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Abstract: In the sparse sequence model, we consider a popular Bayesian
multiple testing procedure and investigate for the first time its behaviour
from the frequentist point of view. Given a spike-and-slab prior on the high-
dimensional sparse unknown parameter, one can easily compute posterior
probabilities of coming from the spike, which correspond to the well known
local-fdr values [27], also called �-values. The spike-and-slab weight param-
eter is calibrated in an empirical Bayes fashion, using marginal maximum
likelihood. The multiple testing procedure under study, called here the cu-
mulative �-value procedure, ranks coordinates according to their empirical
�-values and thresholds so that the cumulative ranked sum does not exceed
a user-specified level t. We validate the use of this method from the multiple
testing perspective: for alternatives of appropriately large signal strength,
the false discovery rate (FDR) of the procedure is shown to converge to the
target level t, while its false negative rate (FNR) goes to 0. We complement
this study by providing convergence rates for the method. Additionally, we
prove that the q-value multiple testing procedure [44, 17] shares similar
convergence rates in this model.
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1. Introduction

1.1. Background

Multiple testing problems are ubiquitous and encountered in applications as
diverse as genomics, imaging, and astrophysics. The seminal paper of Ben-
jamini and Hochberg [10] introduced the False Discovery Rate (FDR) as a cri-
terion for multiple testing and provided a procedure controlling it, the so-called
Benjamini–Hochberg procedure. Subsequent papers adapted this procedure in
different contexts [12, 11, 13, 40, 36, 29, 19, 23, 35, 22, 14, 7, 8, 30]. We focus
here on another class of multiple testing procedures, also widely used in practice,
consisting of empirical Bayesian procedures. These have been made popular in
particular through the two-group model [27] and a series of papers by Efron
[24, 25, 26]; see also [46, 5, 45] for several extensions. More specifically, the local
FDR (called �-value here) can be seen as a Bayesian quantity corresponding to
the probability of being under the null distribution conditionally on the value of
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the test statistic. This probability is typically estimated by plugging in estima-
tors of model aspects, which follows the general philosophy of empirical Bayes
methods. Using �-values instead of p-values is often considered to be more power-
ful [46], which explains the popularity of these significance measures in practical
applications, including genomic data and biostatistics [37, 20, 48, 31, 3, 43, 28]
but also other applied fields, such as neuro-imaging as in e.g. [34]. In addition,
the detection ability of �-values can be increased further by adding structure
on the null configurations via a latent model, such as a hidden Markov model
[47, 1] or a stochastic block model [39], or via covariates [15].

Despite their popular practical use, Bayesian multiple testing methods remain
much less understood from the theoretical point of view than p-value based ap-
proaches. Decision-theoretic arguments inspire most practical algorithms based
on the Bayesian distribution (see among others �-, C�- and q-value procedures
defined below). Such arguments are theoretically justified under the assumption
that the data has been generated from a model which includes specific random
modelling of the latent parameters, and this random modelling can be seen as a
Bayesian prior. Yet, in practice, especially in sparsity problems, specification of
prior aspects such as the number of effective parameters and the distribution of
alternative means is delicate. In the frequentist-Bayes literature, an alternative
is to look for prior distributions that can be proved to have optimal or near-
optimal behaviour from the frequentist point of view (see Section 3.3 below for
general references). This leads to the question of studying Bayesian multiple
testing procedures in the frequentist sense. From the perspective of multiple
testing theory, the goal is to design procedures that are robust with respect to
the latent modelling, which is in line with the classical strong error rate control
[21].

While most of the literature on multiple testing for Bayesian methods has
focused on latent variable modelling with a random ‘signal’ parameter, we thus
focus here on the case of any deterministic signal. There are very few works so
far in this setting — we present a brief literature review in Section 3.3 — and
the present work can be seen as a continuation of [17]. In that work, a family of
spike-and-slab prior distributions was considered and frequentist properties of
two multiple testing procedures were investigated in the sparse sequence model:
the �-value procedure, where testing is based on the posterior probability that a
given null hypothesis is true, and the q-value procedure, based on the Bayesian
probability of the null given the hypothetical event that the data exceeds the
value actually observed. A different procedure very popular in practice is one
based on cumulative ranked �-values, called the C�-value procedure below. This
procedure was conjectured to have desirable frequentist properties in [17]. The
aim of the present paper is to confirm this conjecture: the C�-value procedure
is studied here for the first time from the frequentist perspective in the setting
of sparse deterministic hypotheses. We now proceed to introducing in more
detail the model, the inferential goals, and the multiple testing procedures to
be considered.
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1.2. Model, FDR and FNR

Notation introduced throughout the paper is collected in Appendix B for the
reader’s convenience.

Model. Consider the Gaussian sequence model, for θ = (θ1, . . . , θn) ∈ R
n,

Xi = θi + εi, 1 ≤ i ≤ n, (1)

where the noise variables (εi)i≤n are assumed to be iid standard Gaussians
N (0, 1), whose density we denote φ. We assume that there exists a true (un-
known) vector θ0 ∈ R

n that is sparse: specifically, if

‖θ‖�0 := #{1 ≤ i ≤ n : θi �= 0}

denotes the number of non-zero coordinates of θ, we assume that θ0 ∈ �0(sn)
for a sequence sn → ∞ satisfying sn/n → 0 as n → ∞, where for s ≥ 0,

�0(s) = {θ ∈ R
n : ‖θ‖�0 ≤ s}. (2)

The distribution of the data under the true θ0 is given by

Pθ0 =
n⊗

i=1

N (θ0,i, 1),

where θ0 satisfies the sparsity constraint (2) but is otherwise arbitrary and non-
random. To make inference on θ, we follow a Bayesian approach and endow θ
with a prior distribution Π. Using Bayes’ formula one can then form the posterior
distribution Π[· |X], which is the conditional distribution of θ given X in the
Bayesian framework. The choice of Π (and the corresponding posterior Π[· |X])
will be specified in more detail in Section 1.3.1 below. To assess the validity of
inference using Π[· |X], we study the behaviour of the latter — or of aspects of
it used to build a testing procedure — in probability under the true frequentist
distribution Pθ0 .

Multiple testing inferential problem, FDR and FNR. We consider the multiple
testing problem of determining for which i we have signal, that is, θ0,i �= 0. More
formally, we analyse a procedure ϕ(X) = (ϕi(X))1≤i≤n, taking values in {0, 1}n,
that for each coordinate i guesses whether or not signal is present. To evaluate
the quality of such a procedure ϕ, one needs to consider certain risk or loss
functions. Here we focus on the most popular such risks, defined as follows:
the FDR (false discovery rate) is the average proportion of errors among the
positives, while the FNR (false negative rate) is the average proportion of errors
among the true non-zero signals.

More precisely, first define the false discovery proportion (FDP) at θ0 by

FDP(ϕ; θ0) :=

∑n
i=1 1{θ0,i = 0, ϕi = 1}

1 ∨
(∑n

i=1 ϕi

) . (3)
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Then the FDR at θ0 is given by

FDR(ϕ; θ0) := Eθ0 [FDP(ϕ; θ0)]. (4)

Similarly, the false negative rate (FNR) at θ0 is defined as

FNR(ϕ; θ0) := Eθ0

[∑n
i=1 1{θ0,i �= 0, ϕi = 0}

1 ∨
(∑

i≤n 1{θ0,i �= 0}
) ]

. (5)

To use classical testing terminology, the FDR can be interpreted as a type I error
rate, while the FNR corresponds to a type II error rate. The former is ubiquitous
and the latter, with the current (non-random) choice of denominator, has been
widely used in recent contributions, see, e.g., [4, 38].

The aim of multiple testing in this setting is to find procedures that keep
both type of errors under control. Inevitably, in the sparse setting in model (1),
to achieve this will require some signal strength assumption (see (21) below and
the discussion in Section 3.1).

1.3. Empirical Bayes multiple testing procedures

1.3.1. Spike-and-slab prior distributions and empirical Bayes

A family of prior distributions. For w ∈ (0, 1), let Πw = Πw,γ denote a spike-
and-slab prior for θ, where, for Γ a distribution with density γ,

Πw = ((1− w)δ0 + wΓ)⊗n. (6)

That is, under Πw, the coordinates of θ are independent, and are either exactly
equal to 0, with probability (1−w), or are drawn from the ‘slab’ density γ. When
the Bayesian model holds, the data X follows a mixture distribution, with each
coordinate Xi independently having density (1 − w)φ + wg, where g denotes
the convolution φ 	 γ. This shares similarities with the well-known two-group
model in the multiple testing literature [27]: the only difference is that here the
alternative (i.e. the slab), is fixed a priori, rather than estimated from the data.

In this work, we consider in particular a ‘quasi-Cauchy’ alternative as in [33],
where γ is defined in such a way that the convolution g = φ 	 γ equals

g(x) = (2π)−1/2x−2(1− e−x2/2), x ∈ R. (7)

Such a γ indeed exists, and is given explicitly in [33], eq. (4), but its explicit
expression will not be of use to us here.

The references [32, 17] consider more generally a family of heavy-tailed dis-
tributions governed by a parameter κ ∈ [1, 2], for which the quasi-Cauchy alter-
native corresponds to κ = 2, and we note that most of the calculations in the
current paper work unchanged in the Laplace case κ = 1. Some, however, re-
quire minor adjustment, and in particular, one should expect a slightly different
rate of convergence of the FDR to t in Theorems 2 and 3 below.
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The posterior distribution Πw(· | X) can be explicitly derived as

θ |X ∼
n⊗

i=1

(�i,w(X) δ0 + (1− �i,w(X))GXi) ,

where Gx is the distribution with density γx(u) := φ(x− u)γ(u)/g(x) and

�i,w(X) = Πw(θi = 0 | X) = �(Xi;w), 1 ≤ i ≤ n,

�(x;w) =
(1− w)φ(x)

(1− w)φ(x) + wg(x)
∈ (0, 1), x ∈ R.

(8)

The quantities �i,w(X), 1 ≤ i ≤ n, are called the �-values. Note that w →
�i,w(X) is decreasing. For short, we sometimes write �i,w for �i,w(X). In words,
each �i,w(X) corresponds to the posterior probability that the measurement Xi

comes from the null, this probability being computed in the Bayesian model
with the spike-and-slab prior (6). Let us underline that, in the usual multiple
testing terminology of the two-group model, the posterior distribution �i,w(X)
corresponds to the ith local fdr of the data, when the alternative density is g,
the null density is φ, and the proportion of true nulls is 1− w, see, e.g., [26].

In the empirical Bayes framework, one first estimates w empirically from the
data using, for example, the maximum (marginal) likelihood estimator, defined
as the maximiser (which exists almost surely, in view of Lemma 4)

ŵ = argmax
w∈[1/n,1]

L(w), (9)

where L(w) denotes the marginal log-likelihood function for w, which can be
expressed as

L(w) =

n∑
i=1

log
(
(1− w)φ(Xi) + wg(Xi)

)
. (10)

The resulting empirical Bayes (EB) posterior is simply Πŵ[· |X]. We highlight
that the dependence on w is a significant qualitative difference between �-values
and their main alternative of p-values. Quantitatively, with an estimated ŵ, �-
values under the null are expected to be close to 1 (see, e.g., Lemma 6), which
is not the case for p-values.

Finding a maximiser ŵ and simulating from this distribution, or calculating
aspects such as the posterior mean or median, can be done in a fast and effi-
cient way and has been implemented in the EBayesThresh R package. From the
theoretical perspective, a lot of progress has been made in the last few years
in understanding the behaviour of the empirical Bayes posterior, in connection
with the study of Bayesian procedures in sparsity settings, and we briefly review
such results in Section 3.3 below.

1.3.2. Bayesian multiple testing procedures

The C�-value procedure with level t ∈ (0, 1), which is the main object of study

herein, rejects the null hypothesis H0,i : “θ0,i = 0” if �i,ŵ(X) < λ̂(ŵ, t), where,
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for ŵ as in (9),

λ̂(ŵ, t) = sup
{
λ ∈ [0, 1] :

∑n
i=1 �i,ŵ(X)1{�i,ŵ(X) < λ}
1 ∨

∑n
i=1 1{�i,ŵ(X) < λ} ≤ t

}
.

Let us recall the notions of the Bayesian FDR and posterior FDR under a prior
distribution (as in e.g. [42]) to place this definition in context and define the
other two Bayesian multiple testing procedures of interest for this work.

BFDR and postFDR. The Bayesian FDR is the FDR when instead of having
a fixed θ0, the parameter θ is truly generated from the prior Πw:

BFDRw(ϕ) := Eθ∼Πw FDR(ϕ; θ), (11)

and the posterior FDR is the BFDR conditional on X, or equivalently the
expectation of the FDP when the parameter θ is drawn from the posterior
Πw(· | X):

postFDRw(ϕ) := Eθ∼Πw(·|X)[FDP(ϕ; θ)] =

∑n
i=1 �i,w(X)ϕi

1 ∨ (
∑n

i=1 ϕi)
. (12)

Note that postFDRw(ϕ) decreases as w increases (for a fixed procedure ϕ), as
a result of the monotonicity of the �-values (see Lemma 4).

�-value procedure. Let us consider a family of multiple testing procedures
ϕ = ϕλ,w based on �-value thresholding as follows. For any given level λ ∈ [0, 1],
set

ϕλ,w(X) = (1{�i,w(X) < λ})1≤i≤n. (13)

The �-value procedure at level t is then defined by ϕt,ŵ(X), for ŵ as in (9).
C�-value procedure (reformulation). Given the collection of procedures (13)

for different thresholds λ, another way to choose λ is to ensure the posterior
FDR (12) is controlled at a level as close as possible to the target level t. This
yields the C�-value procedure defined at the start of this section: with ŵ as in
(9),

ϕC� = ϕλ̂,ŵ,

λ̂ = λ̂(ŵ, t) = sup{λ ∈ [0, 1] : postFDRŵ(ϕλ,ŵ) ≤ t}.
(14)

This is also a reformulation of the procedure considered in, e.g., [37, 46]. The
original expression of ϕC� in these references (using cumulative sums rather than
the level λ) can be derived from the observation that we necessarily threshold
at one of the observed �-values (i.e. at some �i,ŵ(X)) since the posterior FDR

only changes when we cross such a value. The threshold is λ̂ = �(K̂+1),ŵ, with

�(i),ŵ denoting the ith order statistic of {�i,ŵ(X) : 1 ≤ i ≤ n}, and we therefore

reject the null hypotheses for indices corresponding to the K̂ smallest observed
�-values,1 where K̂ is defined by

1

K̂

K̂∑
i=1

�(i),ŵ ≤ t <
1

K̂ + 1

K̂+1∑
i=1

�(i),ŵ. (15)

1In principle we define the order statistics so that repeats are allowed, defining them by
the traits {�i,ŵ(X), i ≤ n} = {�(j),ŵ, j ≤ n} as a multiset (∀x ∈ R, #{i : �i,ŵ = x} = #{i :
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(By convention the left inequality automatically holds in the case K̂ = 0. If

the right inequality is not satisfied for any K̂ < n, we set K̂ = n and λ̂ =
1.) Note that K̂ is well defined and unique, by monotonicity of the average
of nondecreasing numbers. This monotonicity also makes clear the following
dichotomy, which will prove useful in the sequel: for all t ∈ (0, 1) and λ ∈ [0, 1],

postFDRŵ(ϕλ,ŵ) ≤ t ⇐⇒ λ ≤ λ̂. (16)

This indicates that the supremum in (14) is a maximum. Also observe that

postFDRŵ(ϕt,ŵ) ≤ t, so that λ̂ ≥ t and the �-value procedure is always more
conservative than the C�-value procedure.

q-value procedure. Another way to calibrate a procedure ϕi = 1{|Xi| ≥ x}
in order to control the (B)FDR is to further simplify the expectation of a ratio
defining the BFDR and instead consider the ratio of expectations, defining for
x ∈ R and w ∈ [0, 1]

q(x;w) =
Eθ∼Πw

∑n
i=1 1{θi = 0}1{|Xi| ≥ |x|}

Eθ∼Πw

∑n
i=1 1{|Xi| ≥ |x|}

=
(1− w)Φ(|x|)

(1− w)Φ(|x|) + wG(|x|)
,

(17)

where Φ and G denote the upper tail functions of the densities φ and g respec-
tively. The q-values are then given by

qi,w(X) = q(Xi;w) =
(1− w)Φ(|Xi|)

(1− w)Φ(|Xi|) + wG(|Xi|)
, 1 ≤ i ≤ n, (18)

and the q-value procedure is defined by thresholding the q-values at the target
level t > 0:

ϕq-val(X) = (1{qi,ŵ(X) < t})1≤i≤n. (19)

Thanks to monotonicity of both the q and � values (see Lemma 4) ϕq-val lies
in the class (13), so that ϕq-val = ϕλq,ŵ for some λq = λq(ŵ, t). As with the
�-values, we sometimes write qi,w for qi,w(X).

Rationale behind these procedures for FDR control. Let us now give some in-
tuition behind the introduction of such procedures. Consider ϕt,w, ϕλ̂(w,t),w, and
ϕλq(w,t),w; that is, the �-, C�- and q-value procedures respectively, but with a
fixed value of w. All three control the Bayesian FDR (BFDR) at level t under the
prior Πw: for the first and third procedures, see Proposition 1 in [17]; for the C�-
value procedure with fixed w, since postFDRw(ϕλ̂(w,t),w) ≤ t, we directly have

BFDRw(ϕλ̂(w,t),w) ≤ t by taking expectations. Moreover, by concentration argu-

ments and appealing again to [17, Proposition 1], we have BFDRw(ϕλ̂(w,t),w) ≈ t

�(i),ŵ = x}) and �(1),ŵ ≤ �(2),ŵ ≤ · · · ≤ �(n),ŵ. When �(K̂),ŵ = �(K̂−1),ŵ in fact ϕC� as

defined in (14) rejects fewer than K̂ hypotheses. However, with probability 1, the observed �
values are all distinct, due to the Gaussianity of Xi and the strict increasingness of the map
x �→ �(x;w), see Lemma 4.
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and BFDRw(ϕλq(w,t),w) ≈ t. Hence, from the decision-theoretical perspective,
if the prior Πw is “correct”, these procedures are bona fide for the purpose of
controlling the BFDR. Note that this says nothing when the procedures are
constructed using a random w which is typically what is done in practice (as
in (9)). In addition, to derive frequentist properties, the procedure has to be
evaluated under a fixed truth θ0, which makes it even further from the previous
decision-theoretic argument. Yet, one can expect that for n large, ŵ (and con-
sequently the plug-in posterior Πŵ[· |X]) concentrates in an appropriate way,
giving the hope, validated by Theorem 1 below for the C�-value procedure with
strong signals, that the frequentist FDR at θ0 can still be controlled.

2. Main results

2.1. Consistency

Let us define a ‘strong signal class’ of parameters with exactly sn non-zero
entries, each of which is “large”. For θ0 ∈ �0(sn), denote by S0 the support of
θ0,

S0 = {i : θ0,i �= 0}. (20)

For a sequence vn → ∞ we define the strong signal class

�0(sn; vn) =
{
θ0 ∈ �0(sn) : |θ0,i| ≥

√
2 log(n/sn) + vn for i ∈ S0, |S0| = sn

}
.

(21)

Theorem 1. Fix t ∈ (0, 1). Consider any sequence sn → ∞ such that sn/n → 0,
and any sequence vn → ∞. Then, as n → ∞,

sup
θ0∈�0(sn,vn)

|FDR(ϕC�; θ0)− t| → 0, (22)

sup
θ0∈�0(sn,vn)

FNR(ϕC�; θ0) → 0. (23)

Let us emphasise that the conclusion of Theorem 1 does not mention the
prior, holding for any deterministic θ0 in the strong signal class, not only for
non-zero entries of θ0 drawn from the quasi-Cauchy distribution (7). Moreover,
this frequentist consistency result holds uniformly across the strong signal set
�0(sn; vn). The assumption vn → ∞ cannot be relaxed, as we discuss in Sec-
tion 3.1.

2.2. Convergence rate

The following result strengthens the conclusion of Theorem 1, showing that the
FDR converges to t from above and obtaining a precise rate of convergence, at
the cost of requiring mild extra conditions on sn and vn.
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Theorem 2. In the setting of Theorem 1, assume also that

sn ≥ (logn)3, vn ≥ 3(log log(n/sn))
1/2.

Then there exist constants c, C,C ′ > 0 depending on t such that uniformly over
θ0 ∈ �0(sn; vn), for all n large enough we have

c
log log(n/sn)

log(n/sn)
≤ FDR(ϕC�; θ0)− t ≤ C

log log(n/sn)

log(n/sn)
, (24)

FNR(ϕC�; θ0) ≤ C ′(log n
sn
)
−1

. (25)

Remarks. i. This result shows that the convergence rate of FDR(ϕC�; θ0) to
t is logarithmic in n/sn and uniform over �0(sn; vn). In particular, note
that increasing the signal strength vn does not accelerate the convergence
rate of the FDR. By contrast, we provide no lower bound for the FNR in
(25), so the convergence rate of the FNR to zero can (and will) be much
faster for larger vn.

ii. In fact we prove the stronger false discovery proportion result (implying
(24)) that for some c, C > 0, writing εn = log log(n/sn)/(log(n/sn)) we
have

cεn ≤ FDP(ϕC�; θ0)− t ≤ Cεn, with probability at least 1− o(εn),

and correspondingly for the false negative proportion.
iii. The bound sn ≥ (log n)3 can be relaxed to sn ≥ b(logn)2/ log logn for

some large enough constant b = b(t): see Lemma 21.

Let us now turn to study the q-value procedure. The next result shows that
its behaviour matches that of the C�-value procedure.

Theorem 3. Theorems 1 and 2 continue to hold when the C�-value procedure
ϕC� is replaced by the q-value procedure ϕq-val.

The FDR/FNR of the q-value procedure was studied in [17], but without con-
vergence rates, and an improvement with respect to the C�-value procedure was
conjectured following simulations. Theorem 3 addresses this issue by showing
the convergence rate is in fact exactly the same. Further comparisons between
our results and those of [17] will be provided in Section 3.3.

2.3. Sketch proof of Theorems 1 and 2

The proof relies on the concentration of ŵ and λ̂. One shows (Lemmas 5 and 7)
that ŵ concentrates near a (deterministic) value w∗, of order slightly larger
than sn/n, that roughly maximizes the expectation of the log-likelihood (10).
Recalling that S0 = {i : θ0,i �= 0} denotes the support of θ0, the signal strength
assumption ensures that for i ∈ S0, with high probability �i,w∗(X) ≈ 0. Hence,

using that λ̂ ≥ t > 0, we obtain∑
i∈S0

ϕC�
i ≈ sn; and more precisely

∑
i∈S0

(1− ϕC�
i ) = o(sn),
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see Lemma 9. This implies that the FNR of ϕC� tends to 0. For the FDR result,
let Vλ,w, λ,w ∈ [0, 1] denote the number of false discoveries made by ϕλ,w; that
is,

Vλ,w =
∑
i �∈S0

1{�i,w(X) < λ}. (26)

One shows (Lemmas 6 and 8) that with high probability, λ̂ is close to the solution
λ∗ to

E[Vλ∗,w∗ ](Eθ0=0[�1,w∗(X) | �1,w∗(X) < λ∗]− t) = tsn.

This is because Vλ∗,w∗ and
∑

i �∈S0
�i,w∗(X)1{�i,w∗(X) < λ∗} concentrate around

their means (Lemma 10 and the proof of Lemma 8) ensuring that with high
probability (recall �i,w∗(X) ≈ 0 for i ∈ S0)

postFDRw∗(ϕλ∗,w∗) ≈
∑

i �∈S0
�i,w∗(X)1{�i,w∗(X) < λ∗}

sn +
∑

i �∈S0
1{�i,w∗(X) < λ∗}

≈
∑

i/∈S0
E[�i,w∗(X)1{�i,w∗(X) < λ∗}]

E[Vλ∗,w∗ ] + sn

=
E[Vλ∗,w∗ ]Eθ0=0[�1,w∗(X) | �1,w∗(X) < λ∗]

E[Vλ∗,w∗ ] + sn
= t.

Then, again using concentration of Vλ∗,w∗ ,

FDR(ϕC�; θ0) ≈
E[Vλ∗,w∗ ]

sn + E[Vλ∗,w∗ ]

=
tsn/(Eθ0=0[�1,w∗(X) | �1,w∗(X) < λ∗]− t)

sn + tsn/(Eθ0=0[�1,w∗(X) | �1,w∗(X) < λ∗]− t)

= t/Eθ0=0[�1,w∗(X) | �1,w∗(X) < λ∗]

≈ t
(
1 + (1− Eθ0=0[�1,w∗(X) | �1,w∗(X) < λ∗])

)
,

with the last approximation following from a Taylor expansion. Finally, one
notes (Lemma 6) that Eθ0=0[�1,w∗(X) | �1,w∗(X) < λ∗] converges to 1 (from
below) at a rate εn = log log(n/sn)/ log(n/sn). The errors arising each time ≈
is invoked above depend on the sparsity sn and on the boundary separation
sequence vn, and are shown in the setting of Theorem 2 to be of smaller order
than εn, so that this concludes the (sketch) proof.

3. Discussion

3.1. Optimality

Sharpness of the boundary condition. A related work by the current authors [2]
proves the following bound for fixed b ∈ R: any procedure ϕ which is ‘sparsity
preserving’ (meaning that its number of discoveries at any θ0 ∈ �0(sn; b) is
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with high probability not too much larger than sn — see Section 6 for precise
definitions) cannot simultaneously satisfy the FDR and FNR bounds

lim sup
n

sup
θ0∈�0(sn;b)

FDR(ϕ; θ0) ≤ t, lim sup
n

sup
θ0∈�0(sn;b)

FNR(ϕ; θ0) = 0.

Indeed, such a procedure cannot satisfy the FNR bound alone. In Section 6
we show that both the C�- and q-value procedures are sparsity preserving. The
condition vn → ∞ required for Theorem 1 thus cannot be relaxed while still
achieving the FNR bound (23), and correspondingly for Theorem 3; this is not a
limitation specifically of the procedures considered here but is true of any “rea-
sonable” (i.e. sparsity preserving) procedure, including for example Benjamini–
Hochberg type procedures (see [2]).

General signal regimes. As noted above, with weaker signals (vn �→ ∞) it is
impossible to achieve both small FDR and vanishing FNR. One could still hope,
under such weaker signals, to have an “honest” procedure, in the sense that its
FDR is controlled at close to the target level t. Simulations in [17] suggest that
this is indeed the case for the C�-value procedure. When the �-value procedure
makes no discoveries (i.e. every �i,ŵ(X) is larger than the target level t) the C�-
value procedure also makes no discoveries, so that the proofs in [17] controlling
the FDR of the �-value procedure for very weak signals also apply to the C�-value
procedure. It remains to study “intermediate” signals, strong enough that the
C�-value procedure makes some discoveries but weaker than the class �0(sn, vn)
analysed here. While the general case seems challenging, the intermediate signal
regime where vn is fixed (vn �→ −∞) can be treated using results from [2]: see
the remark in Section 6.

3.2. Relationship between the C�-, �- and q-value procedures

The key contribution of this paper is to analyse the C�-value procedure. This
procedure, like the q- and �- value procedures, is in wide use in multiple testing
and does not need our advocacy, but let us nevertheless highlight some advan-
tages.

Note that, as originally introduced in [44], q(x;w) corresponds to P(θ,X)(θi =
0 | |Xi| ≥ x). Hence, the q-value qi,w(X) corresponds to the conditional proba-
bility qi,w(X(ω)) = Pθ∼Πw(θi = 0 | |Xi| ≥ |Xi(ω)|). Nevertheless, it is not based
solely on the posterior Πw(· | X) but rather on the joint distribution of (θ,X): in
the conditioning, the event |Xi| ≥ |Xi(ω)| involves measures Xi more extreme
than the observed one Xi(ω). By contrast, the C�-value procedure depends only
on the observed event and not on other events that one hypothetically could
have observed. From a philosophical point of view, it follows that while both
procedures adhere to multiple testing principles, the C�-value procedure more
closely aligns with Bayesian principles. This potentially also has positive impli-
cations for computation, since the C�-value procedure can be calculated directly
from �-values, while computation of q-values must be done separately, requir-
ing an extra integration step, and can be more involved for more complicated
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priors/models. See [39] for an example of q-value computations for Gaussian
mixtures.

When the data is truly generated from the prior, �-value procedures, though
optimal for classification problems, are less adapted to the (B)FDR scale than
q- and C�- value procedures. Indeed, when the prior Πw correctly specifies the
data distribution for some known w, these latter procedures achieve BFDR
control at close to the target level, while the �-value procedure typically has
noticeably smaller BFDR (recall also the discussion at the end of Section 1.3.2,
and Proposition 1 in [17]). Similarly, from the frequentist point of view, the
results herein and in [17] show that in strong signal settings with a (non-random)
sparse parameter θ0, the C�- and q- value procedures make full use of their
“budget” of false discoveries in order to make more true discoveries, while the
�-value procedure undershoots the user-specified target FDR level and so is
conservative.

Another approach to adjusting the �-value procedure to the FDR scale would
be to use a deterministic threshold λ∗ = λ∗

n(t) → 1 to obtain the specified FDR
level t asymptotically. In view of Lemma 6, the appropriate choice would have
1 − λ∗ of order (log(n/sn))

−1, which depends on the unknown sparsity sn.
The C�-value procedure can be seen as one way to make an appropriate choice
adaptively to sn.

3.3. Relationship to frequentist-Bayes analysis

Frequentist analysis of Πŵ[· |X]. Recently, a number of works have analysed
different aspects of inference for the EB-posterior distribution, mostly from the
estimation perspective. The paper [32] pioneered this study by establishing that
the posterior median and mean converge at minimax rates over sparse classes for
the quadratic risk. The posterior distribution itself was studied in [16] and results
on frequentist coverage of Bayesian credible sets were obtained in [18]. This
connects to the analysis of Bayesian methods in high-dimensional settings, where
a variety of prior distributions (e.g. different types of spike-and-slab priors,
continuous shrinkage priors including the horseshoe or mixture of Gaussians)
and methods (e.g. empirical Bayes, fully Bayes, variational Bayes) have been
considered. We refer to [6] for a review on the rapidly growing literature on the
subject.

Frequentist analysis of Bayesian multiple testing procedures.
To our knowledge, the only references studying theoretically the frequen-

tist FDR/FNR of Bayesian multiple testing procedures are [17] for the present
spike-and-slab prior; [41], which considers continuous shrinkage priors and de-
rived a first frequentist FDR bound; and [9], which derived some robust re-
sults for model selection based procedures, including for various notions of sums
FDR+FNR. Let us summarise what was proved in [17] and compare with The-
orems 1–3:

• the �-value procedure controls the FDR, uniformly over all sparse alter-
natives. Its FDR converges to 0. A logarithmic upper bound is proved for
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the rate of convergence, but there is no matching lower bound showing
that this rate is not bettered. For alternatives with large enough “signal
strength”, the �-value procedure has a vanishing FNR.

• the q-value procedure controls the FDR close to the target level, uni-
formly over all sparse alternatives. For alternatives with large enough sig-
nal strength, the q-value procedure has FDR converging to the target level,
and a vanishing FNR.

The commonly used C�-value procedure, considered here, was left aside. Its
theoretical study is more involved, because it is “doubly empirical”, with random
choices of both ŵ and λ̂.

Another key novelty, in addition to considering the C�-value procedure, is the
weakening of conditions on vn and on sn. In [17] it is assumed that there exists
some ν < 1 for which sn ≤ nν , but we are able to prove Theorem 1 without this
‘polynomial sparsity’ condition. The boundary assumption of [17] is equivalent
to granting that vn ≥ b(log(n/sn))

1/2 for b > 0, whereas here we assume only
that vn → ∞. This new condition is sharp: see the discussion in Section 3.1.

3.4. Relationship to latent variables settings

A model often considered in the literature on multiple testing is the following:

θ = (θ1, . . . , θn) ∼ Q ; (27)

Xi | θi indep.∼ gθi , (28)

where the θi’s are random latent states, say taking values in {0, 1}, Q is a
probability distribution on such states, and gθi is the density of the data point
Xi given one is in the state θi. When the θi’s are independent, one recovers the
so-called two-group model [27]. Another setting of interest is the case where Q
follows a Markov chain, in which case the model (27)–(28) is a Hidden Markov
Model (HMM). The work [47] derived results for the C�-value multiple testing
procedure in the case of parametric assumptions on the emission densities of the
HMM, while the nonparametric setting for emission densities has recently been
considered in [1]. Other examples include two-sample multiple testing [15] and
graph data with underlying stochastic block-model structures [39]. Such latent
variable approaches can be interpreted as Bayesian methods if we consider the
layer (27) as a prior distribution. The FDR control provided in those works
is thus a BFDR control in the terminology used in the current paper: that is,
an FDR control integrated over the prior, as in (11). Said differently, the prior
distribution is considered to be “true”, and the main challenge of these studies
is to deal with the estimation of the (hyper-)parameters Q and e.g. g0, g1.

By contrast, in the sparse setting considered here, we are able to control the
FDR without assuming the latent structure (27)–(28) is genuinely true. Results
in the two settings are complementary, since uniform guarantees demonstrate
the “robustness” of the Bayesian approach. However, in the current setting it is
essential to choose an uninformative prior, hence the heavy (Cauchy) tails of the
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slab distribution, while in the latent variable setting one must use a correctly
specified “prior” to obtain optimal results. Relatedly, sparsity is critical for the
current approach so that the influence of the (fixed, and arbitrary apart from
the strong signal assumption) alternatives is not too great. In contrast, in a
latent variables setting one typically has dense signal, and density is moreover
helpful in such a setting since it allows accurate estimation of the distribution of
the data under the alternative. As noted above, one success of the current work
is to remove the need for polynomial sparsity: this eliminates a gap between the
two approaches, allowing our current theorems to work right up to border cases
of near density.

3.5. Possible future research avenues

This work leaves open several interesting issues. First, extending our results
to hierarchical Bayes is both interesting and challenging. Indeed, it has been
shown for instance that, for quadratic risk and in sparsity settings, empirical
Bayes and hierarchical Bayes posteriors can have different behaviours, even for
common choices of spike-and-slab priors (see [16]). One possible route for proving
versions of our results for hierarchical priors would be to show that the posterior
weight for the hyperparameter w is well enough concentrated.

Second, we suspect that the C�-value procedure satisfies some more optimal-
ity properties, e.g., having a vanishing FDR+FNR risk tending to zero at the
optimal rate provided in [38], if the level t = tn is chosen to vanish at a suitable
rate.

Finally, a probably very challenging issue would be to provide non-asymptotic
frequentist FDR controlling results for the C�-value procedure, and more gen-
erally for Bayesian multiple testing procedures.

4. Proofs of the main results

Throughout the proofs we use the following notation: for a real sequence (an)n∈N

and a non-negative sequence (bn)n∈N, we write an � bn, bn � an or an = O(bn)
if there exists a constant C such that |an| ≤ Cbn for all n large enough; we write
an � bn if an � bn and bn � an; we write an � bn or an = o(bn) if an/bn → 0
as n → ∞; and we write an ∼ bn if an/bn → 1 as n → ∞. We may also write,
for example, f(w) ∼ g(w) as w → 0 if (f/g)(w) → 1, and correspondingly.

4.1. Preliminaries

To make the sketch argument of Section 2.3 rigorous, we define precise upper
and lower bounds w± and λ± in place of the central quantities w∗, λ∗. There
are four parameters governing convergence rates throughout the proof. For a
constant α > 0 to be chosen, (in Lemmas 7 and 9), we write

νn = αs−1/2
n (log sn)

1/2, (29)
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δn = (log(n/sn))
−1, (30)

εn = δn log log(n/sn), (31)

ρn = e−v2
n/9. (32)

[Recall that the ‘strong signal assumption’ of Theorem 1 is that θ0 ∈ �0(sn, vn).]
Note that

δn = o(εn). (33)

In the setting of Theorem 2 we further have

νn = o(δn), (34)

ρn ≤ δn, (35)

the former following from the fact that u �→ (u/ log u)−1/2 is decreasing on u > e
and the assumption that sn ≥ (logn)3, and the latter from the assumption that
vn ≥ 3(log log(n/sn))

1/2.
Define

β(x) := g
φ (x)− 1, (36)

and observe we may write the score S(w) as

S(w) := L′(w) =
n∑

i=1

β(Xi)

1 + wβ(Xi)
. (37)

Then defining m̃,m1 as in [17] by

m̃(w) = −Eθ0=0

[ β(X1)

1 + wβ(X1)

]
(38)

m1(τ, w) = Eθ0,1=τ

[ β(X1)

1 + wβ(X1)

]
, (39)

we let w± be the (almost surely unique) solutions to

∑
i∈S0

m1(θ0,i, w−) = (1 + νn)(n− sn)m̃(w−), (40)

∑
i∈S0

m1(θ0,i, w+) = (1− νn)(n− sn)m̃(w+). (41)

Note that equations solved by w+, w− are close to the expected score equation
Eθ0 [S(w)] = 0. While it is shown in [17] that solutions exist for νn = ν a fixed
positive constant, strengthening this conclusion to allow νn → 0 is required
here to obtain rates of convergence; we note that there indeed exist solutions
w− ≤ w+ to (40) and (41) for n large enough, for any α > 0, by Lemma 5.

Let

Fw(x) = Pθ0=0(�1,w ≤ x), (42)
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and for some A = A(t) > 0 to be chosen (in Lemma 8), define λ± as the solutions
to

(n− sn)Fw−(λ+)
(
Eθ0=0[�1,w+ | �1,w− < λ+]− t

)
= tsn +Asnνn (43)

(n− sn)Fw+(λ−)
(
Eθ0=0[�1,w− | �1,w+ < λ−]− t

)
= tsn −Asn max(νn, ρn, δn).

(44)

Note that unique solutions λ− < λ+ to (43) and (44) exist by Lemma 6. These
definitions correspond to the central approximation (n−sn)Fw∗(λ∗)(Eθ0=0[�1,w∗ |
�1,w∗ < λ∗]− t) = tsn, but with each central quantity w∗ replaced by an upper
or lower bound in a consistent way to ensure the left side is always decreased in
(43) and always increased in (44), so that the solutions λ+ and λ− will indeed

bound λ̂ from above and below respectively (Lemma 8).

4.2. Proof of Theorems 1 and 2

Section 5 will provide a number of core lemmas which allow a concise exposition
of the proofs of Theorems 1 and 2. In particular, Lemmas 7–10 collectively tell
us, via a union bound, that there exists an event A of probability at least 1−νn
on which, for some a = a(t) > 0 and with Kn := #{i ∈ S0 : �i,w− > δn},

ŵ ∈ (w−, w+),

Kn ≤ sn(ρn + νn),

λ̂ ∈ [λ−, λ+],

Vλ+,w+ ≤ E[Vλ+,w+ ] + asnνn,

Vλ−,w− ≥ E[Vλ−,w− ]− asnνn.

(45)

FNR control. By monotonicity of the �-values (Lemma 4) and the fact that
λ− is bounded away from zero (as implied by Lemma 6) we note that for n large
we have on A

#{i ∈ S0 : ϕC�
i = 0} ≤ #{i ∈ S0 : �i,w− ≥ λ−} ≤ Kn, (46)

which in particular allows us to immediately deduce the FNR control (23):

FNR(ϕC�; θ0) ≤ Eθ0

(Kn

sn
1A+1Ac

)
≤ ρn+νn+Pθ0(Ac) ≤ ρn+2νn → 0. (47)

In the setting of Theorem 2, the fact that max(ρn, νn) ≤ δn (recall (34) and
(35)) implies the FNR claim (25).

FDR upper bound. We turn now to the control of the false discovery rate.
By monotonicity (see Lemma 4), on the event A, the number Vλ̂,ŵ of false

discoveries made by ϕC� lies between Vλ−,w− and Vλ+,w+ . By Lemma 6 we see
for a constant D = D(t) > 0 that

E[Vλ+,w− ] = (n− sn)Fw−(λ+) ≤ (1 +Dmax(εn, νn))t(1− t)−1sn.
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Lemma 11 tells us that E[Vλ+,w+ ] ≤ (1+Bmax(νn, ρn, δn))E[Vλ+,w− ] for some
constant B, hence for some constant D′ > D we deduce using δn = o(εn) that
for n large enough we have

E[Vλ+,w+ ] ≤ (1 +D′ max(εn, νn, ρn))t(1− t)−1sn.

Since for a, b > 0, the map x �→ x/(a+x) is increasing and the map b/(a+x) is
decreasing on x > −a, using also (45) and (46) we deduce that on the event A

FDP(ϕC�; θ0) ≤
Vλ̂,ŵ

Vλ̂,ŵ + sn −Kn

≤ E[Vλ+,w+ ] + asnνn

E[Vλ+,w+ ] + asnνn + sn −Kn

≤ (1 +D′ max(εn, νn, ρn))t(1− t)−1sn + asnνn
sn[(1 +D′ max(εn, νn, ρn))t(1− t)−1 + 1− (ρn + (1− a)νn)]

≤ t+D′tεn + a′ max(νn, ρn)

1 +D′tεn − a′ max(νn, ρn)
,

for some a′ = a′(t) > 0, hence we have

FDP(ϕC�; θ0) ≤
t+D′tεn + a′ max(νn, ρn)

1 +D′tεn − a′ max(νn, ρn)
+ 1Ac .

Taking expectations, using that Pθ0(Ac) ≤ νn and that

t+D′tεn
1 +D′tεn

= t+
D′t(1− t)εn
1 +D′tεn

≤ t+D′t(1− t)εn,

by Taylor expanding we see that for some constant A′ = A′(t), for n large we
have

FDR(ϕC�; θ0) ≤ t+ t(1− t)D′εn +A′ max(νn, ρn).

The right side converges to t in the settings of Theorems 1 and 2. In the latter
setting we note max(νn, ρn) = o(εn) by (33)–(35), and the upper bound in (24)
follows.

FDR lower bound. For the lower bound, note by Lemma 6 that for a constant
d > 0 we have

E[Vλ−,w+ ] ≥
t

1− t
sn

(
1 + dεn − A

t max(νn, ρn)
)
,

for n large. Thus, by Lemma 11 and for B the constant thereof, using that
δn = o(εn) we see that for some constants A′, d′ depending on t and for n larger
than some N = N(t) we have

E[Vλ−,w− ] ≥ (1−Bmax(νn, ρn, δn))(1 + dεn − A
t max(νn, ρn))t(1− t)−1sn

≥ (1 + d′εn −A′ max(νn, ρn))t(1− t)−1sn,
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hence, using (45) and upper bounding the number of true discoveries by sn,

FDP(ϕC�; θ0) ≥
E[Vλ−,w− ]− asnνn

sn + E[Vλ−,w− ]− asnνn
1A

≥ (1 + d′εn −A′ max(νn, ρn))t(1− t)−1sn − asnνn
sn + (1 + d′εn −A′ max(νn, ρn))t(1− t)−1sn − asnνn

− 1Ac

≥ t+ d′tεn − a′ max(νn, ρn)

1 + d′tεn − a′ max(νn, ρn)
− 1Ac ,

for a′ = A′t+ a(1− t). Similarly to the upper bound we note that for large n

t+ d′tεn
1 + d′tεn

= t+
d′t(1− t)εn
1 + d′tεn

≥ t+ 0.5t(1− t)d′εn,

so that Taylor expanding and taking expectations, recalling that Pθ0(Ac) ≤ νn,
we obtain for some A′′ = A′′(t)

FDR(ϕC�; θ0) ≥ t+ 0.5t(1− t)d′εn −A′′ max(νn, ρn).

Again the right side tends to t in the settings of both Theorems 1 and 2. In the
latter setting, for all n greater than some N = N(t), we have 0.5t(1− t)d′εn >
2A′′ max(νn, ρn), and the lower bound in (24) follows.

4.3. Proof of Theorem 3

Let us prove Theorem 3 in the setting of Theorem 2; the proof under the weaker
conditions of Theorem 1 is similar and omitted. As with the proof of Theorems 1
and 2, by Lemmas 7 and 9 there exists an event A of probability at least 1− νn
on which, for Kn := #{i ∈ S0 : �i,w− > δn},

ŵ ∈ (w−, w+),

Kn ≤ sn(ρn + νn).

By monotonicity of the q-values (Lemma 4) it will be enough to consider the
tests (1{qi,w < t})1≤i≤n for w = w−, w+.

First step: control of false negatives. Define

S′
w = #{i ∈ S0 : qi,w < t},

so that FNR(ϕq-val; θ0) = s−1
n Eθ0 [sn − S′

ŵ].
In view of the fact that �i,w− ≥ qi,w− (see Lemma 22) we note that for n

large we have

S′
w− =

∑
i∈S0

1{qi,w− < t} ≥
∑
i∈S0

1{�i,w− < t} ≥ sn −Kn,

so that on A, using monotonicity of q-values,

S′
ŵ ≥ S′

w− ≥ sn(1− νn − ρn).
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In the current setting max(νn, ρn) ≤ δn, so that

FNR(ϕq-val; θ0) = s−1
n Eθ0 [sn−S′

ŵ] ≤ Eθ0

(
(νn+ρn)1A+1Ac

)
≤ ρn+2νn ≤ 3δn,

proving (25) for the q-value procedure.
We proceed with the proof of the FDR lower bound. As with the proofs in

the C�-value case, the key remaining steps are to prove the concentration of,
and to control the expectation of, the number of false positives, and we begin
with the latter.

Second step: bounding the expected number of false positives. Define functions
r : (0, 1)2 → [0,∞) and χ : (0, 1] → [0,∞) by

r(w, t) =
wt

(1− w)(1− t)
, (48)

χ(x) = (Φ̄/Ḡ)−1(x). (49)

Note that χ is well-defined and strictly decreasing because Φ̄/Ḡ itself is strictly
decreasing on [0,∞) (see Lemma 4). Moreover, recalling the definition (18) of
the q-values, we note that for any w ∈ [0, 1) and t ∈ [0, 1),

{qi,w < t} = {|Xi| > χ(r(w, t))}.

We write
V ′
w =

∑
i/∈S0

1{qi,w < t} =
∑
i/∈S0

1{|Xi| > χ(r(w, t))}

for the number of false positives of the multiple testing procedure (1{qi,w <
t})1≤i≤n. Note that V ′

w is increasing in w ∈ (0, 1) (Lemma 4) and by definition
of χ satisfies

Eθ0V
′
w = 2(n− sn)Φ(χ(r(w, t))) = (n− sn)r(w, t)2G(χ(r(w, t))), (50)

provided r(w, t) ≤ 1. From Lemma 14, we have

m̃(w)

(
1 + c

log log(1/w)

log(1/w)

)
≤ 2G(χ(r(w, t))) ≤ m̃(w)

(
1 + c′

log log(1/w)

log(1/w)

)
(51)

for w small enough (smaller than some threshold possibly depending on t).
Using the definition (40) of w− to translate from m̃ to m1, Lemma 17 to lower
bound m1(θ0,i, w−), and that w− � (sn/n)(log(n/sn))

1/2 (which implies also
that log log(1/w−)/ log(1/w−) � log log(n/sn)/ log(n/sn) = εn) by Lemma 5,
we obtain

Eθ0V
′
w− ≥ (n− sn)

w−
1− w−

t

1− t
m̃(w−)

(
1 + c

log log(1/w−)

log(1/w−)

)

≥ t

1− t
w−

∑
i∈S0

m1(θ0,i, w−)(1 + νn)
−1(1 + cεn)
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≥ sn
t

1− t
(1 + νn)

−1(1− ρn) (1 + c1εn)

≥ sn
t

1− t
(1 + c2εn) ,

for some constants c1, c2 > 0, because (1+νn)
−1 = 1−O(νn) and max(νn, ρn) =

o(εn).

Third step: concentration of the number of false positives. Recalling that

νn = αs
−1/2
n (log sn)

1/2, we see from an application of Bernstein’s inequality
(Lemma 23) and the above that for some constant c3 > 0 and for a = a(t) large
enough,

Pθ0(V
′
w− − Eθ0V

′
w− ≥ −aνnEθ0V

′
w−) ≤ exp{−(3/8)a2ν2nEθ0V

′
w−}

≤ e−c3a
2snν

2
nt/(1−t) ≤ s−1/2

n .

Fourth step: deriving the FDR lower bound. Using the previous steps and
upper bounding the number of true positives by sn, we obtain by using again
the monotonicity of the q-values and that the map x �→ x/(a+ x) is increasing
on x > −a that

FDP(ϕq-val; θ0) ≥
V ′
ŵ

V ′
ŵ + sn

≥
V ′
w−

V ′
w− + sn

1{ŵ ≥ w−}

≥
(1− aνn)Eθ0V

′
w−

(1− aνn)Eθ0V
′
w− + sn

1{ŵ ≥ w−, V
′
w− ≥ (1− aνn)Eθ0V

′
w−},

for a = a(t) as above. Taking the expectation and using the bounds we have
attained on probabilities, we find

FDR(ϕq-val; θ0) ≥
(1− aνn)Eθ0V

′
w−/sn

(1− aνn)Eθ0V
′
w−/sn + 1

− 2νn.

Using the previously obtained bound on Eθ0V
′
w− and the fact that (1−aνn)(1+

c2εn) ≥ 1 + cεn for some c > 0 and n large enough, we find that

(1− aνn)Eθ0V
′
w−/sn

(1− aνn)Eθ0V
′
w−/sn + 1

≥ (1 + cεn)t

(1 + cεn)t+ 1− t
=

t+ cεnt

1 + cεnt

= t+
cεnt(1− t)

1 + cεnt
≥ t+ 0.5t(1− t)cεn,

and we deduce the FDR lower bound.

Fifth step: deriving the FDR upper bound. Recall that on the event A, for n
large we have both S′

w− ≥ sn(1− νn− ρn) and w− ≤ ŵ ≤ w+. Again using that
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x �→ x/(a + x) is increasing and here also that x �→ b/(a + x) is decreasing on
x > −a,

FDP(ϕq-val; θ0) ≤
V ′
w+

(V ′
w+

+ S′
w−) ∨ 1

1A + 1Ac

≤
V ′
w+

V ′
w+

+ sn(1− νn − ρn)
1A + 1Ac .

Here one could use a concentration argument as for the lower bound, but noting
that x �→ x/(a + x) is concave, we bypass the need for this by appealing to
Jensen’s inequality to obtain

FDR(θ0, ϕ
q-val; θ0) ≤

Eθ0V
′
w+

Eθ0V
′
w+

+ sn(1− νn − ρn)
+ νn. (52)

For upper bounding Eθ0V
′
w+

, we proceed as for the lower bound part: using (51),

the definition (41) of w+, Lemma 17, and that w+ � (sn/n)(log(n/sn))
1/2 (so

that log log(1/w+)/ log(1/w+) � εn and w+ = o(εn)) by Lemma 5, we find

Eθ0V
′
w+

≤ (n− sn)r(w+, t)m̃(w+) (1 + c′εn)

≤ t(1− t)−1(1− w+)
−1sn(1− νn)

−1 (1 + c′εn)

≤ t(1− t)−1sn(1 + cεn),

for any c > c′, for n larger than some N(t), using again that νn = o(εn).
Substituting into (52) and recalling that we also have ρn = o(εn) yields

FDR(ϕq-val; θ0) ≤
t(1 + cεn)

t(1 + cεn) + (1− t)(1− νn − ρn)
+ νn

≤ t+ tcεn
1 + tcεn

+ o(εn)

≤ t+ t(1− t)cεn + o(εn).

This completes the upper bound and hence the proof.

5. Core lemmas

5.1. Statements

The following monotonicity results are mostly clear from the definitions.

Lemma 4 (Monotonicity). We have the following monotonicity results, all of
which may be non-strict unless specified.

As w ∈ (0, 1) increases, with other parameters fixed (note that we typically
apply these results with n increasing and w = wn decreasing),

1 = �i,0(X) ≥ �i,w(X) ↓ 0 (strictly)



C�-value multiple testing 2055

1 = qi,0(X) ≥ qi,w(X) ↓ 0 (strictly)

Vλ,w ↑ (n− sn), λ ∈ (0, 1]

V ′
w ↑ (n− sn)

postFDRw(ϕ) ↓ 0

postFDRu(ϕλ,w) ↑
1

n

n∑
i=1

�i,u, u ∈ (0, 1)

L′(w) = S(w) ↓
∑n

i=1
β(Xi)

1+β(Xi)
(a.s. strictly).

For fixed w,w′ ∈ (0, 1), as λ ∈ [0, 1] increases,

Vλ,w ↑ n− sn,

Fw(λ) ↑ 1 (strictly)

Eθ0=0[�1,w | �1,w′ < λ] ↑ Eθ0=0[�1,w]

Finally, we note that (φ/g)(x) and (Φ̄/Ḡ)(x) decrease strictly as x ∈ [0,∞) in-
creases, hence the functions �(x;w) and q(x;w) defined in (8) and (17) decrease
on this set for fixed w.

The following lemmas then form the core of the proofs of Theorems 1 and 2.
Some ancillary results used in the proofs of these lemmas are relegated to Ap-
pendix A.

Lemma 5. Under the assumptions of Theorem 1, define νn as in (29) with
α > 0 arbitrary. Then for n large there exist solutions w− ≤ w+ to (40) and
(41). Moreover, these solutions are almost surely unique and satisfy, for w ∈
{w−, w+},

w � sn(n−sn)
−1m̃(w)−1 � sn(n−sn)

−1(log(n/sn))
1/2 � (sn/n)(log(n/sn))

1/2.

Lemma 6. In the setting of Theorem 1, for any constant A there exist unique
solutions λ− < λ+ to (43) and (44), and these solutions satisfy

1− λ− � 1− λ+ � δn, (53)

with suppressed constants depending on t. We further note that for some con-
stants C, c > 0 depending on t,

Eθ0=0[�1,w+ | �1,w− < λ+] ≥ 1− Cεn, (54)

Eθ0=0[�1,w− | �1,w+ < λ−] ≤ 1− cεn, (55)

and that for some D, d > 0 depending on t, recalling Fw(λ) := Pθ0=0(�1,w < λ),

(n− sn)Fw−(λ+) ≤
t

1− t
sn

(
1 +Dmax(εn, νn)

)
, (56)

(n− sn)Fw+(λ−) ≥
t

1− t
sn

(
1 + dεn − A

t max(νn, ρn)
)
, (57)

for all n large enough.
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Lemma 7. Under the assumptions of Theorem 1, recalling the definition (9) of
ŵ and the definitions (40) and (41) of w±, we have

Pθ0(ŵ �∈ (w−, w+)) = o(νn), (58)

provided the constant α in the definition (29) of νn is large enough.

Lemma 8. Under the assumptions of Theorem 1, recalling the definition (14)

of λ̂ as the threshold of ϕC� and the definitions (43) and (44) of λ±, we have

Pθ0(λ̂ �∈ [λ−, λ+]) = o(νn), (59)

provided the constant A = A(t) is large enough in the definitions of λ±.

Lemma 9. In the setting of Theorem 1, recall that S0 denotes the support of
θ0 as in (20) and define the (random) set S1 = {i ∈ S0 : �i,w− ≤ δn}, where w−
is as in (40). Then, defining

Kn = |S0 \ S1| = #{i ∈ S0 : �i,w− > δn}, (60)

for all n large enough we have

Pθ0

(
Kn/sn > ρn + νn

)
= o(νn), (61)

provided the constant α in the definition (29) of νn is large enough.

Lemma 10. In the setting of Theorem 1, define Vλ,w as in (26). Then

Pθ0(|Vλ+,w+ − E[Vλ+,w+ ]| > asnνn) = o(νn),

for some constant a = a(t). The same holds upon replacing one or both of λ+

and w+ respectively with λ− and w−.

Lemma 11. In the setting of Theorem 1, recall the definitions (26), (40), (41),
(43) and (44) of Vλ,w, w±, and λ±. Then for some constant B > 0,

EVλ+,w+ ≤ EVλ+,w−

(
1 +Bmax(νn, ρn, δn)

)
, (62)

EVλ−,w− ≥ EVλ−,w+

(
1−Bmax(νn, ρn, δn)

)
. (63)

5.2. Proofs

We here define two final quantities which appear in the proofs, closely related
to χ as defined in (49): recalling the definition β(x) = (g/φ)(x) − 1 from (36),
we set

ξ(x) = (φ/g)−1(x), x ∈ (0, (φ/g)(0)] (64)

ζ(w) = β−1(1/w), w ∈ (0, 1]. (65)

Note the relationship
ζ(w) = ξ(w/(1 + w)). (66)
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Proof of Lemma 4. Strict monotonicity in w of �i,w, qi,w is immediate from the
definitions (8) and (18): for example,

�i,w =
(1− w)φ(Xi)

(1− w)φ(Xi) + wg(Xi)
=

1

1 + (w/(1− w))(g/φ)(Xi)

decreases as w increases because (g/φ)(Xi) > 0. Non-strict monotonicity in w
of Vλ,w, V

′
w, postFDRw(ϕ) follows immediately. The monotonicity of Vλ,w in λ

is also clear (and note that �i,w < 1 for w ∈ (0, 1) so that (ϕ1,w)i = 1 for all i).
To see that

postFDRu(ϕλ,w2) ≥ postFDRu(ϕλ,w1) if w2 ≥ w1,

note that changing w does not change the ordering of the �i,w values, only their
magnitudes, since smaller � values correspond to larger values of |Xi|. It follows
that �i,w1 and �i,w2 both select coordinates i in order of increasing �i,u values.
Since the �i,w are monotonic in w, we see that ϕλ,w2 selects every i selected
by ϕλ,w1 , so that postFDRu(ϕλ,w2), which can be viewed as the average of the
selected �i,u values (cf. (15)), is no smaller than postFDRu(ϕλ,w1).

Strict decreasingness of φ/g is immediate from the definition (7), and implies
the same of Φ̄/Ḡ (see [17, Lemma S-9]). In view of the explicit expression for
Fw in Lemma 18, its strict monotonicity follows from that of Φ̄, ξ = (φ/g)−1

and r(w, λ) = wλ(1 − w)−1(1 − λ)−1. Similarly the score function S(w) =
L′(w) defined in (37) can be seen, by differentiating, to be strictly decreasing
on the event where there exists i such that β(Xi) �= 0, which has probability 1
because β(x) = (g/φ)(x)− 1 is strictly increasing and the Xi’s have non-atomic
distributions.

For monotonicity of Eθ0=0[�1,w | �1,w′ < λ] in λ, first note that, writing
ξw(λ) = ξ(r(w, λ)), a direct calculation yields

{�i,w < λ} = {|Xi| > ξw(λ)}.

It follows that
{�1,w′ < λ} = {�1,w < ξ−1

w ◦ ξw′(λ)},
and hence that we can express the expectation as

Eθ0=0[�1,w | �1,w′ < λ] = Z ◦ ξ−1
w ◦ ξw′(λ), Z(x) = Eθ0=0[�1,w | �1,w < x].

It suffices, since ξw is decreasing, to note that Z is increasing, which is intuitively
clear and formally follows from the following calculations: writing U = �1,w, for
b > a we have

E[U | U < b] = E[U | U < a] Pr(U < a | U < b)

+ E[U | a ≤ U < b] Pr(U ≥ a | U < b) (67)

Then, since E[U | a ≤ U < b] ≥ a ≥ E[U | U < a], we deduce that

E[U | U < b] ≥E[U | U < a](Pr(U < a | U < b) + Pr(U ≥ a | U < b))

= E[U | U < a].
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Proof of Lemma 5. The essence of the proof is that m1(θ0,i, w) � 1/w and
m̃(w) � (log(1/w))−1/2, so that necessarily if (40) or (41) is satisfied by some w
we have sn/w � (n− sn)(log(1/w))

−1/2 and hence w � (sn/n)(log(n/sn))
1/2.

To make this precise, we begin by claiming that, for some constant C > 0,∑
i∈S0

m1(θ0,i, sn/n) > (1 + νn)(n− sn)m̃(sn/n) (68)

∑
i∈S0

m1

(
θ0,i, C

sn
n

(
log( n

sn
)
)1/2)

< (1− νn)(n− sn)m̃
(
C sn

n

(
log( n

sn
)
)1/2)

, (69)

at least for large enough n. Existence of w± satisfying, initially, sn/n ≤ w− ≤
w+ � (sn/n)(log(n/sn))

1/2 then follows from the intermediate value theorem,
since m̃ is continuous, increasing and non-negative and m1(τ, ·) is continuous
and decreasing for each fixed τ (see Lemma 22).

To prove the claim, note that asymptotically as w → 0 with w ≥ sn/n, by
Lemma 17 we have for some c, c′ > 0

c(log(1/w))−1/2 ≤ m̃(w) ≤ c′(log(1/w))−1/2,

1/(2w) ≤ m1(θ0,i, w) ≤ 1/w.

It follows that the left side of (68) is of order n, while the right side is of the
smaller order n(log(n/sn))

−1/2. It also follows that∑
i∈S0

m1(θ0,i, C(sn/n)(log(n/sn))
1/2) ≤ C−1n(log(n/sn))

−1/2,

(1− νn)(n− sn)m̃(C(sn/n)(log(n/sn))
1/2) � (n− sn)(log(n/sn))

−1/2

for n large, where the suppressed constant does not depend on C (or α), so that
the right side of (69) upper bounds the left for C large enough, as claimed.

To prove the sharper asymptotics, observe by definition that for w ∈ {w−, w+}
we have ∑

i∈S0

m1(θ0,i, w) = (1± νn)(n− sn)m̃(w).

Since sn/n ≤ w ≤ (sn/n)(log(n/sn))
1/2 we may use the bounds on m1 given

above to see that the left side is � snw
−1. We also note that log(1/w) �

log(n/sn), so that the bounds on m̃ given above yield m̃(w) � (log(n/sn))
−1/2.

The result follows, noting also that sn/n → 0 so n− sn � n.

Proof of Lemma 6. We prove the results for λ+; the proofs for λ− are almost
identical. We begin by showing that any solution to (43) is necessarily unique.
Indeed, since the right side is positive, any solution necessarily lies in the set

{λ : Eθ0=0[�1,w+ | �1,w− < λ] > t}.

On this set, since λ �→ Eθ0=0[�1,w+ | �1,w− < λ]− t is a non-decreasing positive
function and Fw− is a strictly increasing non-negative function (see Lemma 4),
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the left side of (43) is strictly increasing, yielding the claimed uniqueness of any
solution.

From here, Lemmas 18 and 19 yield precise bounds on Fw(t) and Eθ0=0[�1,w |
�1,w′ < t] for suitable w,w′, t which allow us to conclude the result. Pre-
cisely, Lemma 5 tells us that w− � (sn/n)(log(n/sn))

1/2, so that log(1/w−) �
log(n/sn) and w

1/2
− /δn → 0, hence by Lemma 18 (with c = 1/2) we have for

any constant κ > 0

Fw−(1− κδn) � κ−1δ−1
n w−(log(1/w−))

−3/2 � κ−1n−1sn.

[All suppressed constants in this proof will be independent of κ.] Similarly, by
Lemma 19 we have

1− Eθ0=0[�1,w+ | �1,w− < 1− κδn] � κδn log(1/δn) = κεn. (70)

Inserting these bounds we see that the left side of (43) is bounded above and
below by a constant times

κ−1(n− sn)n
−1sn(1− t−O(κεn)) � κ−1sn.

For κ large enough (depending on t) this is smaller than the right side of (43)
and for κ small it is larger. The left side is continuous in λ+ (see Lemmas 18
and 19) while the right side is fixed, so we deduce by the intermediate value
theorem the existence of a solution λ+ satisfying 1 − Cδn ≤ λ+ ≤ 1 − cδn for
constants C, c > 0, so that (53) is proved.

The expectation result (54) now follows immediately from (70). The bound
(56) for Fw−(λ+) is obtained by rearranging the definition (43), inserting the
bound for Eθ0=0[�1,w+ | �1,w− ≤ λ+], and using that (1 − x)−1 = 1 + O(x) as
x → 0. [For the bound on Fw+(λ−), one also recalls that δn = o(εn).]

Finally, to see that λ− < λ+, observe that �1,w− > �1,w+ (Lemma 4) so that
for λ > t,

Eθ0=0[(�1,w− − t)1{�1,w+ < λ}]− Eθ0=0[(�1,w+ − t)1{�1,w− < λ}]
=Eθ0=0[(�1,w− − �1,w+)1{�1,w− < λ}] + Eθ0=0[(�1,w− − t)1{�1,w+ < λ ≤ �1,w−}]
≥0.

Since (53) shows that λ− > t for n large, we apply this with λ = λ− to deduce
that the left side of (43) evaluated at λ− is smaller than its right side:

Fw−(λ−)(Eθ0=0[�1,w+ | �1,w− < λ−]− t)

=Eθ0=0[(�1,w+ − t)1{�1,w− < λ−}]
≤Eθ0=0[(�1,w− − t)1{�1,w+ < λ−}]

= Fw+(λ−)(Eθ0=0[�1,w− | �1,w+ < λ−]− t)

=
tsn −Asn max(νn, ρn, δn)

n− sn

<
tsn +Asnνn

n− sn
.
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Since the right side of (43) is constant and the left side increases with λ+ (as
noted above when showing uniqueness), this implies that λ+ > λ−.

Proof of Lemma 7. We follow the proof of Lemmas S-3 in [17], with the essential
difference that we do not use the polynomial sparsity but rather the strong signal
assumption. Let us prove

Pθ0(ŵ < w−) = o(νn)

for α large enough in the definition of νn, the proof that Pθ0(ŵ > w+) = o(νn)
being similar.

Let S = L′ denote the score function as in (37). Since ŵ maximises L(w),
necessarily S(ŵ) ≤ 0 or ŵ = 1. If ŵ < w− then only the former may hold,
so that applying the strictly monotonic function S (Lemma 4) we deduce that
{ŵ < w−} = {S(w−) < S(ŵ)} ⊆ {S(w−) < 0}, hence

Pθ0(ŵ < w−) ≤ Pθ0(S(w−) < 0) = Pθ0(S(w−)− Eθ0S(w−) < −Eθ0S(w−))

= Pθ0

(
n∑

i=1

Wi < −E

)
,

where we have introduced the notationWi = β(Xi)/(1+w−β(Xi))−m1(θ0,i, w−)
and E = Eθ0S(w−) =

∑n
i=1 m1(θ0,i, w−). For n large |Wi| ≤ M = 2/w− a.s.

(see Lemma 22), so that we may scale the variables Wi to apply the Bernstein
inequality (Lemma 23) and obtain

Pθ0(ŵ < w−) ≤ e−0.5E2/(V2+ME/3),

where V2 =
∑n

i=1 Var(Wi) ≤
∑n

i=1 m2(θ0,i, w−), form2(θ0,i, w) = Eθ0(β(Xi)/[1+
wβ(Xi)])

2. In view of the definition (40) of w−, we have

E =
∑
i∈S0

m1(θ0,i, w−)− (n− sn)m̃(w−) = νn(n− sn)m̃(w−).

We also note, using the strong signal assumption and the bounds on m2 in
Lemma 22 that for some constants C,M0 > 0 and n larger than some universal
threshold,

V2 ≤
∑

i:|θ0,i|>M0

m2(θ0,i, w−) +
∑

i:θ0,i=0

m2(0, w−)

≤ C

w−

∑
i∈S0

m1(θ0,i, w−) + C(n− sn)
Φ̄(ζ(w−))

w2
−

,

with ζ defined as in (65). By a standard normal tail bound and the definition
of ζ, we have Φ̄(ζ(w−)) � φ(ζ(w−))/ζ(w−) � w−g(ζ(w−))/ζ(w−), which is of
order w−m̃(w−)/ζ(w−)

2 because m̃(w−) � ζ(w−)g(ζ(w−)) (see Lemma 22).
Using the latter, and the fact that ζ(w−) → ∞ (Lemma 22), in combination
with (40) gives

V2 � nw−1
− m̃(w−) + nw−1

− m̃(w−)/ζ(w−)
2 � nw−1

− m̃(w−),
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so that

V2 +ME/3

E2
� nw−1

− m̃(w−)

(νn(n− sn)m̃(w−))2
+

1

w−νn(n− sn)m̃(w−)
� 1

ν2nnw−m̃(w−)
.

This implies that Pθ0(ŵ < w−) ≤ e−cν2
nnw−m̃(w−) for some constant c > 0.

Now, by Lemma 5, we have nw−m̃(w−) � sn. Hence, recalling the definition

νn = αs
−1/2
n (log sn)

1/2 from eq. (29), we deduce that ν2nnw−m̃(w−) ≥ log sn
if the constant α is large enough, and hence the above probability is bounded

above by s
−1/2
n = o(νn).

Proof of Lemma 8. Let B be an event on which, with Kn := #{i ∈ S0 : �i,w− >
δn},

ŵ ∈ (w−, w+),

Kn ≤ sn(ρn + νn),

Vλ+,w− ≤ E[Vλ+,w− ] + asnνn,

Vλ−,w+ ≥ E[Vλ−,w+ ]− asnνn,

(71)

and whose complement has probability Pθ0(Bc) = o(νn); note that such an event
exists by Lemmas 7, 9 and 10, the proofs of which are independent of Lemma 8.
Recall that λ̂ is characterised by the posterior FDR:

postFDRŵ(ϕλ,ŵ) :=

∑n
i=1 �i,ŵ1{(ϕλ,ŵ)i = 1}

1 ∨ (
∑n

i=1 1{(ϕλ,ŵ)i = 1}) ≤ t ⇐⇒ λ ≤ λ̂.

Thus, it is enough to bound the posterior FDRs of ϕλ−,ŵ, ϕλ+,ŵ above and
below respectively by t. We prove the upper and lower bound separately, which
suffices by a union bound.

Upper bound, postFDRŵ(ϕλ+,ŵ) > t with probability at least 1 − o(νn). On
the event B, monotonicity (see Lemma 4) allows us to deduce that

postFDRŵ(ϕλ+,ŵ) ≥ postFDRŵ(ϕλ+,w−)

≥ postFDRw+
(ϕλ+,w−)

≥
∑

i �∈S0
�i,w+1{�i,w− < λ+}
sn + Vλ+,w−

,

(72)

where to obtain the last line we have used that
∑

i∈S0
1{�i,w− < λ+} ≤ sn and∑

i∈S0
�i,w+1{�i,w− < λ+} ≥ 0. We apply Bernstein’s inequality (see Lemma 23)

with, for some a (indeed, the same a as in (71), coming originally from Lemma 10,
works),

u = asnνn, Ui = −�i,w+1{�i,w− < λ+}, i �∈ S0.

Note that ∑
i �∈S0

E[Ui] = −E[Vλ+,w− ]Eθ0=0[�1,w+ | �1,w− < λ+],

∑
i �∈S0

Var(Ui) ≤ EVλ+,w− � sn.
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For a large enough we deduce that

Pθ0

(∑
i �∈S0

�i,w+1{�i,w− < λ+} <

E[Vλ+,w− ]Eθ0=0[�1,w+ | �1,w− < λ+]− asnνn

)
≤ s−1/2

n . (73)

Then by a union bound we see that on an event C ⊂ B of probability at least

P (B)−s
−1/2
n = 1−o(νn), the numerator in the final line of (72) is lower bounded

by

E[Vλ+,w− ]Eθ0=0[�1,w+ | �1,w− < λ+]− asnνn

=(n− sn)Fw−(λ+)Eθ0=0[�1,w+ | �1,w− < λ+]− asnνn.

Recalling also that on B we have

Vλ+,w− ≤ E[Vλ+,w− ] + asnνn = (n− sn)Fw−(λ+) + asnνn,

we deduce that

postFDRŵ(ϕλ+,ŵ) ≥ 1C
(n− sn)Fw−(λ+)Eθ0=0[�1,w+ | �1,w− < λ+]− asnνn

sn + (n− sn)Fw−(λ+) + asnνn
.

Substituting for the first term in the numerator from the definition (43), we find
that, for A > (1 + t)a,

postFDRŵ(ϕλ+,ŵ) ≥ 1C
(
t+

(A− (1 + t)a)snνn
sn + (n− sn)Fw−(λ+) + asnνn

)
> t1C ,

so that indeed λ̂ ≤ λ+, at least for n large enough, on the event C.
Lower bound, postFDRŵ(ϕλ−,ŵ) ≤ t with probability at least 1 − o(νn). On

the event B, recalling (71), and using monotonicity of the �-values (Lemma 4)
and the fact that λ− is bounded away from zero (Lemma 6), we see that

#{i ∈ S0 : (ϕλ−,w+)i = 0} ≤ #{i ∈ S0 : �i,w+ > δn}
≤ #{i ∈ S0 : �i,w− > δn} = Kn ≤ sn(ρn + νn).

Since �i,w+ ≤ 1 for all i, we also note that

∑
i∈S0

�i,w+ ≤ Kn +
∑
i∈S0

δn ≤ sn(ρn + νn + δn).

Then on B, monotonicity arguments as used for the upper bound yield

postFDRŵ(ϕλ−,ŵ) ≤ postFDRw−(ϕλ−,w+)

≤
∑

i �∈S0
�i,w−1{�i,w+ < λ−}+ sn(ρn + νn + δn)

sn − sn(ρn + νn) + Vλ−,w+

.
(74)
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Applying Bernstein’s inequality as for the upper bound, here with variables
Ui = �i,w−1{�i,w+ < λ−}, i �∈ S0, we deduce that there is an event C′ ⊂ B of
probability at least 1− o(νn) such that

postFDRŵ(ϕλ−,ŵ)1C′

≤ (n− sn)Fw+(λ−)Eθ0=0[�1,w− | �1,w+ < λ−] + sn(ρn + (1 + a)νn + δn)

sn + (n− sn)Fw+(λ−)− sn(ρn + (1 + a)νn)
.

Substituting for (n − sn)Fw+(λ−)Eθ0=0[�1,w− | �1,w+ < λ−] in the numerator
from the definition (44) of λ−, the right side is upper bounded by t if A is large

enough, so that indeed λ− ≤ λ̂ on C′.

Proof of Lemma 9. The idea is that for w of order (sn/n)(log(n/sn))
1/2 (which

is the case for w = w−, w+ or, with high probability, w = ŵ), the function �(x;w)
defining the �-values is vanishingly small when x >

√
2 log(n/sn) + un for un

tending to infinity slowly. In contrast, for i ∈ S0 we have |Xi| >
√

2 log(n/sn)+
vn/2 with probability tending to 1 since Xi − θ0,i = εi ∼ N (0, 1) is bounded

in probability. Taylor expanding the square root reveals
√
2 log(n/sn) + un =√

2 log(n/sn) + o(1) and thus will yield the claim.

Let un = 5 log log(n/sn) and define

S2 = {i ∈ S0 : |Xi| >
√
2 log(n/sn) + un}.

First, we show that S2 ⊂ S1. From Lemma 22 we have, for ξ = (φ/g)−1,

ξ(u) ≤
(
2 log(1/u) + 2 log log(1/u) + 6 log 2

)1/2

.

The right side is decreasing in u so, recalling that w− ≥ sn/n (Lemma 5), we
see that ξ evaluated at u = (w−/(2 log(n/sn))) is upper bounded by the right
side evaluated at u = sn/(2n log(n/sn)), hence

ξ
( w−
2 log(n/sn)

)
≤

√
2 log(n/sn) + 4 log log(n/sn) + 2 log log log(n/sn) + 8 log 2 + 2 log log 2

≤
√
2 log(n/sn) + un,

for n large. Consequently we see that if |x| >
√
2 log(n/sn) + un, then

φ(x)/g(x) = ξ−1(x) > w−/(2 log(n/sn)) =
1
2w−δn,

so that

�(x;w−) =
(
1 +

w−
1 + w−

g

φ
(x)

)−1

≤ δn,

and indeed S2 ⊂ S1.
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Next, observe, by Taylor expanding, that
√

2 log(n/sn) + un =
√
2 log(n/sn)+

o(1). We deduce that for i ∈ S0 \S2, necessarily the noise variable εi in (1) sat-
isfies |εi| > vn/2, so that |S0 \ S1| ≤ |S0 \ S2| ≤ N , where N is the binomial
N = #{i ∈ S0 : |εi| > vn/2}. Applying Bernstein’s inequality (Lemma 23) with

Ui = 1
{
|εi| > vn/2

}
, u = max

(
EN, νn

)
≥

∑
i∈S0

VarUi,

we see that

Pr(N > EN + u) ≤ exp
(
− u2/2

u+ u/3

)
= o(νn),

for large enough constant α in the definition (29) of νn. Finally, note that EN =

2snΦ̄(vn/2) ≤ snρn for ρn = e−v2
n/9 as defined in (32), at least for n large, as a

consequence of the standard tail bound Φ̄(x) � φ(x)/x � e−x2/2 as x → ∞.

Proof of Lemma 10. Lemma 5 tells us that w � (sn/n)(log(n/sn))
1/2 for w ∈

{w−, w+}, and Lemma 6 tells us that 1 − λ � δn for λ ∈ {λ−, λ+}. Then
Vλ,w =

∑
i �∈S0

1{�i,w < λ} follows a binomial distribution, whose mean we
deduce by Lemma 18 satisfies

E[Vλ,w] = (n− sn)Fw(λ) � (n− sn)w(1− λ)−1(log(1/w))−3/2

� (n− sn)w(log(n/sn))
−1/2,

so that again appealing to Lemma 5, we have E[Vλ,w] � sn. We apply Bernstein’s
inequality Lemma 23 with, for some a = a(t),

Ui = 1{�i,w < λ}, u = asnνn.

Then
∑

i �∈S0
Var(Ui) ≤ E[Vλ,w] � sn so that for a constant C, larger than 1/2

for a large enough,

Pθ0(|Vλ,w − E[Vλ,w]| ≥ u) ≤ 2 exp(−C log sn) ≤ 2s−1/2
n = o(νn).

Proof of Lemma 11. We prove the control (62) for E[Vλ+,w+ ]; the proof for
E[Vλ−,w− ] is almost identical. The starting point is the bound w+/w− = O(1)
from Lemma 5 and we combine this with control of the functions making up
the expectation. By Lemma 18 we have EVλ,w = (n − sn)Fw(λ) = 2(n −
sn)Φ̄(ξ(r(w, λ))) for any λ,w ∈ (0, 1), where we recall the definitions r(w, λ) =
wλ(1− w)−1(1− λ)−1, ξ = (φ/g)−1, so that our goal is to bound

E[Vλ+,w+ ]

E[Vλ+,w− ]
− 1 =

Φ̄
(
ξ(r(w+, λ+))

)
Φ̄

(
ξ(r(w−, λ+))

) − 1.

Write r± = r(w±, λ+) and ξ± = ξ(r±) (the notation ξ+ is to link to r+, not
to claim that ξ+ ≥ ξ−). As a consequence of Lemmas 5 and 6,

log(1/r−) � log(1/r+) � log(n/sn) = δ−1
n .



C�-value multiple testing 2065

Recalling that ξ(u) ∼ (−2 log u)1/2 as u → 0 (see Lemma 22) it follows that
ξ± → ∞, hence by a standard normal tail bound (also in Lemma 22) we have

0 ≤ Φ̄(ξ+)

Φ̄(ξ−)
− 1 ≤ (1 + ξ2−)

ξ2−

ξ−
ξ+

φ(ξ+)

φ(ξ−)
− 1 = O

(
max

( 1

ξ2−
,
ξ−
ξ+

− 1,
φ(ξ+)

φ(ξ−)
− 1

))
,

provided the right hand side tends to zero, using that for an, bn → 0, (1 +
an)(1 + bn) − 1 = O(max(an, bn)). That ξ(u) ∼ (−2 log u)1/2 as u → 0 implies
ξ−2
− − 1 = O((log(1/r−))

−1) = O(δn). Next, by Lemma 16 we have

ξ2− − ξ2+ = O(1),

hence
ξ−
ξ+

− 1 =
ξ2− − ξ2+

ξ+ξ− + ξ2+
= O

(
(log n

sn
)−3/2

)
= o(δn).

It remains to control φ(ξ+)/φ(ξ−)− 1. By the definition of ξ we have

φ(ξ+)

φ(ξ−)
=

r+g(ξ+)

r−g(ξ−)
.

Lemma 15 tells us that

r+
r−

− 1 = O(max(νn, ρn)),

so that it suffices to show g(ξ+)/g(ξ−)−1 = O(δn). From the explicit definition
(7) of g, we have

g(ξ+)

g(ξ−)
− 1 =

ξ2−
ξ2+

1− e−ξ2+/2

1− e−ξ2−/2
− 1.

Observe that, for n large,

1− e−ξ2+/2

1− e−ξ2−/2
− 1 =

e−ξ2−/2 − e−ξ2+/2

1− e−ξ2−/2
≤ 2e−ξ2−/2.

The lower bound on ξ in Lemma 22 implies that ξ(u) ≥
√

2 log(1/u) for u

small, so that e−ξ2− ≤ r2−, which is of smaller order than δn (note that r− �
(sn/n)(log(n/sn))

3/2 as a consequence of Lemmas 5 and 6). Noting that the
bound attained above for ξ−/ξ+ − 1 also bounds ξ2−/ξ

2
+ − 1, we deduce that

φ(ξ+)/φ(ξ−)− 1 is suitably bounded and the lemma follows.

6. Sparsity preserving procedures and optimality of the boundary

Here we make precise the claim of Section 3.1 that the condition vn → ∞ in
Theorem 1 cannot be relaxed at all without weakening the conclusion of the
theorem (and correspondingly for Theorem 3).
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Define a multiple testing procedure2 ϕ to be sparsity preserving at a level An

over a set Θ if
sup
θ0∈Θ

Pθ0

( ∑
i≤n

ϕi > Ansn
)
→ 0. (75)

One has the following (recall the definition (21) of �0(sn; b)).

Theorem (Theorem 3 in [2]). For fixed b ∈ R and a sequence (An)n∈N with

An ∈ [2, e(log(n/sn))
1/4

], for any ϕ satisfying (75) with Θ = �0(sn; b), we have

sup
θ0∈�0(sn;b)

FNR(ϕ; θ0) = Φ̄(b) + o(1).

In particular, the FNR of such a procedure is bounded away from zero for n
large.

We now prove that both the C�- and q-value procedures are sparsity preserv-
ing, so that the above theorem applies to show the conclusions of Theorems 1
and 3 are impossible for vn = b ∈ R fixed. The following lemma will be helpful.

Lemma 12. Any procedure whose number of false positives V satisfies, for some
event An,

sup
θ0∈Θ

E[V 1An ] = O(sn), sup
θ0∈Θ

Pθ0(Ac
n) = o(1),

is sparsity preserving at level An on the set Θ for any sequence An → ∞.

Proof. Simply note that
∑

i≤n ϕi ≤ sn + V , so that an application of Markov’s
inequality yields

Pθ0

( n∑
i=1

ϕi > Ansn
)
≤ Pθ0(Ac

n) + (An − 1)−1s−1
n Eθ0 [V 1An ] → 0.

We will also use the following result which extends key conclusions of Lem-
mas 5 and 7 to the weaker signal class �0(sn; b).

Lemma 13 (Lemmas 9 and 10 in [2]). There exist w− ≤ w+ for which

sup
θ0∈�0(sn;b)

Pθ0(ŵ �∈ (w−, w+)) → 0,

such that w± � (sn/n)(log(n/sn))
1/2 and, for some constant ν ∈ (0, 1/2),∑

i∈S0

m1(θ0,i, w+) = (1− ν)(n− sn)m̃(w+).

Armed with the above results, we prove that the procedures considered herein
are sparsity preserving for any sequence An → ∞ over the sets �0(sn; b) for any
b ∈ R fixed.

2Strictly, one must consider sequences of testing procedures ϕ(n) and sets Θn in the defi-
nition; we leave this implicit.
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q-value procedure With notation as in Section 4.3, by (50) we have for w
small enough

Eθ0V
′
w = 2(n− sn)Φ(χ(r(w, t))) = (n− sn)r(w, t)2G(χ(r(w, t)))

≤ C(t)(n− sn)wm̃(w).

Noting that m1(θ0,i, w+) ≤ 1/w+ (see the proof of Lemma 17 and observe that
the relevant part holds for vn = b ∈ R fixed), we deduce that for w = w+ defined
as in Lemma 13 we have

Eθ0V
′
w+

≤ C(t, ν)
∑
i∈S0

w+m1(θ0,i, w+) ≤ C ′(t, ν)sn,

so that Lemma 12 with An = {ŵ ≤ w+} and monotonicity of Eθ0V
′
w in w yield

the claimed sparsity-preservingness of ϕq-val.

C�-value procedure With Lemma 13 replacing Lemmas 5 and 7, the proofs
of Lemmas 6, 8 and 11 go through unchanged to show that there exists λ+ such
that (n − sn)Fw+(λ+) ≤ Csn for a constant C > 0 and Pθ0(λ̂ > λ+) = o(1).
[Note the proofs for λ−, which would require an adapted version of Lemma 9,
are not needed here.] Then Lemma 12 yields the claimed sparsity-preservingness
of ϕC�, since

Eθ0 [Vλ̂,ŵ1{λ̂ ≤ λ+, ŵ < w+}] ≤ Eθ0Vλ+,w+ = (n− sn)Fw+(λ+),

which is O(sn) as noted just above.

Remark. Similar arguments reveal that supθ0∈�0(sn,b) FDR(ϕ, θ0) ≤ ct+o(1) for
some constant c > 0 for b ∈ R fixed. Indeed, in the proof of Theorem 5(i) in [2],
noting that Λ∞ defined therein equals Φ̄(b) in the current setting, it is argued
that on an event of probability tending to 1

#{i ∈ S0 : �i,ŵ < t} ≥ sn(1− Φ̄(b))/2 = snΦ(b)/2.

Recalling that λ̂ ≥ t and using monotonicity as in the proof of Theorem 1, one
has

FDP(ϕC�; θ0) ≤
Vλ+,w+

Vλ+,w+ + snΦ(b)/2
+ op(1).

Taking expectations and using Jensen’s inequality for the concave map x �→
x/(snΦ(b)/2 + x) we obtain

FDR(ϕC�; θ0) ≤
EVλ+,w+

EVλ+,w+ + snΦ(b)/2
+ o(1).

Inserting the bound Eθ0Vλ+,w+ ≤ Csn yields the claim. (We make no attempt
to obtain the sharp constant c, which we believe will be strictly larger than 1
in this setting.)
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Appendix A: Auxiliary results

Lemma 14. Recall the definition (49) of χ are recall we write r(w, t) = wt(1−
w)−1(1 − t)−1. For universal constants c, c′ > 0, for all t ∈ (0, 1), there exists
ω0(t) such that for w ≤ ω0(t),

m̃(w)

(
1 + c

log log(1/w)

log(1/w)

)
≤ 2G(χ(r(w, t))) ≤ m̃(w)

(
1 + c′

log log(1/w)

log(1/w)

)
.

(76)

Proof of Lemma 14. The proof relies on the following inequalities (see Lemma 22):
for universal constants C1, C2 > 0 and w small enough,

2G(ζ(w))(1− C2ζ(w)
−3) ≤ m̃(w) ≤ C1ζ(w)

−3 + 2G(ζ(w)). (77)

Let us now prove the lower bound. By Lemma 22, for a universal constant
c1 > 0, and w small enough (smaller than a threshold that might depend on t),

ζ(w) − χ(r(w, t)) ≥ c1
log log(1/w)

ζ(w) . Hence, since g in nonincreasing on a vicinity

of +∞, we have for w small enough

G(χ(r(w, t)))−G(ζ(w)) =

∫ ζ(w)

χ(r(w,t))

g(u)du

≥ (ζ(w)− χ(r(w, t))) g(ζ(w))

≥ c′1
log log(1/w)

ζ3(w)
,

for a universal constant c′1 > 0. Combining the last display with (77) leads to

m̃(w) ≤ Cζ(w)−3 + 2G(χ(r(w, t)))− 2c′1
log log(1/w)

ζ3(w)

≤ 2G(χ(r(w, t)))− c′1
log log(1/w)

ζ3(w)
,

for w small enough. The lower bound now follows from m̃(w) � 1/ζ(w) and
ζ(w) � (log(1/w))1/2 (see Lemma 22).

For the upper bound part, we proceed similarly: let us first prove that, for
an universal constant c2 > 0, for w small enough (smaller than a threshold that
might depend on t),

ζ(w)− χ(r(w, t)) ≤ c2
log log(1/w)

ζ(w)
. (78)

This comes from Lemma 22: for w small enough,

ζ(w)2 − χ(r(w, t))2 ≤ 2 log(1/w) + 2 log log(1/w)− 2 log((1−w)(1− t)/(tw))

+ log(log((1− w)(1− t)/(tw))) + C + C ′ ≤ 4 log log(1/w).
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This leads to (78). Now, proceeding as for the lower bound, we have

G(χ(r(w, t)))−G(ζ(w)) =

∫ ζ(w)

χ(r(w,t))

g(u)du

≤ (ζ(w)− χ(r(w, t))) g(χ(r(w, t)))

≤ c′2
log log(1/w)

ζ3(w)
,

Combining the latter with (77) gives

2G(χ(r(w, t)) ≤ m̃(w)(1− C2ζ(w)
−3)−1 + 2c′2

log log(1/w)

ζ3(w)
,

which implies the upper bound.

Lemma 15. Define w± as in (40) and (41), define λ+ as in (43), and recall
the definitions (29) and (32) of νn, ρn and (48) of r. Then

w+/w− − 1 = O(max(νn, ρn)),
r(w+, λ+)

r(w−, λ+)
− 1 = O(max(νn, ρn)).

Proof. We have w+ ≥ w− (Lemma 5), hence we focus on bounding w+/w− −
1 from above. Since Lemma 5 also implies that log(1/w−) � log(1/w+) �
log(n/sn), we use Lemma 17 to bound m1 in the definitions (40) and (41) of
w− and w+, and deduce that

(1− νn)(n− sn)w+m̃(w+) ≤ sn,

(1 + νn)(n− sn)w−m̃(w−) ≥ sn(1− ρn).

Taking the ratio, we deduce that

w+m̃(w+)

w−m̃(w−)
≤ (1− νn)

−1(1 + νn)(1− ρn)
−1.

Then, since w+ ≥ w− and m̃ is increasing, we see that

w+

w−
− 1 ≤ w+m̃(w+)

w−m̃(w−)
− 1 = O(max(νn, ρn)),

as claimed.
Finally, since w+, w− → 0, we deduce that

1− w−
1− w+

− 1 =
(w+/w−)− 1

(1− w+)/w−
= o(w+/w− − 1),

hence

r(w+, λ+)

r(w−, λ+)
− 1 = O

(
max

(w+

w−
− 1,

1− w−
1− w+

− 1
))

= O(max(νn, ρn)).
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Lemma 16. Define w±, λ±, ξ, r as in (40), (41), (43), (44), (48) and (64).
Then

ξ(r(w−, λ+))
2 − ξ(r(w+, λ+))

2 = O(1)

Proof. Write r± = r(w±, λ+) and ξ± = ξ(r±). Lemma 22 gives us the near
matching upper and lower bounds on ξ that for u ∈ (0, 1) small enough we have

ξ(u) ≤ (2 log(1/u) + 2 log log(1/u) + 6 log 2)1/2,

ξ(u) ≥ (2 log(1/u) + 2 log log(1/u) + 2 log 2)1/2.

Using these bounds and monotonicity of ξ := (φ/g)−1 (which follows from the
fact that of φ/g is decreasing on x ≥ 0 as in Lemma 4) we deduce that

0 ≤ ξ2− − ξ2+ ≤ 2 log
(r+
r−

)
+ 2 log log(1/r−)− 2 log log(1/r+) + 4 log 2. (79)

Observe that

log log(1/r−)− log log(1/r+) = log
( log(1/r−)

log(1/r+)

)
= log

(
1 +

log(r+/r−)

log(1/r+)

)
.

Using the standard bound log(1 + x) ≤ x for x > −1 and the fact that r+ → 0
(by Lemmas 5 and 6), this last expression is upper bounded by

log(r+/r−)

log(1/r+)
= o(log(r+/r−)),

and, using Lemma 15, we similarly have

log(r+/r−) ≤
r+
r−

− 1 = O(max(νn, ρn)) = o(1).

Inserting into (79) we see that ξ2− − ξ2+ = O(1), as claimed.

Lemma 17. There exist constants ω0 ∈ (0, 1) and c, c′ > 0 such that for any
sequence sn/n → 0 and vn → ∞, for all θ0 ∈ �0(sn, vn), for any i such that
θ0,i �= 0, we have for any w ∈ [sn/n, ω0],

(1− ρn)w
−1 ≤ m1(θ0,i, w) ≤ w−1, (80)

c(log(1/w))−1/2 ≤ m̃(w) ≤ c′(log(1/w))−1/2, (81)

where we recall that ρn = e−v2
n/9 as in (32).

Proof. Lemma 22 tells us that m̃(w) � ζ(w)−1 and ζ(w) ∼ (2 log(1/w))−1/2,
yielding (81). It also tells us, regarding m1, that there exists c1 > 0 such that
for all x ∈ R and all w ∈ (0, 1],

m1(x,w) ≤ min(w, c1)
−1, (82)

so that the upper bound in (80) is immediate upon choosing ω0 = min(c1, 1).
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It remains to show the lower bound on m1. This lower bound is a sharpening
of Lemma S-29 in [17] and is proved similarly. By assumption, if, for some i,
|θ0,i| �= 0, then we may assume by symmetry of m1 that μ = θ0,i > 0 and we
further have

μ ≥
√
2 log(n/sn) + vn.

Writing p = p(n,w) = vn
ζ(w) and a = 1 + 0.5p, using monotonicity of φ/g and

hence of β (Lemma 4), we have for w such that w|β(0)| < 1/2,

wm1(μ,w) =

∫
|x|>aζ(w)

wβ(x)

1 + wβ(x)
φ(x− μ)dx+

∫ aζ(w)

−aζ(w)

wβ(x)

1 + wβ(x)
φ(x− μ)dx

≥
∫
x>aζ(w)

wβ(x)

1 + wβ(x)
φ(x− μ)dx−

∫ aζ(w)

−aζ(w)

φ(x− μ)dx

≥ wβ(aζ(w))

1 + wβ(aζ(w))
Φ(aζ(w)− μ)− (1− Φ(aζ(w)− μ)).

Increasingness of β implies that ζ is decreasing, so that also using Lemma 22
and a Taylor expansion, we have, for some Δn → 0,

aζ(w)− μ ≤ ζ(w)−
√

2 log(n/sn)− 0.5vn ≤ ζ(sn/n)−
√
2 log(n/sn)− 0.5vn

≤ Δn − 0.5vn.

By standard properties of Φ̄, including the tail bound Φ̄(x) � φ(x)/x,

1− Φ̄(Δn − 0.5vn) = Φ̄(0.5vn −Δn) � e−(0.5vn−Δn)
2/2

≤ e−(0.5vn)
2/2evnΔn/2 � ρn.

In particular, we have, for n large,

1− Φ̄(aζ(w)− μ) ≤ 1− Φ̄(Δn − 0.5vn) ≤ ρn/3.

Additionally, wβ(aζ(w)) = β(aζ(w))/β(ζ(w)) = ((g/φ)(aζ(w)) − 1)/((g/φ)
(ζ(w))− 1) tends quickly to infinity:

wβ(aζ(w)) � g(aζ(w))

g(ζ(w))

φ(ζ(w))

φ(aζ(w))
� φ(ζ(w))

φ(aζ(w))

= e(a
2−1)ζ(w)2/2 � ev

2
n0.5

2/2 � ρ−1
n .

In particular, we see that, for n large,

wβ(aζ(w))

1 + wβ(aζ(w))
= 1− 1

1 + wβ(aζ(w))
≥ 1− 1

wβ(aζ(w))
≥ 1− ρn/3.

Inserting these bounds we find that

wm1(μ,w) ≥ (1− ρn/3)(1− ρn/3)− ρn/3 ≥ 1− ρn.
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The following two technical lemmas give precise bounds on Fw(λ) and on
Eθ0=0[�1,w | �1,w′ < λ] for suitable w,w′ and λ which are essential to obtaining
the convergence rates in Theorem 2.

Lemma 18. The function Fw(λ) = Pθ0,i=0(�i,w ≤ λ) is continuous and strictly
increasing in λ. Assume that w = wn and λ = λn ∈ (0, 1) satisfy λ → 1 and
w/(1− λ) → 0. Then

Fw(λ) = 2Φ̄(ξ(r(w, λ))) � w(1− λ)−1(log((1− λ)/w))−3/2

as n → ∞, where ξ = (φ/g)−1 and r(w, t) = w(1 − w)−1t(1 − t)−1. If in fact
wc/(1− λ) → 0 for some c < 1 then

Fw(λ) � w(1− λ)−1(log(1/w))−3/2.

Proof. A direct calculation, as needed also in proving Lemma 4, yields

�i,w(X) ≤ t ⇐⇒ |Xi| ≥ ξ(r(w, t)), (83)

so that Fw(x) = 2Φ̄(ξ(r(w, x))) as claimed and hence Fw is continuous.
Next, we use a standard Gaussian tail bound, the definition of ξ, the definition

(7) of g in the quasi-Cauchy case, the fact that r(w, λ) � w/(1 − λ) as w → 0
and λ → 1, and the fact that ξ(u) � (log(1/u))1/2 as u → 0 (see Lemma 22) to
see that

Φ̄(ξ(r(w, λ)) � φ(ξ(r(w, λ))

ξ(r(w, λ)
� r(w, λ)g(ξ(r(w, λ))

ξ(r(w, λ))
� r(w, λ)ξ(r(w, λ))−3

� w

1− λ

(
log

(1− λ

w

))−3/2

,

as claimed. Note that log((1−λ)/w) ≤ log(1/w), and that when wc/(1−λ) → 0
we have log((1− λ)/w) � log(1/w1−c) � log(1/w).

Lemma 19. Suppose for sequences w1 = w1,n, w2 = w2,n and λ = λn taking
values in [0, 1] that λ → 1, that both w2/w1 and w1/w2 are bounded, and that
wc

1/(1− λ) → 0 for some c < 1. Then

1− Eθ0=0[�1,w1(X) | �1,w2(X) < λ] � (1− λ) log(1/(1− λ)),

Let us also note here that for fixed w1, w2, Eθ0=0[�1,w1(X) | �1,w2(X) < λ] is
continuous in λ.

Proof. Recall the definitions β(x) = g
φ (x) − 1, ζ(w) = β−1(1/w), ξ = (φ/g)−1,

and recall that �1,w(X) < λ if and only if |X1| > ξ(r(w, λ)), see (83). Using
symmetry of the densities φ and g we see that for all w1, w2 ∈ (0, 1),

Eθ0=0[�1,w1(X) | �1,w2(X) < λ] =

∫ ∞
ξw2

(1−w1)φ(x)
(1−w1)φ(x)+w1g(x)

φ(x) dx

Φ̄(ξw2)
,
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where we have introduced the notation ξw2 := ξ(r(w2, λ)). The expression on
the right is continuous at any λ such that the denominator is bounded away from
zero, i.e. at any λ �= 0, hence the same is true of the conditional expectation.

Write hw1(x) = w1β(x)φ(x)/(1 + w1β(x)). For w1, w2 small enough, the fol-
lowing bounds hold:

φ(x)/2 ≤ hw1(x) ≤ φ(x), x ∈ [ζ(w1),∞);

w1g(x)/4 ≤ hw1(x) ≤ w1g(x) x ∈ [ξw2 , ζ(w1)].

To obtain these inequalities we have used monotonicity of φ/g and hence β,
and the fact that β(ζ(w)) = 1/w. The first inequalities then follow from the

expression hw1(x) = ( w1β(x)
1+w1β(x)

)φ(x), while the latter inequalities result from

the expression hw1(x) = w1g(x)(
1−(φ/g)(x)
1+w1β(x)

) and the fact that (φ/g)(x) ≤ 1/2

for x large enough. By assumption there exists C > 0 such that w1 ≤ Cw2 for
all n large enough, and note that also λ ≥ C/(C + 1) by further increasing n if
necessary. Recalling the relationship (66) and using that decreasingness of φ/g
(Lemma 4) implies the same of ξ = (φ/g)−1, we then have

ζ(w1) = ξ(w1/(1 + w1)) ≥ ξ(w1) ≥ ξ(Cw2) ≥ ξ(r(w2, λ)) = ξw2 .

In addition, since g is decreasing for x large, we have

w1g(ζ(w1))/4 ≤ hw1(x) ≤ w1g(ξw2), x ∈ [ξw2 , ζ(w1)].

Then ∫ ∞

ξw2

φ(x)

(1− w1)φ(x) + w1g(x)
φ(x) dx

=

∫ ∞

ξw2

1

1 + w1β(x)
φ(x) dx

=

∫ ∞

ξw2

φ(x) dx−
∫ ∞

ξw2

hw1(x) dx

=Φ̄(ξw2)−
∫ ζ(w1)

ξw2

hw1(x) dx−
∫ ∞

ζ(w1)

hw1(x) dx

≥Φ̄(ξw2)− (ζ(w1)− ξw2)w1g(ξw2)− Φ̄(ζ(w1)).

We can similarly upper bound the integral, so we deduce the inequalities

(1− w1)

Φ̄(ξw2)

[
Φ̄(ξw2)− Φ̄(ζ(w1))− (ζ(w1)− ξw2)w1g(ξw2)

]
≤ Eθ0=0[�1,w1(X) | �1,w2(X) < λ]

≤ (1− w1)

Φ̄(ξw2)

[
Φ̄(ξw2)−

1

2
Φ̄(ζ(w1))−

1

4
(ζ(w1)− ξw2)w1g(ζ(w1))

]
.

(84)

Now, let us study in detail the order of each term. First, usual normal tail
bounds, the definition of ζ, the definition (7) of g in the quasi-Cauchy case
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and Lemma 22 (which tells us that ζ(w)2 � log(1/w)) imply that for w1 small
enough

Φ̄(ζ(w1)) �
φ(ζ(w1))

ζ(w1)
� w1

g(ζ(w1))

ζ(w1)
� w1ζ(w1)

−3 � w1(log(1/w1))
−3/2.

Similarly to the proof of Lemma 18, observe that (1− λ)/w2 ≥ wc−1
1 and for n

large and hence that log((1−λ)/w2) � log(1/w1). Using the definition of ξ and
Lemma 22 (which tells us that ξ(u)2 � log(1/u)), we then obtain

Φ̄(ξw2) �
φ(ξw2)

ξw2

= r(w2, λ)
g(ξw2)

ξw2

� w2

1− λ
ξ−3
w2

� w2

1− λ

(
log

(1− λ

w2

))−3/2

� w1

1− λ

(
log(1/w1)

)3/2
We deduce that 0 ≤ Φ̄(ζ(w1))/Φ̄(ξw2) � 1− λ.

We apply Lemma 20 with w = w1 and with t ∈ (0, 1) such that r(w1, t) =
r(w2, λ). Observing that

1

1− t
= r(w1, t)

1− w1

tw1
= r(w2, λ)

1− w1

tw1
� λ

1− λ
� 1

1− λ
,

so that wc
1/(1− t) → 0, we deduce that

ζ(w1)− ξw2 � log(1/(1− t))

(log(1/w1))1/2
� log(1/(1− λ))

(log(1/w1))1/2
.

Again using that log((1− λ)/w2) � log(1/w1), it follows that

(ζ(w1)−ξw2)w1g(ζ(w1)) � (ζ(w1)−ξw2)w1g(ξw2) � (1−λ) log(1/(1−λ))Φ̄(ξw2),

since we showed above that w1(1−λ)−1(log(1/w1))
−3/2 � Φ̄(ξw2). Feeding these

bounds into (84) yields that for some c1, c2, c3 > 0

1− Eθ0 [�1,w1 | �1,w2 < λ] ≥ w1 + c1(1− w1)((1− λ) log(1/(1− λ)),

1− Eθ0 [�1,w1 | �1,w2 < λ] ≤ w1 + c2(1− λ) + c3((1− λ) log(1/(1− λ)).

The lower bound follows upon discarding the term w1 and noting that 1−w1 ≥
1/2 for n large; for the upper bound we note that w1 + c2(1 − λ) = o

(
(1 −

λ) log(1/(1− λ))
)
.

Lemma 20. Suppose for sequences w = wn and t = tn taking values in [0, 1]
that t → 1 and wc/(1− t) → 0 for some c < 1. Then ζ(w) − ξ(r(w, t)) ≥ 0 for
n large enough and, as n → ∞,

ζ(w)− ξ(r(w, t)) � log(1/(1− t))

(log(1/w))1/2
. (85)



C�-value multiple testing 2075

Proof. For 1 − t ≤ 1/2 and w/(1 − t) ≤ 0.5, we have r(w, t) = tw
(1−t)(1−w) ≥

wt
1−t ≥ 0.5 w

1−t , so that log log(1/r(w, t)) ≤ log(log(2)+ log((1− t)/w) ≤ log(2)+
log log((1− t)/w). Hence, using bounds on ζ and ξ from Lemma 22 and noting
that log(1/w) ≥ log((1− t)/w) and that log(1/(1−w)) is bounded, we see that
for 1− t and w/(1− t) small enough we have for constants c, c′

ζ(w)2 − ξ(r(w, t))2

≥2 log
(
1
w

)
+ 2 log log

(
1
w

)
+ c−

(
2 log

(
1

r(w,t)

)
+ 2 log log

(
1

r(w,t)

)
+ 6 log 2

)
≥2 log(t/(1− t)) + 2 log(log(1/w)/ log((1− t)/w)) + c′

≥2 log(1/(1− t)) + c′

≥ log(1/(1− t)).

Conversely, for w ≤ 1/2, we have r(w, t) = tw
(1−t)(1−w) ≤ 2 w

1−t , so that

log log(1/r(w, t)) ≥ log(log(0.5)+ log((1− t)/w) ≥ log(0.5)+ log log((1− t)/w),

provided n is large enough that log((1 − t)/w) + log(0.5) ≥ 0.5 log((1 − t)/w).
Note also, as in the proof of Lemma 18 that the condition on wc

1/(1 − λ) → 0
implies that log(1/w)/ log((1− t)/w) is bounded. Again using bounds on ζ and
ξ from Lemma 22, for 1 − t and w/(1 − t) small enough we deduce that for
constants C,C ′, C ′′ we have

ζ(w)2 − ξ(r(w, t))2

≤2 log
(
1
w

)
+ 2 log log

(
1
w

)
+ C −

(
2 log

(
1

r(w,t)

)
+ 2 log log

(
1

r(w,t)

)
+ 2 log 2

)
≤2 log(t/(1− t)) + 2 log(log(1/w)/ log((1− t)/w)) + C ′

≤2 log(1/(1− t)) + C ′′.

This entails

ζ(w)− ξ(r(w, t)) � log(t/(1− t))

ζ(w) + ξ(r(w, t))
,

and the result thus follows from ζ(w) ≤ ζ(w) + ξ(r(w, t)) ≤ 2ζ(w) (the latter
being implied by the above calculations) and ζ(w) � (log(1/w))1/2.

Lemma 21. For any β > 0 there exists c1 = c1(β) > 0 such that for any
sn > c1(logn)

2/ log logn satisfying n/sn → ∞ we have for n large enough

log log(n/sn)

log(n/sn)
≥ α

( log sn
sn

)1/2

.

Consequently, the conclusions of Theorem 2 hold upon replacing the assumption
sn ≥ (logn)3 with sn ≥ b(logn)2/ log logn for some large enough b.

Proof. Write

p(s) =
log log(n/s)

log(n/s)
, q(s) =

( log s

s

)1/2

.
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Since u−1 log u ≤ (u′)−1 log u′ for u ≥ u′ ≥ e, we see that p(sn) ≥ p(1) (apply
with u = logn, u′ = log(n/sn), and note u′ > e for n large enough since
n/sn → ∞). Similarly we notice that q is decreasing, at least on s > e, so that
q(s−) ≥ q(sn) for s− := c1(log n)

2/ log logn. It therefore suffices to show that
p(1) ≥ βq(s−).

Observe that for n large enough we have s− ≤ (logn)2, hence log s− ≤
2 log logn. It follows that s−/ log s− ≥ 1

2c1(log n/ log logn)
2. Thus,

q(s−) ≤
( 2

c1

)1/2 log logn

log n
= (c1/2)

−1/2p(1).

The result follows for c1 = 2β2.
To see that the proof of Theorem 2 holds under the weaker condition on sn,

note that the lower bound on sn was not assumed for any of the core lemmas,
and in the proof of the theorem itself was only used to show that for any β > 0,
νn ≤ βεn for n large enough.

Finally, for the reader’s convenience, we gather some results together whose
proofs are omitted because they can be found elsewhere. The following lemma
collects results from [17]; we remark that while the setting of that paper assumes
polynomial sparsity, the results gathered here do not depend on that assumption.
Some of the following results are originally stated with dependence on g and a
related parameter κ ∈ [1, 2]; here, with g explicitly given in (7), we substitute
κ = 2 and use the bounds ‖g‖∞ := supx|g(x)| ≤ 1/

√
2π and x−2/(2

√
2π) ≤

g(x) ≤ x−2/
√
2π for |x| ≥ 2 to simplify expressions.

Lemma 22 (Results from [17]). a. Lemma S-10: �i,w−(X) ≥ qi,w−(X).

b. Lemma S-12: ξ(u) ∼ (2 log(1/u))1/2, and more precisely, for u small
enough,

ξ(u) ≥
(
2 log(1/u) + 2 log log(1/u) + 2 log 2

)1/2

ξ(u) ≤
(
2 log(1/u) + 2 log log(1/u) + 6 log 2

)1/2

.

c. Lemma S-14: ζ(w) ∼ (2 log(1/w))1/2. More precisely, for constants c, C ∈
R and for w small enough,

(2 log(1/w) + 2 log log(1/w) + c)1/2

≤ ζ(w) ≤ (2 log(1/w) + 2 log log(1/w) + C)1/2.

d. Proof of Lemma S-15: ζ(w) − χ(r(w, t)) ≥ c1
log log(1/w)

ζ(w) for a universal

constant c1 > 0, for w small enough (smaller than a threshold that might
depend on t).

e. Eq. (S-15): for some constant C ′ > 0 and u ∈ (0, 1] small enough,

χ(u) ≥ (2 log(1/u)− log log(1/u)− C ′)
1/2

.
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f. Lemma S-20: there exists c1 > 0 such that for any x ∈ R and w ∈ (0, 1],
|β(x)/(1 + wβ(x))| ≤ (w ∧ c1)

−1.
g. Lemma S-21: there exists c1 > 0 such that m1(x,w) ≤ (min(c1, w))

−1 for
all x ∈ R. The function m̃ is continuous, non-negative and increasing. For
any fixed τ the function w �→ m1(τ, w) is continuous and decreasing.

h. Lemma S-23: m̃(w) � ζ(w)g(ζ(w)) � ζ(w)−1.
i. Proof of Lemma S-23: for universal constants C1, C2 > 0 and w small

enough, m̃(w)≤C1ζ(w)
−3+2G(ζ(w)) and m̃(w)≥2G(ζ(w))(1−C2ζ(w)

−3).
j. Lemma S-26, Corollary S-28: for m2(θ0,i, w) = Eθ0(β(Xi)/[1+wβ(Xi)])

2,
there exist constants C,ω0,M0 > 0 such that for all w ≤ ω0 and all τ ≥ M0

m2(0, w) ≤ CΦ̄(ζ(w))w−2,

m2(τ, w) ≤ Cm1(τ, w)w
−1

k. Lemma S-40: Φ̄(x) ∼ x−1φ(x) as x → ∞. More precisely,

x2

1 + x2

φ(x)

x
≤ Φ̄(x) ≤ φ(x)

x
.

Lemma 23 (Bernstein’s inequality). Let Ui, i ≤ n be independent random vari-
ables taking values in [0, 1]. Then, for any u > 0,

P
( n∑
i=1

(Ui − E[Ui]) ≥ u
)
≤ exp

(
− u2/2∑n

i=1 Var(Ui) + u/3

)
,

and

P
(∣∣∣ n∑

i=1

(Ui − E[Ui])
∣∣∣ ≥ u

)
≤ 2 exp

(
− u2/2∑n

i=1 Var(Ui) + u/3

)
.

Appendix B: Notation

X = (X1, . . . , Xn) the data, with Xi = θi+ εi, where the εi are i.i.d. Gaussians
εi ∼ N (0, 1).

θ0 the unknown true parameter in �0(sn, vn).
Pθ0 the law of X with parameter θ0, Eθ0 the associated expectation.
�0(s) = {θ ∈ R

N : #{1 ≤ i ≤ n : θi �= 0} = ‖θ‖�0 ≤ s}.
S0 = {i : θ0,i �= 0} the support of the vector θ0 ∈ �0(s).

�0(sn, vn) = {θ ∈ �0(sn) : |θi| ≥
√

2 log(n/sn) + vn for i ∈ S0, |S0| = sn}, with
sn → ∞, n/sn → ∞, vn → ∞. (And sn ≥ (log n)3, vn≥3(log log(n/sn))

1/2

for Theorems 2 and 3.)
Πw the spike-and-slab prior (6), under which θi = 0 with probability 1 − w

and is drawn from some (implicitly defined) density γ with probability w,
independently of the other θj .

Πw(· | X) the induced posterior on θ, see before (8).
φ, g the standard Gaussian density and the quasi-Cauchy density

g(x) = (2π)−1/2x−2(1 − e−x2/2) which respectively are the laws of Xi

under θi = 0 and under θi ∼ γ.
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Φ̄, Ḡ the upper tail distributions for φ, g, e.g. Φ̄(x) =
∫ ∞
x

φ(t) dt.

�i,w(X) = = Πw(θi = 0 | X) = �(w;Xi) =
(1−w)φ(Xi)

(1−w)φ(Xi)+wg(Xi)
. Also just denoted

�i,w in places.

qi,w(X) = q(w;Xi) =
(1−w)Φ̄(|Xi|)

(1−w)Φ̄(|Xi|)+wḠ(|Xi|) as in (18). Also just denoted qi,w at

times.
L(w) the log-likelihood (10), S(w) = L′(w) =

∑n
i=1 β(Xi)/(1 + wβ(Xi)) the

score function.
β(x) = (g/φ)(x)− 1.
ζ(w) = β−1(1/w), w ∈ (0, 1].
ξ = (φ/g)−1, χ = (Φ̄/Ḡ)−1.
m̃(w) = −E0[β(X)/(1 + wβ(X))] = −

∫ ∞
−∞ β(t)/(1 + wβ(t))φ(t) dt.

m̃1(τ, w) = Eτ [β(X)/(1 + wβ(X))] =
∫ ∞
−∞ β(t)/(1 + wβ(t))φ(t− τ) dt.

r(w, t) = wt(1− w)−1(1− t)−1.
Fw(x) = Pθ0=0(�i,w(X) < x) = 2Φ̄(ξ(r(w, x))).
FDP,FDR,FNR the usual false discovery proportion, false discovery rate, and

false negative rate, see (3)–(5).
BFDR the Bayesian FDR, i.e. the FDR averaged over draws θ from the prior

(see (11)).

postFDRw(ϕ) = Eθ∼Πw(·|X [FDP(ϕ; θ)] =
∑n

i=1 �i,wϕi

1∨(
∑n

i=1 ϕi)
.

ŵ = argmaxw∈[1/n,1] L(w), the maximum likelihood estimator for w.
w± quantities which will be used to upper and lower bound ŵ with high prob-

ability, defined in (40) and (41).

λ̂ = sup{λ ∈ [0, 1] : postFDRŵ(ϕλ,ŵ) ≤ t}.
λ± quantities which will be used to upper and lower bound λ̂ with high prob-

ability, defined in (43) and (44).
ϕλ,w(X) = (1{�i,w(X) < λ})i≤n.
ϕC� = ϕλ̂,ŵ (see also the beginning of Section 1.3.2 for a direct definition).

ϕq-val = (1{qi,ŵ < t})1≤i≤n.
Vλ,w = #{i �∈ S0 : �i,w < λ} the number of false discoveries made by ϕλ,w.
V ′
w = #{i �∈ S0 : qi,w < t}.

νn, δn, ρn, εn see (29)–(32) (νn = (sn/ log sn)
−1/2, δn = (log(n/sn))

−1, εn =

δn log log(n/sn), ρn = e−v2
n/9 with vn the signal strength as in (21)). In

the setting of Theorem 2, εn is the largest of these asymptotically, see (34)
and (35).

Kn =#{i ∈ S0 : �i,w− < δn}.
�,�,�,∼,�, o, O: For sequences an, bn, an � bn or an = O(bn) means (bn ≥ 0

and) there exists a constant C s.t. |an| ≤ Cbn, and C is independent of
n (and other arguments of a, b). an � bn means bn � an. an � bn means
an � bn and an � bn. an ∼ bn means an/bn → 1, and an � bn or
an = o(bn) means an/bn → 0. For functions f, g, all these relations are
defined correspondingly.
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[22] S. Döhler, G. Durand, and E. Roquain. New FDR bounds for dis-
crete and heterogeneous tests. Electron. J. Statist., 12(1):1867–1900, 2018.
MR3813600

[23] G. Durand. Adaptive p-value weighting with power optimality. Electron. J.
Stat., 13(2):3336–3385, 2019. MR4010982

[24] B. Efron. Large-scale simultaneous hypothesis testing: The choice of a null
hypothesis. J. Am. Stat. Assoc., 99(465):96–104, 2004. MR2054289

[25] B. Efron. Size, power and false discovery rates. Ann. Statist., 35(4):1351–
1377, 2007. MR2351089

[26] B. Efron. Microarrays, empirical Bayes and the two-groups model. Statist.
Sci., 23(1):1–22, 2008. MR2431866

[27] B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher. Empirical Bayes analy-
sis of a microarray experiment. J. Amer. Statist. Assoc., 96(456):1151–1160,
2001. MR1946571

[28] D. Gerard and M. Stephens. Empirical Bayes shrinkage and false discovery
rate estimation, allowing for unwanted variation. Biostatistics, 07 2018.
MR4043843

[29] N. Ignatiadis, B. Klaus, J. Zaugg, and W. Huber. Data-driven hypothe-
sis weighting increases detection power in genome-scale multiple testing.
Nature methods, 13:577–580, 05 2016.

[30] A. Javanmard, H. Javadi, et al. False discovery rate control via debiased
lasso. Electronic Journal of Statistics, 13(1):1212–1253, 2019. MR3935848

[31] W. Jiang and W. Yu. Controlling the joint local false discovery rate is
more powerful than meta-analysis methods in joint analysis of summary
statistics from multiple genome-wide association studies. Bioinformatics,
33(4):500–507, 12 2016.

[32] I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks:
Empirical Bayes estimates of possibly sparse sequences. Ann. Statist.,
32(4):1594–1649, 2004. MR2089135

https://www.ams.org/mathscinet-getitem?mr=3928141
https://www.ams.org/mathscinet-getitem?mr=3885271
https://www.ams.org/mathscinet-getitem?mr=4152112
https://www.ams.org/mathscinet-getitem?mr=4036030
https://www.ams.org/mathscinet-getitem?mr=3830957
https://www.ams.org/mathscinet-getitem?mr=3184277
https://www.ams.org/mathscinet-getitem?mr=3813600
https://www.ams.org/mathscinet-getitem?mr=4010982
https://www.ams.org/mathscinet-getitem?mr=2054289
https://www.ams.org/mathscinet-getitem?mr=2351089
https://www.ams.org/mathscinet-getitem?mr=2431866
https://www.ams.org/mathscinet-getitem?mr=1946571
https://www.ams.org/mathscinet-getitem?mr=4043843
https://www.ams.org/mathscinet-getitem?mr=3935848
https://www.ams.org/mathscinet-getitem?mr=2089135


C�-value multiple testing 2081

[33] I. M. Johnstone and B. W. Silverman. EbayesThresh: R Programs for Em-
pirical Bayes Thresholding. Journal of Statistical Software, 12(8), 2005.
MR2364426

[34] N. Lee, A.-Y. Kim, C.-H. Park, and S.-H. Kim. An improvement on lo-
cal FDR analysis applied to functional MRI data. Journal of neuroscience
methods, 267:115–125, 2016.

[35] A. Li and R. F. Barber. Multiple testing with the structure-adaptive
Benjamini-Hochberg algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol.,
81(1):45–74, 2019. MR3904779

[36] W. Liu. Gaussian graphical model estimation with false discovery rate con-
trol. The Annals of Statistics, 41(6):2948–2978, 2013. MR3161453

[37] P. Müller, G. Parmigiani, C. Robert, and J. Rousseau. Optimal sample
size for multiple testing: The case of gene expression microarrays. J. Amer.
Statist. Assoc., 99(468):990–1001, 2004. MR2109489

[38] M. Rabinovich, A. Ramdas, M. I. Jordan, and M. J. Wainwright. Optimal
rates and trade-offs in multiple testing. Statistica Sinica, 30:741–762, 2020.
MR4214160

[39] T. Rebafka, E. Roquain, and F. Villers. Graph inference with clustering
and false discovery rate control. 2019. Arxiv preprint 1907.10176.

[40] E. Roquain and M. van de Wiel. Optimal weighting for false discovery rate
control. Electron. J. Stat., 3:678–711, 2009. MR2521216

[41] J.-B. Salomond. Risk quantification for the thresholding rule for multiple
testing using Gaussian scale mixtures. 2017. Arxiv preprint 1711.08705.

[42] S. K. Sarkar, T. Zhou, and D. Ghosh. A general decision theoretic formula-
tion of procedures controlling FDR and FNR from a Bayesian perspective.
Statist. Sinica, 18(3):925–945, 2008. MR2440399

[43] M. Stephens. False discovery rates: A new deal. Biostatistics, 18(2):275–
294, 10 2016. MR3824755

[44] J. D. Storey. The positive false discovery rate: A Bayesian interpretation
and the q-value. Ann. Statist., 31(6):2013–2035, 2003. MR2036398

[45] L. Sun and M. Stephens. Solving the empirical Bayes normal means problem
with correlated noise. 2018. Arxiv preprint 1812.07488.

[46] W. Sun and T. T. Cai. Oracle and adaptive compound decision rules for
false discovery rate control. J. Amer. Statist. Assoc., 102(479):901–912,
2007. MR2411657

[47] W. Sun and T. T. Cai. Large-scale multiple testing under dependence. J.
R. Stat. Soc. Ser. B Stat. Methodol., 71(2):393–424, 2009. MR2649603

[48] R. W. Zablocki, A. J. Schork, R. A. Levine, O. A. Andreassen, A. M. Dale,
and W. K. Thompson. Covariate-modulated local false discovery rate for
genome-wide association studies. Bioinformatics, 30(15):2098–2104, 2014.

https://www.ams.org/mathscinet-getitem?mr=2364426
https://www.ams.org/mathscinet-getitem?mr=3904779
https://www.ams.org/mathscinet-getitem?mr=3161453
https://www.ams.org/mathscinet-getitem?mr=2109489
https://www.ams.org/mathscinet-getitem?mr=4214160
https://arxiv.org/abs/1907.10176
https://www.ams.org/mathscinet-getitem?mr=2521216
https://arxiv.org/abs/1711.08705
https://www.ams.org/mathscinet-getitem?mr=2440399
https://www.ams.org/mathscinet-getitem?mr=3824755
https://www.ams.org/mathscinet-getitem?mr=2036398
https://arxiv.org/abs/1812.07488
https://www.ams.org/mathscinet-getitem?mr=2411657
https://www.ams.org/mathscinet-getitem?mr=2649603

	Introduction
	Background
	Model, FDR and FNR
	Empirical Bayes multiple testing procedures
	Spike-and-slab prior distributions and empirical Bayes
	Bayesian multiple testing procedures


	Main results
	Consistency
	Convergence rate
	Sketch proof of Theorems 1 and 2

	Discussion
	Optimality
	Relationship between the C-, - and q-value procedures
	Relationship to frequentist-Bayes analysis
	Relationship to latent variables settings
	Possible future research avenues

	Proofs of the main results
	Preliminaries
	Proof of Theorems 1 and 2
	Proof of Theorem 3

	Core lemmas
	Statements
	Proofs

	Sparsity preserving procedures and optimality of the boundary
	Auxiliary results
	Notation
	Acknowledgments
	References

