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Abstract: The generation of random sequences is the basis of simulation
and can be used in many different areas such as Statistics, Computer Sci-
ence, Systems Management and Control, Biology, Particle Physics, Cryp-
tography or Cyber-Security, among others. It is crucial that the numbers
generated were random or at least, behave as such. The fundamental sta-
tistical properties required for such sequences are randomness and indepen-
dence and, from a cryptographic perspective, unpredictability. There is a
variety of methods to generate these sequences. The main ones are physical
and arithmetic methods. In this work, a detailed study of the main arith-
metic methods is carried out. On the other hand, the necessity of secure
sequence generation will be analyzed and new lines of ongoing research fo-
cusing applications in Internet of Things and new generator designs will be
described.
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1. Introduction

Random numbers are the essential basis of the simulation. In general terms,
the randomness involved in a model is obtained through sequences of numbers
that pretend to be random (we will go into this aspect in more detail later)
and come from a Uniform distribution in the interval (0,1) (U(0, 1)) and are
obtained through various generators. These random numbers are then conve-
niently transformed to simulate the different probability distributions required
in the model.

In the early days of statistical simulation studies, random number tables were
used to carry out the analysis. Later this methodology changed with the rise of
computers and more efficient ways of obtaining sequences were established. Not
only in statistics and applications such as re-sampling or stochastic processes
is simulation very useful (mainly due to the complexity of the problem or the
impossibility of its treatment by analytical methods), but in other disciplines
simulation studies are of vital importance, for example in the study of phys-
ical and biological processes and in the area of cryptography and lightweight
cryptography, among others. Is in cryptography that the generated sequences
become critically important, for example they are used in key distribution sce-
narios such as Kerberos [140], temporary key generation, secure key generation
public key generation [171], encryption, etc. Depending on the field of appli-
cation, the desired conditions for the sequences of numbers to be used will be
different.

A fairly general definition of the term simulation is as follows: reproduction
of a real problem in an environment (computer or other device) controlled by
the experimenter.

Simulation will be appropriate:

• When you want to analyze complex models, so present today in which
there is a great amount of information.

• The observation of irreversible alterations in an environment which can
prevent, for example, irreversible damage caused by direct intervention in
certain ecosystems.

• To guide the investigation of a phenomenon or even theoretical results by
evaluating the feasibility or ineffectiveness of certain alternatives.

• To verify the importance of some variables over others in a given context.
• When it is wanted to prevent possible adverse effects before implementing

a certain policy.
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• When the direct experimentation in situ is costly or impossible.
• To validate certain analytical solutions and the applied methods.
• When there is no analytical procedure to address a problem or when even

if there is one, it is costly to implement.

On the other hand, the simulation will not be suitable when:

• The problem has a clear and simple analytical solution, i.e. there is an
analytical procedure for resolution and it can be addressed efficiently.

• The costs of the simulation exceed the possible savings that its implemen-
tation could imply.

As we mentioned beforehand, the numbers generated are intended to be ran-
dom. In this respect, we can find in the literature a widespread classification
of the different types of random numbers (see for example [175] or [194]): the
so-called “true” random numbers, pseudo-random numbers and quasi-random
numbers. True random numbers are sequences generated from phenomena with
intrinsic randomness. They do not need any initial seed to be obtained and are
expected to show no patterns or correlations between values. Their main draw-
back is that they are very costly to generate and, in many cases, time and/or
hardware resources are limited. Therefore, from a certain amount of random
information, it is sought to extend this information and generate very long se-
quences of “random” numbers in some alternative way. This is how the so-called
pseudo-random numbers arise. These are generated from devices or algorithms
that, given an input called seed, generate long sequences of random-looking num-
bers. Because of the way they are generated they can be reproducible. There is
also a third category, quasi-random numbers. They are not designed to appear
random, but to be uniformly distributed. One of the objectives of these numbers
is to reduce and control errors in Monte Carlo simulations (for more details see
[168]). In this case, statistical problems arise for the verification of the goodness
of fit of the sequences obtained by hypothesis testing as the dimension increases
[119]. In Table 1 principal characteristics of these types are described.

There are two main types of generators (classification based on their proper-
ties, architecture and type of implementation) that usually appear in the liter-
ature (see for example [183]):

• Physical generators (true random number generators, TRNGs): these are
physical devices that use external sources to generate random numbers
(hardware or natural phenomena). The most commonly used are based on
electrical circuits equipped with a noise source (often a resistor or a semi-
conductor diode) that is amplified, sampled and compared with a reference
signal to produce bit streams. These random bits are joined together to
form bytes, integers or real numbers as required. One observation about
the source is that it must be chosen carefully to ensure effective random-
ness (e.g., do not use a pulse source that has some kind of periodic pat-
tern). All of them have the fundamental characteristic that they produce
unrepeatable sequences. The advantages and disadvantages of TRNG can
be seen in Table 2. The output sequences of TRNGs can be used directly
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Table 1

Types of random numbers.

• based on physical sources
True random • do not need an initial sequence (seed)

numbers • they are expected to have no periodic pattern
or correlation between the obtained data
• they are generated in a deterministic way,
that is, they are constructed through

Pseudo-random generation algorithms and an initial seed
numbers • they have the appearance of being values

that come from independent realizations
of a U(0, 1) random variable (r.v.)
• the way they are generated makes them reproducible
• are obtained through specific algorithms
• the obtained sequences are distributed uniformly

Quasi-random in the square or in the unit cube
numbers • its main disadvantage is that as the dimension increases

there are no specific hypothesis tests to assess the goodness
of the obtained sequences [119].

Table 2

Pros and cons of the use of a TRNG.

Once a sequence has been generated, it can never be recreated by anyone else, even if they have the same
Pros device that first created it.

This feature is very convenient, for example, to protect the secrecy of communications.
Once the sequence has been generated it is stored and distributed only to two correspondents, who can use
it to communicate secretly using stream ciphering.

The difficulty of distributing the encryption key to the two correspondents using a secure channel.
Cons The necessity to have a physical element that is more or less bulky, expensive and difficult to produce.

It is very difficult to design a device or a program that produces a bit-stream free of biases and correlations.
In statistical simulation: non-reproducibility.

as random sequences or can be used as input to a pseudo-random number
generator.

• Arithmetic generators (pseudo-random number generators, PRNGs): these
are deterministic algorithms that are executed in computers. There are two
main sub-types, linear and non-linear. The generated sequences present
period (the length depends on the type of generator and on the selection
of the parameters involved in the equation or equations of the generator)
In this work we will focus in such generators.

Table 3 shows the principal differences between TRNGs and PRNGs.
The generation of (or pseudo-random) numbers also makes it possible to

generate values of other random variables by means of certain transformations.
In fact, if U is a U(0, 1) random variable and F (x) is a distribution function,
then X = F−1(U) is a random variable with distribution function F (x), being

F−1(u) = inf {x : F (x) ≥ u} (1)

Indeed, if we denote by FX(x) to the distribution function of X, then by the
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Table 3

Principal differences between TRNGs and PRNGs.

Characteristic TRNG PRNG
Way of generation External source of entropy Mathematic algorithm
Efficiency X

√

Deterministic X
√

Periodicity X
√

Reproducibility X
√

definition of distribution function: FX(x) = P (X ≤ x), now as X = F−1(U) we
have FX(x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) and as U is a uniform random
variable in the interval (0, 1) and F (x) ∈ (0, 1) we obtain that FX(x) = F (x)
as we wanted to prove. So if we can simulate a U(0, 1) random variable it is
possible (at least from a theoretic point of view) to simulate any other random
variable.

It is also possible to obtain sequences of identically and independently dis-
tributed (i.i.d.) random variables by using sequences of i.i.d. random bits, see
for example Chapter XV of [40]. So then as before, the problem of obtaining
random sequences of numbers can be reduced to the obtainment of random bits
sequences.

The importance and necessity of working with the concept of randomness,
random and pseudo-random numbers is evident in many areas of knowledge and
has been for a long time. From a theoretical/conceptual point of view regarding
random and pseudo-random numbers, we could highlight different investiga-
tions. For example, the works of [31], [93], [96], [128] and [65] on the concept
of randomness, random sequences and their construction are noteworthy. Pa-
pers [77] and [195] on the generation of equidistributed or uniform numbers or
papers [79] and [129] on the generation of random numbers and algorithms are
also worth mentioning. Finally, as a sample, we could point out the works on
the generation of pseudo-random numbers, their concept and analysis [84], [37],
[198], [139], [177], [158], [43] and [16] among others.

There is also a wide variety of works showing tables of random numbers,
which we will discuss in the next section, for example: [196], [56], [95], [162],
[78], [189], [32], [173], [174], [169], [151], [138], [170] or [167].

There are also a wide variety of papers that analyze tables or show extraction
methods, for example: [28], [24], [25], [26], [27] or [154] among others.

It is also possible to find a large number of papers related to a certain method
of generating random and pseudo-random sequences, which will be discussed in
the following sections of this paper with special attention to secure random
numbers. Finally, it is possible to find in the literature numerous works related
to statistical hypothesis tests applicable to check the properties of the sequences
obtained with different procedures, in this sense a work that describes the ex-
isting statistical batteries as well as the definitions of the tests involved and the
software that can be used to perform the verifications is [4].

The principal types of studies in randomness context are:
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• Theoretical/conceptual perspective about random and pseudo-random
numbers.

• Tables of random numbers, its analysis and extraction methods.
• Methods of generation of random and pseudo-random sequences.
• Methods for testing random numbers.
• Applications of random numbers and security

The aim of this work is to:

• Clarify the concept of randomness and the need to work with random se-
quences in different contexts. It will clearly distinguish what requirements
are placed on the sequences generated depending on the context in which
they are used, whether from a purely statistical point of view with appli-
cations in simulation and computation or from a cryptographic point of
view.

• Describe in detail the most important models of PRNGs emphasizing their
properties and pointing out the context in which they are the most suitable
for use.

• Point out the strengths and weaknesses of the generators described to
describe new designs and current lines of research.

This paper is organized as follows: Section 2 gives a historical development
of random and pseudo-random number generation emphasizing the fact that
arithmetic generators will be analyzed, Section 3 explains the different types of
pseudo-random number generators (classical generation methods not currently
used, linear and non-linear congruential methods) together with their funda-
mental properties. Section 4 describes the new designs of PRNGs and new lines
of investigation and finally Section 5 gives the main results of this research.

2. Historical development

When working with a simulation, cryptography or system security problem
(among others) it is necessary to include a source of randomness. During the
first half of the 20th century, various physical procedures were used such as
coin tosses, dice, experiments with cards, urns or mechanical procedures such
as spinners to extract numbers (or, in general, samples) randomly or electrical
circuits based on vacuum tubes with random pulses. During the second half of
the 20th century a large number of works appeared proposing physical gener-
ators of random numbers. In some cases the random numbers were published
in table form. One of the first papers in this line can be found in [196]. Tippet
proposed a table of non-uniform random numbers, consisting of 41600 digits ar-
ranged in 10400 four digited numbers. The table proposed by Tippet has been
analyzed in different works such as [211], [42], [64] and more recently in [179].
Other well-known tables in the literature are for example those proposed by
Fisher and Yates in 1938 [56], analyzed in [178] or in [180] among others. In
Table 4 a fragment of Table XXXIII of Random Numbers from [57] (page 134)
is shown.
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Table 4

Fragment of a table of Random Numbers

03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 95
97 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 73
16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 10
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30

Fig 1. Random digit generation using the RAND corporation method.

The table proposed by Kendall and Babington Smith in 1938 [94] analyzed
in [181] among others, or the table of one million random numbers of the Rand
Corporation built in 1955 [32] and analyzed for example in [182]. One of the
advantages of Rand Corporation’s table compared to those existing up to then
was precisely its large size. The digits in the table were obtained from an electri-
cal circuit whose operation was similar to that of a roulette wheel. The circuit
consisted of a random frequency pulse source providing an average of 100000
pulses per second. Once per second this train of randomly spaced pulses was
connected to a 5-bit counter. The counting was done during a constant time
interval of less than one second. Once the counter had reached its maximum
value (31), the next pulse would take the value 0, then 1 and so on. This cyclic
behavior is similar to that of a 32-number roulette wheel that spins repeatedly
through all the numbers until it stops at one of them. The time during which
the pulses were counted was calculated so that on average, the counter was
spinning approximately 3000 times. Once the pulse counting time interval was
over, the number stored in the counter (0 ≤ n ≤ 31) was converted to a decimal
base. When n > 20 it was discarded, if n ≤ 20, the least significant digit of the
number was the random digit. This digit was stored on a perforated card. The
circuits had to be adjusted several times until sequences with suitable statistical
properties were obtained. In Figure 1 it is shown the random digit generation
using the RAND corporation method.

Another physical generator of random numbers, in this particular case of
random (independent) bits, is due to Vincent in 1970 [199]. The method he
proposes consists of counting the number of randomly generated pulses during
a certain time interval. If the sum is even, the value 1 is selected and if it is
odd, the value 0 is selected. Pulses can be obtained in various ways such as
measurement through a radioactive source detector or through a circuit that
detects peaks above a certain preset threshold connected to the output of a
noise source.

Vincent’s generator machine satisfies that the number of pulses k, counted in
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a time interval s, is distributed according to a Poisson distribution with average
λs:

P [N(t+ s)−N(t) = k] =
eλs(λs)k

k!
(2)

The difference between the probability that the number of pulses is even, and
the probability that the number of pulses is odd, is equal to:

P [k even]− P [k odd] =

∞∑
k=0

(−1)k
eλs(λs)k

k!
= e−2λs (3)

Since e−2λs � 10−13 for a value of s as small as 15, the probability of getting
a 0 is practically the same as getting a 1, which makes Vincent’s method very
satisfactory.

Other noise sources that have been used for physical random number gener-
ators include a polarized Zener diode at the elbow of its characteristic curve,
decomposition of radioactive sources, using radio signals received when tuning
a radio receptor to a frequency at which it is not transmitting, etc.

The interest in building powerful physical random number generators that
produce appropriate sequences is still strong at present. In fact, the sequences
obtained with this type of generators are unpredictable and aperiodic. Given the
characteristics of the sequences obtained with this type of generator, its appli-
cation is of special interest in areas such as cryptography (data generation, key
encryption, etc.). However, the application of physical generators in simulation
studies has some disadvantages such as the necessity of high capacity memo-
ries or the slowness of the procedure. This is why other techniques have been
developed to help overcome these undesirable effects. In fact, since the mid-
dle of the 20th century, and in parallel with the development of tables, other
types of arithmetic (deterministic) generators were introduced, which have the
advantage of being sequential and faster procedures.

3. Pseudo-random numbers generators

The most suitable and reliable method of generating random numbers is to
use deterministic algorithms that have some solid mathematical basis. These
algorithms produce a sequence of numbers that resembles that of a sequence
of realizations of independent and identically distributed random variables ac-
cording to a U(0, 1) random variable, although it is not really so. That is why
such numbers are called pseudo-random and the algorithm that produces them
is called pseudo-random number generator.

A good pseudo-random number generator should have some important prop-
erties that are described in Table 5.

Most arithmetic generators are usually very fast and require little data stor-
age capacity. However, there are certain generators that do not satisfy the prop-
erties of uniformity and independence of the obtained sequences.
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Table 5

Properties of a good PRNG.

P1 The sequence of values it provides should resemble
a sequence of independent realizations of a U(0, 1) r.v.

P2 From the point of view of statistical simulation:
- the results must be reproducible.1

From the point of view of cryptographic applications:
- the sequences must be unpredictable.2

P3 The sequence of generated values should have
a non-repetitive cycle as long as possible.

P4 The generator
- must be fast and
- must occupy a small amount of internal memory.

P5 It is desirable that the generator be portable.

1 That is, starting with the same initial conditions, the same
sequence must be obtained. This would allow to debug possi-
ble failures of the model or to simulate different alternatives
of the model in the same conditions;

2 We are emphasizing the necessary security of the systems that
make use of the generated sequences. See for example [186],
[15] or [68]). In [19] and in [99] the problem of predicting the
output of a pseudo-random number generator is considered.

There are several hypothesis tests that can be used to verify the statistical
properties of randomness (autocorrelation test, test of streaks, etc.) and unifor-
mity (for example, the Chi-Square goodness-of-fit test or the Kolmogomorov-
Smirnov test). In the literature we can find different sets or groupings of these
tests that are called test batteries or test suites. Among the best known are
NIST SP 800-22 [176], Diehard [127], Dieharder [21], ENT [201], TestU01 [113],
among others. For a detailed analysis of the most popular ones see [4].

In the case of cryptographic applications, it is also necessary that the sequence
generators are able to escape from severe attacks, even if part of their initial or
current state is available to an attacker. We will discuss later what additional
conditions are required in this case when discussing Cryptographically Secure
Pseudo-random Number Generator.

There are several well-known books in which the topic of random and pseudo-
random numbers is treated, for example Chapter 3 of [97], Chapter 1 of [67],
Chapter 7 of [6], Chapter 3 of [109], Chapter 7 of [101] among others as well as
many papers that will be discussed in next sections.

Below we will describe the best known generators in the literature.
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3.1. The middle-square method

This is due to von Neumann. It was originally presented by the author in 1949
at a conference and published in 1951 [200]. It is fundamentally only of historical
interest since it is not currently used due to the weaknesses of the sequences
that are obtained. These have very short periods, if the procedure is repeated a
sufficient number of times the method will repeatedly generate the same number
or it will go to a number previously obtained in the sequence and it will be
repeated indefinitely or even degenerate to 0.

The algorithm consist of the following steps:

• take a positive integer x0 with 2n digits.
• it is squared to obtain a 4n-digit number (if it would be necessary, the

number should be completed with zeros on the left).
• remove the middle digits of the resulting number, let x1 be this number

(it will be considered the random number).
• use that number as the seed for the next iteration.

The pseudo-random numbers are obtained by dividing the sequence by 102n.
The disadvantage of this procedure is that the generated numbers can be

repeated cyclically after a short cycle and even degenerate to 0 very fast. Another
important drawback is that the sequence obtained is not “random” because it
can be predicted directly from the seed.

This type of generator has been discarded today and more sophisticated
systems are used.

Example 1 Let us consider n = 2 and x0 = 4122.

• x2
0 = 16990884.

• x1 = 9908, x2
1 = 98168464.

• x2 = 1648, x2
2 = 2835856.

• x3 = 8358, x2
3 = 69856164.

• x4 = 8561, x2
4 = 73290721.

• x5 = 2907...

We obtain the following sequence of pseudo-random numbers: u0 = 0.4122, u1 =
0.9908, u2 = 0.1684, u3 = 0.8358, u4 = 0.5861, u5 = 0.2907, ...

On the other hand, we have noted that this method can degenerate to 0 very
fast (see [35]). For example, if we take x0 = 1009 the obtained sequence is:
x1 = 180, x2 = 324, x3 = 1049, x4 = 1004, x5 = 80, x6 = 64, x7 = 40, x8 = 16,
x9 = 2, x10 = 0.

3.2. Lehmer’s method

This method consists of the following steps:

• An integer number x0 of n digits, is taken as a seed.
• Another integer, c, of k digits is taken. Usually k < n.
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• Calculate x0 · c, number of, at most, n+ k digits.
• The k digits on the left are separated from x0 ·c and the number formed by

the remaining n digits is subtracted from the one formed by the k digits
on the left, resulting in x1.

• This process is repeated as many times as necessary.

The sequence of pseudo-random numbers is obtained as follows: ui = xi/10
2n.

This method has some drawbacks, the most noteworthy are:

• Possible appearance of negative iterants.
• Also short cycles often occur (in particular, zero is an absorbing value of

this generator).

Due to these weaknesses, this type of generator is not used in practice and
other methods have been designed to avoid these problems.

Example 2 Let us consider x0 = 2136 and c = 53, in this case n = 4 and
k = 2.

• x0c = 113208, 3208− 11 = 3197 = x1.
• x1c = 169441, 9441− 16 = 9425 = x2.
• x2c = 499525, 9525− 49 = 9476 = x3.
• x3c = 502228, 2228− 50 = 2178 = x4, etc.

Example 3 Let us select the following values: x0 = 2000 and c = 50, then
x0c = 100000 so x1 = 0000 − 10 = −10 < 0, which is not possible. This is a
simple example in which a negative iterant appears.

3.3. Linear congruential methods

These methods are due to Lehmer (1951) [115]. The methods of generating
pseudo-random numbers called congruentials are based on the mathematical
concept of congruent numbers.

Two numbers a and b are said to be congruent modulo m if m divides a− b,
this is represented by a ≡ b mod m. Congruence is an equivalence relationship,
indeed:

• It satisfies the symmetric property: if a ≡ b mod m then b ≡ a mod m
• It satisfies the reflexive property: a ≡ a mod m, for all a and m �= 0.
• It satisfies the transitive property: if a ≡ b mod m and b ≡ c mod m

then a ≡ c mod m

Although these congruent generators have limited capacity to produce very
long number sequences that can pass as independent value sequences from a
U(0, 1) random variable, they are considered a basic element in other more
efficient generators.

In this type of generators the most popular are the linear congruential meth-
ods but also non-linear methods can be found in the literature. From the cryp-
tographic point of view linear congruency generators are easily predictable (see
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[166]), it can be possible to obtain the values of the parameters in polynomial
time given a sufficiently long string of generated numbers. Therefore, this type
of generator is not recommended for cryptographic applications [156]. However,
it can be used as an intermediate element in more complex generator designs,
which may allow its use in cryptography as we will see later.

Within this type of methods we can distinguish the multiplicative congruen-
tial methods and mixed congruential methods.

3.3.1. Multiplicative congruential method

This method starts with an initial positive value x0 called seed and two positive
integer values a (multiplier) and m (modulus) with 0 < a < m and x0 < m. The
following numbers of the sequence are then obtained by means of the expression:

xn+1 ≡ axn mod m,n ≥ 1 (4)

Each xn ∈ {0, 1, ...,m− 1} and un = xn/m is called pseudo-random number
that is taken as a value of a U(0, 1) random variable.

The expression (4) for the integers is equivalent to:

un+1 ≡ aun mod 1, n ≥ 1, 0 < un < 1 (5)

There exist many papers in the literature that study these generators with
their principal properties: see for example [45], [59] or [76] among others.

The performance of multiplicative congruential generator depends on the
selections of its parameters. Generally a and m are chosen in such a way that
the following conditions (conditions 3.3.1) are satisfied:

• For any initial seed, the resulting sequence will appear to be a sequence of
i.i.d. values according to a U(0, 1) random variable (that is, the sequence
passes the goodness-of-fit test when the theoretical distribution is U(0, 1)
and the values are independent, they pass the independence test(s)).

• The sequence must have a long period.
• The values must be obtained in an efficient way from a computer point of

view.

Some well-known selections of the parameters are described in Table 6.
As it can be seen in Table 6 there is a lot of research about the possible values

of the parameters. Other interesting reference in this context is [107] in which
several tables of parameters (depending on the size) with good performance
with respect to the spectral test, are given.

Another important aspect is to know the period of the generated sequence.
In regard to this point, the following result is relevant:

Theorem 1 (Knuth [97]) The multiplicative congruential method xn+1 ≡ axn

mod m has maximum period m− 1 only if:

• m is a prime number.
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Table 6. Some well know values of the parameters in a multiplicative congruential generator

a m References and comments

23 108 + 1 Original parameters in Lehmer’s 1948 model.

52q+1 2s [8]. In this model q ∈ Z
+ and s is the number of binary digits desirable in the generated number.

65539 231 RANDU: proposed by IBM in 1960.
It is not used nowadays because it fails many essential statistic tests such as spectral test.

λ 2q or 10q [33]. For a q-place binary or decimal machine. In this case λ ∈ Z is prime to the modulus.

5 235 [11]. An algorithm is proposed for generating pseudo-random numbers with these parameters.

ap p [83]. The modulus is the largest prime p within accumulator capacity and ap is a primitive root of p.

a 2k [7] (also see [80] and [100]). The modulus is selected in this way because the binary base of most digital computers.

a pm For example [83] or [172]. pm is the large prime number that can be fitted to the computer word size.

a∗ m∗ [191]. m∗ and a∗ are the values that maximize the period and minimize the correlation of the generated sequence.

125, 1289, 1381 213, 211 [100]. Particular case of [7].

a1 = 16807 231 − 1 For a 32-bit machine.
The case with a1 is faster and has less risk of memory overflow, it was proposed in [117] and is widely used.

a2 = 63036016 231 − 1 The case with a2 has better statistical properties but computationally it gives more problems, especially of memory overflow.
A selection that is used occasionally is the Mersenne prime 261 − 1.

630360016 231 − 1 [160]. Used by some FORTRAN.

a p [187]. The modulus is a prime number.

69069 232 These selections are very popular and has been recommended by Marsaglia in 1972. Used in RN32 [85].

1664525 232 Used in the INMOS Transputer Development System (IMS D700D).

16807 231 − 1 [156]. Used by APL, IMSL and SIMPL/I.

742938285 231 − 1 In [103] it is stated that these are the best selection of the parameters but this selection does not provide a portable generator.
40014 2147483563 Portable selection.
40692 2147483399 Portable selection.

48271 231 − 1 [157]. The authors make some comments about this selection instead of a = 16807

2q1 ± 2q2 2p − 1 [208], the author states that the proposed generators with these values for m and a are very fast and pass several statistic tests.
m− 2q1 ± 2q2 2p − 1 Paper [208] was revised in [112]. It is shown the weakness of the generator proposed in [208]:
with q1 > q2 it is stated that if a = ±2q1 ± 2q2 the number of ones of the binary representation of xn−1 and xn,

(their Hamming weights) turn out to be very dependent and, therefore, this dependence extends to the bits of the generated un.
The sequences generated according to [208] do not pass the Hamming weights test.

Some particular cases:
215 − 210, 216 − 221 → 231 − 1
230 − 219, 242 − 231 → 261 − 1
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• a �≡ 0 mod m and a(m−1)/q �≡ 1 mod m for each prime factor q of m−1.

Example 4 Let be the following multiplicative congruential method:

xn+1 ≡ 6xn mod 13, n ≥ 1 (6)

with seed x0 = 1. In this case the maximum period m−1 = 12 is reached because
m = 13 is a prime number and m− 1 = 12 = 22 · 3 so q = 2, 3 and

a(m−1)/q =

{
64 = 1296 �≡ 1 mod 13

66 = 46656 �≡ 1 mod 13

But if the method were:

xn+1 ≡ 7xn mod 31, n ≥ 1

with seed x0 = 19, the period is 15 and maximum period is not reached because
m− 1 = 30 = 3 · 5 · 2, so q = 2, 3, 5 and a(m−1)/2 = 715 ≡ 1 mod 31.

In [97] another result related with the period of a multiplicative congruential
generator for the case of m = 2β for any positive integer β, is explained:

Theorem 2 (Knuth [97]) The multiplicative congruential method xn+1 ≡ axn

mod 2β has maximum period m/4 attained if and only if x0 is odd and a ≡ 3
mod 8 or a ≡ 5 mod 8.

In practice, it is recommended a period of at least 109, so at least the modulus
that would need to be fixed would be at least 109. However, this amount is still
not adequate, as with the speed of computers, this period can be reached very
quickly.

Some references about the period of these types of generators are [17] where
the properties of the period in a multiplicative congruential generator aδ ≡ 1
mod n are studied or [23] where the properties about the period of the generator
aθ(m) ≡ 1 mod m with a and m relatively primes are studied.

3.3.2. Mixed congruential method

The expression in this case is more general:

xn+1 ≡ axn + b mod m (7)

where a,m ∈ Z
+ with 0 < a < m, 0 ≤ b < m and x0 < m. Here b is called

increment.
Note that as in the previous situation (multiplicative congruential method)

the numbers that are obtained with expression (7) are completely determined
by m, a, b, and x0. In fact, it is verified that:

xi ≡
[
aix0 +

(ai − 1) + b

a− 1

]
mod m (8)
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Table 7

Some well know values of the parameter in a mixed congruential generator

a m b References and comments

λ p μ [72], section 2 selection of a, b and m in order to get maximum period.

2k + 1 2l b [161]. Here k ∈ Z, l ∈ N.

a m b [3], several cases for different selection of the parameters are studied.

a m b [82], selection of the parameters in case of being working in a binary machine.

515 235 1 [34].

314159269 231 453805245 [98]. Has a maximum period.

25214903917 248 11 drand48 (48-bit PRNG of C language under UNIX).

1103515245 231 12345 Unix rand generator

69069 232 1 Vax generator MTH$RANDOM

but with appropriate selection of these parameters the sequence can be con-
sidered to be formed by realizations of a U(0, 1) random variable (that is, the
generated sequence passes the goodness-of-fit test when the theoretical distri-
bution is U(0, 1)).

As in the previous case, it is important to know the period of the generated
sequence. In this regard, we highlight the following result:

Theorem 3 (Hull, T. E. and Dobell, A. R. [81]) The simultaneous veri-
fication of the following three conditions is necessary and sufficient for a con-
gruential generator to have maximum period h = m:

• gcd(b,m) = 1 (where gcd(b,m) is the greatest common divisor of b and
m).

• a− 1 is a multiple of each prime number that divides m.
• If m is multiple of 4, then a− 1 is also multiple of 4.

Example 5 Let us consider the following mixed congruential method:

xn+1 ≡ 5xn + 7 mod 200 (9)

with seed x0 = 3. This generator has period 8 but maximum period is not reached
because m = 200 = 23 · 52 so q = 2, 5 and a− 1 = 4 is not a multiple of 5.

It has been proved that a good selection for b can be b mod 8 ≡ 5 if you
work in binary system or b mod 200 ≡ 21 if you work in decimal system. More
specifically, b must be an odd integer and relative prime with m.

As for the selection of the seed, this is irrelevant (in general, see Theorem
4) in the sense that the value of this parameter does not seem to affect the
statistical properties of the generated sequences.

There are several works that analyze parameters in a mixed (linear) congru-
ential generator. Some of the most well known values are given in Table 7.
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Others well known references that analyzes this issue are the following. In
[142] a method is given to search systematically for multipliers which are opti-
mal with respect to statistical independence of pairs. In [18] a systematic search
method is used in order to obtain the values of the multipliers that are optimal
with respect to statistical independence of pairs of successive pseudo-random
numbers. An interesting paper involving multiplicative congruential generators
is [58] where a method of an exhaustive search to find optimal full period multi-
pliers for the multiplicative congruential generator withm = 231−1 is described.
In this work, the concept of optimal multiplier is related to the concept of op-
timal distance. In [39] a method based in Stern sequences [190] and continued
fractions is described to find optimal multipliers for linear congruential pseudo-
random number generators. In [22] two systematic search methods are employed
to find multipliers which are optimal with respect to an upper bound for the
discrepancy of pairs of successive pseudo-random numbers.

Theorem 4 resumes some of the principal properties that should be verified
in order to get periods as long as possible.

Theorem 4 (Law [101]) Given a linear congruential generator xn+1 ≡ axn+
b mod m:

• If m = 2c and b �= 0 the longest possible period is m, which is achieved
whenever b is relatively prime to m (i.e. the greatest common factor of b
and m is 1) and a = 1 + 4k, k ∈ Z.

• If m = 2c and b = 0 the longest possible period is m/4 = 2c−2, which is
achieved if the seed x0 is odd and if a = 3 + 8k or a = 5 + 8k, for some
k = 0, 1, 2, ...

• For m a prime number and b = 0, the longest period is m − 1, which is
achieved whenever a has the property that the smallest integer k such that
ak − 1 is divisible by m is k = m− 1.

As we have commented before, it is very important to work with generators
that have long periods. One possibility to increase the period of a congruential
linear generator is by shuffling. In this context in [121] it is suggested to shuffle
the output of the congruential generator using another simpler generator. In [9]
an algorithm to Shuffling of Uniform Deviates is presented. The principal steps
of the algorithm are:

• Set k as the length of the table T . Fill the table with with x1, ..., xk. Put
i = 1. Generate xk+i. Set yi = xk+i.

• Generate j from yi.
• Set i = i+ 1 and put yi = T (j).
• Generate xk+i. Refresh T (j) with xk+i.

An inherent property of congruential generators is that they produce a lattice
structure as can be seen in Figure 2.

In this grid structure a series of lines can be identified where all the pairs
in the series are located. Depending on the distance between these lines, the
pairs are distributed more or less evenly in the plane. Generally, the greater the
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Fig 2. Representation of (ui, ui+1) for two examples of mixed linear congruential generators.

distance, the worse the generator. This distance is determined by the parameter
a.

This structure can be detected by the spectral test [34] or by the lattice test
[126]. Interesting references which studies the lattice structure in the case of a
multiplicative congruential generator are [125] or [12]. Some interesting papers
where the correlation of the generated values of a mixed congruential generator
is studied are [33], [72] or [41].

With the previously mentioned IBM generator, generator all the triplets of
consecutive numbers of the series (5 − 1010) fall in only 15 planes. Marsaglia
demonstrated in 1968 that the maximum number of parallel hyperplanes that
can produce a linear multiplicative congruential generator is (n!m)1/n, where
n is the number of consecutive numbers of the subsections considered. Note
that the number of hyperplanes decreases rapidly as the dimension of the space
increases n.

With a shuffling procedure as in [121] is described, it is possible to break up
the lattice structure.

There are several articles in the literature that study the fundamental prop-
erties of linear congruential generators, for example [141], [142] or [143].

If different random number sequences are available, each must be used for a
random parameter [102]. In this case, the length of the string must be taken into
account to avoid overlaps. In [102] different seeds for strings of the mentioned
generator separated by 100000 pseudo-random numbers can be found.

Although congruential generators are the most used in practice, other types
of generators have been developed with the objective of obtaining longer periods
and better statistical properties. Often, however, a congruential generator with
properly chosen parameters can work as well as more complicated alternatives.
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3.3.3. Multiple recursive generators

Congruential generators can be generalized to higher order linear recursions,
considering the following relationship:

xn ≡ (a1xn−1 + . . .+ akxn−k) mod m (10)

where k,m ∈ Z
+ and aj ∈ Zm, then the sequence of pseudo-random numbers

is taken as un = xn/m. (See [104] and [110]).
The study of this type of generator is associated with the study of the char-

acteristic polynomial:

P (z) = zk − a1z
k−1 − . . .− ak (11)

about the finite field Zm. When m is prime and the polynomial is primitive over
Zm, the period of the generator is mk − 1 (maximum possible period in this
class of generators) (See [97]).

It is possible to generalize the previous expression a little more (10) by adding
an addend b ∈ Zm with the result:

xn ≡ (a1xn−1 + . . .+ akxn−k + b) mod m (12)

In [110] the authors study multiple recursive generators to find those with
good properties related to structure and computational efficiency, in their work
show various possibilities depending on the parameter values.

In [87], different multiple recursive generators of orders one, two and three
that possess good properties of randomness and homogeneity are studied. The
authors consider different values of the generator parameters and apply statisti-
cal tests such as serial autocorrelation, runs test or chi-square test among others
to verify these properties.

The computational efficiency of multiple recursive generators can be improved
by choosing some aj = 0, 1,−1. In [38] it is proposed a portable Fast Multiple
Recursive Generator (FMRG) and it is claimed that its properties are better
than those of classical linear congruential generators.

A particular case of this type of generator is that in which m = 2 and is based
on a sequence of zeros and ones that are generated according to the recursive
formula (Linear Feedback Shift Register Generator-LFSR-):

xn ≡ (a1xn−1 + . . .+ akxn−k) mod 2 (13)

where ai ∈ {0, 1} for all i = 1, ..., k, in this case, xi represent bits that constitute
the binary representation of an integer. This generator was introduced by Taus-
worthe in 1965 [193]. Its properties and characteristics have been widely studied
in the literature (see for example [205], [55], [159], [197] or [69] among others).
In relation to its use, this is very remarkable in areas such as communications or
in cryptography, even though they are not cryptographically secure in principle.
To overcome this problem, they are used as building blocks in more sophisti-
cated constructions of PRNGs. The most common techniques in this context
are:
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Fig 3. Diagram of the LFSR in Example 6.

• Combine the output of several LFSRs by using a nonlinear function.
• Use the output of one LFSR (or a combination of several LFSRs) to clock

one (or a combination of) other LFSR(s).

However, the design of such a combination has to be done with great care
and must be analyzed with the cryptanalytic techniques.

Example 6 Let us consider the following generator:

xn ≡ xn−4 + xn−1 mod 2

with x1 = 1, x2 = 0, x3 = 1, x4 = 1, a1 = a4 = 1 and a2 = a3 = 0.
The first 12 elements of the sequence are: x5 = 0, x6 = 0, x7 = 1, x8 = 0,

x9 = 0, x10 = 0, x11 = 1, x12 = 1, x13 = 1, x14 = 1, x15 = 0, etc. These values
correspond with the following scheme:

For best results in terms of computational efficiency it is recommended taking
most of the ai = 0 in (13).

A particular case of (13) and that appears frequently in the literature is:

xn ≡ (xn−k+q + xn−k) mod 2 (14)

resulting from a trinomial.
A generalization of (13) was made by Lewis and Paine in 1973 [118] and

they called it as Generalized Feedback Shift Register pseudo-random number
Generator (GFSR). The authors claim that the GFSR is capable of produc-
ing multidimensional pseudo-random numbers, of arbitrarily long period and
at higher speed than other pseudo-random generators such as Lehmner’s or
Kendall’s. In their work, they also carry out a detailed study of the generator
paying special attention to the period and statistical properties on correlations,
among others.

Other authors have studied this type of generator such as [63], [131], [132]
or [133]. In this last paper ([133]), the pseudo-random number generator known
as the “Mersenne twister” is defined, and is known for its quality. Its name is
because that the length of the period of the generated sequence corresponds to
a Mersenne prime number. There are at least two variants of this algorithm,
differing only in the size of Mersenne primes used. The most recent and most
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widely used is the Mersenne Twister MT19937, with a word size of 32-bit. Its
period is 219937−1. There is another variant with 64-bit words, the MT19937-64,
which generates another sequence. Two interesting references which study such
generators are [155] and [111].

Mersenne twister in its primitive form is not recommended for cryptographic
applications (it is based on a linear recursion and any sequence of pseudo-random
numbers generated by a linear recursion is insecure since from a sufficiently long
sub-sequence of the outputs, the rest of the outputs can be predicted), but for
statistical simulations it is.

3.3.4. Lagged Fibonacci generator

The lagged Fibonacci generator is a particular case of multiple recursive gener-
ator. It is defined as:

xi ≡ (xi−j + xi−k) mod m (15)

In the particular case in which j = 1, k = 2 the generator is known as the
Old Fibonacci generator. This generator tends to have a period greater than m,
but is unacceptable from a statistical point of view: the following arrangement
of three consecutive output values ui−2 < ui < ui−1 can never be produced
whereas such a structure should occur with probability 1/6 in the case of a
“perfect” random number generator. [20]

However, under certain selection of the parameters generator (15) can per-
form well. For example, if m is a prime number and k > j > 0, then the length
of the cycle can be as long as mk − 1 (see [5]) and if m = 2p, the maximum
period can be (2k − 1)2p−1. An example of this generator is:

xi ≡ (xi−37 + xi−100) mod 230 (16)

with an approximate period 2129.
Some references where this type of generator is studied are for example:

[73] where the additive generators are studied with its properties, [202] and
[122], where the properties concerning the period of the Fibonacci generator are
studied, [71] where it is studied the case xi ≡ xi−1 + xi−n mod 1 with j > n
and its equivalent statement for binary machines xi ≡ xi−1 + xi−n mod 2r,
j > n, 0 ≤ xi < 2r being r the number of bits used to encode each fixed point
number and [137] where the additive congruential method is studied for the case
j = 2, k = 3 and m a prime number.

A common way in which this generator is generalized is using some binary
operator ◦:

xi ≡ (xi−j ◦ xi−k) (17)

with 0 ≤ xi < m and 0 < j < k < i.
A particular and very used operator is the XOR (⊕) operator:

ti =

{
0, if ti−j = ti−k

1, if ti−j �= ti−k

(18)
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and it is denoted by:
ti ≡ (ti−j ⊕ ti−k) (19)

Then a sequence of binary integers x1, x2,... is defined as follows:{
x1 = t1t2...tl

xi = t(i−1)l+1t(i−1)l+2...til, i = 2, 3, ...
(20)

That is, l consecutive ti are stringed to form xi as a number in base 2. The
recurrence for the xi is the same that the recurrence for the ti, that is:

xi ≡ (xi−j ⊕ xi−k) (21)

where the ⊕ operation is performed bitwise. Then, the pseudo-random number
ui which is taken as a value of a U(0, 1) random variable is:

ui =
xi

2l
, i = 1, 2, ... (22)

3.3.5. Combined multiple recursive generators

Linear congruential generators with modulus around 231 may be insufficiently
long for certain applications. In fact, this length can be used up in a few minutes
on a PC. However, congruential algorithms can be combined to increase the
period of the generation cycle.

The principal idea is to combine two or more multiplicative congruential
generators in order to obtain longer sequences with “good” statistical properties.

The disadvantage of using a combined generator is the associated computa-
tional cost, which is higher than that required for a simple congruential gener-
ator.

In [103] it is shown the following result that suggests how this can be done:

Lemma 1 (L’ecuyer [103]) Let Wi, i = 1, ..., l be l independent discrete ran-
dom variables where W1 is a discrete uniform random variable between 0 and
d− 1, d ∈ Z

+. Then:

W =

l∑
i=1

Wi mod d (23)

follows a discrete uniform law between 0 and d− 1.

This lemma can be applied to form combined generators in this way: let Xi,j ,
j = 1, ..., l the i-th output from l different multiplicative congruential generators,
where the j-th generator has prime modulus mj and period mj − 1. Then the
j-th generator produces integers xi,j that can be considered approximately as
realizations of a discrete uniform random variable Xi,j , on the integers from 1
to mj − 1 and Wi,j = Xi,j − 1 is approximately uniformly distributed on the
integers from 0 to mj−2. In [103] the following combined generator is proposed:

Xi ≡
l∑

j=1

(−1)j−1Xi,j mod m1 − 1 (24)



158 E. Almaraz Luengo

with

Ui =

{
Xi/m1 if Xi > 0

(m1 − 1)/m1 if Xi = 0
(25)

The maximum period for this generator is:

P =

∏l
j=1(mj − 1)

2k−1
(26)

In [103] the properties of generator in (24) are studied paying attention to
the period and the possible values that can be selected for the multipliers and
modulus in order to achieve periods as long as possible verifying the desired sta-
tistical properties. In addition, the proposed generators are tested with Knuth’s
statistical test battery.

In [121] it is discussed the testing methods for generating pseudo-random
numbers in case of using linear (multiplicative and mixed) conguential methods
and other methods, in particular the authors proposed the following sequence
{xi} built in the following way:

ui+1 ≡ (217 + 3)ui mod 235 (27)

vi+1 ≡ (27 + 1)vi + 1 mod 235 (28)

and u0 = 1, v0 = 0. A table of 128 values of the sequence of {ui} is generated
and then to generate a value of xi it is used the first seven bits of vi as an index
to get xi from the table. Another interesting reference in which a method of
generating pseudo-random uniform numbers based on the combination of two
congruential generators is described is [204].

In [10] the following generator is analyzed:

ui+1 ≡ kui mod p (29)

vi+1 ≡ lvi + 1 mod q (30)

where k, l, p, q, ui and vi are positive integers. The sequence {xi} is generated
by combining the sequences {ui} and {vi}. In this paper, also several statistic
tests are applied to the resulting {xi} sequence.

Other well-known combined multiple generator is due to Wichmann and Hill
([206], [207]). It has a period of order 1012 and is defined as:

xi ≡ 171xi−1 mod 30269 (31)

yi ≡ 172yi−1 mod 30307 (32)

zi ≡ 170zi−1 mod 30323 (33)

And take:

ui =
( xi

30269
+

yi
30307

+
zi

30323

)
−⌊ xi

30269
+

yi
30307

+
zi

30323

⌋ (34)

This combination is based on the following results:
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• If U1, . . . Uk are independent an identically distributed U(0, 1) random
variables, then the fractional part of U1 + . . . + Uk also follows a U(0, 1)
distribution and U1 + . . .+ Uk − 
U1 + . . .+ Uk� ∼ U(0, 1).

• If u1, . . . , uk are generated by congruential methods with periods c1, . . . , ck,
respectively, then the fractional part of u1 + . . .+ uk has a cycle of period
least common multiple of c1, . . . , ck.

Generator (31) has a long period (but not as long as stated in [207]) it is
portable and efficient although the code can present some numerical difficulties
in some particular computer architectures (see [134]).

In [105] and in [108] another design combined generator is presented. I dif-
ferent multiple recursive generators of the form zi,j ≡ a1zi−1,j +a2zi−2,j + . . .+
aqzi−q,j mod mi, i = 1, ..., I are considered. Given δ1, ..., δI specific constants
it is built:

yj ≡ δ1z1,j + ...+ δIzI,j mod m1 (35)

And taking uj = yj/m1.
The values of this type of generator must be chosen very carefully. It is pos-

sible to obtain long periods and sequences verifying good statistical properties.
An interesting study concerning this last point can be seen in [108].

In [114] it is studied the following combined generator:

x1,n ≡ (a1x1,n−2 − b1x1,n−3) mod m1 (36)

x2,n ≡ (a2x2,n−1 − b2x2,n−3) mod m2 (37)

zn ≡ (x1,n − x2,n) mod 4294967087 (38)

and

un =

{
zn/4294967088 if zn > 0

4294967087/4294967088 if zn = 0
(39)

being a1 = 1403580, b1 = 810728, m1 = 232 − 209, a2 = 527612, b2 = 1370589,
m2 = 232 − 22853.

These types of generators allow the simultaneous acquisition of multiple
strings, each of which can be divided into many consecutive long sub-strings.
The objective is to obtain sequences whose statistical properties are better than
those obtained from each of the independent generators that compose it.

The length of this generator is far superior to those of the previous ones:

l =
(m3

1 − 1)(m3
2 − 1)

2
(40)

To generate different strings and sub-strings, two positive integers v and w
are chosen, and z = v + w is defined. Then, the cycle l is divided into con-
tiguous strings of length Z = 2z and each in turn is divided into V = 2v

sub-strings of length W = 2w. Suitable values are v = 51 and w = 76, so
W = 276 and Z = 2127. For this particular generator the following values can
be used as initial default seeds (x1,n−3, x1,n−2, x1,n−1, x2,n−3, x2,n−2, x2,n1) =
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(12345, 12345, 12345, 12345, 12345, 12345). Other parameters suitable for this
type of generators can be found in [108].

Specific attention should be paid to the generation of random numbers to be
used in parallel calculations [62].

3.3.6. Matrix congruential generators

It is possible to design other types of generators that produce better sequences
than those obtained by classical congruential generators by means of a ma-
trix design. Thus, the so-called Matrix Congruential Generators are developed.
These are defined as:

xn ≡ (Axn−1 +B) mod m (41)

where xn is a d-dimensional vector and A and B are matrices d×d. The elements
of the vectors and the arrays are integers z ∈ {1, . . . ,m− 1}.

The case B = 0, x0 �= 0 and m a prime number was studied by [61], [74] and
[144].

The lattice structure of the sequences generated by this type of generator is
studied in [2].

Of particular interest is the study in [38] that looks at this type of gener-
ator and proposes a fast generation method that the authors call Fast Matrix
Congruential Generator (FMCG). It is claimed that FMCGs produce better se-
quences than classical linear congruential generators and are easily implemented
and computationally efficient.

It is possible to generalize the expression of a multiple recursive generator
(10) for higher dimensions and so it is defined the multiple recursive matrix
random number generator as:

xn ≡ (A1xn−1 + ...+Akxn−k) mod m (42)

where xn is a d-dimensional vector and Ai, i = 1, ..., k are matrices d× d.
Some interesting references about the matrix congruential generators are [147]

or [148].

3.4. Non-linear congruential generators

The linear congruential generators have some weaknesses related to regularity,
which is why other non-linear congruential methods have been developed to try
to overcome these deficiencies. While it is true that their generation requires
more computational effort than linear models, with technological progress and
the existence of increasingly better, more efficient computers with more memory,
this is not a major problem.

The generic expression of a non-lineal congruential generator is:

xn ≡ g(xn−1, xn−2, . . .) mod m (43)
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where g is a non-linear deterministic function. As in the case of linear congruen-
tial generators, the sequences obtained with this formula, are integers between
0 and m − 1. From these, the sequence of values in (0, 1) is obtained taking
un = xn/m.

Next, we will discuss some of the most well-known ones.

3.4.1. Inversive congruential generators

They were introduced in [53]) and three fundamental types can be distinguished
according to whether the modulus is a prime number, a power of 2 or an odd
prime number (the latter introduced in [51]).

They are defined as:

xi ≡ (ax−
i−1 + b) mod m (44)

with 0 ≤ xi < m, and

x− =

{
multiplicative inverse of x modulo m, if it exists

0 in other case

The sequence of values adjusted in the interval (0, 1) are obtained by the quo-
tient: xi/m.

As in the case of linear congruential generators, it is important to detect the
length of the sequences that can be obtained in this type of generator. In fact,
in [53] the authors describe an efficient method for the calculation of the period
in these generators when the module is a prime number p. In particular, they
give the following result:

Theorem 5 (Eichenauer, J. and Lehn, J. [53]) Let a and b be the coeffi-
cients of the inversive non-linear congruential method choosing in order to verify
that z2 − bz − a were a primitive polynomial over Zp. Then, the sequence xi/p
has maximum period and its value is p.

If the inversive congruential method has a maximum period, then the unifor-
mity test for equidistribution is passed in [0, 1) as shown in [142]. This aspect
related to the uniformity properties of the sequences obtained using this type of
generators has also been studied in [53] and [52]. In relation to the independence
of the obtained values, a detailed analysis is made in [145] and [146].

In the case that the modulus m were a power of 2, the period of the generated
sequence has also been studied. In this respect in [54] the keys are given in the
following theorem:

Theorem 6 (Eichenauer-Herrmann, J. et. al. [54]) An inversive congru-
ential method with modulus m = 2k, k ≥ 3, will give sequences with maximum
period m/2 if and only if:

• a ≡ 1 mod 4 and
• b ≡ 2 mod 4
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In relation to the independence property tested with the serial test, some
results detailed in [146] and [50] can be found in which, (among others), some
disadvantages are shown that this type of generators with a power of two mod-
ulus have in detriment of those with a prime modulus. Another disadvantage is
pointed out in [49] and refers to the existence of regular structures within the
generated points.

As it was explained above, the last type of inversive congruential generator,
those with modulus is a power of a prime number, was introduced in 1990. For
this type it also has been studied the period pointing out the theorem of [47].

Theorem 7 (Eichenauer-Herrmann, J. [47]) Let be considered an inver-
sive congruential generator with modulus m = pk, p ≥ 3 and k ≥ 2. Let
λ ≥ 2 and η be an integer such that yλ ≡ y0 + pη mod p2. For α, β integers
let us consider a sequence of integers (y′n)n≥0 such that y′0 ≡ y0 mod p and

y′n+1 ≡ (a + pα)y−n + b + pβ mod m, n ≥ 0. Then the inversive congruential
sequence (y′n)n≥0 has maximal period l if and only if

λ(y20 − by0 − a)(bα− 2aβ) + ηa(4a+ b2) �≡ 0 mod p

The properties of uniformity and independence can be studied in [46].
An interesting survey about this type of generators is [48].
With regard to the use of this type of generator, it should be noted that it is

not very widespread. In the case of inversive congruential generators, there are
some means of accelerating the calculations (see [70]). The randomness of the
sequences is better than in the case of linear congruential generators, although
their performance in passing the tests based on spacings was not as good, as
stated by L’Ecuyer [106], and therefore their use is not recommended in most
tests.

3.4.2. Knuth’s non-linear congruential generator

It was proposed by Knuth in 1998 [97] it is defined as:

xi ≡ (dx2
i−1 + axi−1 + b) mod m (45)

with 0 ≤ xi < m.
The method can be generalized to higher order polynomials although in prac-

tice, there seems to be no advantage in doing so. The particular case of a = 0
and b = 0 with m the product of two different large prime numbers has been
studied in [13] and [14], in these articles the generator is defined and its main
characteristics are shown. Blum, Blum, and Shub demonstrated the following
result about the unpredictability of their generator: if m = p1p2, where p1 and
p2 are primes p1 �= p2 that verify pi ≡ 3 mod 4, i = 1, 2, then the sequence
provided by this generator is not predictable in polynomial time without know-
ing the values of pi, i = 1, 2. This result has important applications in the
field of cryptography because of the computational difficulty of distinguishing
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quadratic residues mod m non-quadratic residues modulo mod m. On the
contrary, for statistical purposes, this generator is not recommended because
the non-linearity of the generator cannot be performed in an efficient way (from
the perspective of computational efficiency). An interesting reference that stud-
ies the properties of this generator is [36].

Another particular case of this generator is when the parameters values are:
d = a = 1, c = 0 and m = 2k, k ∈ Z

+. In this case the generator turns out to
be very similar to the one defined by the middle-square method although it has
better statistical properties. The period of this quadratic generator is at most
m.

3.4.3. More general formulations

In addition to the above-mentioned generators, formulations in terms of more
general g functions can be found in the literature. It can be considered gen-
eral non-linear functions or mixtures in which linear and inversive addends are
considered. With respect to the first case, the formulation would be:

xi ≡ g(xi−1) mod m (46)

This type of generators with non-linear functions g and with modulus m
being a prime number was studied in detail in [52].

Another example is the case in which linear and inversive addends are com-
bined, this type was studied in [89] and can be defined as:

xi ≡ (ax−
i−1 + cxi−1 + b) mod m (47)

with 0 ≤ xi < m, a, b, c ∈ Zm and m = 2k, k ≥ 3. The sequence of pseudo-
random numbers is obtained by xi/m.

In [89] the authors study the period of the obtained sequences and formulate
the next theorem:

Theorem 8 (Kato, T. et. al. [89]) Let us consider m = 2k, k ≥ 3 and the
generator defined in (47), then the sequence xi/m es purely periodic with period
m/2 if and only if a+ c ≡ 1 mod 4 and b ≡ 2 mod 4.

An important case of this type of non-linear generators is the Non-linear
(feedback) Shift Register (NLFSR) generator. The equation of this model is:

xi+1 = f(xi, . . . , xi−L+1) (48)

where f can be any non-linear function in L variables. For computational pur-
poses the most recommended case is the binary case, in which each cell contains
a bit, and f is a Boolean function.

It is known that any binary sequence generated by a NLFSR has a period
that can be at most equal to 2L (sequences that reached this period are known
as De Brujin sequences), and that any periodic sequence can be produced by
such a register.
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Fig 4. Types of generators

Example 7 Let us consider the NLFSR defined by:

xi+1 = xi ∧ xi−1 ⊕ xi ⊕ xi−2 (49)

where ∧ represents the AND operator and ⊕ the XOR operator, and the initial
conditions x0 = 0, x1 = 1 and x2 = 0. In this case the obtained sequence is
x3 = 0, x4 = 1, x5 = 0, x6 = 0, x7 = 1, x8 = 1, x9 = 0, x10 = 1, x11 = 0,
x12 = 0, x13 = 1, x14 = 1, etc.

4. New lines of research: other methods for generating
pseudo-random numbers

As before-mentioned, one of the fundamental areas in which the generation of
pseudo-random numbers is crucial is cryptography and lightweight cryptogra-
phy. The latter responds to security requirements in environments with limited
hardware and software resources, for example the Internet of Things (IoT). Ap-
plications in key security and encryption [184], [188] are noteworthy.

From a cryptographic point of view, it is essential that the used generators are
secure. Recalling the properties that a good PRNG must fulfill (see Table 5), the
unpredictability property must be verified. This implies that knowledge of any
subsequence of a generated sequence does not imply that the complete sequence
can be calculated or estimated, and that knowledge of some internal state does
not imply that the preceding or subsequent numbers can be calculated. In this
sense, it is possible to find in the literature the definition of Cryptographically
Secure Pseudo-random Number Generator (CSPRNGs). CSPRNGs are a special
type of PRNG with the property of unpredictability. This means that given n
consecutive bits of the key, there is no algorithm in polynomial time that can
predict the next bit with a probability of success greater than 50 %.

The requirements of an ordinary CSPRNG also satisfy those of a PRNG, but
not vice versa. CSPRNGs must also satisfy that: (1) their statistical properties
are good (pass statistical randomness tests) and (2) that they can come out
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successful under severe attacks, even if part of their initial state or current state
is available to an attacker.

Every CSPRNG:

• Must satisfy the next-bit test: given the first k bits of a random sequence,
there is no polynomial time algorithm that can predict the (k + 1)-th
bit with a probability of success greater than 0.5 [91]. A generator that
passes the next bit test will pass any other statistical test of randomness
in polynomial time [210].

• Must support state compromise extensions: if some or all of its state in-
formation is revealed, it must be impossible to reconstruct a sequence of
random numbers generated prior to state attainment. Moreover, if there
is entropy input while running, it should be impossible to use knowledge
of the input state to predict future state conditions.

As described in the previous sections, certain PRNGs are not suitable for
cryptographic uses. Although there are designs that are theoretically proved to
be secure, see [43], [44] or [1] among others. However, most of the generators
implemented in operating systems and cryptographic libraries are not based on
the main security models of theoretical PRNGs and present weaknesses that
make them vulnerable against known attacks (as can be the case of Linux OS
PRNGs, OpenSSL, Android, OpenJDK, Bouncycastle and IBM). For example,
certain PRNGs are vulnerable to machine learning attacks, in [86] it is described
how long-short term memory (LSTM) turns out to be efficient to decrypt a
normal PRNG.

The main attacks that PRNGs can suffer from are (see [92]):

• Direct cryptanalytic attack: it is carried out when the sequence generated
by the PRNG is not completely indistinguishable from a truly random
sequence. In this case, a hacker could deduce what type of PRNG has
been used and maybe what is the key that governs it. This attack is only
feasible when a certain number of the generated sequence numbers can
be observed directly or if the sequence can be found out indirectly. If the
PRNG were used exclusively to generate keys for other secure encryption
algorithms, such as TDEA or AES, it would not be possible to deduce
these keys so it would be impossible to attack the PRNG that generated
them.

• Entry-based attack: this attack occurs when an attacker is able to use
knowledge about the PRNG input sequence to cryptanalyze it. This attack
can be implemented in several ways: (i) known input attack, (ii) chosen
input attack and (iii) repeated input attack.

• Attacks by extension of a jeopardized state: attempts to extend the ben-
efits of a previous successful attack where a state S of the generator has
been regained.

When working with PRNGs it is recommended using a cryptographic digest
function (hash function) applied to the output of a PRNG if this is vulnerable to
direct cryptanalytical attacks. This may increase the security of such a sequence,
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but decreases the speed of the generator. Other recommendation is to apply a
summary function to the entry with a counter before using it. This helps prevent
most of the attacks per chosen input. Inputs should be concatenated mod 2 bit
by bit with time stamping and then summarized, before loading into the PRNG.
It is also possible to generate from time to time a new PRNG input status. For
PRNG generators such as ANSI X9.17, which leave a large part of their state
unchanged after initialization, it is desirable to generate a new input state from
the current one in the PRNG. In this way, the PRNG can reinitialize itself, with
sufficient time and entropy. Finally, it is essential to pay special attention to the
start and seed points of PRNGs guarantee the privacy (confidentiality) of the
state of the generator.

In this context, new techniques have been developed that combine the meth-
ods explained in the previous section with others that use Deep-learning or new
designs (that also incorporate TRNGs or uses other algorithms such Genetic
Algorithm, etc.).

In IoT applications, the PRNGs used often have security vulnerabilities, i.e.
they are not CSPRNGs. This is precisely due to hardware and software limita-
tions. The generation of CSPRNGs in this context is a powerful and growing
line of research. Table 8 shows some designs of cryptographically secure PRNGs
together with a brief description and references. As can be seen, their mathe-
matical basis is founded on some of the models discussed in the previous section,
improved with coupling operations, incorporation of several interconnected gen-
erators, XOR operations or combinations with TRNGs among others.

As an example of the use of Deep-learning techniques, we could highlight
[86] or [203]. In [86], a method for generating pseudo-random numbers is pro-
posed that uses neural networks, in particular recurrent neural networks with
long short-term memory. On the other hand, in [203] it is proposed a design
that combines two PRNGs and a Physical unclonable function (PUF) for the
generation of pseudo-random number sequences that are robust against LSTM
attacks.

Examples of research that focus on designing generators that combine TRNGs
and PRNGs include [66] or [88] among others. In [66] a generator is designed
that combines a TRNG and a PRNG. The authors opt for this methodology
because according to their design, they manage to use the advantages that both
types of generators provide and in this way they obtain sequences that pass
the usual statistical tests. They use a true random number as a seed for the
application of the PRNG. Specifically, they start by extracting neuro-signals
(using a low-resolution, cheap and portable encephalogram) that are considered
seeds to apply a Linear congruential generator. A similar problem is addressed in
[88]. The authors design a PRNG generator that uses as seed a (nearly) random
sources produced from computer.

As an example of research in which it is combined a PRNG with Genetic
Algorithm is [192]. In particular, it is used a LFSR.
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Table 8. New PRNGs designs for cryptographic purposes.

PRNG Year Description Tested by Reference
Coupled-variable input LCG 2020 Coupling of two variable input linear congruential generators for generating pseudo-random bit at every iteration NIST [153]
(CVLCG)
Gupta and Panda’s method 2020 Three consecutive modules: NIST [75]

→ BiBiSeG module
→ FileShuffle module
→ RandKeyGen module
which generate cryptographically secure key bit sequences of the desired length (say 128, 256, 512 or 1024)

Modified dual-CLCG 2019 Uses the congruential mod 2 addition of two different coupled LCG outputs NIST [152]
To perform the modulo-2 addition operation, it takes only single XOR logic

Arrow 2017 Lightweight PRNG (from the family of Trifork PRNGs) NIST [149]
It is based on combining, via bitwise XOR, the outputs of two simple Lagged Fibonacci generators Diehard

Warbler PRNG family 2016 Combination of modified de Bruijn blocks together with a Welch-Gong (WG) NLFSR NIST [124]
Problem: almost every member of this family is vulnerable to linear attacks.(see [120])

Modified models of J3Gen 2015 Two PRNGs based on a linear feedback shift register (LFSR) configured with EPC Gen2 standard [30]
a multiple-polynomial tap architecture fed by a physical source of randomness NIST

Warbler PRNG family 2015 New implementation of the Warbler family [209]
Two designs are presented for the counter: a binary counter and a LFSR counter

Warbler PRNG family 2013 Nonlinear feedback shift register PRNG EPC C1 Gen2 standard [123]
Problem: vulnerable to linear attacks NIST

MeTuLR 2013 Mersenne Twister generator for RFID tags that uses random numbers as seeds, EPC Gen2 standard [212]
generated by using a property of the tags memories NIST

J3Gen 2013 Combination of: EPC C1 Gen2 standard [135]
→ a TRNG (thermalnoise) and
→ a Dynamic Linear Feedback Shift Register (DLFSR) with multiple primitive polynomials
Problem: Sensitive to certain cryptographic attacks(probabilistic and deterministic). See [163]

AKARI (AKARI-1, AKARI-2) 2011 Design that involves a non-linear filter function and a mapping of the form: x → x+ (x2 ∨ C) mod 2m ENT, Diehard [130]
The non-linear filter allows to overcome the problem that the mapping is not cryptographically secure NIST

Trifork 2010 Combination of three coupled Perturbed Lagged Fibonacci Generators Diehard [150]
NIST

Meliá-Segúı et. al. PRNG 2010 Improved design of the Che et al.’s PRNG, but by employing multiple primitive polynomials EPC C1 Gen2 standard [136]
instead of one in the LFSR

Peris-López et. al. PRNG 2010 Blum-Blum-Shub (BBS) PRNG implemented for security levels 160 bit and 512 bits [165]
TinyOS’s PRNG 2009 Combines two random number generator modules: [116]

→ RandomMlcgC (based on a multiplicative linear congruential generator) and
→ RandomLfsrC (built from a linear feedback shift register)
Problem: Sensitive to certain cryptographic attacks due to their linear structures

LAMED 2009 Methodology based on Genetic Programming Diehard [164]
The update function for the internal state is based on bitwise XOR operator, modular algebra and bit rotations NIST

ENT
SEXTON
EPC C1 Gen2 standard

Katti and Srinivasan’s 2009 Pseudo-random bit generator based on the couple of four mixed Linear Congruential Generators NIST [90]
PRBG generator
Che et al.’s PRNG 2008 PRNG based on a combination of: [29]

→ oscillator-based TRNG and
→ a linear feedback shift register (LFSR) with 16 stages
Problem:
→ It is vulnerable due to the linearity of the LFSR
→ It is possible to obtain the polynomial associated with a few observations from the LFSR output. (See [136])

TinyRNG 2007 CSPRNG, its source of randomness comes from the received bit errors [60]
Implementation based on MICA2 motes

Low power 8-bit PRNG 2004 PRNG based on a free-running timer. Specifically designed for the i-Bean Network ENT [185]
Can be used in other low-power embedded networks
Problems: It has significant security concerns: (See [185])
→ the exact entropy introduced by the transmitted and received messages in the network are undefined
→ how frequently it is necessary to apply the re-keying algorithm is not defined
→ the CRC of the transmitted packets has a very low entropy
→ the packets can bemodified by an attacker
→ the generated sequence has a short period
→ the internal secret state of the generator can be easily recovered by eavesdropping only two consecutive outputs
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5. Conclusions

The generation of random sequences as discussed above is essential in several ar-
eas of knowledge. The essential statistical properties sought in these sequences
are randomness, independence and uniformity (in which case any type of se-
quence can be generated from any other random variable). To the above prop-
erties we would add that of unpredictability if we were working in cryptography.
From a practical point of view, and assuming that an arithmetic generator is
used, it is also desirable that the period was as long as possible.

Focusing on the initial objectives of this research, we can affirm that they
have been achieved:

• The concept of randomness and the main types of generators have been
explained in detail: TRNGs, PRNGs and the subclass CSPRNGs. It has
been emphasized which properties are desirable for the sequences to fulfill
depending on the context in which they are to be used.

• This work has analyzed in detail the different types of arithmetic genera-
tors, which are characterized by a solid mathematical basis. They consti-
tute a set of algorithms that allow the generation of sequences of pseudo-
random numbers. Two main sub-types have been developed: linear and
nonlinear. The most important generators in the literature have been de-
fined, from the most rudimentary methods with the worst properties to
the most sophisticated ones with better statistical properties and longer
periods.

• The pros and cons of each of the types analyzed have also been explained,
both from a statistical and computational point of view. Moreover, the
new lines of research and new designs of PRNGs have been explained.

References
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pseudorandom number generators: Analysis of J3Gen. Sensors 14 6500–
6515.
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[165] Peris-López, P., San Millán, E., van der Lubbe, J. C. A. and En-

trena, L. A. (2010). Cryptographically secure pseudo-random bit gener-
ator for RFID tags. In International Conference for Internet Technology
and Secured Transactions, London, UK. 1–6.

[166] Plumstead, J. B. (1982). Inferring a sequence generated by a linear
congruence. In Foundations of Computer Science, 1982. SFCS’08. 23rd
Annual Symposium 153–159. MR0780393

[167] Postelnicu, T. (1970). Rohlf, F. J., and R. R. Sokal: Statistical Tables.
W. H. Freeman & Comp., San Francisco 1969. XI + 253 S., 5 Abb., Preis
641-. Biometrische Zeitschrift 12 192–193.

[168] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flan-

nery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Com-
puting. Cambridge University Press. MR1201159

[169] Quenouille, M. (1959). Tables of Random Observations from Standard
Distributions. Biometrika 46 178–202. MR0102142

[170] Rao, C. R., Mitra, S. and Matthat, A. (1968). Formulae and Tables
for Statistical Work. Journal of the American Statistical Association 63
1064–1065.

[171] Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM 21 120–126. MR0700103

[172] Ross, S. M. (2006). Simulation, 4th edition. Elsevier. MR3294208
[173] Royo, J. and Ferrer, S. (1954). Tables of random numbers obtained

from numbers in the Spanish National Lottery. Trabajos de Estadistica 5
247–256.

[174] Royo, J. and Ferrer, S. (1954). A table of random numbers In Tablas

https://www.ams.org/mathscinet-getitem?mr=0134452
https://www.ams.org/mathscinet-getitem?mr=0780393
https://www.ams.org/mathscinet-getitem?mr=1201159
https://www.ams.org/mathscinet-getitem?mr=0102142
https://www.ams.org/mathscinet-getitem?mr=0700103
https://www.ams.org/mathscinet-getitem?mr=3294208


A brief and understandable guide of PRNGs 179

Estadisticas 3–127. Instituto de Investigaciones Estadisticas, Madrid.
[175] Rubinstein, R. Y. andKroese, D. P. (2016). Simulation and the Monte

Carlo Method, 3th edition. John Wiley & Sons, Incorporated. MR3617204
[176] Rukhin, A. L., Soto, J.,Nechvatal, J. R., Smid, M. E., Barker, E.,

Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A.,
Dray, J. and Vo, S. (2010). SP 800-22 Rev. 1a. A Statistical Test Suite
for Random and Pseudorandom Number Generators for Cryptographic
Applications Technical Report, Gaithersburg, MD, United States.

[177] Rusu, F. and Dobra, A. (2007). Pseudo-random number generation for
sketch-based estimations. ACM Transactions on Database Systems 32 1–
48.

[178] Sarmah, B. K. and Chakrabarty, D. (2014). Testing of Randomness
of Number generated by Fisher and Yates. International Journal of Engi-
neering Sciences & Research Technology 3 632–636.

[179] Sarmah, B. K. and Chakrabarty, D. (2015). Examination of Proper
Randomness of the Numbers generated by L.H.C. Tippett (1927). IOSR
Journal of Mathematics 11 35–37.

[180] Sarmah, B. K. and Chakrabarty, D. (2015). Testing of proper Ran-
domness of the numbers generated by Fisher and Yates (Applying t-test).
ABJMI Aryabhatta Journal of Mathematics & Informatics 7 87–90.

[181] Sarmah, B. K. and Chakrabarty, D. (2015). Examination of Proper
Randomness of the Number Generated by Kendall and Babington Smith.
International Journal of Engineering Sciences & Research Technology 4
260–282.

[182] Sarmah, B. K., Chakrabarty, D. and Barman, N. (2015). Testing of
Proper Randomness of the Table of Number Generated by Rand Corpora-
tion (1955). International Journal of Engineering Sciences & Management
5 97–119.

[183] Schindler, W. (2009). Random Number generators for cryptographic
applications In Cryptographic Engineering 5–23. Springer-Verlag, Boston,
MA.

[184] Schneier, B. (1996). Applied Cryptography: Protocols, Algorithms, and
Source Code in C, 2nd. ed. John Wiley & Sons. MR3587912

[185] Seetharam, D. and Rhee, S. (2004). An efficient pseudo random num-
ber generator for low power sensor networks. In 29th Annual IEEE Inter-
national Conference on Local Computer Networks 560–562.

[186] Shamir, A. (1981). On the generation of cryptographically strong pseudo-
random sequences. In Automata, Languages and Programming (S. Even
and O. Kariv, eds.) 544–550. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

[187] Smith, C. S. (1971). Multiplicative Pseudo-Random Number Generators
with Prime Modulus. Jounal of the ACM 18 586–593. MR0295522

[188] Stallings, W. (2011). Cryptography and Network Security, Principles
and Practices, 5th.ed. Pearson.

[189] Steinhaus, H. (1954). Table of shuffled four-digit numbers. (In Polish,
Russian and English.). Rozprawy Matematyczne 6 1–46. MR0060185

https://www.ams.org/mathscinet-getitem?mr=3617204
https://www.ams.org/mathscinet-getitem?mr=3587912
https://www.ams.org/mathscinet-getitem?mr=0295522
https://www.ams.org/mathscinet-getitem?mr=0060185


180 E. Almaraz Luengo

[190] Stern, M. A. (1958). Ober eine zahlentheoretische Funktion. Journal für
die reine und angewandte Mathematik 55 193–220. MR1579066

[191] Strome, W. M. (1967). Algorithm 294: uniform random number. Com-
munications of the ACM 10.

[192] Sudeepa, K. B., Aitha, G., Rajinikanth, V. and Satapathy, S. C.

(2020). Genetic algorithm based key sequence generation for cipher sys-
tem. Pattern Recognition Letters 133 341–348.

[193] Tausworthe, R. C. (1965). Random numbers generated by linear recur-
rence modulo two. Mathematics of Computation 19 201–209. MR0184406

[194] Tayfur, A. andMelamed, B. (2007). Simulation Modeling and Analysis
with ARENA. Elsevier Science & Technology.

[195] Thomas, D. B. and Luk, W. (2008). PGA-Optimised High-Quality
Uniform Random Number Generators. In Proceedings of the 16th Inter-
national ACM/SIGDA Symposium on Field Programmable Gate Arrays
235–244.

[196] Tippett, L. H. C. (1927). Random number tables. Tracts for computer,
No.-15. Cambridge University Press.

[197] Tootill, J. P.,Robison, W. D. andAdams, A. G. (1971). The runs up
and down performance of Tausworthe pseudorandom number generators.
Journal of the ACM 18 381–399.

[198] Umans, C. (2003). Pseudo-random generators for all hardnesses. Journal
of Computer and System Sciences 67 419–440. MR2022839

[199] Vincent, C. H. (1970). The generation of truly random binary numbers.
Journal of Physics E: Scientific Instruments 3 594–598.

[200] von Neumann, J. (1951). Various techniques used in connection with
random digits In Monte Carlo Method, National Bureau of Standards Ap-
plied Mathematics Series, vol. 12 36–38. U.S. Government Printing Office,
Washington, D.C.

[201] Walker, J. (2008). ENT: A Pseudorandom Number Sequence Test Pro-
gram.

[202] Wall, D. D. (1960). Fibonacci Series Modulo m. The American Mathe-
matical Monthly 67 525–532.

[203] Wen, Y. and Yu, W. (2019). Machine learning-resistant pseudo-random
number generator. Electronics Letters 55 515–517.

[204] Westlake, W. J. (1967). A Uniform Random Number Generator Based
on the Combination of Two Congruential Generators. Journal of the ACM
14 337–340.

[205] Whittlesey, J. R. (1968). A comparison of the correlational behavior
of random number generators for the IBM 360. Communications of the
ACM 11 641–644.

[206] Wichmann, B. A. and Hill, I. D. (1982). Algorithm AS 183: An Ef-
ficient and Portable Pseudo-Random Number Generator. Journal of the
Royal Statistical Society. Series C (Applied Statistics) 2 188–190.

[207] Wichmann, B. A. andHill, I. D. (1984). Correction: Algorithm AS 183:
An Efficient and Portable Pseudo-Random Number Generator. Journal of
the Royal Statistical Society. Series C (Applied Statistics) 33 188–190.

https://www.ams.org/mathscinet-getitem?mr=1579066
https://www.ams.org/mathscinet-getitem?mr=0184406
https://www.ams.org/mathscinet-getitem?mr=2022839


A brief and understandable guide of PRNGs 181

[208] Wu, P.-C. (1997). Multiplicative, congruential random-number genera-
tors with multiplier ±2k1 ± 2k2 and modulus 2p − 1. ACM Transactions
on Mathematical Software 23 255–265.

[209] Yang, G., Aagaard, M. and Gong, G. (2015). Efficient hardware im-
plementations of the Warbler pseudorandom number generator. IACR
Cryptology ePrint Archive 1–13.

[210] Yao, A. (1982). Theory and applications of trapdoor functions. In Pro-
ceedings of the 23rd IEEE Symposium on Foundations of Computer Sci-
ence 80–91.

[211] Yule, G. U. (1938). A Test of Tippett’s Random Sampling Numbers.
Journal of the Royal Statistical Society 101 167–172.
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