imputations based
on the PLS components, only empirically possible values are imputed. Thus,
PLS-PMM might help preserve information considering that the data context
supposedly requires restricting the number of parameters because of the limited
case numbers and large amounts of missing data to deal with.

However, PLS-PMM may also introduce new difficulties, particularly due to
potential information loss caused by dimensionality reduction. Extracting only
k PLS components from X means that some other information in X will be
ignored in the imputation. If this ignored part of X still contains additional
information on Y, corresponding relationships would be to some extent lost. In
consequence, k should ideally be set such that all relevant information on the
covariance between X and Y is included in the imputation, that is, a potential
k + 1-th component must not provide any substantial further information on
Y. Furthermore, PLS-PMM still assumes that all relationships in the data are
linear. Thus, non-linear terms such as interactions must be explicitly specified
in the PLS model.

2.4.5. Classification and regression trees (CART)

Finally, we could also decide to drop all assumptions about distributions and re-
lationships in the data, choosing an algorithm that attempts to learn about these
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features. Classification and regression trees (CART), as described by Breiman
et al. [17], have shown to be a relatively simple method for this purpose [18,21].
Other tree-based algorithms such as random forests work similarly, but often go
beyond CART by combining estimates of various trees (see, for example, Shah
et al. [52]), making them quite computationally demanding.

CART creates a decision tree predicting Y by repeatedly partitioning the
data into two subregions along the values of the predictor variables. After having
started with an unconditional estimate of Y (i.e., the mean or mode, depending
on whether Y is continuous or categorical), a cut-off point on a variable in X
is chosen and Y is estimated separately below and above the cut-off point (i.e.,
with two mean or mode values). In doing so, as many possible cut-off points as
possible are tested and the one that optimizes the goodness of fit is chosen. For
example, for categorical Y this means the cut-off point that reduces entropy
the most is accepted. After that, the same procedure starts again separately
within both subregions, leading to the data being cut into four subregions in
total. This procedure is repeated again and again, creating smaller and smaller
subregions, and stops only when (a) an external stopping criterion is reached, (b)
the goodness of fit cannot be further improved, or (c) there are not enough data
left for another cut, thereby eventually reaching a terminal node. To impute
a missing value, an observed value can be randomly drawn from one of the
observed cases in the same terminal node [58, p. 86].

CART’s main advantage is that it accounts for all kinds of relationships
(including interactions) automatically without the need to specify a functional
form. Furthermore, it generates plausible imputations by drawing observations
from the same terminal node. Thus, CART seems ideal for a general-purpose
imputation, as it provides imputations that make intuitive sense and is agnostic
to the functional form of data users’ eventual analysis models. Some evidence
also suggests that CART outperforms CRM and PMM especially in reproduc-
ing complex relationships [3, 18, 21]. Slade and Naylor [51] observe a similar
performance of CART and correctly specified PMM.

However, large predictor sets might create particularly severe problems for
CART. Remember that CART stops partitioning a subregion of the data when
not enough data are available to support another split. As one imputed value
must be randomly drawn from a pool of several potential donors in the terminal
node, several (say, five) cases must be left in each terminal node. However, if this
node size limit is reached before all relevant predictor variables are accounted
for, the remaining ones are implicitly omitted from the imputation.

For example, suppose we have 1, 600 observed cases on Y. On average, each
repeated cut divides the average case numbers remaining in each subregion by
two. For simplicity, suppose that these two subregions are always equally large.
Consequently, we would reach terminal nodes after only eight successive cuts,
with 1, 600/28 = 6.25 cases per subregion. Thus, including more than eight
predictor variables would mean that some are necessarily omitted in the im-
putation. Furthermore, even eight predictors would only work in the unlikely
case that one binary cut per predictor variable suffices to represent all its re-
lationship with Y. For instance, Doove et al. [21] observe particular problems
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with reproducing linear main effects, arguing that such structures likely require
several consecutive cuts per variable. Effectively, we might thus end up with
only a few predictors sufficiently utilized by CART.

CART could thus run into problems even with relatively large samples: As-
sume we quadruple the sample in our example survey, yielding 6, 400 observed
cases. Even this would only allow for two more cuts on average (ten cuts in to-
tal). Thus, we may face a curse of dimensionality problem [8], in which adding
more predictors requires an exponential growth in case numbers. In consequence,
CART implicitly assumes that only a few predictors in X really determine Y
and all other predictors are negligible.

In this context, generally low but non-zero correlations as commonly found
in survey data could even exacerbate such problems. First, CART might face
difficulties in identifying optimal cut-off points due to high uncertainty in the
data. Furthermore, in a data context in which predictive information on Y is
not primarily stored in a few strong correlations but in many different weak
correlations, much information on Y may be lost in the imputation when the
selected imputation method limits the number of predictors so strictly.

2.5. Imputing multivariate missing data

With planned missing data as produced by an SQD, missing data is usually
obtained not on one but on many variables. This means that, when imputing a
variable Y with missing values, there will also be missing values in X. To deal
with such multivariate missing data, one can apply the previously discussed
imputation methods for each variable consecutively via fully conditional spec-
ification (FCS; sometimes also referred to as multiple imputation by chained
equations) or alternatively, use joint modelling (JM) as a holistic method in-
stead of integrating univariate imputation methods.

JM is the classical application of MI described by Rubin [47]. It entails mod-
eling the joint distribution of multivariate missing data in a single multivariate
model [58, pp. 112, 115-119]. This requires an explicit assumption about the
true distribution that applies to all variables in the imputation model. Usually,
a multivariate normal distribution is assumed, and variables violating normal-
ity are often transformed [26, 49]. This normality assumption must hold for all
(transformed) variables in the model alike. After estimating the multivariate
distribution parameters, imputations can be drawn directly from the distribu-
tion.

FCS has been developed more recently [16,58,60] and divides the multivari-
ate imputation task into multiple univariate imputation tasks that are processed
one after the other. In doing so, an implicit joint distribution is approximated
without having to specify it explicitly. To this end, an imputation model with
relevant predictors is defined for each variable to be imputed, describing the
conditional distribution of this variable. Predictors can either be fully observed
or contain missing values that are imputed themselves. Furthermore, an impu-
tation method (such as CART, PMM, etc.) is also specified for each variable to
be imputed.
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The FCS algorithm [58, pp. 120-121] iterates over all conditional distributions
to impute the missing values. This means imputation models for each imputed
variable are repeatedly run one after the other, eventually imputing the whole
data. The first run starts with random draws from Y|(Z = 1). Then, the first
variable with missing values is imputed on the basis of the predictors, which
rely on observed data completed by the random starting values. In doing so,
the initial random imputations on this variable are replaced. Then the second
variable is imputed, followed by the third, and so on, until all initial random
imputations are replaced. Subsequently, the procedure starts again with the
previously imputed values, imputing the first, second, third, etc. variable. This is
repeated for a number of iterations to reach convergence, each time replacing the
imputations from the former iteration. When a predictor variable has imputed
values itself, imputation models always use its latest imputed version throughout
the iterations.

JM and FCS are different in some respects. JM has a more bottom-up theo-
retical justification and is computationally faster, while FCS offers much more
flexibility [58, pp. 130-131]: distributions must only be defined univariately for
the imputed variables instead of an overarching multivariate distribution. This
allows for using different imputation methods (for example, accounting for dif-
ferent levels of measurement) as well as different predictor sets for each imputed
variable. In this study, we test both JM and FCS strategies, but due to the gains
in flexibility, we mostly rely on FCS.

3. Data and methods

To test the different imputation strategies for their ability to reproduce rela-
tionships in planned missing data, we apply a Monte Carlo simulation based on
real survey data. This section describes the preparation of the data, simulation
setup, and measures.

3.1. Data

We use data from two survey waves of the German Internet Panel (GIP), a
probability-based online panel of the general population in Germany [11–14,19].
The dataset includes 61 variables with items on the respondents’ sociodemo-
graphic information and sampling cohort, organization membership, Big Five
personality traits, lobbying in EU politics, domestic and party politics (this is
the same dataset as used in Axenfeld et al. [5]).

Because our focus is on the evaluation of strategies to impute planned missing
data stemming from split questionnaire designs, we removed all non-planned
missing data (nonresponse) from the dataset. This is necessary to ensure that
the reported effects of imputing planned missing data are not confounded by
imputations for other missing data. To deal with unit nonresponse, we restricted
our sample to respondents who took part in both waves of the GIP (dropping
1, 390 out of 5, 411 cases). Next, we had to deal with item nonresponse. Some
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item nonresponse could be matched with responses from earlier waves [9, 10].
The remaining item nonresponse (on average 167 values or 4% per item) was
imputed with single imputations in R [42] via mice [61],1 using PMM including
all variables with Spearman correlations stronger than |0.05|. This procedure
had negligible effects on correlations and marginal distributions in this dataset
(see [5, Figure A.1]).

In a next step, we recode variables with rare events to allow for an appropriate
imputation. This is because the simulation procedure reduces available sample
sizes considerably in all simulation runs, and hence the number of available
observations per category is much lower in the simulated SQD datasets than
in the population. Thus, categories containing fewer than 100 cases (2.5%) are
combined into somewhat broader categories to provide the imputation with
sufficient case numbers.

Our final dataset, which we will refer to as population dataset, contains 4, 061
cases and 61 items. All variables are categorical and contain no missing values.
From the 11 sociodemographic and sampling cohort variables, 1 variable is di-
chotomous, 7 are nominal with 3 to 12 categories, and 3 are ordinal with 5 to
12 categories. These are treated as core variables, which are complete and hence
do not have to be imputed. Of the remaining 50 variables, 44 are ordinal with 3
to 11 categories and 6 are dichotomous. These 50 variables are imputed during
the simulation.

3.2. Simulation of planned missing data

To assess the performance of different imputation strategies with planned miss-
ing data, we simulate the implementation of a split questionnaire design in our
population data. To this end, we assume that the sociodemographic items and
the sampling cohort constitute a core module. The remaining 50 items would
be allocated randomly to five split modules with ten items each. Each respon-
dent then receives the core module and three out of five randomly assigned split
modules. This results in a 33% reduction in questionnaire length, with approx-
imately 40% (2/5 modules) randomly missing data on each split item and no
missing data on the core items.

Our simulation study picks up this scenario, repeating to simulate SQDs in
1,007 simulation runs using the bwHPC high-performance computing infrastruc-
ture.2 In each simulation run, this entails the following tasks:

1. drawing a random sample from the population data;
2. randomly allocating items to modules;
3. randomly assigning modules to respondents;
4. setting values for modules not assigned to missing, mimicking an SQD;
1Other R packages used for this paper (if not cited elsewhere) are: DescTools [55], doMPI

[66], foreach [36], ggplot2 [67], haven [69], MASS [62], Rmpi [73], tidyr [68].
2The exact number of 1,007 simulation runs was used for computational reasons, as the

simulation ran parallelized on one processor for each run, and we had access to 1,008 processor
cores (one of them is consumed by setting up the simulation.
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5. applying MI to the simulated planned missing data for each imputation
strategy, and

6. estimating Spearman correlations on the MI data to be compared against
their population benchmarks for each imputation strategy.

3.3. Imputation strategies

In each simulation run, we test different imputation methods implemented in
R. We implement JM via Amelia [26], a technique that draws from a multivari-
ate normal distribution modeled using the expectation–maximization algorithm.
With this method, we have the option to (correctly) declare our variables as or-
dinal, which will make Amelia transform the initial continuous imputations into
discrete categories. However, forcing continuous values into integer imputations
can compromise the accuracy of estimates [2, 27], so Honaker et al. [26, p. 16]
suggest letting Amelia impute continuous values without ordinal transforma-
tion, if feasible. However, this produces implausible imputations, which may be
a problem if the data is to be published. In consequence, we include both Amelia
with transformed (JM-T) and with untransformed imputations (JM-U) in our
simulation.

Moreover, we use some FCS imputation methods implemented in mice [61]:
the mice default (CRM, here: logistic regression and ordinal logistic regression),
norm (Bayesian LRM), pmm, and cart. Furthermore, we use pls (PLS-PMM)
from the miceadds package [45], which includes 20 PLS components in the im-
putation. For these FCS techniques we draw values after 10 iterations, because
an initial test simulation suggested that more iterations could not improve our
estimates.

As a benchmark for poor imputations we include sample (also included in
mice), an unconditional hot deck sampling replacing missing values with ran-
domly selected observed values, to assess in how far the other methods outper-
form a purely random replacement of missing values.

In the basic design, predictor sets include all variables in the data. Addi-
tionally, two refinements with fewer predictors are implemented for all eligible
imputation methods. These two options exclude predictor variables with Spear-
man correlations either weaker than |0.1| (option 1) or weaker than |0.2| (option
2) to the imputed variable and are applied to LRM, CRM, PMM, and CART.
Amelia, as a JM technique, does not allow for excluding different predictor vari-
ables per imputed variable, and PLS applies a dimensionality reduction before
imputation, generally including all variables in X.

The correct specification of m to adequately represent the distribution of
potential values for a missing value is subject to a lively debate. Sometimes,
m = 5 may suffice (see, for example, Schafer and Olsen [48]), but depending on
the data and analysis purpose, m must often be considerably larger [15,24,65].
In our study, we create m = 20 imputed datasets for each imputation strategy
because an initial test simulation suggested that results do not improve with
more imputations.
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3.4. Measures

We compare different imputation strategies regarding how well they reproduce
bivariate relationships based on Spearman correlations. For each pair of vari-
ables i, j (with i �= j) in split modules, Spearman correlations ρi,j are calcu-
lated as benchmarks based on the population data. With the imputed SQD
data, Spearman correlations ρ̂imputed

i,j,s are estimated for the same variable pairs
in each simulation run s. This entails that Spearman correlations are estimated
separately in each imputed dataset and subsequently pooled through applying
Fisher’s Z transformation on the correlations, calculating the mean and trans-
forming it back into a correlation [58, p. 146].

The correlations turn out generally low in the population data, as is typically
the case with many surveys. Of the 1, 225 correlations, 85 (7%) are stronger than
|0.2| with a maximum value of 0.70, 140 (11%) are stronger than |0.1| but at
most |0.2|, 248 (20%) are stronger than |0.05| but at most |0.1|, and 752 (61%)
are weaker than or equal to |0.05|. Thus, many variables are hardly correlated,
whereas few have relatively strong correlations.

In case ρ̂imputed
i,j,s estimates ρi,j validly, we should observe that random dif-

ferences between the MI estimate and its population benchmark average out
over many simulation runs. Therefore, we compute the (raw) Monte Carlo bias
BiasMC of the average MI estimate ρ̂imputed

i,j over all simulation runs S,

BiasMC(ρ̂imputed
i,j ) =

1

S

S∑

s=1

ρ̂imputed
i,j,s − ρi,j , (4)

representing the average difference between MI estimates and the true correla-
tion benchmark. To obtain a more intuitive measure of bias, we can calculate
the percentage Monte Carlo bias by dividing the raw bias by the true correlation
ρi,j and multiplying it by 100:

%BiasMC(ρ̂imputed
i,j ) =

BiasMC(ρ̂imputed
i,j )

ρi,j
× 100 . (5)

The percentage bias indicates by how much percent the MI correlation is un-
derestimated or overestimated.

Percentage biases have the disadvantage that they are only meaningful for
correlations that are clearly different from zero: A ρi,j near zero in the denomi-
nator of Equation 5 can lead to exceedingly large relative deviations even when
the actual difference between estimate and benchmark is negligible. Further-
more, a ρi,j exactly equal to zero means a denominator equal to zero, making
%BiasMC(ρ̂imputed

i,j ) impossible to calculate. In consequence, a reliable estima-
tion of the percentage bias is only feasible for correlations clearly different from
zero. This is especially relevant given that, as described before, correlations in
our population dataset tend to be weak. Accordingly, percentage biases work
poorly for the many very small correlations, for which we observe percentage
biases up to 84, 606% with deviations that are often negligible in absolute size
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(as small absolute deviations may be divided by much smaller correlations close
to zero). Thus, to analyze very small correlations in a meaningful way we resort
to the raw bias as defined in Equation 4, which does not share this problem.
Observing that extremely large percentage biases as just mentioned appear ex-
clusively in correlations below |0.05|, we therefore use the percentage bias for the
473 correlations stronger than |0.05| and the raw bias for the 752 correlations
equal or weaker than |0.05|.

4. Results

We now discuss the performance of the implemented imputation strategies as
measured by percentage and raw biases in Spearman correlations. First, we
describe the results for item pairs that have strong or moderate relationships in
our population data. In doing so, we concentrate on the relationships which have
the most to lose in terms of substantive relationships when the imputation fails.
In this part, we also include different predictor set specifications. Subsequently,
for the sake of completeness, we also show the results for item pairs with weak
or null relationships.

4.1. Item pairs with moderate or strong relationships

Figure 1 displays the average percentage biases in Spearman correlations for
the 85 item pairs with moderate or strong relationships (stronger than |0.2| in
the population data), broken down by imputation method and predictor set
specification. Each point displayed in a row represents the average bias over
the 1, 007 simulation runs for one specific variable pair. The boxplots condense
the information given by these point clouds that depict the average biases for
the different variable pairs into an aggregate image of how the Monte Carlo
biases are distributed for each strategy. In addition, the corresponding quantile
distributions are shown in an appendix (Table A1).

First, the random imputations with unconditional hot-deck sampling lead to
biases that concentrate at about −65%. Consequently, this is the approximate
average bias we could expect from a method that completely fails to incorporate
relationships in the imputation.

With LRM, biases are relatively small, with the central 50% (i.e., the area
from the first through the third quartile) of biases ranging from −6.8% to −2.6%.
Some outliers appear at both tails up to or slightly exceeding ±20%. Although
most biases are negative, many are close to zero. Excluding predictors correlated
less than |0.1| with the imputed variable (option 1) results in a shift to the right,
suggesting weaker biases: Here, the central 50% of biases range from −4.0% to
+0.6%. Further removing predictors correlated less than |0.2| with the imputed
variable (option 2) yields no additional improvement (the central 50% range
from −4.2% to +0.7%).

CRM tends to produce strong biases. With an unrestricted predictor set, the
central 50% of biases range from −50.7% to −21.9%. We observe no biases closer
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Fig 1. Average percentage Monte Carlo biases of Spearman correlations for 85 item pairs
with moderate or strong relationships (true correlations stronger than |0.2|), by imputation
method and predictor set specification.

Note: Random = unconditional hot-deck sampling; LRM = linear regression model; CRM =
categorical regression model; PMM = predictive mean matching; PLS-PMM = predictive
mean matching on partial least squares components; CART = classification and regression
trees; JM-T = joint modeling with transformed imputations; JM-U = joint modeling with
untransformed imputations.
Unrestricted = with all variables in the predictor set; |ρ| > 0.1/0.2 = with only predictors
with |ρ| > 0.1 / |ρ| > 0.2 in the predictor set; data-driven = 20 PLS components; none = no
predictors.

to zero than −10% but some biases stronger than −65%. Thus, all correlations
appear biased, with some even further from the truth than randomly imputed
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values. Again, we observe some predictor set effects on biases shifting the dis-
tribution of biases to the right: The central 50% of biases range from −32.5%
to −5.6% (option 1) or from −31.6% to −2.7% (option 2). With both options,
biases also have a smaller tendency towards extreme values, with minimum val-
ues at about −60%. Thus, CRM performs poorly with unrestricted predictor
sets and improves a little when we remove weak predictors, but even severely
restricted predictor sets cannot eliminate the biases, which are still mostly much
stronger than −10%.

PMM performs better than CRM but, at least with unrestricted predictor
sets, shows still moderate biases, with the central 50% ranging from −13.5% to
−10.5% and no biases closer to zero than −6%. Only two biases exceed −20%,
yet one extreme outlier has a bias of −31.7%. These biases can be reduced con-
siderably by excluding weak predictors from the imputation models: The central
50% of biases then range from −6.8% to −3.4% with option 1 or even from
−5.4% to −2.0% with option 2. Furthermore, both option 1 and option 2 make
the extreme outlier disappear, with the strongest biases being less pronounced
than −20% in both cases. Thus, we can obtain relatively accurate estimates
with PMM, almost catching up with JM-U when using restricted predictor sets.

With PLS-PMM most biases are even smaller, with the central 50% ranging
from −4.6% to +1.4%. Concurrently, we observe outliers mostly up to about
±20% and one at +34.4%.

CART leads to relatively strong biases, although they are less pronounced
than with CRM: With unrestricted predictor sets, the central 50% of biases
range from −31.7% to −16.8%, with the strongest bias being −47.2%. Fur-
thermore, only few correlations are almost unbiased, with maximum values of
+0.1%. Again, removing weak predictors from the imputation models yields an
improvement. However, the central 50% of biases still range from −27.2% to
−12.3% with option 1 and from −23.2% to −10.5% with option 2. However,
with option 2, we also observe two extreme biases with a minimum value of
−63.3%. Thus, despite some improvements with restricted predictor sets, CART
in general performs poorly.

JM performs much better than CRM and CART but still leads to moder-
ate biases when normal imputations are transformed to ordinal values (JM-T):
The central 50% of biases range from −16.9% to −11.2%. We also observe out-
liers with some biases stronger than −30%. There are no biases closer to zero
than −5%, so correlations appear quite universally biased. However, JM-U (i.e.,
declaring the variables (incorrectly) as continuous) considerably reduces biases:
The central 50% of biases range from −3.4% to +1.7%, with the most extreme
outliers at about ±20%. Thus, despite some remaining biases, JM with untrans-
formed imputations overall performs well.

To sum up, strong correlations over |0.2| are best reproduced by PLS-PMM
and JM-U when the entire set of variables is considered in the imputation.
PMM and LRM approach their level of accuracy with predictor sets restricted
to stronger correlations. While CRM and CART perform exceptionally poorly,
PMM with unrestricted predictor sets and JM-T also produce systematically
biased results.
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Fig 2. Average percentage Monte Carlo biases of Spearman correlations for 388 item pairs
with weak relationships (true correlations weaker than |0.2| but stronger than |0.05|), by im-
putation method.

See Note Figure 1.

4.2. Item pairs with weak or null relationships

Figure 2 displays the average percentage biases for the 388 item pairs that had
weak relationships in the population (between |0.05| and |0.2|), again for dif-
ferent imputation methods. Alternatively, quantile distributions are given in
Table A2. Restrictions of the predictor set are not presented here, as they ex-
clude (some of) the relationships under study from the imputation and thus
produce biased estimates per se. Apart from this, the information displayed in
the graph is equivalent to Figure 1, with point clouds and boxplots showing the
distributions of biases for each strategy.

In general, Figure 2 reproduces most patterns observed for strong relation-
ships. With random imputations, we still observe biases concentrating at about
−65%. Furthermore, JM-U, LRM and PLS-PMM yield the least biased esti-
mates, followed by PMM and JM-T, while CART and CRM have the strongest
biases among all methods (except for random imputations).

However, percentage biases tend to be more pronounced for these weak re-
lationships than for the stronger relationships discussed in the previous Section
4.1. CART and JM-T are particularly affected, with distributions visibly shifted
away from zero. Biases with the other strategies also appear slightly shifted
to the negative, but primarily scatter more compared to strong relationships,
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Table 1

Quantile distribution of absolute raw average Monte Carlo biases of Spearman correlations
for 752 item pairs with relationships close to zero (true correlations weaker than |0.05|), by

imputation method.

Min. 5% 25% 50% 75% 95% Max.
Random 0.000 0.001 0.006 0.012 0.021 0.03 0.033
LRM 0.000 0.000 0.001 0.003 0.006 0.014 0.039
CRM 0.000 0.001 0.004 0.009 0.017 0.035 0.056
PMM 0.000 0.000 0.002 0.004 0.007 0.013 0.027
PLS-PMM 0.000 0.000 0.002 0.004 0.008 0.018 0.045
CART 0.000 0.001 0.004 0.009 0.015 0.024 0.039
JM-T 0.000 0.000 0.002 0.005 0.009 0.016 0.024
JM-U 0.000 0.000 0.001 0.003 0.006 0.014 0.041

See Note Figure 1.

causing an increased prevalence of extreme biases. Correspondingly, biases con-
siderably larger than zero (i.e., positive percentage biases) occur with CRM,
JM-T, JM-U, and PLS-PMM, each with maximum values of about +60% or
more. With CRM, some biases also fall out of the display range defined be-
tween −100% and +100%: Ten correlations have biases exceeding −100% with
a minimum value of −119.8%. PLS-PMM also has one bias out of display range
(+106.6%).

Table 1 displays the quantile distribution of the absolute values of raw average
biases for the 752 relationships close to zero (weaker than |0.05| in the popula-
tion) for the different imputation methods. Due to the small true relationship
strength, their raw biases are mostly small as well. We observe that random
imputations lead to biases between 0.000 and 0.033. In contrast, biases with
other imputation methods are mostly smaller, but all methods except JM-T
and PMM have maximum values larger than those obtained with random im-
putations. Apart from that, patterns with this kind of relationship again largely
reproduce the findings above: CRM and CART have comparatively large biases
concentrating around 0.009. At the other extreme we again have JM-U and
LRM producing biases of only 0.003 at the median, while JM-T, PMM and
PLS-PMM show biases concentrating at around 0.004 and 0.005.

5. Discussion

As we described in the introduction, a general-purpose imputation of planned
missing data resulting from using a split questionnaire design holds special chal-
lenges. They stem primarily from the large amount of missing data to be im-
puted on many variables using many partially missing predictors, combined
with survey-typical features such as comparatively small sample sizes and low
correlations. Using a Monte Carlo simulation, we tested the accuracy of sev-
eral imputation strategies with real survey data. In doing so, we first analyzed
correlations stronger than |0.2| in the population data, and then turned to the
weaker correlations. Overall, the relative performance of imputation methods is
similar in both cases.
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Surprisingly, LRM performed exceptionally well, with mostly low biases in
Spearman correlations even with unrestricted predictor sets. This finding stands
in sharp contrast to statistical intuition suggesting that methods should account
for the variables’ levels of measurement, which raises the question of why LRM
performed so well. First, our data context characterized by low correlations
and high uncertainty, limited case numbers, and many potential predictors may
have promoted the use of simple methods that need comparably few data to
efficiently estimate relationships between all variables. Here, linear regression
can excel because it estimates only one coefficient per predictor. Thus, LRM’s
benefits due to simplicity might have outweighed its disadvantages, such as as-
suming an incorrect level of measurement and strict linearity in relationships.
Second, although our data are not continuous, they are at least binary or or-
dinal. Presumably, the performance of LRM would quickly drop if we shifted
our focus to non-ordered categorical data. Third, LRM might perform well with
reproducing the correlations covered by our study but still fail with other types
of relationships or estimates. Perhaps strongly non-linear relationships were ab-
sent in our data, which would give LRM an advantage over competing methods.
Furthermore, we must bear in mind that LRM will inevitably destroy discrete
distributions of categorical variables, leading to implausible imputations. Hence,
an LRM general-purpose imputation would heavily restrict data users in their
analyses. For example, frequency counts or classification models such as logistic
regression would most likely fail. Consequently, we might be tempted to round
imputations to discrete values, but this practice has shown to cause bias (for ex-
ample, see Horton et al. [27]). Moreover, the assumption of normally distributed
error terms is unlikely to hold with LRM on categorical data.

CRM consistently showed a dissatisfactory performance under all the pre-
dictor set specifications we studied. Some biases were even stronger than with
random imputations drawn without any predictor variables. This confirms ear-
lier findings reporting inaccuracies with similar methods (e.g., White et al. [70]
and Wu et al. [72]).

PMM was found to perform much better than CRM, even though unrestricted
predictor sets still lead to moderate biases. We showed that these biases were
significantly reduced by simplifying the imputation model. This could be done
either by removing predictors that are only weakly correlated with the imputed
variable or through dimensionality reduction (PLS-PMM), suggesting that an
adequately specified imputation via PMM might work well.

CART performed poorly with all predictor set specifications, although bet-
ter than CRM. This finding is especially noteworthy considering that there is
evidence suggesting that CART may outperform other imputation methods,
such as PMM [21]. We suspect this is primarily due to the complex imputation
exercise of our planned missing data context, which is characterized by a lim-
ited number of cases and many relevant but predominantly weakly correlated
variables. However, as CART has also been previously reported to be chal-
lenged specifically by predicting linear relationships [21], future research could
examine whether CART plays more to its strengths with non-continuous rela-
tionships. Furthermore, future research might investigate whether other, more
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sophisticated decision tree techniques (such as random forests) could provide an
improvement over CART that is sufficient to impute large amounts of planned
missing survey data from SQDs.

Joint modeling via Amelia showed moderate biases when we correctly spec-
ified the measurement level as ordinal (JM-T), resulting in imputations trans-
formed into discrete categories. When we instead specified the level of measure-
ment as continuous (JM-U), we mostly got rid of these biases, similarly as with
FCS via LRM, for example. This is no coincidence, as “FCS using all linear
regressions is identical to imputation under the multivariate normal model” [58,
p. 130]. However, this means that both also share many disadvantages, especially
as, in contrast to JM-T, they lead to implausible imputations not matching the
discrete distributions and bounds of categorical variables.

For the imputation methods we analyzed, removing weak predictors leads
to more accurate estimates. However, this also involves a strong theoretical as-
sumption: Either the true relationship of imputed variable and predictor must
be zero or both variables must eventually not be analyzed together. In contrast,
an analysis-specific imputation could explicitly select predictors by whether they
will be used in an analysis model. Thus, an analysis-specific imputation could
be expected to yield a better estimation accuracy if neither part of the afore-
mentioned assumption holds.

PLS-PMM with a dimensionality reduction of the predictor space could show
a way out of this dilemma. This method allows to include all variables in the im-
putation with a performance comparable to solutions with restricted predictor
sets. Furthermore, PMM is in general more robust against violations of the nor-
mality assumption than LRM (e.g., [30]) and maintains the discrete scale of the
variables. In principle, with PLS-PMM we could also include non-linear terms
and interaction effects as predictors if they are highly correlated with the im-
puted variable, enabling data users to explore phenomena beyond linear effects
with their analysis models. Finally, PMM automatically generates plausible im-
putations, preserving categorical variables. For a general-purpose imputation,
this is a significant advantage over methods such as JM-U and LRM, which per-
formed comparably well but produce implausible continuous imputations and
thus might not be considered optimal to impute data from a SQD for general
usage. Thus, PLS-PMM appears as the currently most promising approach for
a general-purpose imputation of data from an SQD, being able to yield both
plausible values and produce only little bias in bivariate relationships in the
data.

Future research should explore how the current implementation of PLS-PMM
can be refined to produce valid general-purpose imputations of SQD data. For
example, one challenge is to find more theoretically or empirically justified meth-
ods to set the number of PLS components used for imputation.

Moreover, in this study we focused on biases of Spearman correlations be-
cause they have previously been found to be particularly adversely affected
when imputing data from an SQD [5], constituting a good target to measure
the performance of imputation strategies. However, further tests could focus
more on precision and coverage, as well as additional targets, such as regression
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coefficients.
Another aspect is how nonresponse by respondents interacts with the impu-

tation of SQD data, which we explicitly did not study here. This may be relevant
not only as nonresponse by respondents will increase the proportion of missing
values, but also because the resulting missing data might not be MCAR.

Future research should also test whether our findings hold under different
data contexts and parameter settings. On the one hand, data with a higher
number of strong correlations or considerably larger sample sizes could hypo-
thetically yield better results. On the other hand, challenges could grow with
surveys having more items (increasing the number of potential predictors) or
primarily relying on nominal response scales (reducing the options regarding
adequate imputation methods). Continuing to focus particularly on the practi-
cal issues of imputing planned missing survey data from SQDs will be crucial
to ensure the future usability and validity of data and the research stemming
from these designs.

Appendix. Quantile distributions for the information displayed in
Figures 1 and 2.

Table A1

Quantile distribution of average percentage Monte Carlo biases of Spearman correlations for
85 item pairs with moderate or strong relationships (true correlations stronger than |0.2|),

by imputation method and predictor set specification.

Method Predictor set Min. 5% 25% 50% 75% 95% Max.
Random None −65.5 −65.1 −64.8 −64.6 −64.4 −63.9 −63.5
LRM unrestricted −20.3 −14.0 −6.8 −4.5 −2.6 3.9 15.8
LRM |ρ| > 0.10 −17.8 −10.1 −4.0 −1.5 0.6 7.4 20.7
LRM |ρ| > 0.20 −25.5 −10.1 −4.2 −1.4 0.7 6.5 8.2
CRM unrestricted −81.2 −68.4 −50.7 −37.1 −21.9 −16.1 −11.9
CRM |ρ| > 0.10 −61.0 −50.3 −32.5 −14.3 −5.6 −1.8 0.2
CRM |ρ| > 0.20 −60.1 −50.3 −31.6 −14.5 −2.7 0.5 3.7
PMM unrestricted −31.7 −19.1 −13.5 −11.6 −10.5 −8.2 −6.6
PMM |ρ| > 0.10 −17.6 −9.6 −6.8 −5.0 −3.4 −1.7 3.0
PMM |ρ| > 0.20 −18.5 −12.0 −5.4 −3.2 −2.0 −0.7 2.0
PLS-PMM data-driven −20.1 −13.7 −4.5 −1.0 1.4 9.8 34.4
CART unrestricted −47.2 −40.9 −31.7 −27.0 −16.8 −3.9 0.1
CART |ρ| > 0.10 −42.4 −33.4 −27.2 −21.4 −12.3 −1.6 0.3
CART |ρ| > 0.20 −63.3 −34.5 −23.2 −19.1 −10.5 −1.1 0.4
JM-T unrestricted −35.5 −28.5 −16.9 −13.2 −11.2 −8.8 −5.5
JM-U unrestricted −17.0 −9.1 −3.4 −0.3 1.7 8.7 21.8

See Note Figure 1.
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Table A2

Quantile distribution of average percentage Monte Carlo biases of Spearman correlations for
388 item pairs with weak relationships (true correlations weaker than |0.2| but stronger than

|0.05|), by imputation method.

Min. 5% 25% 50% 75% 95% Max.
Random −67.0 −65.4 −64.9 −64.5 −64.1 −63.6 −62.7
LRM −45.9 −24.6 −11.9 −5.9 −1.0 7.7 72.2
CRM −119.8 −89.7 −60.3 −41.2 −27.1 −14.3 −1.0
PMM −63.2 −29.9 −20.2 −15.6 −12.0 −5.6 16.8
PLS-PMM −44.8 −27.7 −14.6 −4.2 2.9 31.1 106.6
CART −79.9 −55.5 −45.1 −37.4 −29.3 −16.2 59.0
JM-T −54.8 −40.6 −28.9 −21.4 −15.9 −8.5 24.4
JM-U −44.2 −21.4 −7.9 −1.3 3.3 13.3 77.2

See Note Figure 1.
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Supplementary Material

Code and Data Availability
(doi: 10.1214/22-SS137SUPP; .zip). All computer code used for this paper and a
documentation are available as supplementary material for replication purposes
[4]. The data can be accessed via the GESIS Leibniz Institute for the Social
Sciences:
https://doi.org/10.4232/1.12607 (wave 1),
https://doi.org/10.4232/1.12619 (wave 13),
https://doi.org/10.4232/1.13390 (wave 37),
https://doi.org/10.4232/1.13391 (wave 38).

References

[1] Adigüzel, F. and Wedel, M. (2008). Split questionnaire design for mas-
sive surveys. Journal of Marketing Research 45 608–617.

[2] Allison, P. D. (2005). Imputation of Categorical Variables with PROC
MI. In Proceedings of the SAS Users Group International (SUGI) 30 113–
30. SAS Institute, Cary.

[3] Akande, O, Li, F. and Reiter, J. (2017). An Empirical Comparison of
Multiple Imputation Methods for Categorical Data. The American Statis-
tician 71 162–170. MR3668704

[4] Axenfeld, J. B., Bruch, C. and Wolf, C. (2022). Code and Data Avail-
ability. Supplement to “General-purpose imputation of planned missing
data in social surveys: Different strategies and their effect on correlations.”

[5] Axenfeld, J. B., Blom, A.G., Bruch, C. and Wolf, C. (2022).
Split Questionnaire Designs for Online Surveys: The Impact of Module
Construction on Imputation Quality. Journal of Survey Statistics and
Methodology. https://doi.org/10.1093/jssam/smab055

https://doi.org/10.1214/22-SS137SUPP
https://doi.org/10.4232/1.12607
https://doi.org/10.4232/1.12619
https://doi.org/10.4232/1.13390
https://doi.org/10.4232/1.13391
https://www.ams.org/mathscinet-getitem?mr=3668704
https://doi.org/10.1093/jssam/smab055


Axenfeld et al./General-purpose imputation of planned missing social survey data 205

[6] Bahrami, S., Aßmann, C., Meinfelder, F. and Rässler, S. (2014). A
split questionnaire survey design for data with block structure correlation
matrix. In Improving Survey Methods: Lessons from Recent Research, (U.

Engel, B. Jann, P. Lynn, A. Scherpenzeel and P. Sturgis, eds.)
368–380. Routledge, New York.

[7] Bartlett, J. W., Seaman, S. R., White, I. R. and Carpenter, J. R.

(2015). Multiple imputation of covariates by fully conditional specification:
Accommodating the substantive model. Statistical Methods in Medical
Research 24 462–487. MR3372102

[8] Bellman, R. E. (1961). Adaptive control processes: a guided tour.
Princeton University Press, Princeton. MR0134403

[9] Blom, A. G., Bossert, D., Funke, F., Gebhard, F., Holthausen,

A. and Krieger, U.; SFB 884 “Political Economy of Reforms”

Universität Mannheim (2016). German Internet Panel, Wave 1 - Core
Study (September 2012). GESIS Data Archive, Cologne. ZA5866 Data file
Version 2.0.0. https://doi.org/10.4232/1.12607.

[10] Blom, A. G., Bossert, D., Gebhard, F., Funke, F., Holthausen,

A. and Krieger, U.; SFB 884 “Political Economy of Reforms”

Universität Mannheim (2016). German Internet Panel, Wave 13 - Core
Study (September 2014). GESIS Data Archive, Cologne. ZA5924 Data file
Version 2.0.0. https://doi.org/10.4232/1.12619.

[11] Blom, A. G., Fikel, M., Friedel, S., Höhne, J. K., Krieger,

U., Rettig, T. and Wenz, A.; SFB 884 “Political Economy of

Reforms”, Universität Mannheim (2019). German Internet Panel,
Wave 37 - Core Study (September 2018). GESIS Data Archive, Cologne.
ZA6957 Data file Version 1.0.0. https://doi.org/10.4232/1.13390.

[12] Blom, A. G., Fikel, M., Friedel, S., Höhne, J. K., Krieger,

U., Rettig, R. and Wenz, A.; SFB 884 “Political Economy of

Reforms”, Universität Mannheim (2019). German Internet Panel,
Wave 38 (November 2018). GESIS Data Archive, Cologne. ZA6958 Data
file Version 1.0.0. https://doi.org/10.4232/1.13391.

[13] Blom, A. G., Gathmann, C. and Krieger, U. (2015). Setting up
an online panel representative of the general population: The German
Internet Panel. Field Methods 27 391–408.

[14] Blom, A. G., Herzing, J. M. E., Cornesse, C., Sakshaug, J. W.,
Krieger, U. and Bossert, D. (2017). Does the recruitment of offline
households increase the sample representativeness of probability-based
online panels? Evidence from the German Internet Panel. Social Science
Computer Review 35 498–520.

[15] Bodner, T. E. (2008). What improves with increased missing data
imputations? Structural Equation Modeling: A Multidisciplinary Journal
15 651–675. MR2530371

[16] Brand, J. P. L. (1999). Development, implementation and evaluation
of multiple imputation strategies for the statistical analysis of incomplete
data sets. Erasmus University Rotterdam, Rotterdam.

[17] Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J.

https://www.ams.org/mathscinet-getitem?mr=3372102
https://www.ams.org/mathscinet-getitem?mr=0134403
https://doi.org/10.4232/1.12607
https://doi.org/10.4232/1.12619
https://doi.org/10.4232/1.13390
https://doi.org/10.4232/1.13391
https://www.ams.org/mathscinet-getitem?mr=2530371


Axenfeld et al./General-purpose imputation of planned missing social survey data 206

(1984). Classification and regression trees. Wadsworth & Brooks/Cole
Advanced Books & Software, Monterey. MR0726392

[18] Burgette, L. F. and Reiter, J. P. (2010). Multiple Imputation for
Missing Data via Sequential Regression Trees. American Journal of
Epidemiology, 172 1070–1076.

[19] Cornesse, C., Felderer, B., Fikel, M., Krieger, U. and
Blom, A. G. (2021). Recruiting a probability-based online panel
via postal mail: experimental evidence. Social Science Computer Review.
doi:10.1177/08944393211006059

[20] De Jong, S. (1993). SIMPLS: An alternative approach to partial least
squares regression. Chemometrics and Intelligent Laboratory Systems 18
251–263.

[21] Doove, L. L., van Buuren, S. and Dusseldorp, E. (2014). Recursive
partitioning for missing data imputation in the presence of interaction
effects. Computational Statistics & Data Analysis 72 92–104. MR3139350

[22] Galesic, M. and Bosnjak, M (2009). Effects of questionnaire length on
participation and indicators of response quality in a web survey. Public
Opinion Quarterly 73 349–360.

[23] Graham, J. W., Hofer, S. M. and MacKinnon, D. P. (1996).
Maximizing the usefulness of data obtained with planned missing value
patterns: An application of maximum likelihood procedures. Multivariate
Behavioral Research 31 197–218.

[24] Graham, J. W., Olchowski, A. E. and Gilreath, T. D. (2007).
How many imputations are really needed? Some practical clarifications of
multiple imputation theory. Prevention Science, 8 206–213.

[25] Honaker, J. and King, G. (2010). What to do about missing values in
time-series cross-section data. American Journal of Political Science, 54
561–581.

[26] Honaker, J., King, G. and Blackwell, M. (2011). Amelia II: A
Program for Missing Data. Journal of Statistical Software 45 1–47.

[27] Horton, N. J., Lipsitz, S. R. and Parzen, M. (2003). A potential for
bias when rounding in multiple imputation. The American Statistician 57
229–232. MR2016255

[28] Imbriano, P. M. and Raghunathan, T. E. (2020). Three-Form Split
Questionnaire Design for Panel Surveys. Journal of Official Statistics 36
827–854.

[29] Kleinke, K. (2018). Multiple imputation by predictive mean matching
when sample size is small. Methodology 14 3–15.

[30] Koller-Meinfelder, F. (2009). Analysis of incomplete survey data-
multiple imputation via Bayesian bootstrap predictive mean matching.
University of Bamberg, Bamberg.

[31] Lee, K. J. and Carlin, J. B. (2010). Multiple imputation in the presence
of non-normal data. Statistics in Medicine 171 624–632. MR3594613

[32] Little, R. J. A. (1988). Missing-Data Adjustments in Large Surveys.
Journal of Business & Economic Statistics 6 287–296.

[33] Long, J. S. (1997). Regression models for categorical and limited

https://www.ams.org/mathscinet-getitem?mr=0726392
https://www.ams.org/mathscinet-getitem?mr=3139350
https://www.ams.org/mathscinet-getitem?mr=2016255
https://www.ams.org/mathscinet-getitem?mr=3594613


Axenfeld et al./General-purpose imputation of planned missing social survey data 207

dependent variables. Sage, Thousand Oaks.
[34] Luijkx, R., Jónsdóttir, G. A., Gummer, T., Ernst Stähli, M.,

Fredriksen, M., Reeskens, T., Ketola, K., Brislinger, E., Christ-

mann, P., Gunnarsson, S. Þ., Bragi, Á., Hjaltason, D. J., Lomazzi,

V., Maineri, A. M., Milbert, P., Ochsner, M., Pollien, A., Sapin,

M., Solanes, I., Verhoeven, S. and Wolf, C. (2021). The European
Values Study 2017: On the way to the future using mixed-modes. European
Sociological Review 37 330–346.

[35] Mevik, B.-H. and Wehrens, R. (2007). The pls Package: Principal
Component and Partial Least Squares Regression in R. Journal of
Statistical Software 18(2) 1–24.

[36] Microsoft and Weston, S. (2020). foreach: Provides Foreach Looping
Construct. R package version 1.5.0.

[37] Morris, T. P., White, I. R. and Royston, P. (2014). Tuning multiple
imputation by predictive mean matching and local residual draws. BMC
Medical Research Methodology 14 1–13.

[38] Munger, G. F. and Loyd, B. H. (1988). The use of multiple matrix
sampling for survey research. The Journal of Experimental Education 56
187–191.

[39] Nicoletti, C. and Peracchi, F. (2006). The effects of income imputa-
tion on microanalyses: evidence from the European Community Household
Panel. Journal of the Royal Statistical Society: Series A (Statistics in
Society) 169 625–646. MR2236924

[40] OECD (2014). PISA 2012 Technical Report. OECD, Paris.
[41] Peytchev, A. and Peytcheva, E. (2017). Reduction of measurement

error due to survey length: Evaluation of the split questionnaire design
approach. Survey Research Methods 11 361–368.

[42] R Core Team (2021). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

[43] Raghunathan, T. E. and Grizzle, J. E. (1995). A split questionnaire
survey design. Journal of the American Statistical Association 90 54–63.

[44] Rässler, S., Koller, F. and Mäenpää, C. (2002). A split ques-
tionnaire survey design applied to German media and consumer sur-
veys. In Friedrich-Alexander University Erlangen-Nuremberg, Chair of
Statistics and Econometrics Discussion Papers [online], available at
https://www.statistik.rw.fau.de/files/2016/03/d0042b.pdf.

[45] Robitzsch, A. and Grund, S. (2021). miceadds: Some Additional Multi-
ple Imputation Functions, Especially for ‘mice’. R package version 3.11-6.

[46] Rubin, D. B. (1986). Statistical Matching Using File Concatenation
with Adjusted Weights and Multiple Imputations. Journal of Business &
Economic Statistics 4 87–94.

[47] Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys.
John Wiley & Sons, New York. MR0899519

[48] Schafer, J. L. and Olsen, M. K. (1998). Multiple imputation for mul-
tivariate missing-data problems: A data analyst’s perspective. Multivariate
Behavioral Research 33 545–571.

https://www.ams.org/mathscinet-getitem?mr=2236924
https://www.statistik.rw.fau.de/files/2016/03/d0042b.pdf
https://www.ams.org/mathscinet-getitem?mr=0899519


Axenfeld et al./General-purpose imputation of planned missing social survey data 208

[49] Schafer, J. L. (1999). NORM users guide (version 2). The Methodology
Center, The Pennsylvania State University, University Park.

[50] Seaman, S. R., Bartlett, J. W. and White, I. R. (2012). Multiple
imputation of missing covariates with non-linear effects and interactions:
an evaluation of statistical methods. BMC Medical Research Methodology
12 1–13.

[51] Slade, E. and Naylor, M. G. (2020). A fair comparison of tree-based
and parametric methods in multiple imputation by chained equations.
Statistics in Medicine 39 1156–1166. MR4075852

[52] Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O. and
Hemingway, H. (2014). Comparison of random forest and parametric
imputation models for imputing missing data using MICE: a CALIBER
study. American Journal of Epidemiology 179 764–774.

[53] Shoemaker, D. M. (1973). Principles and Procedures of Multiple Matrix
Sampling. Ballinger, Cambridge, MA.

[54] Siddique, J. and Belin, T. R. (2008). Multiple imputation using
an iterative hot-deck with distance-based donor selection. Statistics in
Medicine 27 83–102. MR2416864

[55] Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T.,
Arachchige, C., Arppe, A., Baddeley, A., Barton, K., Bolker,

B., Borchers, H. W., Caeiro, F., Champely, S., Chessel, D.,
Chhay, L., Cooper, N., Cummins, C., Dewey, M., Doran, H. C.,
Dray, S., Dupont, C., Eddelbuettel, D., Ekstrom, C., Elff, M.,
Enos, J., Farebrother, R. W., Fox, J., Francois, R., Friendly,

M., Galili, T., Gamer, M., Gastwirth, J. L., Gegzna, V., Gel,

Y. R., Graber, S., Gross, J., Grothendieck, G., Harrell Jr, F.

E., Heiberger, R., Hoehle, M., Hoffmann, C. W., Hojsgaard, S.,
Hothorn, T., Huerzeler, M., Hui, W. W., Hurd, P., Hyndman,

R. J., Jackson, C., Kohl, M., Korpela, M., Kuhn, M., Labes,

D., Leisch, F., Lemon, J., Li, D., Maechler, M., Magnusson,

A., Mainwaring, B., Malter, D., Marsaglia, G., Marsaglia, J.,
Matei, A., Meyer, D., Miao, W., Millo, G., Min, Y., Mitchell,

D., Mueller, F., Naepflin, M., Navarro, D., Nilsson, H., Nord-

hausen, K., Ogle, D., Ooi, H., Parsons, N., Pavoine, S., Plate, T.,
Prendergast, L., Rapold, R., Revelle, W., Rinker, T., Ripley,

B. D., Rodriguez, C., Russell, N., Sabbe, N., Scherer, R., Seshan,

V. E., Smithson, M., Snow, G., Soetaert, K., Stahel, W. A.,
Stephenson, A., Stevenson, M, Stubner, R., Templ, M., Temple

Lang, D., Therneau, T., Tille, Y., Torgo, L., Trapletti, A.,
Ulrich, J., Ushey, K., VanDerWal, J., Venables, B., Verzani, J.,
Villacorta Iglesias, P. J., Warnes, G. R., Wellek, S., Wickham,

H., Wilcox, R. R., Wolf, P., Wollschlaeger, D., Wood, J., Wu,

Y., Yee, T. and Zeileis, A. (2020). DescTools: Tools for descriptive
statistics. R package version 0.99.36.

[56] Thomas, N., Raghunathan, T. E., Schenker, N., Katzoff, M. J.

and Johnson, C. L. (2006). An evaluation of matrix sampling methods

https://www.ams.org/mathscinet-getitem?mr=4075852
https://www.ams.org/mathscinet-getitem?mr=2416864


Axenfeld et al./General-purpose imputation of planned missing social survey data 209

using data from the National Health and Nutrition Examination Survey.
Survey Methodology 32 217–231.

[57] Van Belle, G. (2002). Statistical Rules of Thumb. John Wiley & Sons,
New York. MR1886359

[58] Van Buuren, S. (2018). Flexible Imputation of Missing Data. CRC press,
Boca Raton, 2nd Edition.

[59] Van Buuren, S., Boshuizen, H. C. and Knook, D. L. (1999). Multiple
imputation of missing blood pressure covariates in survival analysis.
Statistics in Medicine 18 681–694.

[60] Van Buuren, S., Brand, J. P., Groothuis-Oudshoorn, C. G. and
Rubin, D. B. (2006). Fully conditional specification in multivariate impu-
tation. Journal of Statistical Computation and Simulation 76 1049–1064.
MR2307507

[61] Van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Mul-
tivariate imputation by chained equations in R. Journal of Statistical
Software 45(3) 1–67.

[62] Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics
with S. Springer, New York. MR1337030

[63] Von Hippel, P. T. (2009). How to impute interactions, squares, and
other transformed variables. Sociological Methodology 39 265–291.

[64] Von Hippel, P. T. (2013). Should a normal imputation model be
modified to impute skewed variables? Sociological Methods & Research 42
105–138. MR3190726

[65] Von Hippel, P. T. (2020). How many imputations do you need? A
two-stage calculation using a quadratic rule. Sociological Methods &
Research 49 699–718. MR4123147

[66] Weston, S. (2017). doMPI: foreach parallel adaptor for the Rmpi package.
R package version 0.2.2.

[67] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.
Springer, New York.

[68] Wickham, H. and Henry, L. (2019). tidyr: Easily Tidy Data with
‘spread()’ and ‘gather()’ Functions. R package version 0.8.3.

[69] Wickham, H. and Miller, E. (2019). haven: Import and Export ‘SPSS’,
‘Stata’ and ‘SAS’ Files. R package version 2.1.1.

[70] White, I. R., Royston, P. and Wood, A. M. (2011). Multiple impu-
tation using chained equations: issues and guidance for practice. Statistics
in Medicine 30 377–399. MR2758870

[71] Wu, H. and Leung, S.O. (2017). Can Likert scales be treated as
interval scales?—A simulation study. Journal of Social Service Research
43 527–532.

[72] Wu, W., Jia, F. and Enders, C. (2015). A comparison of imputation
strategies for ordinal missing data on Likert scale variables. Multivariate
Behavioral Research 50 484–503.

[73] Yu, H. (2002). Rmpi: Parallel statistical computing in R. R News 2(2)
10–14.

https://www.ams.org/mathscinet-getitem?mr=1886359
https://www.ams.org/mathscinet-getitem?mr=2307507
https://www.ams.org/mathscinet-getitem?mr=1337030
https://www.ams.org/mathscinet-getitem?mr=3190726
https://www.ams.org/mathscinet-getitem?mr=4123147
https://www.ams.org/mathscinet-getitem?mr=2758870

	Introduction
	Imputation of planned missing survey data
	Planned missing data
	Imputation
	Predictors included in imputation models
	Imputation methods
	Linear regression models (LRM)
	Categorical regression models (CRMs)
	Predictive mean matching (PMM)
	Partial least squares PMM (PLS-PMM)
	Classification and regression trees (CART)

	Imputing multivariate missing data

	Data and methods
	Data
	Simulation of planned missing data
	Imputation strategies
	Measures

	Results
	Item pairs with moderate or strong relationships
	Item pairs with weak or null relationships

	Discussion
	Appendix. Quantile distributions for the information displayed in Figures 1 and 2.
	Acknowledgments
	Supplementary Material
	References

