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research on modern model selection methods for high-dimensional data
over the past three decades revived the interest in statistical inference af-
ter model selection. In recent years, there has been a surge of articles on
statistical inference after model selection and now a rather vast literature
exists on this topic. Our manuscript aims at presenting a holistic review
of post-model-selection inference in linear regression models, while also in-
corporating perspectives from high-dimensional inference in these models.
We first give a simulated example motivating the necessity for valid statis-
tical inference after model selection. We then provide theoretical insights
explaining the phenomena observed in the example. This is done through
a literature survey on the post-selection sampling distribution of regres-
sion parameter estimators and properties of coverage probabilities of näıve
confidence intervals. Categorized according to two types of estimation tar-
gets, namely the population- and projection-based regression coefficients,
we present a review of recent uncertainty assessment methods. We also
discuss possible pros and cons for the confidence intervals constructed by
different methods.
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1. Introduction

In one of his earliest work, praised for being “arguably the most influential
article” on statistical inference, Fisher describes three fundamental issues in data
reduction (Stigler 2005, Fisher 1922), which are the problems of specification,
estimation and distribution. According to his illustration, these three problems
respectively refer to (1) a “choice of the mathematical form of the population”,
where we know “what parameters are required to specify the population from
which the sample is drawn”; (2) estimation of “values of parameters of the
hypothetical population”; (3) determination of “distribution of statistics derived
in the sample” for precision assessment.

To solve the second and third problems, respectively of parameter estimation
and statistical distribution assessment, Fisher elucidates the renowned maxi-
mum likelihood method which is the principal ingredient of most classical and
modern model selection and estimation procedures. Fisher’s likelihood theory,



88 D. Zhang et al.

however, relies on one important assumption pertinent to the first issue on
model specification, that is a correct model which accurately characterizes the
true data generating mechanism is known, except for certain parameter values,
before valid parameter estimation and uncertainty assessment is executed. The
implication is that the empirical data shall not be involved in the selection of a
final model from a set of candidate models, regardless of whether the selected
model is correct or wrong. Instead, the data shall be solely used to perform point
estimation and construct relevant uncertainty measures. Moreover, under this
assumption, to provide an explicit answer to the third problem, Fisher advo-
cates the use of the well-known p-value, a concept introduced by Pearson (1900),
as an assessment benchmark for evaluating statistical significance of result(s)
of a scientific experiment. In addition, Fisher (1935) implies that the criterion
that p-value less than a pre-specified value may indicate that “a phenomenon is
experimentally demonstrable”. In other words, p-value could be considered as
an indicator for replicability of results, which is commonly regarded as a golden
standard in science (Shapin & Schaffer 1985).

The foundation on which Fisher’s maximum likelihood method and the sub-
sequent adoption of p-values for precision assessment rests, however, is seldom
satisfied in practice, which is “a quiet scandal in the statistical community” as
phrased by Breiman (1992). In fact, the exact mathematical form of population
is often unidentified beforehand. Usually, upon assuming a specific class of true
data generating mechanism such as a linear or a generalized linear regression
model, and identifying a set of potential predictor variables, a model for statisti-
cal inference is usually selected from a set of candidate models through either a
well-defined, ill-defined or opaque data-dependent fashion (Berk et al. 2013). A
data-driven selection of tuning parameters in obtaining penalized least-squares
estimators further invalidates that assumption. The final model so selected, on
which parameter estimation and uncertainty assessment is based, is not fixed
as required by Fisher’s view, but indeed random. In other words, even with the
same model selection procedure, different realizations of the true data generat-
ing mechanism may well lead to different selected models which may deviate
from the true model with non-negligible probability. Therefore, by integrating
additional uncertainty from model selection into inferential process, the validity
of statistical inference guaranteed by Fisher’s likelihood theory becomes suspi-
cious.

In addition to the aforementioned violation of Fisher’s fundamental assump-
tion, negligence of the multiple testing problems in the era of mass production
of scientific publications further deepen the concern with respect to the validity
of statistical inference in ensuring the replicability of scientific experiment, par-
ticularly on the legitimacy of p-values. This consideration has been highlighted
across several scientific communities, for example behavioral genetics (Mann
1994) and genomics research (Lander & Kruglyak 1995), which culminated in
the thought-provoking article by Ioannidis (2005), who boldly assert that “most
claimed research findings are false”. As such, to ensure the replicability of sci-
entific discoveries, several initiatives have been launched within the last decade
involving appeal for more cautious use or even abandonment of p-values. Dis-
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missing these movements as “misguided attacks”, Benjamini (2020) argue that
(i) failure to ascertain the correct level of variability, and (ii) ignorance of the
effect of selection on statistical inference are two crucial yet often neglected
causes for the irreplicability of scientific results. He concludes that we do not
need to refrain from counting on classic measures, such as p-values and confi-
dence intervals, for assessing statistical significance. Rather, these assessment
benchmarks have to be adjusted for valid statistical inference.

In view of the foregoing reasoning and perspectives from Ioannidis (2005)
and Benjamini (2020) on replicability of results, given that the presumed con-
dition of Fisher’s likelihood method is infringed since one data set is simultane-
ously used for model selection and statistical inference, one would naturally ask
what detrimental effects this violation might provoke on parameter estimation
and precision assessment so that the resulting measures (without adjustments),
such as p-values or confidence intervals, represent sources of concern across scien-
tific communities. To answer this question, several important contributions have
been accomplished over the past two decades, Pötscher (1991, 1995); Pötscher &
NovÁk (1998); Leeb & Pötscher (2003, 2005, 2006, 2008); Kabaila (1995, 1998,
2005, 2009); Kabaila & Leeb (2006); Kabaila & Giri (2009) and Berk et al.
(2009), among others. The aforementioned research recognize and explain the
undesirable outcomes of distorted sampling distribution of regression parameter
estimators obtained after model selection and reduced coverage probability of
confidence regions that are constructed in a näıve fashion where the data-driven
nature of a selected model is ignored. Furthermore, via the lens of replicability of
results, the confidence regions so constructed may contain zero after necessary
adjustment by accounting for model selection randomness, whereas they may not
include zero without such adjustments. Therefore, classic uncertainty quantifi-
cation measures formulated without considering additional layer of randomness
from selection indeed contribute to the irreplicability of scientific results. As
such, it is imperative to devise reliable uncertainty quantification measures to
account for randomness inherited from data-dependent model selection proce-
dures.

Recently, various proposals for constructing asymptotically valid p-values
as well as marginal and simultaneous confidence intervals for the so-called
population-based regression coefficients (see equation (1) for definition) in high-
dimensional linear regression models have been suggested (Zhang & Zhang
2014, van der Geer et al. 2014, Javanmard & Montanari 2014a, Bühlmann
2013, Neykov et al. 2018, Ning & Liu 2017, 2014, Belloni et al. 2015, 2014,
Belloni, Chernozhukov & Wei 2013, Wasserman & Roeder 2009, Meinshausen
et al. 2009, Meinshausen & Bühlmann 2010, Shah & Samworth 2013, Khalili &
Vidyashankar 2018, Chernozhukov et al. 2018, Belloni, Chernozhukov & Hansen
2013, Chatterjee & Lahiri 2011, 2013, Liu & Yu 2013, Dezeure et al. 2017a,
Minnier et al. 2011, Dezeure et al. 2017b). Dezeure et al. (2015) provides a com-
prehensive review and numerical comparison of a wide spectrum of statistical
inferential methods specifically designed for the population-based targets. They
also introduced an R package hdi (high-d imensional inference).

Considering randomness in estimation of regression coefficient(s) after model
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selection, Berk et al. (2013) argue that the population-based regression coeffi-
cient(s) (referred to as target(s) from now on) may have interpretation draw-
backs in some applications. They therefore present an alternative estimation
target(s), known as the projection-based regression coefficient(s). Focusing on
such targets, Berk et al. (2013) and Lee et al. (2016) propose two methods
for constructing valid post-selection confidence intervals. They are respectively
known as the post-selection inference (PoSI) and the exact post-selection infer-
ence (EPoSI) methods.

To the best of our knowledge, Leeb et al. (2015) is the only paper that pro-
vides a comparative study on methods of constructing post-selection confidence
intervals for the projection-based targets. Specifically, these authors compared
the näıve confidence intervals with those constructed using the PoSI approach
proposed by Berk et al. (2013), where AIC, BIC and LASSO (Tibshirani 1996)
are used for model selection. Their simulations indicate that the PoSI confi-
dence intervals do deliver at least the desired minimal coverage probability for
the projected coefficients, while näıve confidence intervals in general fail to do so.
Interestingly, dramatic under-coverage is observed for both types of confidence
intervals if the projection-based targets are replaced by the population-based
regression coefficients. Such under-coverage could be explained by the fact that
the PoSI confidence intervals are not designed for the population-based target.

Yet, the existing literature on post-model-selection (PMS) inference stops
short on three different fronts. First, there is no integrated review of existing
literature in post-selection inference. It is therefore an arduous task to grasp the
essence of post-selection inference in a succinct and unified fashion. Second, the
empirical studies by Leeb et al. (2015) fall short in: (1) comparing confidence
intervals constructed using the Scheffé’s (Scheffé 1959) and the EPoSI (Lee et al.
2016) approaches; (2) considering other important indicators such as the length
of confidence intervals. Third, a collection of recent methodological advancement
has not been presented in a unified fashion.

This manuscript aims at filling the aforementioned gaps and presents an
integrated guide for the contemporary PMS inference. Particularly, using simu-
lations, we compare näıve confidence intervals against those constructed by the
Scheffé’s method, the PoSI and the EPoSI approaches. In terms of the average
coverage probabilities for the projection-based regression coefficients, we find
that when conditioning on the selected submodel only, a mix of under- and sat-
isfactory coverage is observed for the EPoSI confidence intervals while the PoSI
confidence intervals consistently achieve over-coverage. In terms of the average
length of confidence intervals, those constructed by the EPoSI method are in
general shorter than the ones by the PoSI approach, reinforcing the conservative
nature underpinning the PoSI method. On the other hand, when conditioning on
both the selected submodel and corresponding sign vector of point estimator(s),
similar phenomenon with respect to the average coverage probabilities is seen
for the EPoSI and PoSI confidence intervals. However, in this case, the EPoSI
confidence intervals can sometimes be much wider. We have observed through
simulations that the EPoSI confidence intervals, obtained via conditioning on
the selected submodel or both the selected submodel and corresponding sign
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vector of parameter estimator(s), sometimes have infinite lengths. This has also
been analytically discussed in the recent manuscript Kivaranovic & Leeb (2021).

The rest of the manuscript is organized as follows: in Section 2, we intro-
duce notation and terminology. In Section 3, we provide a motivating example
based on the linear regression model to give some tangible hints to the pitfalls
of ignoring data-dependent model selection on statistical inference. In Section
4, we present a summary of key results in finite- and large-sample distributional
properties of the PMS estimators as well as properties of coverage probabilities
of näıve confidence intervals, serving as theoretical insights into the phenomena
observed in Section 3. In Section 5, we introduce and discuss some merits and
demerits of both population- and projection-based estimation targets. Focusing
on the projection-based targets, we then provide a selective review of exist-
ing post-selection methods for uncertainty assessment in Section 6. Particular
emphasis is placed on the construction of valid post-selection confidence inter-
vals and p-values. This is followed by a concise presentation of various recent
methodological development in post-model-selection inference. In Section 7, we
provide an overview of statistical inference methods designed specifically for
the population-based targets, even though they may not be considered as post-
selection methods in the most strict sense. In Section 8, focusing on methods
designed for projection-based regression coefficients, we present comparative
simulations to evaluate different constructions of post-selection confidence in-
tervals in linear regression models. Conclusions are given in Section 9.

2. Notation and terminology

Let Y ∈ R be the response variable and xj ∈ R, j = 1, ..., p, be the predictors
(covariates). Let Y = (Y1, ..., Yn)

� ∈ R
n be the response vector and X =

(x1, ...,xn)
� ∈ R

n×p, where x�
i = (xi1, ..., xip), i = 1, ..., n, denote the n × p

design matrix. For any d-dimensional vector v = (v1, ..., vd) ∈ R
d, we denote its

�q-norm by ||v||q =
(∑d

j=1 |vj |q
)1/q

, for 1 ≤ q < ∞. In the case of Euclidean
norm || · ||2, we omit the subscript and write || · ||. In what follows, we mainly
have either d = p or n. Furthermore, ||v||∞ = maxj=1,...,d |vj |.

A linear regression model with independently and identically distributed
(i.i.d.) errors is defined by

Y = μ+ ε, (1)

where μ = Xβ0, and β0 = (β0
1 , ..., β

0
p)

� denotes the true population-based

regression coefficient (target), ε = (ε1, ..., εn)
� is the error vector with εi ∼

N(0, σ2) for some σ2 > 0, and εi’s are independent of the design matrix X.
Let the index set M = {j1, ..., jm} ⊆ {1, ..., p} denote a linear submodel

which contains explanatory variables with indices in M , where |M | = m ≤ p
denotes the size of submodel M . Then we define XM ∈ R

n×m to be the n×m
submatrix of the design matrix X with columns indexed by M . The linear
regression model corresponding to a submodel M is given by

Y = XMβM + ε. (2)
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If we set M = {1, ..., p} in (2), that is the index set of all the predictors, we
obtain the linear regression model (1) with the true population-based regression
coefficient β0. Indeed, this observation consists of one rudimentary aspect of the
interpretation for β0, which is referred to as the full model interpretation of pa-
rameters by Berk et al. (2013). More specifically, the linear regression model in
(1) is considered as the true data generating mechanism for the response vector
Y . As such, a causal connection between the response and the predictors is im-
plicitly embedded in this interpretation. Under this setup, coefficient estimates
for de-selected predictors are assigned to be zero, and the resulting submodel
comprising only the selected predictors is merely the “computational compres-
sion”(ibid., Appendix, B.1) of the data. While this interpretation has merits in
explaining natural and physical scientific phenomena, Berk et al. (2013) point
out that: (i) the idea of having a full model exhibiting a causal interpretation
is controversial, and (ii) inferential complications may arise from this interpre-
tation as well (Leeb & Pötscher 2005).

To avoid these contentious elements, as an alternative to the full model inter-
pretation of parameters, Berk et al. (2013) propose the submodel interpretation
of parameters. Instead of assuming a linear structure for the true model, one
would give up the proposition of having a full model all together and only as-
sume the existence of the true mean response vector E(Y ) = μ in model (1).
Then, the so-called projection-based target corresponding to a given submodel
M is defined as

bM = arg min
b∈R|M|

‖μ−XMb‖2 = (X�
MXM )−1X�

Mμ. (3)

We will provide more discussion about the two estimation targets β0 and bM
in Sections 5.1 and 5.2, respectively.

Assuming the design matrix X is fixed, we define M̂n to be a data-dependent

model selection procedure, a measurable function of Y , given by M̂n : R
n →

Mall, where Mall = {M |M ⊆ {1, ..., p}, rank(XM ) = |M |}, is the space of
all possible full-rank submodels. Let Mtrue ∈ Mall be the index set of the true
data generating mechanism upon assuming such linear model exists. From now

on, we use M̂ to represent the output of the map M̂n(Y ), i.e. M̂ = M̂n(Y ).

If a submodel M is given a priori, then the ordinary least-squares (OLS)
estimator of βM in (2) is given by

β̂M = (X�
MXM )−1X�

MY . (4)

The same estimator is also used for bM in (3), and to avoid introducing more

notation, we use β̂M as its estimator. Components of β̂M are denoted by β̂j·M ,
for all j ∈ M .

Moreover, related to our motivating example in Section 3 based on (1), we

denote β̂
Method

M̂ as the OLS estimator corresponding to a submodel M̂ selected
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by a “Method” considered below. Define

TMethod
j·M̂ =

(β̂Method
j·M̂ − β0

j )

sd(β̂Method
j·M̂

)
and TMethod

j·M̂ ,0
=

β̂Method
j·M̂

sd(β̂Method
j·M̂

)
, (5)

where sd(·) stands for standard deviation. The quantity TMethod
j·M̂ will be used

for constructing näıve confidence intervals for β0
j , and TMethod

j·M̂ ,0
will be used

for testing the null hypothesis β0
j = 0. Also, Tj·M and Tj·M ,0 are respectively

defined when replacing β̂Method
j·M̂ in TMethod

j·M̂ and TMethod
j·M̂ ,0

by β̂j·M , for any fixed

submodel M ∈ Mall.
In addition, a penalized least-squares estimator of β0 in (1) is given by

β̂(λ) = argmin
β∈Rp

{
‖Y −Xβ‖2 + Jn(β;λ)

}
, (6)

where ‖Y − Xβ‖2 =
∑n

i=1(Yi − x�
i β)2, λ is the tuning parameter (possibly

multi-dimensional) and Jn(β;λ) is a penalty function. In the sequel, we consider
these penalties:

1. LASSO: Jn(β;λ) = λ||β||1, where λ = λ;
2. Elastic net (Zou & Hastie 2005): Jn(β;λ) = λ1||β||1 + λ2||β||2, where

λ = (λ1, λ2);
3. SCAD (Fan & Li 2001): Jn(β;λ) = n

∑p
j=1 P (|βj |;λ), where P (|βj |;λ) is

given by

P (|βj |;λ) =

⎧⎪⎨⎪⎩
λ|βj | if |βj | ≤ λ;

− (β2
j−2aλ|βj |+λ2)

2(a−1) if λ < |βj | ≤ aλ;
(a+1)λ2

2 if |βj | > aλ.

Here, λ = (λ, a), where a ≥ 2.
4. Adaptive LASSO (AdaLASSO) (Zou 2006): Jn(β;λ) = λ||w ∗β||1, λ = λ

and the data-dependent weights w = (w1, ..., wp)
� is recommended to be

chosen as wj = 1/|β̂j | for some consistent estimator β̂j of β0
j . Moreover,

where ∗ represents elementwise multiplication of two vectors.

The books by Fan et al. (2020), Wainwright (2019), and Hastie et al. (2015)
provide a comprehensive review on the above modern regularization techniques
and related theories in the context of different statistical models, including linear
and generalized linear regression models.

3. Motivating example

We now give some tangible insights into the unfavorable impacts of ignoring the
data-dependent model selection on statistical inference. Through a simulated
example based on the linear regression model (1), we achieve this by:
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(a) plotting the empirical densities and the boxplots of β̂Method
j·M̂ against β̂j·Mtrue

in FIG 1, where j ∈ Mtrue = {1, 3, 4, 5, 7}. Our choices of “Method” to ob-

tain M̂ are the LASSO, elastic net and SCAD, where the required tuning
parameters are chosen based on a 10-fold cross validation.

(b) plotting the empirical densities (FIG 2) and the boxplots (FIG 3) of
TMethod
j·M̂ and TMethod

j·M̂ ,0
against their respective counterparts, Tj·Mtrue

and

Tj·Mtrue,0
, where j ∈ Mtrue;

(c) tabulating the empirical coverage probabilities of the näıve confidence in-
tervals for the true nonzero β0

j , where j ∈ Mtrue in TABLE 1. The näıve

confidence intervals are constructed by using TMethod
j·M̂ in (5), and are given

by (
β̂Method
j·M̂ − t(n− |M̂ |; 1− α/2)sd(β̂Method

j·M̂ ),

β̂Method
j·M̂ + t(n− |M̂ |; 1− α/2)sd(β̂Method

j·M̂ )

)
, (7)

where t(n−|M̂ |; 1−α/2) is the 100(1−α/2)th percentile of a t-distribution

with n− |M̂ | degrees of freedom.

In this example, for parts (a) and (b) we only report the results for j = 5
as the plots for j = 1, 3, 4, 7 show similar behaviors. For part (c), we report
empirical coverage probabilities of 95% (α = 0.05) näıve confidence intervals

Fig 1. Density plots (left) and box plots (right) of β̂Method
5·M̂

against β̂5·Mtrue
.
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Fig 2. Density plots of TMethod
5·M̂

against T5·Mtrue
(left) and TMethod

5·M̂,0
against T5·Mtrue,0

(right).

Fig 3. Box-plots of TMethod
5·M̂

against T5·Mtrue
(left) and TMethod

5·M̂ ,0
against T5·Mtrue,0

(right). In

the left panel, the 2.5th and the 97.5th percentiles of each boxplot are indicated.
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Table 1

Empirical coverage probabilities of 95% näıve confidence intervals for the true non-zero β0
j ’s.

Empirical coverage probabilities
Model Selector + Estimation β0

1 β0
3 β0

4 β0
5 β0

7

LASSO + OLS .691 .486 .695 .736 .560
Elastic net + OLS .749 .493 .815 .867 .619
SCAD + OLS .362 .736 .682 .727 .723

in (7) for parameters β0
j , j = 1, 3, 4, 5, 7, in TABLE 1 below. Details of model

setting and R implementation, and additional plots for j = 1, 3, 4, 7 are given in
Section S1 of the Supplementary Material (Zhang, Khalili & Asgharian 2022).

FIG 1, 2 and 3 show that regardless of model selectors, there exists sub-
stantial discrepancies between the sampling distribution of post-selection quan-
tities, β̂Method

j·M̂ , TMethod
j·M̂ , TMethod

j·M̂ ,0
, and their counterparts, β̂j·Mtrue

, Tj·Mtrue
and

Tj·Mtrue,0
. More specifically, bimodality, longer tail and positive or negative

skewness appear in the sampling distribution of these post-selection quanti-
ties in contrast to their counterparts. Thus, we conclude that conducting model
selection and inference on the same data can distort the sampling distribution of
parameter estimators and the quantities in (5). In particular, the sampling distri-
butions of these quantities after model selection no longer follow t-distribution as
seen in FIG 2 and 3. Therefore, for example, in the construction of post-selection
confidence intervals based on TMethod

j·M̂ , simply using the tails of a t-distribution

would be inaccurate to capture the tail behaviors of TMethod
j·M̂ . This contributes

to the under-coverage of näıve confidence intervals in (7), a phenomenon noted
in TABLE 1. As it can be seen from the table, the under-coverage can be se-
vere.

In addition, our simulations indicate that there is no tractable pattern of the
post-selection sampling distributions of parameter estimators and quantities in
(5), and the coverage probability of näıve confidence intervals in (7). We provide
explanations for these phenomena in Sections 4.

4. Post-selection sampling distribution of parameter estimators and
properties of coverage probabilities of näıve confidence intervals

We now review existing results about finite- and large-sample distributional
properties of post-selection parameter estimators and properties of coverage
probabilities of näıve confidence intervals in (7).

The research in entangling the distributional properties of post-selection pa-
rameter estimators is mainly pioneered by Benedikt M. Pötscher and Hannes
Leeb. Through a series of works (Pötscher 1991, Pötscher & NovÁk 1998, Leeb
& Pötscher 2003, 2005, 2006, 2008), the following points have been highlighted:

(i) Deviation from Gaussianity. The finite- (in both known and unknown vari-
ance) and large-sample conditional (on the order of selected models) and
unconditional distributions of post-model-selection parameter estimators,
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in general, deviate from Gaussian. Indeed, these distributions are mixtures
of distributions, and each mixture component corresponds to a model in
the model space. As such, these distributions have complicated forms and
are difficult to work with when performing statistical inference.

(ii) Non-uniform convergence. The aforementioned mixture distributions de-
pend on the unknown true parameter β0. More specifically, regardless of
the use of consistent or inconsistent model selectors, the convergence of the
mixture distributions to their limiting distributions depends on how fre-
quently different models are selected. However, these frequencies depend
on the true parameter β0, and consequently, the convergence of post-
model-selection estimators to their limiting distributions is non-uniform
with respect to β0. Thus, irrespective of the sample size, inferential va-
lidity of using the large-sample distribution to estimate the corresponding
finite-sample counterpart is not guaranteed.

(iii) Nonexistence of uniformly consistent estimator. A uniformly consistent es-
timator of conditional (on the selected submodel) or unconditional distri-
bution of post-model-selection parameter estimator does not exist. There-
fore, it is impossible to estimate their exact distributions in a uniform and
consistent fashion.

These results provide theoretical explanations to the discrepancies between
the sampling distributions of the OLS estimator β̂j·Mtrue

and post-selection OLS

estimators β̂Method
j·M̂ as seen in FIG 1. Since the computation of the quantities in

(5) involves these parameter estimators, discrepancies between their true and
post-selection sampling distributions are expected as observed in FIG 2 and 3.

Next, we review results concerning finite- and large-sample properties of näıve
confidence intervals, serving as an explanation for the under-coverage observed
in TABLE 1. The relevant work was initiated by fixing the true regression co-
efficient. In various settings, Hurvich & Tsai (1990), Regal & Hook (1991) and
Zhang (1992) showed, both theoretically and via simulations, that finite- and
large-sample conditional (on selected models) and unconditional coverage prob-
abilities of näıve confidence intervals are lower than nominal coverage probabil-
ities.

In large-sample theory, Kabaila (1995) explored the pitfall of assigning the
criterion that asymptotic nominal coverage rate is achieved for a fixed regression
coefficient as a benchmark to assess the asymptotic validity of a confidence
region. In particular, using Hodge’s example of a “superefficient” estimator, the
author showed that even if the above criterion is met by some confidence interval,
for any given n, there exists a regression coefficient such that this confidence
interval fails to deliver the desired coverage probability. In other words, achieving
proper asymptotic coverage probability for a fixed regression coefficient does not
guarantee the validity of the associated confidence interval. As such, Kabaila
(1995) argued that asymptotic coverage rate of a valid confidence region should
be achieved by its minimal coverage probability over the space of all possible
values of β0. Based on this criterion, a novel Monte Carlo simulation algorithm
was proposed by Kabaila (2005) to compute the coverage probability of näıve
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confidence intervals at any given parameter value, which is also shown to be
lower than the nominal coverage probability based on simulated data. Further
attempts were made by Kabaila & Leeb (2006) and Kabaila & Giri (2009), where
upper bounds of the large- and finite-sample minimal coverage probability of
näıve confidence interval are respectively derived. The authors showed that this
upper bound could be far from the nominal coverage probability.

More detailed explanations of the above mentioned contents are respectively
given in Sections S2 and S3 of our Supplementary Material.

Having recognized the challenges in performing statistical inference after
data-driven model selection, researchers have since been devising post-selection
inferential methodologies that take into account model selection uncertainty. In
the next section, we discuss two types of statistical estimation targets.

5. Statistical estimation targets

One primary challenge of post-selection inference is the randomness in the esti-
mation target. For instance, under the setting of the linear regression model (1),

the OLS estimator corresponding to a submodel M ∈ Mall is given by β̂M =
(X�

MXM )−1X�
MY , which is an unbiased estimator of (X�

MXM )−1X�
MXβ0.

However, upon introducing the uncertainty inherited by a data-drive model

selector M̂n, it is not clear what the estimation target of the least-squares es-
timator (X�

M̂
XM̂ )−1X�

M̂
Y is. This makes the interpretation of an estimation

target so formed ambiguous. Thus, it is imperative to first formulate a mean-
ingful estimation target. With such motivation, we now discuss two classes of
estimation targets that have been the focus of contemporary high-dimensional
and post-selection inference literature, namely the population-based target in
(1), and the projection-based target in (3).

5.1. Population-based target

According to the full model interpretation of parameters (Berk et al. 2013),
the linear model (1) is regarded as the true data generating mechanism for
the response Y . As such, this model has the special status of embracing a
complete set of predictors which are causal for the response vector Y . In other
words, the variation in Y can be explained by that set of predictors. Under this
framework, although a submodel may be selected and the coefficient estimates of
the de-selected predictors are given a numerical value of zero, these predictors
do exist when conducting inference, and they have tangible and meaningful
interpretations. Therefore, the regression coefficient β0

j represents the expected
change in the response Y per unit change in xj , holding all the remaining
covariates fixed, regardless of being selected or de-selected. Thus, the coefficients
β0
j ’s are referred to as the population-based targets and they indeed contribute

to the interpretation of linear model (1) according to the aforementioned full
model interpretation of parameters.
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It is apparent that the above view is legitimate only within the presumed
framework (1). In fact, it hinges entirely on the first-order-correctness condition
E(Y ) = Xβ0. On the other hand, another line of thought argues that some
limitations may associate with the full model interpretation of parameters, which
motivates the introduction of the projection-based target as discussed in the
next section.

5.2. Projection-based target

There are several limitations of the interpretation of β0 according to the full
model view of parameters. First, the concept of the so-called full model to entan-
gle all the variability in Y is controversial. Given the complexity of the mother
nature, it may neither be accurate nor feasible to measure or include all the
pertinent predictors. Moreover, Berk et al. (2013) point out that due to the is-
sue of predictor redundancy, which is common in social and biological sciences,
the full model may not even contain the parameter of interest. Second, the full
model view may give rise to complications when conducting statistical infer-
ence. In fact, as shown by Leeb & Pötscher (2005), the sampling distribution
of coefficient estimator for the parameter of interest depends on all the other
true regression coefficients. Since these coefficients are unknown, it is uncertain
whether there exists discrepancy between the targeted sampling distribution
and its counterpart when we have a fixed model. As a consequence, this may
lead to unreliable statistical inference based on a wrong sampling distribution
of the estimator for the parameter of interest. Indeed, its true sampling distri-
bution cannot be estimated in a uniform and consistent manner; see Section 4,
point (iii). Third, it is contentious to presume a linear structure of the true
model. A plausible perspective toward statistical modeling of real life problems
is that none of the arbitrarily constructed candidate models and observed data
adequately represent the full reality (Bancroft & Han 1977, Box 1976). In fact,
the true data generating mechanism is perhaps much more complex. Thus, sim-
ply assuming a specific structure for the true model may lack solid scientific
verification.

Considering the above limitations with respect to the full model view of
parameters, Berk et al. (2013) proposed three principles pertaining to the in-
terpretation of regression parameters of a submodel: (i) “the full model has
no special status other than being the repository of available predictors”; (ii)
“the coefficients of excluded predictors are not zero; they are not defined and
therefore do not exist”; (iii) “the meaning of a predictor’s coefficient depends
on which other predictors are included in the selected model”.

Governed by the above three guidelines, Berk et al. (2013) subsequently pro-
posed the projection-based target bM as defined in (3). It is seen that bM is the
orthogonal projection of μ onto the column space of XM . In general, bM and
βM in (2) are different. In fact, if the first-order-correctness condition holds so
that μ = XMβM for the submodel M , then the two targets are equal.

It has been discussed that the formulation of projection-based target bM is
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advantageous over population-based target β0 in two aspects: (I) the first-order-
correctness condition is not required; (II) simplicity in interpretation. Abandon-
ing the assumption of the first-order-correctness is more appealing in many real
life statistical modeling problems. Indeed, the central concept underpinning the
definition of bM is that although it is unrealistic to assume a specific structure
of the true model, it is always legitimate to approximate the true model by a
linear structure containing a selected submodel M . As such, with a selected
submodel M , each component of projected regression coefficient, denoted by
bj·M , j ∈ M , is interpreted as the approximated expected change by submodel
M in the response Y per unit change in xj , holding all other covariates in M
fixed. This interpretation is in fact the second advantage of bM as it is inter-
preted only within the framework of a submodel M thereby avoiding the issue
caused by covariates that are not included in M .

We next review the inferential methods for the two estimation targets dis-
cussed above respectively in Sections 6 and 7, by focusing on confidence interval
constructions.

6. Post-selection inferential methodologies

Focusing on the projection-based targets, we now provide a review of three ex-
isting post-selection statistical inferential methods. Particular emphasis is on
the construction of valid post-selection confidence intervals. A collection of re-
cent work in post-model-selection that complements the foregoing discussions is
presented in Section 6.4. Inferential methods designed for the population-based
targets have been surveyed and compared through simulations by Dezeure et al.
(2015) which we discuss and further elaborate on in Section 7.

6.1. Universally valid post-selection inference (PoSI)

Analogous to Scheffé’s S-method (Scheffé 1959) on valid simultaneous inference
by virtue of Scheffé’s constant, Berk et al. (2013) proposed the so-called PoSI
method, which is capable of producing universally valid post-selection confidence

intervals for the projection-based regression coefficients b
j·M̂ , j ∈ M̂ , regardless

of model selection procedures and selected submodel M̂ . Here “valid” means
the confidence intervals achieve at least the nominal coverage probability 1−α,
for any α ∈ (0, 1), by taking into account the model selection stage. The merit
of the PoSI method is that even if a selected submodel deviates from the true
model, it still guarantees valid inference for that selected submodel. We now
describe the method.

Given a submodel M̂ ∈ Mall selected by a generic model selection procedure

M̂n, we consider the following confidence interval for b
j·M̂ ,

CI
j·M̂ (K) =

(
β̂
j·M̂ −Kσ̂[(X�

M̂
X

M̂
)−1]

1/2
jj , β̂

j·M̂ +Kσ̂[(X�
M̂

X
M̂

)−1]
1/2
jj

)
,

(8)
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where β̂
j·M̂ is the OLS estimator corresponding to a submodel M̂ , K is a

constant to be specified below, and [(X�
M̂

X
M̂

)−1]jj is the jth diagonal el-

ement of the matrix [(X�
M̂

X
M̂

)−1]. The error variance σ2 is estimated by

σ̂2 = SSE/(n − p), where SSE is the sum of squares of errors obtained from
fitting a linear regression model including all the covariates (full model).

If in (8) K is replaced by t(n−|M̂ |; 1−α/2), we obtain the näıve confidence
interval in (7). We have demonstrated in our motivating example, TABLE 1 in
Section 3, that such interval fails to attain the nominal coverage probabilities
for the population-based targets. We refer to Remark 6.1.2 for a recent result
regarding the coverage probability of the näıve confidence intervals when the
population-based target is replaced by the projection-based target.

The goal of the PoSI approach is to have a potentially larger value of the
constant K to capture the extra randomness brought about by data-dependent

model selector M̂n. In this way, the resulting confidence interval becomes wider
and thus capable of achieving the nominal coverage probability, regardless of
model selection procedures and selected submodels. This objective can be for-
mulated as follows. The constant K in (8) is chosen such that

P

(
b
j·M̂ ∈ CI

j·M̂ (K), ∀j ∈ M̂

)
≥ 1− α, α ∈ (0, 1). (9)

More specifically, Berk et al. (2013) define the PoSI-constant,KPoSI ≡ KPoSI(X,
Mall, α, r), by

KPoSI(X,Mall, α, r) =

min

{
K ∈ R

∣∣∣∣ P( max
M∈Mall

max
j∈M

|tj·M | ≤ K

)
≥ 1− α

}
, (10)

where

tj·M =
β̂j·M − bj·M

σ̂[(X�
MXM )−1]

1/2
jj

,

=
e�j (X

�
MXM )−1X�

MY − e�j (X
�
MXM )−1X�

Mμ

σ̂[(X�
MXM )−1]

1/2
jj

,

=
e�j (X

�
MXM )−1X�

M (Y − μ)

σ̂[(X�
MXM )−1]

1/2
jj

,

=
e�j (X

�
MXM )−1X�

Mε

σ̂[(X�
MXM )−1]

1/2
jj

, and r = n− p. (11)

Recall that ej ∈ R
|M | is the jth standard basis. Now, since for any randomly

selected submodel M̂ ,

max
j∈M̂

|t
j·M̂ | ≤ max

M∈Mall

max
j∈M

|tj·M |,
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we then have

P

(
max
j∈M̂

|t
j·M̂ | ≤ KPoSI

)
≥ 1− α.

Thus, by choosing K = KPoSI, (9) is satisfied.

We notice that the constant KPoSI is the 100(1 − α/2)th percentile of the
random variable T = maxM∈Mall

maxj∈M |tj·M | in (10), whose distribution is
needed for the computation of KPoSI. On the other hand, for each M ∈ Mall,
the random variable tj·M as shown in (11) mainly depends on the design ma-
trix XM and the error term ε = (ε1, ..., εn)

�, where εi’s are independent and
εi ∼ N(0, σ2). Thus, the distribution of T can be approximated using Monte
Carlo simulations. Specifically, we first obtain several copies of the random vari-
able T based on independent draws of ε, where εi ∼ N(0, σ̂2) are generated
independently. Then, given α, the constant KPoSI satisfying (10) is approxi-
mated by the 100(1 − α/2)th percentile of the empirical distribution based on
the obtained copies of T . Recall that σ̂2 is computed based on the full model. In
practice, this computation has been implemented in the R package PoSI (Buja
& Zhang 2015).

Another choice for the constant K in (8) is the Scheffé’s constant (Scheffé
1959), given by KSch =

√
d× F (d, r; 1− α) under the linear regression model

(1), where d is the rank of the full design matrix X and F (d, r; 1− α) is the
100(1 − α)th percentile of an F -distribution with d and r degrees of freedom,
i.e. P(F ≥ F (d, r; 1 − α)) = 1 − α. In comparison, the Scheffé’s constant is
more conservative than the PoSI-constant, as Berk et al. (2013) showed that
KPoSI ≤ KSch, for all design matrices X and any model universe Mall.

It is worthwhile to note that the calculation of the PoSI-constant, KPoSI, is
independent of any quantities derived from selected submodels. In other words,
the formulation of the PoSI-constant is pre-experimental as it does not depend
on any experiment outcomes. Although the construction of the PoSI confidence
interval unavoidably involves some post-experimental quantities which are de-
pendent on the experiment outcomes (such as the post-selection point estima-
tors), the inclusion of the PoSI-constant indeed contributes to the universal
validity in covering a random projected target with nominal coverage probabil-
ity.

However, the strong universal protection resulted from the pre-experimental
nature of the PoSI approach implies that this method is necessarily conser-
vative, since its inferential validity is safeguarded against all possible selected
submodels. Indeed, our simulations in Section 8 indicate that conditioning on
a selected submodel, the PoSI confidence intervals are in general wider than
the EPoSI confidence intervals (introduced in the next section). Yet, we demon-
strate that this conservativeness of the PoSI approach is moderate, since when
conditioning on both the selected submodel and corresponding sign vector of
point estimator(s), the PoSI confidence intervals are not necessarily wider.

Apart from the above characteristics, one limitation of the PoSI approach is
its relatively high computational cost for computing the PoSI constant KPoSI.
In fact, the authors recommended to use this approach for designs with p ≈ 20
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only. Therefore, this method is not feasible in high- or ultrahigh-dimensional
settings unless some pre-screening procedure (Fan & Lv 2008) is performed.

Remark 6.1.1. The order of the magnitude of the PoSI-constant is studied by
Berk et al. (2013) and Bachoc et al. (2018). Berk et al. (2013) prove that for a
specific type of exchangeable design matrix, KPoSI = O(

√
log p) and this rate is

also achieved for orthogonal design matrix. In full generality, however, it turns
out that KPoSI = O(

√
p), which is the rate for the Scheffé’s constant. Bachoc

et al. (2018) derive an upper bound of KPoSI when the design matrix satisfies a
Restricted Isometry Property condition (Foucart & Rauhut 2013). In practice,
this upper bound becomes useful when it is computable while KPoSI itself is
not. In this case, KPoSI can be replaced by the upper bound for constructing
confidence intervals.

Remark 6.1.2. Zhao, Shojaie & Witten (2021) show that when we apply the
LASSO for variable selection and then refit a linear regression model (1) corre-
sponding to the selected variables, the resulting ordinary least-squares estimator
is asymptotically normally distributed. As a consequence, the näıve confidence
interval, CI

j·M̂ (z1−α/2) in (8), where z1−α/2 denotes the 100(1 − α/2)th per-
centile of a standard normal distribution, asymptotically attains the nominal
coverage probability of 1 − α for the projected target. These results, however,
depend on several assumptions regarding the design matrix X, its dimensions
n and p, the tuning parameter λ in running the LASSO for variable selection,
and the true signal strength.

6.2. Exact post-selection inference (EPoSI)

In contrast to the pre-experimental proposal by Berk et al. (2013), Lee et al.
(2016) and Lee & Taylor (2014) present a post-experimental approach, which de-
pends on the model selection procedure and the selected submodel. Specifically,
they construct confidence intervals with the exact (1 − α) coverage probabil-
ity via conditioning on a selected submodel. Therefore, their method is known
as the conditionally exact post-selection inference and the resulting confidence
interval for bj·M , denoted by CIj·M , satisfies

P

(
bj·M ∈ CIj·M

∣∣∣ M̂ = M
)
= 1− α, j ∈ M , (12)

where the event
{
M̂ = M

}
means

{
Y ∈ R

n : M̂n(Y ) = M
}
. Since this

method involves a number of delicate steps, we first provide a compendium of
this approach in Algorithm 1, before supplying details below.

The crux of the EPoSI approach involves two stages: first, determination of

the conditional distribution of
(
β̂j·M

∣∣∣ M̂ = M
)
, which corresponds to Steps

1-3 below, and it turns out to be a truncated normal distribution; second,
construction of the confidence intervals as shown in (12), which corresponds
Steps 4-5. Specifically, the construction of confidence intervals shown in (12)
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Algorithm 1 EPoSI Algorithm
1: For model selection procedures possessing polyhedral selection property, the so-called se-

lection event En(M , s), defined as En(M , s) =
{
Y ∈ R

n : M̂n(Y ) = M , ŝn(Y ) = s
}

≡{
M̂ = M , ŝ = s

}
, can be shown to be equivalent to

{
Y ∈ R

n : A(M, s) Y ≤ B(M, s)
}

for some affine matrix A(M, s) and vector B(M, s).

2: The above formulation of selection event can be further decomposed as
{
Y ∈ R

n :

A(M, s) Y ≤ B(M, s)
}

=
{
Y ∈ R

n : η�
j Y ∈

[
V−(Y ),V+(Y )

]
,V0(Y ) ≥ 0

}
, where

η�
j Y gives the ordinary least-squares estimator for bj·M , which is β̂j·M . Thus, the con-

ditional distribution of
(
β̂j·M |En(M , s)

)
is equivalent to

(
η�
j Y

∣∣∣{η�
j Y ∈ [v−, v+]

})
.

3: By the normality assumption of Y ,
(
η�
j Y

∣∣∣{η�
j Y ∈ [v−, v+]

})
follows a truncated normal

distribution with cumulative distribution function given by F
[v−,v+]
ξj ,τj

(·), where ξj and τj

are the mean and variance of this truncated normal, respectively.

4: By Probability Integral Transform,
(
F

[V−,V+]
ξj ,τj

(η�
j Y )

∣∣∣ En(M , s)
)
∼ Unif(0, 1).

5: The above result in Step 4 enables us to construct the confidence interval CIj·M in (12).
In practice, the upper and lower bounds of CIj·M can be computed using the R package
selectiveInference (Tibshirani, Tibshirani, Taylor, Loftus & Reid 2016).

can be accomplished via first considering the distribution of
(
β̂j·M

∣∣∣ M̂ =

M , ŝ = s
)
. Next, we provide details for the EPoSI framework.

Step 1 We first recall that the ordinary least-squares estimator for bj·M is

β̂j·M . To obtain CIj·M as in (12), we need to find the conditional distribution

of β̂j·M , given M̂ = M . To achieve that, we first investigate the conditional

distribution of β̂j·M given the so-called selection event

En(M , s) =
{
Y ∈ R

n : M̂n(Y ) = M , ŝn(Y ) = s
}
≡
{
M̂ = M , ŝ = s

}
.

(13)

Here, β̂j·M can be written as η�
j Y , where η�

j = e�j (X
�
MXM )−1X�

M and ej ∈
R

|M | is the jth standard basis. Moreover, ŝn is the selection of sign vector of the
non-zero coefficient estimate(s) corresponding to the model selection procedure

M̂n, ŝ is the selected sign vector which is random and s is the selected sign
vector corresponding to submodel M .

Then, to ascertain the exact conditional distribution of η�
j Y | En(M , s), it

is required that the selection event En(M , s) satisfies

En(M , s) =
{
Y ∈ R

n : A(M, s) Y ≤ B(M, s)
}
, (14)

where A(M, s) and B(M,s) respectively denote some affine matrix and vector
depending on the model selection procedure, selected submodel, and sign vector
of the corresponding non-zero coefficient estimate(s). Here, for two vectors u
and v, we say u ≤ v if and only if every component of u is less than or equal
to every component of v. Geometrically, (14) is equivalent to characterizing the
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response vector falling into a single polytope. Thus, this requirement is known as
the polyhedral selection property. Examples of model selection procedures hav-
ing this property include, but not limited to, LASSO and elastic net with fixed
tuning parameters, marginal screening, nonnegative least squares and orthogo-
nal matching pursuit (Tropp & Gilbert 2007). The specific forms of the affine
matrix and vector A(M, s) and B(M,s) corresponding to LASSO are given
in Section S4 of our Supplementary Material.

Step 2 With the polyhedral selection property (14), Lee et al. (2016) and
Lee & Taylor (2014) show that the single polytope {Y ∈ R

n : A(M, s) Y ≤
B(M, s)} can be further decomposed as{

Y ∈ R
n : A(M, s) Y ≤ B(M,s)

}
=
{
Y ∈ R

n : η�
j Y ∈

[
V−(Y ),V+(Y )

]
,V0(Y ) ≥ 0

}
, (15)

where the exact forms of quantities V−(Y ),V+(Y ) and V0(Y ) are given in
Section S4 of our Supplementary Material. These quantities are shown to be
independent of η�

j Y . In summary, with the polyhedral selection property, the
selection event En(M , s) is equivalent to the event of all Y ∈ R

n such that
η�
j Y is truncated to some interval [V−(Y ),V+(Y )] with V0(Y ) ≥ 0.

Step 3 Based on the characterizations (14) and (15), and the assumption that
Y ∼ N (μ, σ2I), we have

η�
j Y

∣∣∣{η�
j Y ∈ [v−, v+]

}
∼ TN

(
ξj , τj ; v

−, v+
)
, (16)

where v−, v+ ∈ R, ξj = η�
j μ, τj = σ2||ηj ||2, and TN(μ, σ2; a, b) denotes a

Gaussian distribution with mean μ and variance σ2, truncated to the interval
[a, b].

Step 4 Let F
[a,b]
μ,σ2(x) denote the distribution function of such a truncated Gaus-

sian random variable. By the Probability Integral Transformation, (14) and (16),
we have (

F
[V−,V+]
ξj ,τj

(η�
j Y )

∣∣∣ En(M , s)
)
∼ Unif(0, 1), (17)

where V− =V−(Y ), V+ =V+(Y ) and Unif(0, 1) denotes a continuous uniform
random variable on the interval (0, 1).

Step 5 The finite-sample pivot (17) enables us to construct valid confidence
intervals for the bj·M as follows. Let Ls

j and Us
j be two quantities satisfying

F
[V−,V+]
Ls
j ,τj

(η�
j Y ) = 1 − α/2 and F

[V−,V+]
Us

j ,τj
(η�

j Y ) = α/2. Then due to the fact

that F
[a,b]
μ,σ2(x) is monotone decreasing in μ (Lee et al. 2016), we have

P

(
bj·M ∈ [Ls

j ,U
s
j ]
∣∣∣ En(M , s)

)
= 1− α, (18)
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where En(M , s) satisfies the requirement in (14).
To construct the confidence intervals in (12), we then consider a union of

polytopes:{
M̂ = M

}
=

⋃
s∈{−1,1}|M|

{
M̂ = M , ŝ = s

}
=

⋃
s∈{−1,1}|M|

En(M , s)

=
⋃

s∈{−1,1}|M|

{
Y : η�

j Y ∈ [V−(Y ),V+(Y )],V0(Y ) ≥ 0
}
by (15),

=
{
Y : η�

j Y ∈ [Ṽ−(Y ), Ṽ+(Y )], Ṽ0(Y ) ≥ 0
}
, (19)

where the union is taken over 2|M | sign vectors. By the same argument as
conditioning on a single polytope in (17), we obtain the uniformly distributed
pivotal quantity as(

F
[Ṽ−,Ṽ+]
ξj ,τj

(η�
j Y )

∣∣∣ M̂ = M
)
∼ Unif(0, 1), (20)

from which the lower and upper bound Lj and Uj can be constructed in the
same fashion as the single polytope-based interval in (18). As such, the EPoSI
confidence interval CIj·M in (12) is given by [Lj ,Uj ].

One advantage of the EPoSI is its capability of constructing valid post-
selection confidence intervals in both low- and high-dimensional configurations.
Taylor & Tibshirani (2018) explore generalization of the EPoSI approach to a
large class of �1-penalized regression models, including generalized linear mod-
els, Cox’s proportional hazards model, and the graphical LASSO (Friedman
et al. 2008). On the other hand, one limitation of the EPoSI approach is with
respect to the lengths of the resulting confidence intervals in both single and
union of polytopes cases. More specifically, by conditioning on a single polytope
(14) or a union of polytopes (19), the resulting confidence intervals are some-
times wider than the competing confidence intervals when the signal strengths
are weak (Lee et al. 2016), or may even have infinite lengths (Kivaranovic &
Leeb 2021). These phenomena have also been demonstrated by our simulations
in TABLE 6-8, Section 8.

To gain insights and explore possible remedial procedures to this limitation,
Fithian et al. (2017) explain that including redundant information in the selec-
tion event in (15), also known as the conditioning event, gives rise to reduced
power of associated hypothesis tests, contributing to unacceptably wide con-
fidence intervals. The authors then propose a generic framework of uniformly
most powerful unbiased selective level-α test for exponential family models, and
conclude that hypothesis tests based on data splitting procedures are always
inadmissible. In other words, there always exists a testing procedure exhibiting
higher power than data splitting. Tian & Taylor (2018) propose to incorporate
a noise ω in the original response Y and perform subsequent inference proce-
dures outlined in this section on the randomized response Y ∗ = Y + ω. It is
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theoretically shown that the resulting estimator derived from the randomized
response Y ∗ is uniformly consistent. Moreover, via simulations, Tian & Taylor
(2018) demonstrate that assigning ω to be either Gaussian or logistic noise leads
to shortened EPoSI confidence intervals. This framework of randomized noise
augmentation is then applied by Hyun et al. (2021) to post-selection inference
for change point detection, which demonstrates enhanced power. As discussed
by Fithian et al. (2017) and Tian & Taylor (2018), conditioning on unnecessary
information implies less information for statistical inference, and hence resulting
in wider confidence intervals. Motivated by this, Liu et al. (2018) construct in-
ferential framework with so-called minimal conditioning, focusing on a different
estimation target than the projection-based one in (3). Specifically, they divide

the selected model M̂n(Y ) = M into two groups of variables, namely the high

and low value targets. Only the high value targets, denoted by Ĥn(Y ) = H,
are included in the new conditioning event and instead of (12), the authors aim
to achieve

P

(
bj·H ∈ CIj·H

∣∣∣ j ∈ M , Ĥn(Y ) = H
)
= 1− α,

where the new target for inference, bj·H , is the jth coordinate of the vector

(X�
HXH)−1X�

HE(Y ), given the high value target H, and CIj·H is the corre-
sponding EPoSI confidence interval. To select the high value targets, two solu-
tions are proposed, namely stable-�1 and stable-t approach. Based on this set up,
similar derivation of truncation region and truncated Gaussian result as those in
(15) and (16) are constructed. Via simulation, Liu et al. (2018) verify that their
framework has less chance of producing infinite confidence intervals. Besides Liu
et al. (2018), Jewell et al. (2021), Mehrizi & Chenouri (2021) and Chen et al.
(2021) also have proposed EPoSI-based frameworks that condition on less in-
formation, with specific application to inference for change point detection and
graph fused LASSO, respectively.

6.3. EPoSI for sequential regression

Tibshirani, Taylor, Lockhart & Tibshirani (2016) show that the EPoSI method
can also be applied at each step of certain sequential regression procedures.
Their goal is to assess the significance of the latest selected covariate(s) through
projecting E(Y ) = μ onto the space of current active covariates. The implica-
tion is that, at each step of a sequential regression procedure and given the set
of current active predictors, conditionally exact post-selection confidence inter-
vals for the projected regression coefficient of a newly-entered covariate can be
constructed. We should be aware that the EPoSI approach is only applicable
to those sequential regression procedures that at each step satisfy the polyhe-
dral selection property described in Section 6.2. A non-exhaustive list of such
sequential regression procedures includes a modified version of forward stepwise
regression (Tibshirani, Taylor, Lockhart & Tibshirani 2016), the least angle re-
gression (LARS) (Efron et al. 2004) and the LASSO solution path which is a
modified LARS path.
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To apply the EPoSI method on a sequential regression procedure, similar to
(13), consider the selection event

En,k(Mk, sk) =
{
Y ∈ R

n : M̂n,k(Y ) = Mk, ŝn,k(Y ) = sk

}
,

where Mk and sk are respectively the set of current active covariate(s) and sign
vector of their corresponding estimated regression coefficient(s) after k steps. If
the polyhedral selection property is satisfied, then by (14), we have

En,k(Mk, sk) =
{
Y ∈ R

n : Ak(Mk, sk) Y ≤ Bk(Mk, sk)
}
,

for some step-specific affine matrixAk(Mk, sk) ≡ Ak and vectorBk(Mk, sk) ≡
Bk. Given Ak and Bk, valid conditional confidence intervals for the projected
coefficient(s) of the newly-entered covariate(s) after k steps, conditioning on
En,k(Mk, sk), can be constructed as prescribed in Section 6.2. Marginalizing
over 2|Mk| possible sign patterns yields a confidence interval upon conditioning

on {M̂n,k(Y ) = Mk}.
In case of a modified forward stepwise regression, Tibshirani, Taylor, Lockhart

& Tibshirani (2016) explicitly construct Ak and Bk through induction. They
show that Bk = 0, for all k, and both Ak and Bk have exactly 2pk − k(k + 1)
rows after k steps, where p is the total number of available covariates in the
data. Moreover, Ak and Bk are also formulated when applying this scheme to
the LARS and LASSO solution path. In this case, the authors demonstrate that
both the affine matrix Ak and vector Bk roughly reach 3pk rows after k steps,
resulting in relatively heavier computation load. To remedy the computational
burden in case of the LARS path, the authors propose a compact version of Ak

andBk, denoted by Ãk and B̃k. The compact versions only have k+1 rows after
k steps, which immensely enhance the computational feasibility and efficiency of
the EPoSI method. The authors show that applying Ãk and B̃k for uncertainty
quantification about w�

k μ requires the contrast vector at kth step, wk, to be in
the column span of current active variables selected by LARS. As a consequence,
they propose the so-called spacing test H0,k : w�

k μ = 0, to assess the significance
of the latest selected variable at the kth step when regressing μ on the column
space of XMk

. The primary strength of the spacing test lies on the simplicity
of its corresponding one- and two-sided spacing statistics (Tibshirani, Taylor,
Lockhart & Tibshirani 2016). Recently, Azais et al. (2018) have examined the
distribution of the spacing test statistic under the alternative hypothesis. The
authors have studied the power of this test and proven that it is unbiased for
LARS.

Under the framework of the linear regression model (1), Lockhart et al. (2014)
present a closely related method to test the significance of all the k−1 predictors
entered before the kth knot λk along the LASSO solution path. Their goal is
to test H0 : supp(β0) ⊆ Mk−1 against its alternative, where supp(β0) = {j :
β0
j �= 0, 1 ≤ j ≤ p}. Their proposed statistic for testing the null hypothesis H0

is called covariance test statistic and is given by

Ck =
1

σ2
·
(〈

Y ,XMk
β̂LASSO(λk+1)

〉
−
〈
Y ,XMk−1

β̃LASSO(λk+1)
〉)

, (21)
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where 〈·, ·〉 denotes the dot product, β̂LASSO(λk+1) is the estimated coefficient(s)
along the LASSO solution path with tuning parameter λ = λk+1 using pre-

dictors in Mk, and β̃LASSO(λk+1) is the estimated coefficient(s) obtained by
re-applying LASSO with tuning parameter λ = λk+1 to the active variables in
Mk−1. In other words, Ck in (21) measures how much change in the covariance
between the response vector Y and the fitted values can be attributed to the
newly-entered predictor(s) at the tuning parameter value λ = λk+1.

Lockhart et al. (2014) show that under H0 : supp(β0) ⊆ Mk−1, and certain
conditions on the design matrix X, as (n, p) −→ ∞,

Ck
d−→ Exp(1),

where Exp(1) is the exponential random variable with scale parameter 1. Thus,
the approximated exponential distribution is used to test H0 at a designated
significance level. Tibshirani, Taylor, Lockhart & Tibshirani (2016) establish
asymptotic equivalence between the covariance test statistic Ck and a modified
version of their spacing test statistic, Rk, as exp (Ck) = Rk(1 + op(1)).

6.4. Recent work

PoSI and related work: Following the idea of PoSI method (Berk et al.
2013) delineated in Section 6.1, Bachoc et al. (2020) develop a general frame-
work to construct asymptotically (p fixed and n → ∞) valid marginal confidence
interval for the projection-based target b

M̂
defined in (3), irrespective of model

selectors and selected submodel M̂ . Remarkably, the large-sample coverage rate
attained by such interval for b

M̂
is also uniformly achieved over an arbitrary

sequence of underlying data generating mechanisms. One salient feature of this
method is that it does not require the homoscedasticity and normality assump-
tions, Y ∼ N (μ, σ2I), as in Berk et al. (2013). Moreover, this approach is
applicable to a wide range of model settings, including homoscedastic or het-
eroscedastic linear regression models and binary regression models. Specifically,
when fitting homoscedastic linear regression models to non-Gaussian data, the
proposed confidence interval has the same form as (8) with K = KUPoSI, known
as the uniform PoSI-constant. In comparison with the PoSI method, KUPoSI is
computed as the 100(1 − α)th percentile of the maximum of Gaussian random
variables, whereas the PoSI-constant, KPoSI, is that of the maximum of the t-
type random variables as in (10). In addition, in constructing CI

j·M̂ (KUPoSI),

the estimator of the error variance, σ̂, is obtained based on the selected sub-
model. In contrast, this estimator is calculated based on the full model in for-
mulating the PoSI confidence interval CI

j·M̂ (KPoSI). In practice, the algorithm
for computing KUPoSI is given in the supplementary material of Bachoc et al.
(2019).

So far, the aforementioned methodologies have been proposed upon condi-
tioning on all the regressors contained in the design matrix X. The implication
is that the distribution of X is independent of any model parameter of interest,
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say θ, to be estimated. Such ancillarity assumption of the distribution of X
with respect to θ can be mathematically expressed as

fX,Y (y,x;θ) = fY |X(y|x;θ) · fX(x), (22)

where fX,Y , fY |X and fX respectively denote the joint distribution of (X,Y ),
conditional distribution of Y given X and marginal distribution of X. Buja
et al. (2015) (Section 4) give a nice account of the dependence of model coeffi-
cient on the distribution of X, especially when the true mean response vector μ
is nonlinear in X and X is heteroscedastic. As such, the ancillarity assumption
in (22) is violated. In view of this, Buja et al. (2015), Kuchibhotla et al. (2018a),
Kuchibhotla et al. (2018b) and Rinaldo et al. (2019) adopt an assumption-lean
framework. Specifically, the classical assumptions that X is fixed, the response
vector Y is normally distributed and homoscedastic are abandoned.

For any submodel M ∈ Mall, Kuchibhotla et al. (2018a) and Kuchibhotla
et al. (2018b) focus on the so-called population version of the least-squares
estimator

ζM = arg min
β∈R|M|

E‖Y −XMβ‖2 =

[
E

(
X�

MXM

)]−1

E

(
X�

MY

)
, (23)

where the expectation is with respect to the joint distribution of (X,Y ). Kuchib-
hotla et al. (2018a) obtain the estimation error bounds, in terms of both �1- and

�2-norms, for (β̂M − ζM ) and the linear representation((
β̂M − ζM

)
−
[
E

(
X�

MXM

)]−1(
X�

MY −X�
MXMζM

))
,

uniformly over the set of all submodels in Mall with sizes less than a pre-
specified value k. Moreover, the corresponding rates of convergence are also
derived. Kuchibhotla et al. (2018b) construct both finite- and large-sample valid
simultaneous confidence regions for ζM . In practice, these confidence regions are
computed based on high-dimensional central limit theorem (Chernozhukov et al.
2017) and multiplier bootstrap (Zhang & Cheng 2014).

On the other hand, for a selected submodel M̂ (a random quantity), Rinaldo
et al. (2019) study the inference for ζ

M̂
, referred to as the linear projection

parameter, which is the best linear predictor of Y using X
M̂

. The authors pro-
pose two constructions of simultaneous confidence regions for ζ

M̂
. Respectively,

they are based on a combination of sample splitting and bootstrap, and sampling
splitting and normal approximation. The asymptotic coverage rates of these two
constructions are also investigated. Lei et al. (2018) extend the aforementioned
assumption-lean framework to predictive inference and construct marginally
valid prediction intervals for the predicted responses.

From the perspective of algorithmic stability, Zrnic & Jordan (2020) propose a
construction of valid post-selection confidence intervals for ζ

M̂
using the generic

form specified in (8) with an appropriate choice of the quantity K (other than
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the PoSI constant KPoSI (10)). Heuristically, a model selection procedure M̂n

is stable if given two realizations of data, the probability that two submodels

selected by M̂n are different is small. Their method is based on the logic that for
a stable model selection procedure, the submodel selected is almost independent
of the data. As a consequence, it is reasonable to conduct both model selection
and valid statistical inference on the same data. In other words, a more stable
model selection procedure leads to confidence intervals that are shorter, less
variable in terms of lengths, and closer to the confidence intervals obtained as
if the model was fixed a priori. Guided by this, given a (η, τ, ν)-stable model

selection procedure M̂n (ibid., Definition 2) and to achieve (9), a valid 100(δ+
τ + ν)% post-selection confidence interval (8) is obtained as follows: (i) when

σ is known, K = z(1 − δ(1 − ν)/(2|M̂ |eη)), where z(1 − α) is the 100(1 −
α)th percentile of the standard normal distribution, (ii) when σ is unknown,

K = t(n− |M̂ |, 1− δ(1− ν)/(2|M̂ |eη)). Moreover, they also provide stabilized
modifications of the LASSO, marginal screening and forward stepwise selection
procedures. In comparison with the PoSI approach discussed in Section 6.1,
their approach bypasses the computation of the PoSI constant. As such, it is
more computationally efficient.

EPoSI theories: Besides the aforementioned advance in post-model-selection
inference, the exact post-selection inference (EPoSI) and EPoSI for sequential re-
gression (sequential EPoSI), respectively discussed in Sections 6.2 and 6.3, have
also been further studied. Two main assumptions of the existing frameworks are
that (i) the variance of responses, σ2, is known, and (ii) the response Y follows a
Gaussian distribution. To address the first assumption, Tian et al. (2018) apply
the EPoSI approach to square-root LASSO (Belloni et al. 2011) for inference
on selected submodel after model selection, where an estimate for σ2 is derived
based on the square-root LASSO. Tibshirani et al. (2018) propose an alternative
solution via constructing a computationally efficient bootstrapped version of the
truncated normal statistics in (16) which does not depend on σ2. To remove the
second assumption on Gaussianity of Y , Tian & Taylor (2017) and Tibshirani
et al. (2018) respectively examine large-sample conditional framework of the
EPoSI and sequential EPoSI. Specifically, both work show that under certain
conditions on the distribution of Y , selection procedures and unknown regres-
sion coefficients, the pivotal quantity in (17) and its counterpart for sequential
EPoSI converge (n → ∞, p constant) to the uniform distribution so that subse-
quent construction of post-selection confidence interval can be conducted in the
same fashion. Taylor & Tibshirani (2018) further explore the asymptotic aspects
of EPoSI (assuming p is fixed) and show that this framework can be general-
ized for statistical inference of a large class of �1-penalized regression models,
including generalized linear models, Cox’s proportional hazards model, and the
graphical LASSO (Friedman et al. 2008). Zhao, Small & Ertefaie (2021) em-
ploy the EPoSI approach in a two-stage proposal for solving effect modification
problem and demonstrate theoretically and via simulations that this method is
asymptotically valid. Hyun et al. (2018) extend the framework of EPoSI to the
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so-called generalized LASSO estimators with specific examples of fused LASSO,
trend filtering and graph fused LASSO and useful application to changepoint
detection problem.

EPoSI and its extension: Apart from the above theoretical development
of the EPoSI framework, progress has been made to extend this idea to sev-
eral important problems in statistics, including change point detection, graphs,
clustering, and regression trees, some of which we review below.

Hyun et al. (2021) study post-detection inference of change point with the
following setup,

Yi ∼ N(θi, σ
2), i = 1, ..., n, (24)

where the mean vector θ = (θ1, ..., θn)
� follows a piecewise constant structure.

Specifically, for location indices b = (b1, ..., bn)
�, 1 ≤ b1 · · · < bt ≤ n − 1,

the mean parameters satisfy 0 = b0, bt+1 = n, θbj+1 = ... = θbj+1 , for j =
0, ..., t, where t ∈ {0} ∪ Z

+ is the number of change points. The goal is to use
a data-dependent method to test whether there is a change in the mean at
these locations. Upon characterizing the changepoint detection (using methods
such as binary segmentation, wild binary segmentation, circular segmentation
and fused LASSO) as polyhedral selection events in (14), Hyun et al. (2021)
apply the EPoSI framework and obtain p-values for the hypothesis testing of
interest. Based on (24) and using changepoint detection methods such as binary
segmentation, �0 segmentation and fused LASSO, Jewell et al. (2021) propose an
EPoSI-based construction that conditions on less information, resulting in tests
with improved powers. On the other hand, Mehrizi & Chenouri (2021) study a
variant of the change point detection problem where the underlying mean vector
is a piecewise polynomial function. Under this setting, change points identified
by a filtering algorithm forms a polyhedral set. Thus, the EPoSI scheme can
be used to obtain p-values and confidence intervals. In addition, two extensions
with less conditioning requirements, respectively conditioning on only the target
change point, and only the target change point and its adjacent neighbors being
in the selected change points set, are proposed to produce shorter confidence
intervals.

Chen et al. (2021) present an EPoSI-based framework for testing the signifi-
cance of a difference in the means of two connected components obtained from
the graph fused LASSO. Their method conditions on less information and is
shown to be more powerful than the method of Hyun et al. (2018). In clus-
tering, Gao et al. (2021) consider testing for a difference in means of a pair of
clusters identified via a data-dependent procedure. Upon showing that sample
splitting is not a valid procedure in this case, the authors propose a method
that conditions on the selected clusters and as opposed to (16), a truncated chi-
squared counterpart is obtained in the computation of p-values. Neufeld et al.
(2021) apply EPoSI on inference associated with the Classification and Regres-
sion Tree algorithm. Specifically, the authors obtain EPoSI-based p-values for
testing a difference in the mean response between a pair of terminal nodes and
confidence interval for the mean response within a single terminal.
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7. Statistical inference for population-based target: bias correction
and sampling techniques

In this section, our goal is to discuss another line of work on inference about
the population-based target β0, even though these are not considered as post-
model-selection methods. We review three methods, bias-correction, sampling
techniques, and an optimization perspective for constructing p-values and confi-
dence regions for β0 under the framework of linear regression model (1) (unless
otherwise specified).

7.1. Bias-correction

The general idea of the methods in this category is to (asymptotically) remove
or quantify the bias of a regularized estimator, such as the LASSO or ridge
estimator, in estimating β0. Consequently, the distribution of the bias-corrected
estimator can be approximated by a tractable distribution, which then enables
us to construct p-values for testing the hypotheses Hj : β0

j = 0, for j = 1, ..., p,

and confidence intervals for β0
j ’s.

De-biasing LASSO: A well-known bias-correction technique is the de-biasing
LASSO approach pioneered by Javanmard & Montanari (2014b) and Zhang
& Zhang (2014), where the initial scaled LASSO estimator undergoes a bias-
correction stage, leading to a so-called low-dimensional projection estimator
(LDPE). The resulting corrected estimator thus becomes de-sparsified but asymp-
totically unbiased with a limiting Gaussian distribution. This idea is further
studied by van der Geer et al. (2014) and Javanmard & Montanari (2014a).

The general form of a de-biasing LASSO estimator is given by

β̂DB(λ) = β̂LASSO(λ) + Θ̂X�(Y −Xβ̂LASSO(λ))/n,

where β̂LASSO(λ) is the LASSO estimator with tuning parameter λ in (6), and

Θ̂ is a p×p matrix which has different constructions according to the aforemen-
tioned works. Assuming that the inverse of population variance-covariance ma-

trix is sparse, one example of such construction is Θ̂ = Σ̂
−1

, where Σ̂ = X�X/n
is the sample variance-covariance matrix, assuming the existence of its inverse. In
high-dimensional settings, Θ̂ is obtained using the graphical LASSO (Friedman
et al. 2008). By relaxing the sparsity assumption on inverse of the covariance,

another example of Θ̂ is provided by Javanmard & Montanari (2014a), which
is obtained by minimizing the error term Δn and the variance of the Gaussian
term Zn in (25) below. Under different assumptions and constructions of Θ̂,
and appropriate choice of a sequence of tuning parameters λ = λn, a uniform
asymptotic normality result is established as follows,

√
n(β̂DB(λn)− β0) = Zn +Δn, (25)
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where

Zn ∼ N (0, σ2Θ̂Σ̂Θ̂
�
), and sup

β0∈Rp:||β0||0≤s0

||Δn||∞ = oP(1),

with s0 = |{1 ≤ j ≤ p : β0
j �= 0}| being the size of the active set, which is

commonly referred to the sparsity constant. One possible estimator for σ2 is
the scaled LASSO estimator (Zhang & Zhang 2014). Therefore, similar to the
standard maximum likelihood theory, (25) is used to construct asymptotically
valid confidence intervals for β0 and to obtain p-values for testing the hypotheses
Hj : β

0
j = 0, for j = 1, ..., p.

To compare these aforementioned four proposals (Zhang & Zhang 2014, Ja-
vanmard & Montanari 2014a,b, van der Geer et al. 2014), in addition to differ-

ent construction of Θ̂, we note that both Javanmard & Montanari (2014a) and
Javanmard & Montanari (2014b) also consider a random design matrix case,
whereas the other two works focus on deterministic designs. Moreover, Javan-
mard & Montanari (2014b) require n ≥ s0 log (p/s0). In contrast, Javanmard &
Montanari (2014a) and van der Geer et al. (2014) require n � (s0 log (p))

2.

Bias-corrected ridge estimator: Bühlmann (2013) proposes a bias-correction
method by focusing on correcting the bias of the ridge estimator. Define θ0 by
θ0 = PXβ0, where PX = X�(XX�)−X, and “−” denotes the pseudo-inverse
of a matrix. Consider the ridge estimator

β̂ridge(λ) = argmin
β∈Rp

{
1

n
||Y −Xβ||2 + λ||β||2

}
=

1

n

(
Σ̂+ λIp

)−1

X�Y , (26)

where λ is the tuning parameter, Σ̂ = X�X/n and Ip is the p× p identity ma-
trix. Here, p = p(n) → ∞ as n → ∞. Bühlmann argues that the ridge estimator

(26) is a reasonable estimator for θ0 since the bias of β̂ridge(λ) in estimating θ0

can be controlled in a fashion as discussed below in (28). Therefore, the bias of

β̂ridge(λ) in estimating the population-based regression coefficient β0 now can
be decomposed componentwise as

E(β̂ridge,j(λ)− β0
j ) =

(
E(β̂ridge,j(λ))− θ0j

)
+
(
θ0j − β0

j

)
≤ |E(β̂ridge,j(λ))− θ0j |+ |θ0j − β0

j |. (27)

Based on (27), Bühlmann (2013) then shows that |E(β̂ridge,j(λ))−θ0j | is a minor

term which can be controlled, while |θ0j −β0
j |, is a major term, which can be esti-

mated by a newly-proposed post-corrected estimator given in (29). Specifically,
for the minor bias term, we have

max
j

|E(β̂ridge,j(λ))− θ0j | ≤ λ||θ0||
(
σmin �=0(Σ̂)

)−1
, j = 1, ..., p, (28)

where σmin �=0(Σ̂) is the minimal non-zero eigenvalue of the matrix Σ̂. In light of
the bias-and-variance trade-off, λ is chosen to achieve a relatively small upper
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bound for |E(β̂ridge,j(λ))−θ0j | while attaining a moderate variance of β̂ridge,j(λ).

Now, to address the major bias term |θ0j − β0
j |, it is worthwhile to note that

θ0j − β0
j

(PX)j,j
= β0

j −
β0
j

(PX)j,j
+

p∑
k:k=1,k �=j

(PX)j,k
(PX)j,j

β0
k, j = 1, ..., p,

which implies

β0
j =

θ0j
(PX)j,j

−
p∑

k:k=1,k �=j

(PX)j,k
(PX)j,j

β0
k.

Next, θ0j is estimated by β̂ridge,j(λ) and one possible initial estimator for β0
k in

the second summand is the LASSO estimator, β̂LASSO,k(λ). This leads to the
post-correction ridge estimator

β̂corr,j(λ) =
β̂ridge,j(λ)

(PX)j,j
−

p∑
k:k=1,k �=j

(PX)j,k
(PX)j,j

β̂LASSO,k(λ), j = 1, ..., p. (29)

Under a sparsity condition that s0 = |{1 ≤ j ≤ p : β0
j �= 0}| = o((n/ log p)ξ)

for some 0 < ξ < 1/2, and compatibility condition for Σ̂ (van der Geer 2007),
Bühlmann (2013) shows

σ−1V −1/2(β̂corr(λ)− β0) ≈ Z + σ−1V −1/2U , (30)

where

Z ∼ N (0, I),

U = (U1, ..., Up) and |Uj | ≤ Ũj := max
i:i �=j

|(PX)j,i/(PX)j,j | (log (p)/n)1/2−κ.

Here, V is the variance-covariance matrix of the ridge estimator and κ is the
parameter controlling sparsity. It is crucial to note that differing from the de-
biasing LASSO estimator approach, the bias term U in (30) does not vanish
asymptotically. In fact, the upper bound of U is carried over to the construction
of confidence intervals for β0 and p-values for testing the hypotheses Hj : β

0
j =

0, j = 1, ..., p. To be more specific, for example, the 100(1 − α)% confidence
interval for β0

j is (
β̂corr,j(λ)−Δj , β̂corr,j(λ) + Δj

)
,

where

Δj = Ũj +
σV

−1/2
j,j

|(PX)j,j |
Φ−1(1− α/2),

and Φ(·) is the cumulative distribution function of the standard normal. On the
other hand, the p-values for testing the hypotheses Hj : β

0
j = 0 are given by

2

(
1− Φ

(
σ−1V

−1/2
j,j |(PX)j,j |(|β̂corr,j(λ)| − Ũj)+

))
.
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Other bias correction techniques: Apart from the aforementioned research
in the linear regression context, there has been further developments on this
topic under different settings, some of which are presented below.

Neykov et al. (2018) have proposed post-corrected parameter estimators and
asymptotically valid confidence regions for parameters of interest in the con-
text of estimating equations. The bias-correction step of this method is based
on projecting an estimating equation under consideration onto a certain sparse
direction, which is obtained via solving a tractable linear optimization problem.
A Z-estimator (van der Vaart & Wellner 1996) for the parameter of interest is
then obtained as the root of the projected estimating equation. Neykov et al.
(2018) show that the resulting parameter estimator is consistent and asymptot-
ically normal, hence facilitating the construction of a valid confidence region.
This method is applicable to instrumental variable regression, graphical models,
linear discriminant analysis and autoregressive models.

In the context of program evaluation and various causal inference applica-
tions, Belloni et al. (2015) have developed bias-correction methods targeting
inference about causal effects. Specifically, using the absolute deviations (LAD)
method for regression model with homoscedastic error, they construct uniformly
valid confidence regions for the parameters of interest in the presence of a high-
dimensional nuisance parameter. In contrast with the foregoing discussions, the
bias-correction step of their method is based on an orthogonal moment equa-
tion for the parameters of interest. It has been shown that the resulting LAD
regression parameter estimator is uniformly asymptotically normal, hence can
be used to construct an asymptotically valid confidence region for the parame-
ters of interest (Belloni et al. 2014, Belloni, Chernozhukov & Wei 2013).

7.2. Re-sampling

The re-sampling techniques such as data-splitting and bootstrapping are also
used to perform valid inference for the population-based regression coefficient
β0, which we review in this section.

Data-splitting: The main idea behind this method is aligned with Fisher’s
view discussed in the Introduction that the same data cannot be used for explo-
ration and validation for statistical modeling. As such, a portion of the data is
only used for model selection while the remaining portion is used to perform in-
ference based on that selected submodel. Wasserman & Roeder (2009) propose
a data splitting procedure, also referred to as screen and clean, in which the
data are randomly divided into three parts, D1,D2 and D3, of approximately
equal sizes. For a given tuning parameter λ, the LASSO is used to obtain an
active set based on D1. Then cross validation based on D2 is used to select an
optimal tuning parameter, yielding an estimated active set. Hypothesis test-
ing for the regression coefficients corresponding to the estimated active set is
then performed using the ordinary least-squares based on D3. This procedure
produces one p-value for testing the effect of every selected covariate.
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The resulting p-values in Wasserman & Roeder (2009) are sensitive to the
randomness due to the data splitting, which can be a cause of concern when the
sample size is small. To address the issue, Meinshausen et al. (2009) propose a
so-called multi sample-splitting method, in which the data are randomly split
into two parts B times, obtaining (Db

1,Db
2), b = 1, ..., B. This procedure results

in B p-values for testing H0 : β0
j = 0, j = 1, ..., p. They then adopt a quantile

approach to aggregate these p-values and obtain a single p-value corresponding

to each covariate, as described in Algorithm 2. For a selected submodel M̂ , hav-

ing assumed the sure screening property, that is limn→∞ P(Mtrue ⊆ M̂) = 1,

and the sparsity property, that is |M̂ | < n/2, it is shown that the aggregated
p-values are capable of (asymptotically) controlling the family-wise error rate
and false discovery rate. Model selection procedures satisfying these two require-
ments include LASSO, L2 boosting (Friedman 2001, Bühlmann 2006), orthog-
onal matching pursuit (Tropp & Gilbert 2007) and sure independent screening
(Fan & Lv 2008). One key difference between the single and multi sample-
splitting described above is that the former assigns p-values to only the selected
covariates while the later assigns p-values to all the covariates.

Algorithm 2 Multi Sample-splitting Algorithm

1: Randomly split the data into two disjoint parts, Db
1 and Db

2, of approximately equal sizes
n/2.

2: Estimate the active set M̂
b
based on Db

1.

3: Based on Db
2, estimate the regression coefficients corresponding to the active set M̂

b

using the ordinary least-squares and obtain p-values pbj corresponding to each j ∈ M̂
b
,

and pbj = 1 for j /∈ M̂
b
.

4: Define the adjusted p-values as pbadj,j = min
(
pbj ×

∣∣M̂b∣∣, 1) for j = 1, ..., p.

5: Repeat Steps 1 to 4 B times for b = 1, ..., B.
6: For j = 1, ..., p, obtain the aggregated p-values Pj over the B p-values, {pbadj,j , b = 1, ..., B},

as
Pj = min

{
1, (1− log γmin) inf

γ∈(γmin,1)
Qj(γ)

}
, j = 1, ..., p,

where γ ∈ (0, 1) and γmin is a lower bound for γ, usually 0.05. Here, Qj(γ) is defined by

Qj(γ) = min
{
1, qγ

({
pbadj,j/γ, b = 1, ..., B

})}
, j = 1, ..., p,

where qγ(·) denotes the empirical γ-quantile function.

Khalili & Vidyashankar (2018) propose a multi sample-splitting approach
which assigns p-values only to the selected covariates. Their framework is ap-
plicable to linear, generalized linear and finite mixture models, and is shown to
attain asymptotic control of family-wise error rate at a given significance level.

To perform statistical inference on a low-dimensional parameter of interest
in the presence of a high-dimensional nuisance parameter, Chernozhukov et al.
(2018) propose an asymptotically and uniformly valid inference method that is
based on cross-fitting. Specifically, in this method, the original data is first ran-
domly partitioned into K folds with approximately equal sizes, indexed by Ij ,
j = 1, ...,K, and let Icj = {1, ..., n} \ Ij . For each j = 1, ...,K, an estimator for
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the nuisance parameter is obtained using an existing machine learning method,
such as the LASSO or boosting, based on the subset of data indexed by Icj . Then,
for each j = 1, ...,K, an estimator for the parameter of interest is obtained via
solving a Neyman orthogonal score equation upon plugging in the estimator for
the nuisance parameter. A final estimator for the parameter of interest, referred
to as the debiased machine learning (DML) estimator, is obtained by averaging
over all the estimators across all j = 1, ...,K. Chernozhukov et al. (2018) the-
oretically prove that the DML estimator is asymptotically normal, which can
then be used to construct asymptotically and uniformly valid confidence inter-
vals for a parameter of interest. Though not being a paradigm of re-sampling
procedures, as a closely related work, Belloni, Chernozhukov & Hansen (2013)
consider a similar problem by focusing on statistical inference for a treatment
effect in the presence of high-dimensional nuisance covariates xj , j ∈ {1, ..., p},
in a partially linear regression model. Their development involves two variable
selection steps using a version of the LASSO (called feasible LASSO) defined in
Belloni et al. (2012): (i) selecting nuisance variables indexed by M1 ⊆ {1, ..., p}
via regressing the treatment effect on all the xj , and (ii) selecting nuisance vari-
ables indexed by M2 ⊆ {1, ..., p} via regressing the response on all the xj . Then,
an estimator for the treatment effect is obtained by regressing the response on
the treatment effect and nuisance covariates indexed by M1 ∪M2. As such, this
estimator is referred to as the post-double-selection (PDS) estimator. Similar
to Chernozhukov et al. (2018), they show that the PDS estimator is asymptoti-
cally normal, leading to the construction of asymptotically and uniformly valid
confidence interval for the parameter of interest, that is the treatment effect.

Bootstrapping: The idea of this approach is that the distribution of a pe-
nalized regression estimator, such as the LASSO, AdaLASSO estimator in (6)
or de-biasing LASSO estimator (Zhang & Zhang 2014), can be well approxi-
mated by their bootstrap counterparts (see (33) below). Confidence intervals
can then be constructed based on the distribution of the bootstrap estimators.
More specifically, let

Tn =
√
n
(
β̂LASSO(λn)− β0

)
,

where β̂LASSO(λn) is the LASSO estimator in (6). The goal is to approximate
the distribution of Tn. To accomplish this, Chatterjee & Lahiri (2011) propose
a residual-based bootstrap LASSO estimator, described in Algorithm 3 below.
The bootstrap-based confidence region for β0 is given by

RBoot(α) =
{
v ∈ R

p :
√
n||v − β̂LASSO(λn)|| ≤ t̂n(α)

}
, α ∈ (0, 1), (31)

where t̂n(α) is the αth quantile of the empirical distribution of
{
||T b

Boot||, b =

1, ..., B
}
. Here, T b

Boot is defined by

T b
boot =

√
n
(
β̃
b

Boot(λn)− β̃LASSO(λn)
)
, b = 1, ..., B, (32)
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where β̃
b

Boot(λn) is the modified residual-based bootstrap LASSO estimator and

β̃LASSO(λn) is the thresholded LASSO estimator, defined in Algorithm 3 1.
Under certain conditions on the design matrix X, the tuning parameter λn

and error term ε in (1), it is shown that as n → ∞,

ρ

(
P
(
TBoot ∈ E

)
, P
(
Tn ∈ E

))
−→ 0, for any E ∈ B(Rp), (33)

where TBoot is the generic random variable representing
{
||T b

Boot||, b = 1, ..., B
}
,

B(·) is the Borel σ-filed and ρ(·, ·) is the Lévy-Prohorov metric over the set
of all probability measures on the space (Rp,B(Rp)). Using (33), it is then
shown that the bootstrap-based confidence region RBoot(α) in (31) is a uniformly
asymptotically valid confidence region for β0, that is

lim
n→∞

P
(
β0 ∈ RBoot(α)

)
= α, for all β0 ∈ R

p.

Algorithm 3 Residual-based Bootstrap LASSO Estimator

1: Obtain the thresholded LASSO estimator, β̃LASSO(λn), which is defined, component-wise,
as

β̃LASSO,j(λn) = β̂LASSO,j(λn)1
(
|β̂LASSO,j(λn)| ≥ an

)
, j = 1, ..., p,

where β̂LASSO(λn) is the LASSO estimator in (6) and {an}∞n=1 is a sequence of real

numbers such that an + (n−1/2 logn)a−1
n → 0 as n → ∞.

2: Compute the modified residuals {r̃i, i = 1, ..., n} by

r̃i = Yi − x�
i β̃LASSO(λn), i = 1, ..., n.

3: For b = 1, ..., B: draw a random sample {ẽb1, ..., ẽbn} from the centered residuals {r̃i −
1/n

∑n
i=1 r̃i, i = 1, ..., n} with replacement.

4: Set
Ỹ b
i = x�

i β̃LASSO(λn) + ẽbi , i = 1, ..., n.

5: Then the modified residual-based bootstrap LASSO estimator, β̃
b
Boot(λn), is given by

β̃
b
Boot(λn) = arg min

β∈Rp

{ n∑
i=1

(Ỹ b
i − x�

i β)2 + λn||β||1
}
.

Steps 3 to 6 lead to the set
{
β̃
b
Boot(λn), b = 1, ..., B

}
, which is then used to obtain{

||T b
Boot||, b = 1, ..., B

}
in (32).

Chatterjee & Lahiri (2013) apply the bootstrap technique based on the
AdaLASSO estimator to approximate the distribution of a studentized ver-
sion of Tn, denoted by Rn = Tn/σ̂n, where σ̂2

n is the sample variance of the
AdaLASSO-based residuals. They show analytically and via simulations that
the bootstrap-based confidence intervals so obtained has better coverage com-
pared to those obtained from the oracle-based normal approximation to the dis-
tribution of Tn, even when the regression parameter dimension is unbounded.

1For an appropriate choice of tuning parameter λ = λn and threshold parameter as defined
in Algorithm 3, see Section 5 of Chatterjee & Lahiri (2011).
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Liu & Yu (2013) propose a residual-based bootstrap approach, where residuals

are computed in a similar fashion as in Step 2 of Algorithm 3, where β̃LASSO(λn)
is replaced by a modified least-squares or ridge coefficient estimator, based on a

submodel M̂ selected by LASSO. The modified least-squares estimator is based
on thresholding the singular values of the matrix X�

M̂
X

M̂
/n. The reason for

this modification is that the matrix inversion required in the OLS estimator (4)
may not be stable when the smallest nonzero eigenvalue of X�

M̂
X

M̂
/n is close

to 0. Similar to Chatterjee & Lahiri (2011), the asymptotically valid confidence
region RBoot(α) in (31) can then be constructed.

On the other hand, focusing on valid statistical inference for an individual
or a group of entries of β0, Dezeure et al. (2017b) study the application of
bootstrap procedures to the de-biasing LASSO estimator. They demonstrate
that bootstrapping the de-biasing LASSO estimator is capable of producing
asymptotically valid: p-values for testing H0 : β0

j = 0, j ∈ G ⊆ {1, ..., p}; and
simultaneous confidence region for β0

j , j ∈ G ⊆ {1, ..., p}. Specifically, three
versions of bootstrap methods are presented, namely the residual bootstrap,
multiplier wild bootstrap, and a so-called paired bootstrap method. For each
of these procedures, they show the consistency of the resulting bootstrapped
estimator in the sense of (33).

7.3. Optimization Perspective

Apart from the bias-correction and re-sampling techniques, methods from opti-
mization theory, in particular techniques associated with variational inequalities
(Hartman & Stampacchia 1966) and normal maps (Robinson 1992, 1993), have
been used to provide valid asymptotic confidence intervals for β0. Generally
speaking, a local minimizer of an objective function over a compact and convex
set S in R

n is also a solution to a so-called variational inequality involving the
gradient of the objective function. Moreover, the variational inequality can be
equivalently written as a function, called a normal map, which is induced by
the objective function and the set S. These two mathematical objects can then
be connected by the fact that a solution in S to the variational inequality is a
root to the associated normal map.

Assuming that the design matrix X is random and the dimension p is fixed,
Lu et al. (2017) consider solving the so-called random-design population version
of the LASSO problem

min
β0,β

[
E
(
Y − β0 −

p∑
j=1

βjxj

)2
+ λ||β||1

]
, (34)

where the solution to (34), denoted by (β̃0, β̃), is called the population penalized
(LASSO) parameter. By transforming (34) to its corresponding variational in-
equality and normal map formulations, the authors propose a four-step method
to construct asymptotically valid confidence interval for (β̃0, β̃) based on the

LASSO estimator β̂LASSO(λ):
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Step 1: Transform the minimization problem in (34) to its normal maps;
Step 2: Obtain the asymptotic distributions for the solutions to the normal

maps;
Step 3: Construct individual and simultaneous confidence intervals for the so-

lutions obtained in Step 2;
Step 4: Assuming the linear regression model in (1) is the true model, con-

vert the confidence intervals obtained in Step 3 to the ones for the
population-based target β0.

This framework is extended by Yu et al. (2020) to penalized regression meth-
ods based a general penalty term Jn(β;λ), including the adaptive LASSO, log
penalty (Friedman 2012), transformed �1 penalty (Nikolova 2000), SCAD and
the MCP (Zhang 2010).

8. Simulation study

In this section, we compare various post-selection confidence intervals through
simulated data. In light of the simulation results by Dezeure et al. (2015) for
the population-based targets, here our focal point is a comparison between the
confidence intervals for the projection-based targets using the PoSI and EPoSI
approaches, though we also include the näıve and Scheffé’s confidence intervals.
Details of data generation are presented in Section 8.1. Assessing metrics are
defined in Section 8.2. Specifics pertinent to method, code and implementation
are described in Section 8.3, followed by an analysis of simulation results in
Section 8.4. Since the PoSI approach is computationally expensive for p > 20,
we design simulations for p ≤ 20 so that the PoSI and EPoSI confidence intervals
can be compared.

8.1. Data generation

Design matrices X are simulated with n = 40 and 60, and p = p(n) =
⌈
n2/3

⌉
+

2, where �·� denotes the ceiling function. Thus, the number of covariates are
respectively 14 and 18 for n = 40 and 60. With these dimensions, five types of
design matrix with the following variance-covariance structures are considered:

1. Equicorrelated covariance: XEq ∼ N (0,Σ1), where the (i, j)-entry of
Σ1 is 0.8 if i �= j, and 1 if i = j.

2. Toeplitz covariance: XTp ∼ N (0,Σ2), where the (i, j)-entry of Σ2 is
0.9|i−j|.

3. Exponential decay covariance: XEp ∼ N (0,Σ3), where the (i, j)-
entry of Σ−1

3 is 0.5|i−j|/5.

4. Exchangeable design matrix: Define X(p)(a) as in Example 1 of Berk

et al. (2013), which is formulated as X(p)(a) = Ip + aEp, where Ip is the
p× p identity matrix and Ep is a p× p matrix with all entries equal to 1.
Then we adopt the same approach as proposed by Leeb et al. (2015), who

set a = 10 and XEc = UX(p)(a), where U has dimension n × p under
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low-dimensional setting and is formed by putting together p orthonormal
n-tuples obtained by first draw a set of i.i.d. standard Gaussian n-tuples
and then applying the Gram-Schmidt procedure.

5. Design matrix from a real data set: we include a design matrix (de-
noted by XRl) from the standardized diabetes data from Efron et al.
(2004). XRl has n = 442 observations and p = 10 covariates. The 10 co-
variates are the first 10 columns of the diabetes data, namely age (age),
sex (sex), body mass index (BMI), average blood pressure (map) and six
blood serum measurements (tc, ldl, hdl, tch, ltg, glu).

Given a design matrix X according to any of the scenarios 1-5, it remains
fixed throughout the simulations. For the response vector Y , we noticed in
Section 5.2 that the construction of the PoSI and EPoSI confidence intervals
do not require the first order correctness condition E(Y ) = μ = Xβ0. In our
simulations, yet, we assume this condition for simplicity. In other words, the
n × 1 dimensional response vectors Y are generated from the linear regression
model (1). Given a design matrix X, we generate 10000 copies of Y , randomly
from four linear regression models with error variance σ2 = 2 and the regression
coefficients specified in TABLE 2.

Table 2

Settings for the true linear data generating models.

True Models Mtrue Signal Strengths for the Non-zero β0
j ’s

Model I {1, 2, 3} β0
j ∼ Unif(2, 3) for j = 1, 2 and 3

Model II {1, 2, 3, 4, 5} β0
j ∼ Unif(2, 3) for j = 1, 2, 3, 4 and 5

Model III {1, 2, 3} β0
j ∼ Unif(4, 5) for j = 1, 2 and 3

Model IV {1, 2, 3, 4, 5} β0
j ∼ Unif(4, 5) for j = 1, 2, 3, 4 and 5

Models I and II have weaker signal strengths compared to Models III and IV.

8.2. Assessing metrics

We set the nominal coverage probability for the confidence intervals to be 1 −
α = 0.95. To compare various post-selection confidence intervals, we consider
two assessing metrics: the empirical average coverage probability (CPj·M ), and
the empirical average length of confidence intervals (Lj·M ), conditioning on a

submodel M selected by M̂n. In particular,

CPj·M =

∑10000
i=1 1

{
bj·M ∈ CIij·M

}∑10000
i=1 1

{
M̂ = M

} ,

and

Lj·M =

∑10000
i=1 Length

{
CIij·M

}∑10000
i=1 1

{
M̂ = M

} ,

where 1{·} is the indicator function, CIij·M is the confidence interval for the

jth projection-based regression coefficient bj·M within the submodel M corre-
sponding to the ith random sample, and Length{·} is the length of the confidence
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interval. In case of the EPoSI confidence intervals, the above quantities are also
computed by conditioning on both a selected submodel M and the sign vector
s of its associated regression parameter estimate(s).

8.3. Method, code and implementation

To satisfy the polyhedral selection property required by the EPoSI method,
in our simulations we use the LASSO with a fixed tuning parameter λ as the
model selector. The λ is chosen according to the strategy outlined in Section 4 of
Negahban et al. (2012), who propose λ = 2E(||X�ε||∞) so that convergence rate
for errors of the LASSO estimate(s) can be controlled. Given a design matrix
X, we compute an empirical version of λ by randomly generating 1000 samples
of ε from the multivariate normal N (0, σ̂2I), where σ̂2 is the residual mean
square obtained from the full model.

We compare the following five post-selection confidence intervals:

Näıve, Scheffé, PoSI, EPoSI1 and EPoSI2,

where EPOSI1 is the EPoSI confidence interval constructed by conditioning
on a selected submodel M , and EPoSI2 is the one derived by conditioning on
both a selected submodel M and the sign vector s of its associated regression
parameter estimate(s).

We use the functions PoSI and summary.PoSI from the R package PoSI (Buja
& Zhang 2015) to compute the PoSI-constant and corresponding confidence in-
tervals. For the EPoSI confidence intervals, we use the functions selection.int,
grid.search and myptruncnorm 2.

8.4. Analysis of simulation results

The simulation results for Model I and the design matrices XEq, XEc and XRl,
with dimension n = 40 and p = 14, are respectively given in TABLE 3, 4 and
5. Each table contains the empirical average coverage probability (CP

j·M̂ ), and

the empirical average length of confidence intervals (L
j·M̂ ), corresponding to

the projection-based regression coefficients b
j·M̂ , j = 1, 2 and 3, for the three

most frequently submodels selected by the LASSO that contain xj (sorted by
the empirical model selection frequency in descending order). Simulation results
corresponding to (1) the two other design matrices, XTp and XEp, under Model
I with dimension n = 40 and p = 14; (2) all the five design matrices under Models
II, III and IV with dimension n = 40 and p = 14; (3) all the five design matrices
under Models I, II, III and IV with dimension n = 60 and p = 18, show similar
behaviors and are provided in Section S5 of the Supplementary Material.

From TABLE 3 to 5, we have observed a mix of under- and satisfactory
coverage of näıve confidence intervals for projected regression coefficients. Such

2The R scripts of these three functions are kindly provided by Professor Jonathan Taylor
from the Department of Statistics, Stanford University.
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Table 3

CP
j·M̂ and L

j·M̂ , j = 1, 2 and 3, of post-selection confidence intervals based on Model I

and XEq.

Post-selection Confidence Intervals
Näıve Scheffé PoSI EPoSI1 EPoSI2

Top
Selected

Submodels
CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂

{1, 2, 3} .961 1.56 1.00 4.16 1.00 3.19 .949 1.51 .949 1.51
{1, 2, 3, 11} .992 1.61 1.00 4.30 1.00 3.29 .975 1.56 .966 2.63
{1, 2, 3, 5} .913 1.69 1.00 4.52 1.00 3.46 .896 1.93 .946 3.04

Top
Selected

Submodels
CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂

{1, 2, 3} .953 1.81 1.00 4.84 1.00 3.70 .945 1.75 .945 1.76
{1, 2, 3, 11} .934 1.94 1.00 5.18 1.00 3.96 .926 1.87 .922 3.13
{1, 2, 3, 5} .922 1.92 1.00 5.13 1.00 3.92 .913 1.86 .928 3.35

Top
Selected

Submodels
CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂

{1, 2, 3} .941 1.80 1.00 4.82 1.00 3.69 .941 1.74 .941 1.75
{1, 2, 3, 11} .975 1.88 1.00 5.02 1.00 3.84 .967 1.82 .983 3.00
{1, 2, 3, 5} .939 1.82 1.00 4.85 1.00 3.71 .939 1.76 .947 2.58

Table 4

CP
j·M̂ and L

j·M̂ , j = 1, 2 and 3, of post-selection confidence intervals based on Model I

and XEc.

Post-selection Confidence Intervals
Näıve Scheffé PoSI EPoSI1 EPoSI2

Top
Selected

Submodels
CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂

{1, 2, 3} .947 4.64 1.00 12.4 .999 9.47 .937 4.82 .958 5.75
{1, 2} .965 4.01 1.00 10.7 1.00 8.18 .960 3.90 1.00 4.47

{1, 2, 3, 5} .916 4.91 1.00 13.1 1.00 9.99 .907 5.13 .750 9.16

Top
Selected

Submodels
CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂

{1, 2, 3} .946 4.64 1.00 12.4 1.00 9.47 .947 4.62 .949 5.51
{1, 2} .965 4.01 1.00 10.7 1.00 8.18 .957 3.90 1.00 4.47

{1, 2, 3, 5} .903 4.91 1.00 13.1 1.00 9.99 .911 4.86 .833 9.58

Top
Selected

Submodels
CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂

{1, 2, 3} .962 4.64 1.00 12.5 .999 9.47 .966 4.79 .966 5.66
{1, 2, 3, 5} .987 4.91 1.00 13.1 1.00 9.99 .985 5.09 1.00 7.75
{1, 2, 3, 4} 1.00 4.95 1.00 13.2 1.00 10.1 1.00 5.11 1.00 6.50

phenomena depend on the types of design matrices under consideration. For ex-
ample, in the case of XRl, the coverage probabilities for all the three projected
regression coefficients b

j·M̂ , j = 1, 2 and 3, fall below the desired nominal cov-
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Table 5

CP
j·M̂ and L

j·M̂ , j = 1, 2 and 3, of post-selection confidence intervals based on Model I

and XRl.

Post-selection Confidence Intervals
Näıve Scheffé PoSI EPoSI1 EPoSI2

Top
Selected

Submodels
CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂ CP

1·M̂ L
1·M̂

{1} .946 5.56 1.00 12.2 .999 9.65 .945 5.84 .962 15.5
{1, 2} .952 5.63 1.00 12.3 .999 9.78 .953 5.74 .963 19.2
{1, 3} .973 5.66 1.00 12.4 1.00 9.81 .972 5.67 .972 20.3

Top
Selected

Submodels
CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂ CP

2·M̂ L
2·M̂

{2} .929 5.57 1.00 12.2 1.00 9.67 .929 5.65 .979 17.5
{1, 2} .939 5.63 1.00 12.3 .999 9.78 .938 5.73 .974 20.2
{2, 3} .936 5.59 1.00 12.2 1.00 9.70 .936 5.69 .971 19.2

Top
Selected

Submodels
CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂ CP

3·M̂ L
3·M̂

{1, 3} .944 5.66 1.00 12.4 1.00 9.81 .964 5.82 .991 20.1
{3} .940 5.54 1.00 12.1 1.00 9.61 .940 6.17 .973 16.7

{2, 3} .948 5.59 1.00 12.2 1.00 9.70 .948 5.85 .979 18.9

erage rate (between .929 and .948), except for CP1·{1,2} and CP1·{1,3}. On the
other hand, satisfactory coverage in general is observed in the case of XEc,
where under-coverage only exists for CP1·{1,2,3,5} and CP2·{1,2,3,5}. Moreover,
in the case of XEq, both under- and satisfactory coverage are seen, which have
approximately equal proportion. This empirical observation agrees with Leeb
et al. (2015), indicating that although näıve confidence intervals in general fail
to achieve desired nominal coverage probabilities for the population-based re-
gression coefficients (also reported in TABLE 1), both under- and satisfactory
coverage can be achieved for the projected regression coefficients. In addition,
the extent of the under-coverage is moderate, depending on the specific struc-
tures of the design matrices.

In contrast, the Scheffé and PoSI confidence intervals consistently achieve
over-coverage for all the projected regression coefficients, under all the design
matrices considered here. Focusing on the EPoSI confidence intervals, empirical
results demonstrate that similar to the näıve confidence intervals, a mix of under-
and satisfactory coverage exists for both EPoSI1 and EPoSI2. For example,
although over-coverage is attained by EPoSI2 for all the projected coefficients
in the case of XRl, under-coverage is seen under the other two design matrices
(CP2·{1,2,3,11} in the case of XEq for instance). This phenomenon also holds for
EPoSI1. Furthermore, we can see that the coverage probabilities of EPoSI1 are
aligned with those attained by the näıve confidence intervals.

In terms of the empirical average length (L
j·M̂ ), from TABLE 3 to 5 we

observe that the Scheffé confidence intervals are always wider than the PoSI
confidence intervals. In fact, the ratio of the empirical average interval length
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of these two confidence intervals is between 1.25 and 1.32, under the three
design matrices XEq, XEc and XRl. This observation agrees with the fact that
the Scheffé’s confidence intervals are more conservative (wider) than the PoSI
confidence intervals, as discussed in Section 6.1.

Moreover, it is worthwhile to notice that conditioning on a selected submodel
only, the EPoSI confidence intervals (EPoSI1) are always shorter than those ob-
tained by conditioning on both a selected model and sign vector of corresponding
point estimator(s) (EPoSI2). Furthermore, EPoSI1 are close to (or even shorter
than) the näıve confidence intervals. For example, in the case ofXEq as reported
in TABLE 3, the average length L1·{1,2,3} of EPoSI1, being 1.51, is shorter than
that of näıve confidence interval, being 1.56. But in the case of XEc as reported
in TABLE 4, L1·{1,2,3,5} of EPoSI1 is wider. On the other hand, EPoSI2 are
always wider than the näıve confidence intervals.

Comparing the EPoSI confidence intervals with those based on the PoSI and
Scheffé, we have observed that under all the models and design matrices con-
sidered here, EPoSI1 are always shorter. In contrast, EPoSI2 can sometimes be
surprisingly wider. As an example, for the projected regression coefficient b1·M ,
in the case of XRl (TABLE 5), when conditioning on the submodel {1, 3} and
sign vector of its associated parameter point estimator(s), the ratio of empirical
average interval length of EPoSI2 over the PoSI and Scheffé confidence intervals
are approximately 2.07 and 1.63, respectively. This phenomenon is consistent
with the explanations in Lee et al. (2016): when the signal is relatively week (as
in Model I), the truncated Gaussian variable, η�

j Y in (16), is near the boundary
points of truncated intervals, leading to wider confidence intervals.

Yet, we wish to emphasize that the competition between the PoSI confidence
intervals and EPoSI2 does depend on other factors as well, such as the design
matrix and a particular selected submodel. For instance, in the case of XEq

and as seen in TABLE 3, the average length L2·{1,2,3} of the PoSI confidence
interval, being 3.70, is larger than that of the EPoSI2, being 1.76.

In our simulation study, we have also observed that the EPoSI confidence
intervals, EPoSI1 and EPoSI2, sometimes have infinite lengths. Therefore, the
results corresponding to these intervals reported in TABLE 3 to 5 are only
associated with the finite EPoSI confidence intervals. To be more specific, in
TABLE 6 to 8, under Model I and the design matrices XEq, XEc and XRl,
we report the percentages of the time that the EPoSI confidence intervals have
finite lengths, out of the total number of such intervals constructed for each
selected submodel. As we can see from these three tables, the percentages of
finite EPoSI1 and EPoSI2 differ dramatically according to the types of design
matrix. In our simulations, both EPoSI1 and EPoSI2 in the case of XEc have
the lowest such percentages. For example, for the projected regression coefficient
b1·{1,2}, only 75.3% of the EPoSI1 are finite, while almost all the EPoSI2 are
infinite. Moreover, we also see that the percentages of finite EPoSI1 are always
higher than those of EPoSI2. In a recent paper, Kivaranovic & Leeb (2021)
show that the expected length of EPoSI2 interval is infinite, and they have also
derived necessary and sufficient conditions under which the expected length of
EPoSI1 interval is infinite.
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Table 6

Percentages of finite EPoSI confidence intervals based on Model I and XEq.

Projected Targets Top Selected Submodels
EPoSI Confidence Intervals
EPOSI1 EPoSI2

b
1·M̂

{1,2,3} 100% 99.6%
{1,2,3,11} 99.2% 95.9%
{1,2,3,5} 100% 96.5%

b
2·M̂

{1,2,3} 100% 99.6%
{1,2,3,11} 100% 95.1%
{1,2,3,5} 100% 96.5%

b
3·M̂

{1,2,3} 100% 99.6%
{1,2,3,11} 100% 95.9%
{1,2,3,5} 100% 98.3%

Table 7

Percentages of finite EPoSI confidence intervals based on Model I and XEc.

Projected Targets Top Selected Submodels
EPoSI Confidence Intervals
EPOSI1 EPoSI2

b
1·M̂

{1,2,3} 93.5% 3.51%
{1,2} 75.3% .372%

{1,2,3,5} 93.3% 4.01%

b
2·M̂

{1,2,3} 56.8% 3.48%
{1,2} 75.3% .372%

{1,2,3,5} 45.2% 4.01%

b
3·M̂

{1,2,3} 56.4% 3.51%
{1,2,3,5} 45.2% 4.01%
{1,2,3,4} 50.7% 6.16%

Table 8

Percentages of finite EPoSI confidence intervals based on Model I and XRl.

Projected Targets Top Selected Submodels
EPoSI Confidence Intervals
EPOSI1 EPoSI2

b
1·M̂

{1} 100% 95.7%
{1,2} 99.7% 78.0%
{1,3} 99.7% 75.1%

b
2·M̂

{2} 99.9% 96.1%
{1,2} 99.7% 77.8%
{2,3} 100% 72.7%

b
3·M̂

{1,3} 99.5% 73.7%
{3} 99.8% 95.7%
{2,3} 99.4% 73.3%

9. Conclusion

In this section, we summarize our observations and conclusions on various con-
structions of the confidence intervals for the projection- and the population-
based regression coefficients.

Projection-based regression coefficients

1. Both EPoSI1 and EPoSI2 can have infinite lengths depending on the type
of the design matrix. Moreover, EPoSI1 is more likely to be of finite length
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than EPoSI2. This observation has also been discussed analytically by
Kivaranovic & Leeb (2021). In view of this observation, we divide our
discussions below into two groups, which are (i) either EPoSI1 or EPoSI2
is of finite length; (ii) neither is of finite length. The point 2 below pertains
to the former case, while point 3 is about the latter.

2. p is relatively small (recommended cut-off point by Berk et al. (2013)
is 20): In this scenario, it is practical to apply both the PoSI and the
EPoSI methods. Considering coverage probabilities, under-coverage for
the projected regression coefficients exists for both EPoSI1 and EPoSI2. In
comparison, the PoSI confidence intervals consistently achieve the desired
nominal coverage probability. In terms of the length of confidence intervals,
the EPoSI1 are the shortest among all the competing confidence intervals
and they can be even shorter than the näıve confidence intervals. On the
other hand, the competition between the EPoSI2 and PoSI depends on
several factors, one of which is the type of the design matrix. In some
cases, the EPoSI2 can be wider than the PoSI confidence intervals.
For p relatively large: In this case, the computational cost of the PoSI

approach can be high. Similarly, since 2|M̂ | calculations are required to
obtain the EPoSI1, this interval is not recommended either due to heavy
computational loads if p is too large. Therefore, in high-dimensional data
where p is large, the EPoSI2 is more computationally feasible among the
competing post-selection confidence intervals.

3. When neither EPoSI1 nor EPoSI2 is of finite length: In view of the com-
putational cost associated with the PoSI confidence intervals in this case
and having EPoSI1 and EPoSI2 of infinite lengths, we conclude that more
research and new ideas are required in this case.

Population-based regression coefficients

Here, we summarize the conclusions made by Dezeure et al. (2015), who did a
thorough study on the post-selection inference for the population-based targets.
The authors compare the empirical coverage probabilities and lengths of con-
fidence intervals constructed using the methods proposed by Zhang & Zhang
(2014), Javanmard & Montanari (2014a), Bühlmann (2013), Meinshausen et al.
(2009), Liu & Yu (2013) and Chatterjee & Lahiri (2013) through an empirical
study, and make the following observations: (1) the empirical coverage proba-
bility of confidence intervals for the true zero regression coefficients is satisfac-
tory for all the methods. Moreover, the empirical coverage probability for the
true non-zero coefficients is in accord with the p-values for the corresponding
hypothesis tests; (2) the empirical coverage probability for the smallest true
non-zero coefficient (i.e. the weakest signal) is very low for all the methods; (3)
confidence intervals constructed using the multi sample-splitting (Meinshausen
et al. 2009) and ridge-based bias correction (Bühlmann 2013) approaches are in
general wider than those derived from the other methods.
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