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Abstract

In this paper, we establish optimal Berry–Esseen bounds for the generalized U -
statistics. The proof is based on a new Berry–Esseen theorem for exchangeable
pair approach by Stein’s method under a general linearity condition setting. As ap-
plications, an optimal convergence rate of the normal approximation for subgraph
counts in Erdos̈–Rényi graphs and graphon-random graph is obtained.
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1 Introduction

Let X and Y be two measurable spaces. Let X = (X1, . . . , Xn) ∈ Xn and Y =

(Yi,j)16i<j6n ∈ Yn(n−1)/2 be two independent sequences of i.i.d. random variables; more-
over, we set Yj,i = Yi,j for j > i. For k > 1, let f : X k × Yk(k−1)/2 → R be a function
and we say f is symmetric if the value of the function f(xi1 , . . . , xik ; yi1,i2 , . . . , yik−1,ik)

remains unchanged any permutation of indices 1 6 i1 6= i2 6= · · · 6= ik 6 n where
(xi1 , . . . , xik ; yi1,i2 , . . . , yik−1,ik) ∈ X k × Yk(k−1)/2. In this paper, we consider the general-
ized U -statistic defined by

Sn,k(f) =
∑

α∈In,k

f(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k)), (1.1)

where for every ` > 1 and n > `,

In,` = {α = (α(1), . . . , α(`)) : 1 6 α(1) < · · · < α(`) 6 n}. (1.2)

We note that every α ∈ In,` is an `-fold ordered index.
As a generalization of the classical U -statistic, generalized U -statistics have been

widely applied in the random graph theory as a count random variable. Janson and
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Generalized U -statistics

Nowicki [13] studied the limiting behavior of Sn,k(f) via a projection method. Specifically,
the function f can be represented as an orthogonal sum of terms indexed by subgraphs
of the complete graph with k vertices. Janson and Nowicki [13] showed that the limiting
behavior of Sn,k(f) depends on topology of the principle support graphs (see more details
in Subsection 2.1) of f . In particular, the random variable Sn,k(f) is asymptotically
normally distributed if the principle support graphs are all connected. However, the
convergence rate is still unknown.

The main purpose of this paper is to establish a Berry–Esseen bound for Sn by using
Stein’s method. Stein’s method is a powerful tool to estimating convergence rates for
distributional approximation. Since introduced by [26] in 1972, Stein’s method has
shown to be a powerful tool to evaluate distributional distances for dependent random
variables. One of the most important techniques in Stein’s method is the exchangeable
pair approach, which is commonly taken in computing the Berry–Esseen bound for both
normal and nonnormal approximations. We refer to [27, 21, 6, 23] for more details
on Berry–Esseen bound for bounded exchangeable pairs. It is worth mentioning that
Shao and Zhang [24] obtained a Berry–Esseen bound for unbounded exchangeable pairs.
Note that generalized U -statistics are also functionals of independent random variables.
Lachiéze-Rey and Peccati [16] applied a generalized perturbative approach to develop a
Berry–Esseen theorem for functionals of independent random variables; however, the
Berry–Esseen bound in [16] involves some terms that are complicated to compute. In
this paper, we develop a general exchangeable pair approach to obtain a Berry–Esseen
bound for generalized U -statistics Sn,k(f).

Let W be the random variable of interest, and we say (W,W ′) is an exchangeable

pair if (W,W ′)
d.
= (W ′,W ). For normal approximation, it is often to assume the following

condition holds:
E{W −W ′|W} = λ(W +R), (1.3)

where λ > 0 and R is a random variable with a small E |R|. The condition (1.3) can
be understood as a linear regression condition. Although an exchangeable pair can
be easily constructed, it may be not easy to verify the linearity condition (1.3) in some
applications.

In this paper, we aim to establish an optimal Berry–Esseen bound for the generalized
U -statistics by developing a new Berry–Esseen theorem for exchangeable pair approach
by assuming a more general condition than (1.3). More specifically, we replace W −W ′
in (1.3) by a random variable D that is an antisymmetric function of (X,X ′). The new
result is given in Section 4. There are several advantages of our result. Firstly, we
propose a new condition more general than (1.3) that may be easy to verify. For instance,
the condition can be verified by constructing an antisymmetric random variable by the
Gibbs sampling method, embedding method, generalized perturbative approach and so
on. Secondly, the Berry–Esseen bound often provides an optimal convergence rate for
many practical applications.

The rest of this paper is organized as follows. In Section 2, we give the Berry–Esseen
bounds for Sn,k(f). Applications to subgraph counts in κ-random graphs are given in
Section 3. The new Berry–Esseen theorem for exchangeable pair approach under a new
setting is established in Section 4. We give the proofs of our main results in Section 5.
The proofs of other results are postponed to Section 6.

2 Main results

Let k > 1 be a fixed integer. Let (X,Y ), f and Sn,k(f) be defined in Section 1. We now
apply Hoeffding’s decomposition to rewrite Sn,k(f) as a sum of uncorrelated random
variables. The Hoeffding decomposition was first introduced by Hoeffding [11], and we
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Generalized U -statistics

follow [13] to give a Hoeffding decomposition of Sn,k(f). For any ` > 1, [`] = {1, . . . , `}
and [`]2 = {(i, j) : 1 6 i < j 6 `}. Let A ⊂ [k] and let B ⊂ [k]2, and let XA = (Xi)i∈A
and YB = (Yi,j)(i,j)∈B. Specially, we can simply write f(X1, . . . , Xk;Y1,2, . . . , Yk−1,k) as
f(X[k];Y[k]2). Let V (B) be the set of vertices which appears in B, that is,

V (B) = {i ∈ [k] : there exists j ∈ [k] such that (i, j) ∈ B}. (2.1)

Let GA,B be the graph with vertex set A ∪ V (B) and edge set B, and let vA,B be the
number of nodes in GA,B.

By the Hoeffding decomposition, we have

f(X[k];Y[k]2) =
∑

A⊂[k],B⊂[k]2

fA,B(XA;YB) a.s.

where fA,B : X |A| × Y |B| → R is defined as

fA,B(xA; yB) =
∑

(A′,B′):A′⊂A,B′⊂B

(−1)|A|+|B|−|A
′|−|B′|

× E
{
f(X1, . . . , Xk;Y1,2, . . . , Yk−1,k)

∣∣ XA′ = xA′ , YB′ = yB′
}
, (2.2)

where xA = (xi)i∈A and yB = (yi,j)(i,j)∈B for A ⊂ [k] and B ⊂ [k]2. We remark that if
A = ∅ and B = ∅, then f∅,∅(X∅;Y∅) = E{f(X[k];Y[k]2)}. For ` = 0, 1, . . . , k, let

f(`)(X[k];Y[k]2) =


E{f(X[k];Y[k]2)} if ` = 0,∑
vA,B=`

fA,B(XA;YB) if 1 6 ` 6 k, (2.3)

where vA,B is the number of nodes in GA,B. Let d = min{` > 0 : f(`) 6≡ 0}, and we call d
the principal degree of f . We say the function f(d)(·; ·) is the principal part of function
f . Moreover, we say the indices (A,B) satisfying that vA,B = d and fA,B 6≡ 0 are the
principal support indices of f .

The central limit theorems for Sn,k(f) is proved in [13]. We remark that if f has
the principal degree d, then Var(Sn,k(f)) is of order n2k−d, see Lemmas 2 and 3 in [13].
Janson and Nowicki [13] proved that if all graphs in Gf,d are connected, then

Sn,k(f)− E{Sn,k(f)}
(Var(Sn,k(f)))1/2

d.→ N(0, 1).

Note that if not all principal support graphs are connected, then the limiting distribution
of the scaled version of Sn,k is nonnormal (see Theorems 2 and 3 in [13]), and we will
consider this case in another paper.

Now, assume that f is a symmetric function having principal degree d (1 6 d 6 k). In
this subsection, we give a Berry–Esseen bound for Sn,k(f). For x ∈ X , by (2.3), we have

f(1)(x) := f{1},∅(x) = E{f(X[k];Y[k]2) |X1 = x} − E{f(X[k];Y[k]2)}.

If ‖f(1)(X1)‖2 > 0, then it follows that d = 1. Here and in the sequel, we denote by
‖Z‖p := (E |Z|p)1/p for p > 0 and we denote by Φ(·) the distribution function of N(0, 1).
Let τ := ‖f(X[k];Y[k]2)−E f(X[k];Y[k]2)‖4 <∞. The following theorem provides the Berry–
Esseen bound for Sn,k(f) in the case where ‖f(1)(X1)‖2 > 0. Let σ(1) := ‖f(1)(X1)‖2.

Theorem 2.1. If σ(1) > 0, then

sup
z∈R

∣∣∣∣P[Sn,k(f)− E{Sn,k(f)}√
Var{Sn,k(f)}

6 z

]
− Φ(z)

∣∣∣∣ 6 8kτ2

√
nσ2

(1)

. (2.4)
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Remark 2.2. We remark that Var(Sn,k(f)) = O(n2k−1) as n → ∞. Typically, the right
hand side of (2.4) is of order n−1/2. Specially, if f(X[k], Y[k]2) = h(X[k]) almost surely for
some symmetric function h : X k → R, then Sn,k is the classical U -statistic. In this case,
Chen and Shao [8] obtained a Berry–Esseen bound of order n−1/2 under the assumption
that ‖h(X[k])‖3 <∞.

If σ(1) = 0, then d > 2, that is, the principal degree of f is at least 2. For any graph G,
let Aut(G) be the collection of automorphisms of G, and let |Aut(G)| be its cardinality.
Let

π` =
∑

(A,B)∈Jf,`

1

|Aut(GA,B)|
for d 6 ` 6 k, (2.5)

and let

Λk,d = πd +
1

πd

k∑
`=d+1

π` + 1. (2.6)

Let σA,B =
√
EfA,B(XA;YB)2, and let Jf,` = {(A,B) : A ⊂ [`], B ⊂ [`]2, σA,B 6= 0, vA,B =

`}. Moreover, let Gf,` = {GA,B : (A,B) ∈ Jf,`}. Let σmin := min{σA,B : (A,B) ∈ Jf,d}.
We have the following theorem.

Theorem 2.3. Assume that f is a symmetric function having principal degree d for some
2 6 d 6 k, and assume further that all graphs in Gf,d are connected. Then, we have

sup
z∈R

∣∣∣∣P[ (Sn,k(f)− E{Sn,k(f)})√
Var{Sn,k(f)}

6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1/2 kΛk,dτ
2

σ2
min

,

where C > 0 is an absolute constant.

If we further assume that the function f does not depend on X, i.e., f(X;Y ) = g(Y )

almost surely for some symmetric g : Yk(k−1)/2 → R, we obtain a sharper convergence
rate. To give the theorem, we first introduce some more notation. Let G(r) be the graph
generated from G by deleting the node r and all the edges connecting to the node r. We
say G is strongly connected if G is connected and G(r) is either connected or empty for
all r ∈ V (G). The following theorem provides a sharper Berry–Esseen bound than that
in Theorem 2.3.

Theorem 2.4. Assume that f(X[k];Y[k]2) = g(Y[k]2) almost surely for some symmetric
g : Yk(k−1)/2 → R. Let τ and σmin be defined in Theorem 2.3. Assume that the conditions
in Theorem 2.3 are satisfied and assume further that all graphs in Gf,d are strongly
connected. Then,

sup
z∈R

∣∣∣∣P[ (Sn,k(f)− E{Sn,k(f)})√
Var{Sn,k(f)}

6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1 kΛk,dτ
2

σ2
min

,

where C > 0 is an absolute constant.

3 Applications

3.1 Subgraphs counts in random graphs generated from graphons

A symmetric Lebesgue measurable function κ : [0, 1]2 → [0, 1] is called a graphon,
which was firstly introduced by Lovász and Szegedy [18] to represent the graph limit.
Given a graphon κ and n > 2, the κ-random graph G(n, κ) can be generated as follows:
Let X = (X1, . . . , Xn) be a vector of independent random variables uniformly distributed
on [0, 1]. Given X, we generate the graph G(n, κ) by connecting the node pair (i, j)

independently with probability κ(Xi, Xj). This construction was firstly introduced by
Diaconis and Freedman [9], which can be used to study large dense and sparse random
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graphs and random trees generated from graphons. We refer to [18, 3, 4, 17, 2] for more
details. For any simple graph F , let E(F ) be the edge set of F , let V (F ) be the vertex
set of F , and let v(F ) = |V (F )| and e(F ) = |E(F )|.

Subgraph counts are important statistics in estimating graphons. As a special case,
when κ ≡ p for some p ∈ (0, 1), the κ-random graph model becomes the classical Erdös–
Rényi model ER(p). The study of asymptotic properties of subgraph counts in ER(p)

dates back to [19, 1, 13] for more details. Recently, Krokowski, Reichenbachs and Thäle
[15], Röllin [22] and Privault and Serafin [20] applied Stein’s method to obtain an optimal
Berry–Esseen bound for triangle counts in ER(p). For subgraph counts in κ-random
graph, Kaur and Röllin [14] proved an upper bound of the Kolmogorov distance for
multivariate normal approximations for centered subgraph counts with order n−1/(p+2)

for some p > 0. However, the Berry–Esseen bounds for subgraph counts of κ-random
graph is still unknown so far. In this subsection, we apply Theorems 2.3 and 2.4 to prove
sharp Berry–Esseen bounds for subgraph counts statistics.

Let Ξ = (ξi,j)16i<j6n be the adjacency matrix of G(n, κ), where for each (i, j), the
binary random variable ξi,j indicates the connection of the graph. Formally, let Y =

(Y1,1, . . . , Yn−1,n) be a vector of independent uniformly distributed random variables on
[0, 1] that is also independent of X, and then we can write ξi,j = 1(Yi,j 6 κ(Xi, Xj)). For
any nonrandom simple F with v(F ) = k, the (injective) subgraph counts and induced
subgraph counts in G(n, κ) are defined by

T inj
F := T inj

F (G(n, κ)) =
∑

α∈In,k

φinj
F (ξα(1),α(2), . . . , ξα(k−1),α(k)),

T ind
F := T ind

F (G(n, κ)) =
∑

α∈In,k

φind
F (ξα(1),α(2), . . . , ξα(k−1),α(k)),

respectively, where for (u1,1, . . . , uk−1,k) ∈ Rk(k−1)/2,

φinj
F (u1,1, . . . , uk−1,k) =

∑
H:H∼=F

∏
(i,j)∈E(H)

ui,j ,

φind
F (u1,2, . . . , uk−1,k) =

∑
H:H∼=F

∏
(i,j)∈E(H)

ui,j
∏

(i,j)6∈E(H)

(1− ui,j).

Here, the summation
∑
H:H∼=F ranges over the subgraphs with v(F ) nodes that are

isomorphic to F and thus contains v(F )!/|Aut(F )| terms, where |Aut(F )| is the number
of automorphisms of F . Therefore, we have

‖φinj
F (ξ1,1, . . . , ξk−1,k)‖4 6

k!

|Aut(F )|
, ‖φinj

F (ξ1,1, . . . , ξk−1,k)‖4 6
k!

|Aut(F )|
. (3.1)

Moreover, we note that both φinj
F and φind

F are symmetric. For example, if F is the 2-star,
then k = 3, |Aut(F )| = 2 and

φinj
F (ξ1,2, ξ1,3, ξ2,3) = ξ1,2ξ1,3 + ξ1,2ξ2,3 + ξ1,3ξ2,3,

φind
F (ξ1,2, ξ1,3, ξ2,3) = ξ1,2ξ1,3(1− ξ2,3) + ξ1,2ξ2,3(1− ξ1,3) + ξ1,3ξ2,3(1− ξ1,2).

If F is a triangle, then |Aut(F )| = 6 and

φinj
F (ξ1,2, ξ1,3, ξ2,3) = φind

F (ξ1,2, ξ1,3, ξ2,3) = ξ1,2ξ1,3ξ2,3.

Let

tF (κ) =

∫
[0,1]k

∏
(i,j)∈E(F )

κ(xi, xj)
∏

i∈V (F )

dxi,

tind
F (κ) =

∫
[0,1]k

∏
(i,j)∈E(F )

κ(xi, xj)
∏

(i,j)6∈E(F )

(1− κ(xi, xj))
∏

i∈V (F )

dxi.
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Then, we have

E{φinj
F (ξ1,1, . . . , ξk−1,k)} =

k!

|Aut(F )|
tF (κ),

E{φind
F (ξ1,1, . . . , ξk−1,k)} =

k!

|Aut(F )|
tind
F (κ).

As ξi,j = 1(Yi,j 6 κ(Xi, Xj)), let

f inj
F (X[k];Y[k]2) = φinj

F (ξ1,1, . . . , ξk−1,k),

Now, as random variables (ξi,j)16i<j6n are conditionally independent given X, we have

E{f inj
F (X[k];Y[k]2) |X} =

∑
H∼=F

∏
(i,j)∈E(H)

κ(Xi, Xj),

E{f ind
F (X[k];Y[k]2) |X} =

∑
H∼=F

∏
(i,j)∈E(H)

κ(Xi, Xj)
∏

(i,j)6∈E(H)

(1− κ(Xi, Xj)).

Let

f inj
(1)(x) = E{f inj

F (X[k];Y[k]2) |X1 = x}

=
∑
H∼=F

E

{ ∏
(i,j)∈E(H)

κ(Xi, Xj)

∣∣∣∣ X1 = x

}
,

and similarly, let

f ind
(1) (x) = E{f ind

F (X[k];Y[k]2) |X1 = x}

=
∑
H∼=F

E

{ ∏
(i,j)∈E(H)

κ(Xi, Xj)
∏

(i,j) 6∈E(H)

(1− κ(Xi, Xj))

∣∣∣∣ X1 = x

}
.

We have the following theorem, which follows from Theorem 2.1 and (3.1) directly.

Theorem 3.1. Let σinj
(1) = ‖f inj

(1)(X1)−E{f inj
(1)(X1)}‖2 and σind

(1) = ‖f ind
(1) (X1)−E{f ind

(1) (X1)}‖2.

Assume that σinj
(1) > 0, then

sup
z∈R

∣∣∣∣P[ √nkσinj
(1)

(
n

k

)−1

(T inj
F − E{T

inj
F }) 6 z

]
− Φ(z)

∣∣∣∣ 6 8n−1/2 k(k!)2

|Aut(F )|2(σinj
(1))

2
.

Moreover, assume that σind
(1) > 0, then

sup
z∈R

∣∣∣∣P[ √nkσind
(1)

(
n

k

)−1

(T ind
F − E{T ind

F }) 6 z

]
− Φ(z)

∣∣∣∣ 6 8n−1/2 k(k!)2

|Aut(F )|2(σind
(1) )2

.

If κ ≡ p for a fixed number 0 < p < 1, then the random variables (ξi,j)16i<j6n are i.i.d.
and the functions f inj

F and f ind
F do not depend on X. We have the following theorem:

Theorem 3.2. Let κ ≡ p for 0 < p < 1. Then

sup
z∈R

∣∣∣∣P[T inj
F − E{T

inj
F }

(Var{T inj
F })1/2

6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1,

where C > 0 is a constant depending only on k and p.
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Remark 3.3. For the L1 bound, Barbour, Karoński and Ruciński [1] proved the same
order of O(n−1) in the case that p is a constant. For the Berry–Esseen bound, Privault and
Serafin [20] proved a general Berry–Esseen bound for subgraph counts for Erdös–Rényi
random graph using a different method. Specially, if p is a constant, then Theorem 3.2
provides the same result as in [20].

For induced subgraph counts, we need to consider some separate cases. Let s(F ) and
t(F ) denote the number of 2-stars and triangles in F , respectively. If any of the following
conditions holds, then it has been proven in [13] that (T ind

F − E{T ind
F })/(Var{T ind

F })1/2

converges to a standard normal distribution:

(G1) If e(F ) 6= p
(
v(F )

2

)
;

(G2) if e(F ) = p
(
v(F )

2

)
, s(F ) 6= 3p2

(
v(F )

3

)
;

(G3) if e(F ) = p
(
v(F )

2

)
, s(F ) = 3p2

(
v(F )

3

)
and t(F ) 6= p3

(
v(F )

3

)
.

The following theorem gives the Berry–Esseen bounds for induced subgraph counts.

Theorem 3.4. Let κ ≡ p for 0 < p < 1. If (G1) or (G3) holds, then

sup
z∈R

∣∣∣∣P[T ind
F − E{T ind

F }
(Var{T ind

F })1/2
6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1, (3.2)

where C > 0 is a constant depending only on k and p. If (G2) holds, then

sup
z∈R

∣∣∣∣P[T ind
F − E{T ind

F }
(Var{T ind

F })1/2
6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1/2, (3.3)

where C > 0 is a constant depending only on k and p.

4 A new Berry–Esseen bound for exchangeable pair approach

4.1 Berry–Esseen bound

In this section, we establish a new Berry–Esseen theorem for exchangeable pair
approach under a new setting. Let X ∈ X be a random variable valued on a measurable
space and let W = φ(X) be the random variable of interest where φ : X → R. Assume
that E{W} = 0 and E{W 2} = 1. We propose the following condition:

(A) Let (X,X ′) be an exchangeable pair and let F : X × X → R be an antisymmetric
function. Assume thatD := F (X,X ′) is square integrable and satisfies the following
condition:

E{D|X} = λ(W +R), (4.1)

where λ > 0 is a constant and R is an integrable random variable.

We remark that the operator of antisymmetric functions was firstly mentioned in [12],
and the condition (A) was considered by Chatterjee [5], who applied the exchangeable
pair approach to prove concentration inequalities.

The following theorem provides a uniform Berry–Esseen bound for exchangeable pair
approach under the assumption (A).

Theorem 4.1. Let (X,X ′) and D satisfy the condition (A). Let W ′ = φ(X ′) and ∆ =

W −W ′. Then,

sup
z∈R
|P[W 6 z]− Φ(z)| 6 E

∣∣∣∣1− 1

2λ
E{D∆ |W}

∣∣∣∣+
1

λ
E
∣∣E{D∗∆ |W}∣∣+ E|R|, (4.2)

provided that D∗ := F ∗(X,X ′) is a square integrable random variable satisfying that
D∗ > |D|, where F ∗ is a symmetric function.
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Remark 4.2. Assume that (1.3) is satisfied. Then, we can choose D = ∆ = W −W ′, and
the right hand side of (4.2) reduces to

E

∣∣∣∣1− 1

2λ
E{∆2 |W}

∣∣∣∣+
1

λ
E
∣∣E{∆∗∆|W}∣∣+ E |R|,

where ∆∗ := ∆∗(W,W ′) is a symmetric function for W and W ′ satisfying that ∆∗ > |∆|
and ∆∗ is square integrable. Thus, Theorem 4.1 recovers to Theorem 2.1 in [24].

The following corollary is useful for random variables that can be decomposed as a
sum of W and a remainder term. Specifically, let T := T (X) be a random variable such
that T = W + U , where W = φ(X) is as defined at the beginning of this section, and
U := U(X) is a square integrable random variable which is usually taken as a remainder
term. The following corollary gives a Berry–Esseen bound for T .

Corollary 4.3. Let (X,X ′) ∈ X × X be an exchangeable pair and let D := F (X,X ′)

where F : X × X → R is antisymmetric. Assume that D is square integrable and

E{D |X} = λ(W +R) (4.3)

for some λ > 0 and some integrable random variable R. Let U ′ := U(X ′) and ∆ =

φ(X)− φ(X ′). Then, we have

sup
z∈R

∣∣P[T 6 z]− Φ(z)
∣∣ 6 E∣∣∣∣1− 1

2λ
E{D∆ |X}

∣∣∣∣
+

1

λ
E
∣∣E{D∗∆ |X}∣∣+

3

2λ
E|D(U − U ′)|+ E |R|+ E |U |,

provided that D∗ := D∗(X,X ′) is any symmetric function of X and X ′ satisfying that
D∗ > |D| and D∗ is square integrable.

Remark 4.4. Assume that X = (X1, . . . , Xn) is a family of independent random variables.
Let W =

∑n
i=1 ξi be a linear statistic, where ξi = hi(Xi) and hi is a nonrandom function,

such that E ξi = 0 and
∑n
i=1E ξ

2
i = 1, and let U = U(X1, . . . , Xn) ∈ R be a square

integrable random variable. Let T = W + U , β2 =
∑n
i=1E{|ξi|21(|ξi| > 1)} and β3 =∑n

i=1E{|ξi|31(|ξi| 6 1)}. Chen and Shao [8] (see also [25]) proved the following result:

sup
z∈R
|P[T 6 z]− Φ(z)| 6 17(β2 + β3) + 5E |U |+ 2

n∑
i=1

E|ξi(U − U (i))|, (4.4)

where U (i) is any random variable independent of ξi.
The Berry–Esseen bound in Corollary 4.3 improves Chen and Shao [8]’s result in

the sense that the random variable W in our result is not necessarily a partial sum
of independent random variables, and our result in Corollary 4.3 can be applied to a
general class of random variables.

4.2 Proof of Theorem 4.1

In this subsection, we prove Theorem 4.1 by Stein’s method. The proof is similar to
that of Theorem 2.1 in [24]. To begin with, we need to prove the following lemma, which
is useful in the proof of Theorem 4.1.

Lemma 4.5. Assume that (4.1) is satisfied. Let ψ be a nondecreasing and bounded
function. Then,

1

2λ

∣∣∣∣E{D ∫ 0

−∆

(
ψ(W + u)− ψ(W )

)
du

}∣∣∣∣ 6 1

2λ
E
{
D∗∆ψ(W )

}
,

where D∗ is as defined in Theorem 4.1.
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Proof of Lemma 4.5. Since ψ(·) is nondecreasing, it follows that

∆
(
ψ(W )− ψ(W ′)

)
> 0

and

0 >
∫ 0

−∆

(
ψ(W + u)− ψ(W )

)
du

> −∆
(
ψ(W )− ψ(W ′)

)
,

which yields

−E
{
D1(D > 0)∆

(
ψ(W )− ψ(W ′)

)}
6 E

{
D

∫ 0

−∆

(
ψ(W + u)− ψ(W )

)
du

}
6 −E

{
D1(D < 0)∆

(
ψ(W )− ψ(W ′)

)}
.

Recalling that W = φ(X), W ′ = φ(X ′), D = F (X,X ′) is antisymmetric and D∗ =

F ∗(X,X ′) is symmetric, as (X,X ′) is exchangeable, we have

E
{
D1(D > 0)∆

{
ψ(W )− ψ(W ′)

}}
= −E

{
D1(D < 0)∆

(
ψ(W )− ψ(W ′)

)}
,

and

E
{
D∗1(D > 0)∆ψ(W )

}
= −E

{
D∗1(D < 0)∆f(W ′)

}
.

Moreover, as E
{
D∗∆1(D = 0)

(
ψ(W ) − ψ(W ′)

)}
> 0 and E

{
D∗1(D = 0)∆ψ(W )

}
=

−E
{
D∗1(D = 0)∆ψ(W ′)

}
, it follows that

E{D∗∆1(D = 0)ψ(W )} > 0.

Therefore,

1

2λ

∣∣∣∣E{D ∫ 0

−∆

{
ψ(W + u)− ψ(W )

}
du

}∣∣∣∣
6 − 1

2λ
E
{
D1(D < 0)∆

(
ψ(W )− ψ(W ′)

)}
6

1

2λ
E
{
D∗1(D < 0)∆

(
ψ(W )− ψ(W ′)

)}
=

1

2λ
E
{
D∗∆

(
1(D > 0) + 1(D < 0)

)
ψ(W )

}
6

1

2λ
E{D∗∆ψ(W )}.

Proof of Theorem 4.1. We apply some ideas of Theorem 2.1 in [24] to prove the desired
result. Let z ∈ R be a fixed real number, and ψz the unique bounded solution to the Stein
equation:

ψ′(w)− wψ(w) = 1(w 6 z)− Φ(z), (4.5)

where Φ(·) is the distribution function of the standard normal distribution. It is well
known that (see, e.g., Lemma 2.2 in [7])

ψz(w) =

{√
2πew

2/2Φ(w)
{

1− Φ(z)
}

if w 6 z,
√

2πew
2/2Φ(z)

{
1− Φ(w)

}
otherwise,

(4.6)
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Since E{D|W} = λ(W +R), and D = F (X,X ′) is antisymmetric, it follows that

0 = E
{
D
(
ψz(W ) + ψz(W

′)
)}

= 2E{Dψz(W )} − E
{
D
(
ψz(W )− ψz(W ′)

)}
= 2λE{(W +R)ψz(W )} − E

{
D

∫ 0

−∆

ψ′z(W + u) du

}
.

Rearranging the foregoing equality, we have

E{Wψz(W )} =
1

2λ
E

{
D

∫ 0

−∆

ψ′z(W + u) du

}
− E{Rψz(W )}. (4.7)

By (4.5) and (4.7),
P(W 6 z)− Φ(z) = E

{
ψ′z(W )−Wψz(W )

}
= J1 − J2 + J3,

(4.8)

where

J1 = E

{
ψ′z(W )

(
1− 1

2λ
E {D∆ |W}

)}
,

J2 =
1

2λ
E

{
D

∫ 0

−∆

(ψ′z(W + u)− ψ′z(W )) du

}
,

J3 = E
{
Rψz(W )

}
.

We now bound J1, J2 and J3, separately. By [7, Lemma 2.3], we have

sup
w∈R
|ψz(w)| 6 1, sup

w∈R
|ψ′z(w)| 6 1, sup

w∈R

∣∣wψz(w)
∣∣ 6 1. (4.9)

Therefore,

|J1| 6 E
∣∣∣∣1− 1

2λ
E {D∆ |W}

∣∣∣∣,
|J3| 6 E |R|.

(4.10)

Now we consider J2. Rearranging (4.5) yields ψ′z(w) = wψz(w)− 1(w > z) +
{

1− Φ(z)
}

.
Note that both wψz(w) and 1(w > z) are nondecreasing and bounded functions (see, e.g.
[7, Lemma 2.3]), by Lemma 4.5,

|J2| 6
1

2λ

∣∣∣∣E{D ∫ 0

−∆

{(W + u)ψz(W + u)−Wψz(W )} du
}∣∣∣∣

+
1

2λ

∣∣∣∣E{D ∫ 0

−∆

{1(W + u > z)− 1(W > z)} du
}∣∣∣∣

6
1

2λ
E
{∣∣E {D∗∆ |W}∣∣(|Wψz(W )|+ 1(W > z)

)}
6 J21 + J22,

(4.11)

where

J21 =
1

2λ
E
{∣∣E {D∗∆ |W}∣∣ · ∣∣Wψz(W )

∣∣},
J22 =

1

2λ
E
{∣∣E {D∗∆ |W}∣∣1(W > z)

}
.

Then, by (4.9), |J2| 6 1
λ E
∣∣E {D∗∆ |W}∣∣. This proves Theorem 4.1 together with (4.10).
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4.3 Proof of Corollary 4.3

In this subsection, we apply Theorem 4.1 to prove Corollary 4.3. By (4.3), we have

E{D |X} = λ(T − U +R).

Let T ′ = φ(X ′) + U(X ′), then we have (T, T ′) is exchangeable. Let

D∗ = {D∗ := F ∗(X,X ′) : D∗ > |D| and F ∗ : X × X → R is a symmetric function}.

By Theorem 4.1, we have

sup
z∈R

∣∣P[T 6 z]− Φ(z)
∣∣

6 E
∣∣1− 1

2λ
E{D(T − T ′) |T}

∣∣+ inf
D∗∈D∗

1

λ
E
∣∣E{D∗(T − T ′) |T}∣∣+ E |U |+ E |R|

6 E
∣∣1− 1

2λ
E{D(T − T ′) |X}

∣∣
+ inf
D∗∈D∗

1

λ
E
∣∣E{D∗(T − T ′) |X}∣∣+ E |U |+ E |R|

6 E
∣∣1− 1

2λ
E{D(φ(X)− φ(X ′)) |X}

∣∣
+ inf
D∗∈D∗

1

λ
E
∣∣E{D∗(φ(X)− φ(X ′)) |X}

∣∣+ E |U |+ E |R|+ 1

2λ
E |D(U − U ′)|

+ inf
D∗∈D∗

1

λ
E|D∗(U − U ′)|, (4.12)

where the second inequality follows from that fact that T is σ(X)-measurable and
Jenson’s inequality. Choosing D∗ = |D| in the last term of the right hand side of (4.12)
and recalling that ∆ = φ(X)− φ(X ′), we complete the proof.

5 Proofs of Theorems 2.1, 2.3 and 2.4

In this section, we give the proofs of Theorems 2.1, 2.3 and 2.4. To simplify our
statements, we assume that E{f(X[k];Y[k]2)} = 0 throughout this section without loss
of generality. We denote by C an absolute constant that may take different values in
different places.

5.1 Proof of Theorem 2.1

Without loss of generality, we assume that n > max(2, k2), otherwise the inequality is
trivial. We use Corollary 4.3 to prove this theorem. Recall that

f(1)(x) = E{f(X[k];Y[k]2) |X1 = x}.

For each α = (α(1), . . . , α(k)) ∈ In,k, let

r(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k))

= f(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k))−
k∑
j=1

f(1)(Xα(j)).
(5.1)

Let σ̃n =
√

Var{Sn,k(f)}, and

T =
1

σ̃n
Sn,k(f).

EJP 27 (2022), paper 134.
Page 11/36

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP860
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Generalized U -statistics

Then, it follows from (5.1) that T has the following decomposition

T = W + U,

where

W =
1

σ̃n

(
n− 1

k − 1

) n∑
i=1

f(1)(Xi),

U =
1

σ̃n

∑
α∈In,k

r(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k)).

By orthogonality we have Cov(W,U) = 0, and thus

σ̃2
n > Var

((
n− 1

k − 1

) n∑
i=1

f(1)(Xi)

)
=

(
n− 1

k − 1

)2

Var

( n∑
j=1

f(1)(Xj)

)
=

(
n

k

)2 k2σ2
(1)

n
. (5.2)

Let X ′ = (X ′1, . . . , X
′
n) be an independent copy of (X1, . . . , Xn). For each i = 1, . . . , n,

define X(i) = (X
(i)
1 , . . . , X

(i)
n ) where

X
(i)
j =

{
Xj if j 6= i,

X ′i if j = i,

and let

U (i) =
1

σ̃n

∑
α∈In,k

r(X
(i)
α(1), . . . , X

(i)
α(k);Yα(1),α(2), . . . , Yα(k−1),α(k)).

Recall that τ := ‖f(X[k];Y[k]2)‖4 <∞. The following lemma provides the upper bounds

of E{U2
1 } and E{(U1 − U (i)

1 )2}.
Lemma 5.1. For n > k2 and k > 2,

E{U2} 6 (k − 1)2τ2

2(n− 1)σ2
(1)

(5.3)

E{(U − U (i))2} 6 2(k − 1)2τ2

n(n− 1)σ2
(1)

. (5.4)

The proof of Lemma 5.1 is put in the appendix.
Now, we apply Corollary 4.3 to prove the Berry–Esseen bound for T . Let I be a

random index uniformly distributed over {1, . . . , n}, which is independent of all others.
Then, ((X,Y ), (X(I), Y )) is an exchangeable pair. Let

D = ∆ =
1

σ̃n

(
n− 1

k − 1

)(
f(1)(XI)− f(1)(X

′
I)
)
.

and recall that X and Y are independent, then it follows that

E{D |X,Y } =
1

n
W.

Thus, (4.3) is satisfied with λ = 1/n and R = 0. Moreover, we have

1

2λ
E{D∆ |X,X ′, Y } =

1

2σ̃2
n

(
n− 1

k − 1

)2 n∑
i=1

(
f(1)(Xi)− f(1)(X

′
i)
)2
,

1

λ
E{|D|∆ |X,X ′, Y } =

1

σ̃2
n

(
n− 1

k − 1

)2 n∑
i=1

(
f(1)(Xi)− f(1)(X

′
i)
)∣∣f(1)(Xi)− f(1)(X

′
i)
∣∣.
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Also,

1

2λ
E{D∆} = E{W 2} = 1− E{U2}, E{|D|∆} = 0.

Recall that τ = ‖f(X[k];Y[k]2)‖4. Note that

k − 1

n− 1
6

2√
n

for n > max(2, k2). (5.5)

By the Cauchy inequality and Lemma 5.1, we have for n > max(2, k2),

E

∣∣∣∣ 1

2λ
E{D∆ |X,X ′, Y } − 1

∣∣∣∣
6 E

∣∣∣∣ 1

2λ
E{D∆ |X,X ′, Y } − 1

2λ
E{D∆}

∣∣∣∣+ E{U2}

6
1

2σ̃2
n

(
n− 1

k − 1

)2(
Var

{ n∑
i=1

(
f(1)(Xi)− f(1)(X

′
i)
)2})1/2

+
(k − 1)2τ2

2(n− 1)σ2
(1)

6
1

2σ̃2
n

(
n− 1

k − 1

)2( n∑
i=1

E
{
f(1)(Xi)− f(1)(X

′
i)
}4
)1/2

+
(k − 1)2τ2

2(n− 1)σ2
(1)

6
1

2σ̃2
n

(
n− 1

k − 1

)2(
8

n∑
i=1

E
{
f(1)(Xi)

4
}

+ E
{
f(1)(X

′
i)

4
})1/2

+
(k − 1)2τ2

2(n− 1)σ2
(1)

=
2n3/2τ2

k2σ2
(1)

(
n− 1

k − 1

)2(
n

k

)−2

+
(k − 1)2τ2

2(n− 1)σ2
(1)

=
2τ2

√
nσ2

(1)

+
(k − 1)τ2

√
nσ2

(1)

6
(k + 1)τ2

√
nσ2

(1)

,

where we used (5.2) and (5.5) in the last line. Using the same argument, we have for
n > max{2, k2},

E

∣∣∣∣ 1λ E{|D|∆ |X,X ′, Y }
∣∣∣∣

6
1

σ̃2
n

(
n− 1

k − 1

)2(
Var

{ n∑
i=1

(
f(1)(Xi)− f(1)(X

′
i)
)∣∣f(1)(Xi)− f(1)(X

′
i)
∣∣})1/2

6
1

σ̃2
n

(
n− 1

k − 1

)2( n∑
i=1

E
{
f(1)(Xi)− f(1)(X

′
i)
}4
)1/2

6
1

σ̃2
n

(
n− 1

k − 1

)2(
8

n∑
i=1

E
{
f(1)(Xi)

4
}

+ E
{
f(1)(X

′
i)

4
})1/2

=
4n3/2τ2

k2σ2
(1)

(
n− 1

k − 1

)2(
n

k

)−2

6
4τ2

√
nσ2

(1)

.

Now we give the bounds for U and U (i). We have two cases. For the case where
k = 1, then it follows that U = 0 and U (i) = 0. Note that E f(1)(Xi)

2 6 τ2. As for k > 2,
noting that n 6 2(n− 1) for n > 2, by Lemma 5.1 and the Cauchy inequality, we have

E|U | 6 (k − 1)τ√
2(n− 1)1/2σ(1)

6
(k − 1)τ√
nσ(1)

,
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and

1

λ
E|D(U − U ′)| = 1

σ̃n

(
n− 1

k − 1

) n∑
i=1

E{|(f(1)(Xi)− f(1)(X
′
i))(U − U (i))|}

6
2

σ̃n

(
n− 1

k − 1

) n∑
i=1

E{|f(1)(Xi)(U − U (i))|}

6
2

σ̃n

(
n− 1

k − 1

) n∑
i=1

(E f(1)(Xi)
2)1/2(E{(U − U (i))2})1/2

6
2

σ̃n

(
n− 1

k − 1

)√
2n1/2(k − 1)τ2

(n− 1)1/2σ(1)

.

By (5.2), we have

σ̃n >

(
n− 1

k − 1

)
n1/2σ(1),

and thus, using the inequality n 6 2(n− 1) again, we obtain

1

λ
E|D(U − U ′)| 6 2

√
2(k − 1)τ2

(n− 1)1/2σ2
(1)

6
4(k − 1)τ2

√
nσ2

(1)

.

Here, with a slight abuse of notation, we choose (X,X ′) in Corollary 4.3 as ((X,Y ),

(X(I), Y )) in this theorem. By Corollary 4.3, and noting that σ2
(1) 6 E{f(X{α};Y{α})

2} 6
τ2, we have

sup
z∈R

∣∣P[T 6 z]− Φ(z)
∣∣ 6 (k + 5)τ2

√
nσ2

(1)

+
7(k − 1)τ2

√
nσ2

(1)

6
8kτ2

√
nσ2

(1)

.

This proves (2.4).

5.2 Proof of Theorem 2.3

In this subsection, we give the proof of Theorem 2.3. Recall that 2 6 d 6 k. Without
loss of generality, we assume that n > k2, otherwise the proof is trivial. In this subsection,
we denote by C an absolute constant that may take different values in different places.

We first prove a proposition for the Hoeffding decomposition.

Proposition 5.2. For A ⊂ [n], B ⊂ [n]2 such that (A,B) 6= (∅,∅), and for any Ã, B̃ such
that Ã ⊂ A and B̃ ⊂ B but (Ã, B̃) 6= (A,B), we have

E
{
fA,B(XA;YB)

∣∣ XÃ, YB̃
}

= 0. (5.6)

Proof of Proposition 5.2. If |A|+ |B| = 1, then for (Ã, B̃) = (∅,∅), by definition,

E
{
fA,B(XA;YB)

∣∣ XÃ, YB̃
}

= E
{
fA,B(XA;YB)

}
= E{f(X[k];Y[k]2)} − E{f(X[k];Y[k]2)} = 0.

We prove the proposition by induction. Let m > 2. Assume that (5.6) holds for 1 6
|A|+ |B| 6 m− 1.
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Now, we assume that |A| + |B| = m. Let AÃ,B̃ = {(A′, B′) : A′ ⊂ Ã, B′ ⊂ B̃, } and
let Ac

Ã,B̃
= {(A′, B′) : A′ ⊂ A,B′ ⊂ B, (A′, B′) 6= (A,B)} \ AÃ,B̃. Reordering (2.2) by the

inclusive-exclusive formula we have

fA,B(XA;YB)

= E{f(X[k];Y[k]2)|XA, YB} −
∑

|A′|+|B′|<|A|+|B|

fA′,B′(XA′ ;YB′)

= E{f(X[k];Y[k]2)|XA, YB}−
∑

(A′,B′)∈AÃ,B̃

fA′,B′(XA′ ;YB′)−
∑

(A′,B′)∈Ac
Ã,B̃

fA′,B′(XA′ ;YB′)

= E{f(X[k];Y[k]2)|XA, YB} − E{f(X[k];Y[k]2)|XÃ, YB̃} −
∑

(A′,B′)∈Ac
Ã,B̃

fA′,B′(XA′ ;YB′).

By the induction assumption, we have∑
(A′,B′)∈Ac

Ã,B̃

E{fA′,B′(XA′ ;YB′)|XÃ, YB̃} = 0.

Then, the desired result follows.

Let

An,` = {α = (α(1), . . . , α(`)) : 1 6 α(1) 6= · · · 6= α(`) 6 n}.

Then, In,` ⊂ An,`. For A ⊂ [`] and B ∈ [`]2 and α = (α(1), . . . , α(`)) ∈ An,`, write

α(A) = (α(i))i∈A, α(B) =
(
(α(i), α(j))

)
(i,j)∈B ,

Xα(A) = (Xi)i∈α(A), Yα(B) = (Yi,j)(i,j)∈α(B).

Moreover, for any fA,B : X |A| × Y |B| → R, let

S̃n,`(fA,B) =
∑

α∈An,`

fA,B(Xα(A);Yα(B)),

and similarly, Sn,`(fA,B) can be represented as
∑
α∈In,` fA,B(Xα(A);Yα(B)).

Let (Y ′1,1, . . . , Y
′
n−1,n) be an independent copy of Y = (Y1,1, . . . , Yn−1,n). For any

(i, j) ∈ An,2, let Y (i,j) = (Y
(i,j)
1,1 , . . . , Y

(i,j)
n−1,n) with

Y (i,j)
p,q =

{
Yp,q if {p, q} 6= {i, j},
Y ′p,q if {p, q} = {i, j},

for (p, q) ∈ In,2.

Then, it follows that for each (i, j) ∈ An,2, ((X,Y ), (X,Y (i,j))) is an exchangeable pair. For

any B ⊂ [n]2, let Y (i,j)
B = (Y

(i,j)
p,q )(p,q)∈B. For any A ⊂ [`], B ⊂ [`]2, α = (α(1), . . . , α(`)) ∈

In,` and fA,B : X |A| × Y |B| → R, define

Y
(i,j)
α(B) = (Y

(i,j)
α(p),α(q))(p,q)∈B ,

S
(i,j)
n,` (fA,B) =

∑
α∈In,`

fA,B(Xα(A);Y
(i,j)
α(B)),

S̃
(i,j)
n,` (fA,B) =

∑
α∈An,`

fA,B(Xα(A), Y
(i,j)
α(B)).
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Let f(`) be defined as in (2.3), and it follows that

f =

k∑
`=0

f(`), f(0) = E{f(X[k];Y[k]2)}, Sn,k(f(0)) = E{Sn,k(f)}.

Moreover, by assumption, as f has principal degree d, and it follows that f(`) ≡ 0 for
` = 1, . . . , d − 1. Let σ̃n = (Var{Sn,k(f)})1/2 and σ̃n,` = (Var{Sn,k(f(`))})1/2. For any
A ⊂ [k] and B ⊂ [k]2, let

µA,B :=
1

|Aut(GA,B)||B|

(
n− vA,B
n− k

)
,

νA,B := |B| × µA,B =
1

|Aut(GA,B)|

(
n− vA,B
n− k

)
,

(5.7)

and for any α ∈ An,` (` = 1, . . . , k), let

ξ
(i,j)
α(A,B) = fA,B(Xα(A);Yα(B))− fA,B(Xα(A);Y

(i,j)
α(B)). (5.8)

The next lemma estimates the upper and lower bounds of σ̃2
n and σ̃2

n,d. The proof is
similar to that of Lemma 4 of [13]. Recall that Jf,` = {(A,B) : A ⊂ [`], B ⊂ [`]2, σA,B >

0, vA,B = `} for d 6 ` 6 k and π` was defined in (2.5).

Lemma 5.3. Assume that n > 2k2 and k > 2. We have for each (i, j) ∈ An,2 and
d 6 ` 6 k,

σ̃2
n,` =

∑
(A,B)∈Jf,`

n!(n− `)!σ2
A,B

(n− k)!2(k − `)!2|Aut(GA,B)|
6
π`n

2k−`τ2

(k − `)!2
, (5.9)

σ̃2
n =

k∑
`=d

σ̃2
n,` 6

( k∑
`=d

nd−`π`
(k − `)!2

)
n2k−dτ2, (5.10)

E{(Sn,k(f(`))− S
(i,j)
n,k (f(`)))

2} 6 2π`n
2k−`−2τ2

(k − `)!2
, (5.11)

E

{( ∑
α∈An,`

∑
(A,B)∈Jf,`

µA,Bξ
(i,j)
α(A,B)

)2}
6

2π`n
2k−`−2τ2

(k − `)!2
, (5.12)

and

σ̃2
n > σ̃2

n,d >
πdσ

2
min

e2(k − d)!2
n2k−d, (5.13)

where |Aut(G)| is the number of the automorphisms of G, and C > 0 is an absolute
constant.

Proof. Recall that Aut(G) is the collection of automorphisms of G. For any d 6 ` 6 k and
(A,B) ∈ Jf,`, by symmetry of f , we have fA,B = fA′,B′ for all GA′,B′ ∈ Aut(GA,B), and

S̃n,k(fA,B) = S̃n,k(fA′,B′) for all GA,B ∼= GA′,B′ . Note that for each (A,B) ∈ Jf,`, there
are exactly k!/((k − `)!|Aut(GA,B)|) subgraphs of K(k) isomorphic to GA,B, where K(k)

is the complete graph with k vertices. We then have for each d 6 ` 6 k and (A,B) ∈ Jf,`,
by symmetry,

S̃n,k(fA,B) =
(n− `)!
(n− k)!

S̃n,`(fA,B),

EJP 27 (2022), paper 134.
Page 16/36

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP860
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Generalized U -statistics

and

Sn,k(f(`)) =
1

k!
S̃n,k(f(`))

=
∑

(A,B)∈Jf,`

1

(k − `)!|Aut(GA,B)|
S̃n,k(fA,B)

=
∑

(A,B)∈Jf,`

1

|Aut(GA,B)|

(
n− `
n− k

)
S̃n,`(fA,B).

(5.14)

By Lemma 4 of [13], we have

Var
(
S̃n,`(fA,B)

)
=
n!|Aut(GA,B)|σ2

A,B

(n− `)!
,

and thus, the variance of Sn,k(f(`)) is given by

σ̃2
n,` := Var

(
Sn,k(f(`))

)
=

∑
(A,B)∈Jf,`

1

|Aut(GA,B)|2

(
n− `
k − `

)2

Var(S̃n,`(fA,B))

=
∑

(A,B)∈Jf,`

1

|Aut(GA,B)|2

(
n− `
k − `

)2
n!

(n− `)!
|Aut(GA,B)|σ2

A,B

=
∑

(A,B)∈Jf,`

n!(n− `)!σ2
A,B

(n− k)!2(k − `)!2|Aut(GA,B)|
.

(5.15)

For any (A,B) � (A′, B′), by orthogonality,

Cov
{
S̃n,k(fA,B), S̃n,k(fA′,B′)

}
=

∑
α∈An,k

∑
α′∈An,k

Cov
{
fA,B(Xα(A);Yα(B)), fA′,B′(Xα′(A′);Yα′(B′))

}
= 0,

and it follows that

Cov
{
S̃n,k(f(`)), S̃n,k(f(`′))

}
= 0, for d 6 ` 6= `′ 6 k.

Hence,

σ̃2
n = Var{Sn,k(f)} =

k∑
`=d

σ̃2
n,`. (5.16)

The inequalities (5.9) and (5.10) follows from (5.15) and (5.16) and the fact that

n!(n− `)!
(n− k)!2

6 n2k−` for d 6 ` 6 k.

As for (5.13), by (5.15) and (5.16), we have

σ̃n > σ̃2
n,d

=
n!(n− d)!

(n− k)!2(k − d)!2

∑
(A,B)∈Jf,d

σ2
A,B

|Aut(GA,B)|

>
n!(n− d)!

(n− k)!2(k − d)!2
σ2

min

∑
(A,B)∈Jf,d

1

|Aut(GA,B)|

=
n!(n− d)!

(n− k)!2(k − d)!2
πdσ

2
min,

(5.17)
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where in the last line we used the definition that

πd =
∑

(A,B)∈Jf,d

1

|Aut(GA,B)|
.

Using a famous inequality

e−
k2

2(n−k) 6 n−k
n!

(n− k)!
6 1, (5.18)

and using the assumption that n > k2 and k > d > 2, we have

(k − d)2

2(n− k)
6

k2

2(n− k)
6 1.

Therefore,
n!

(n− k)!

(n− d)!

(n− k)!
> n2k−de−

k2

2(n−k)−
(k−d)2
2(n−k) > e−2n2k−d. (5.19)

Combining (5.17) and (5.19) yields (5.13).
It remains to prove (5.11) and (5.12). For any (i, j) ∈ An,2, we have

Sn,k(f(`))− S
(i,j)
n,k (f(`)) =

∑
(A,B)∈Jf,`

1

|Aut(GA,B)|

(
n− `
n− k

)(
S̃n,`(fA,B)− S̃(i,j)

n,` (fA,B)
)

=
∑

α∈An,`

∑
(A,B)∈Jf,`

1

|Aut(GA,B)|

(
n− `
n− k

)
ξ

(i,j)
α(A,B),

where ξ(i,j)
α(A,B) is given in (5.8), and we have

Var(ξ
(i,j)
α(A,B)) 6 2τ2.

By orthogonality, and recalling that |Aut(GA,B)| > 1,

Var

( ∑
α∈An,`

∑
(A,B)∈Jf,`

1

|Aut(GA,B)|

(
n− `
n− k

)
ξ

(i,j)
α(A,B)

)

=
∑

α∈An,`

∑
(A,B)∈Jf,`

1

|Aut(GA,B)|2

(
n− `
n− k

)2

Var(ξ
(i,j)
α(A,B))

6 2τ2
∑

(A,B)∈Jf,`

∑
α∈An,`

1

|Aut(GA,B)|

(
n− `
n− k

)2

= 2τ2
∑

(A,B)∈Jf,`

n!

(n− `)!
1

|Aut(GA,B)|

(
n− `
n− k

)2

= 2τ2
∑

(A,B)∈Jf,`

n!(n− `)!
(n− k)!2(k − `)!2

1

|Aut(GA,B)|

6
2τ2π`n

2k−`

(k − `)!2
,

where we used the inequality (5.18) in the last line.
This completes the proof of (5.11). The inequality (5.12) can be shown in a similar

way.
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Recall that GA,B is the graph generated by (A,B). For any (Aj , Bj) for j = 1, 2,
we simply write vj = vAj ,Bj as the number of nodes of the graph GAj ,Bj . Recall that
Jf,d = {(A,B) : A ⊂ [d], B ⊂ [d]2, σA,B > 0, vA,B = d} and Jf,d+1 = {(A,B) : A ⊂
[d+ 1], B ⊂ [d+ 1]2, σA,B > 0, vA,B = d+ 1}. We have the following lemmas, whose proofs
are given in the appendix.

Lemma 5.4. For all (A1, B1), (A2, B2) ∈ Gf,d such that GA1,B1
and GA2,B2

are connected,
we have

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,d

ξ
(i,j)
α1(A1,B1)

)( ∑
α2∈A(i,j)

n,d

ξ
(i,j)
α2(A2,B2)

)}
6 Ck2n2d−1τ4.

Lemma 5.5. Assume that k > d+ 1. For all (A1, B1), (A2, B2) ∈ Gf,d ∪ Gf,d+1, we have

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
}

6 Ck2n2 max{v1,v2}−2τ4.

We are now ready to give the proof of Theorem 2.3.

Proof of Theorem 2.3. As we mentioned at the beginning of this subsection, we assume
that n > k2 without loss of generality, otherwise the result is trivial. Recall that f(d) is
defined in (2.3). Write T = σ̃−1

n Sn,k(f), and

W = σ̃−1
n Sn,k(f(d)), U = T −W = σ̃−1

n

k∑
`=d+1

Sn,k(f(`)). (5.20)

Here, if d+ 1 > k, then set
∑k
`=d+1 Sn,k(f(`)) = 0. We have

W =
1

σ̃n

∑
α∈An,k

∑
A⊂[k],B⊂[k]2,vA,B=d

fA,B(Xα(A);Yα(B))

=
1

σ̃n

∑
α∈An,d

∑
A⊂[d],B⊂[d]2,vA,B=d

(
n− d
k − d

)
fA,B(Xα(A);Yα(B))

|Aut(GA,B)|

=
1

σ̃n

∑
α∈An,d

∑
(A,B)∈Jf,d

(
n− d
k − d

)
fA,B(Xα(A);Yα(B))

|Aut(GA,B)|
,

where the second equality follows from symmetry and the last equality follows from the
assumption that fA,B ≡ 0 for all (A,B) ∈ {(A,B) : A ⊂ [d], B ⊂ [d]2} \ Jf,d.

For each (i, j) ∈ An,2, let

W (i,j) =
1

σ̃n
S

(i,j)
n,k (f(d)), U (i,j) = σ̃−1

n

k∑
`=d+1

S
(i,j)
n,k (f(`)).

Let (I, J) be a random 2-fold index uniformly chosen in An,2, which is independent of
all others. Then, ((X,Y ), (X,Y (I,J))) is an exchangeable pair. Let

∆ = W −W (I,J) =
1

σ̃n

∑
α∈An,d

∑
(A,B)∈Jf,d

νA,Bξ
(I,J)
α(A,B).
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Also, define

D =
1

σ̃n

∑
α∈An,d

∑
(A,B)∈Jf,d

µA,Bξ
(I,J)
α(A,B). (5.21)

Then, we have D is antisymmetric with respect to (X,Y ) and (X,Y (I,J)).

Let A(i,j)
n,d = {α ∈ An,d : {i, j} ⊂ {α}}. Then,

E{D |X,Y } =
1

n(n− 1)σ̃n

∑
(i,j)∈An,2

∑
α∈A(i,j)

n,d

∑
(A,B)∈Jf,d

µA,B E
{
ξ

(i,j)
α(A,B) |X,Y

}
.

By (5.6),

E{fA,B(Xα(A);Y
(i,j)
α(B)) |X,Y } = E{fA,B(Xα(A);Yα(B)) |XA, YB \ {Yi,j}}

=

{
0 if (i, j) ∈ B,

fA,B(Xα(A);Yα(B)) otherwise.

Moreover, note that for α ∈ An,d,

∑
(i,j)∈An,2

1((i, j) ∈ α(B)) = |α(B)| = |{(α(i), α(j)) : (i, j) ∈ B,α(i) 6= α(j)}| = 2|B|,

and thus

E{D |X,Y } =
1

n(n− 1)σ̃n

∑
α∈An,d

∑
(A,B)∈Jf,d

µA,BfA,B(Xα(A);Yα(B))
∑

(i,j)∈An,2

1((i, j)∈α(B))

=
2

n(n− 1)σ̃n

∑
α∈An,d

∑
(A,B)∈Jf,d

νA,BfA,B(Xα(A);Yα(B))

=
2

n(n− 1)
W. (5.22)

Thus, (4.3) is satisfied with λ = 2/(n(n− 1)) and R = 0. Moreover, by exchangeability,

E{D∆} = 2E{DW} = 2λE{W 2} = 2λσ̃2
n,d/σ̃

2
n. (5.23)

Then, we have

1

2λ
E{D∆ |X,Y, Y ′} =

1

4σ̃2
n

∑
(A1,B1)∈Jf,d

∑
(A2,B2)∈Jf,d

µA1,B1νA2,B2

×
∑

(i,j)∈An,2

( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A2,B2)

)
.
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Now, by the Cauchy inequality, (5.7) and (5.23) and Lemmas 5.3 and 5.4, we have

E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

∣∣∣∣
6 E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

2λ
E{D∆}

∣∣∣∣+
σ̃2
n − σ̃2

n,d

σ̃2
n

6
1

4σ̃2
n

∑
(A1,B1)∈Jf,d

∑
(A2,B2)∈Jf,d

(
n− d
n− k

)2
1

|Aut(GA1,B1
)||Aut(GA2,B2

)|

×

(
Var

{ ∑
(i,j)∈An,2

( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)( ∑
α∈A(i,j)

n

ξ
(i,j)
α(A2,B2)

)})1/2

+

∑k
`=d+1 σ̃

2
n,`

σ̃2
n

6
Ck(k − d)!2nd−1/2τ2

πdn2k−dσ2
min

( ∑
(A,B)∈Jf,d

nk−d

(k − d)!|Aut(GA,B)|

)2

+ C
(k − d)!2

πdn2k−dσ2
min

k∑
`=d+1

π`n
2k−`τ2

(k − `)!2
. (5.24)

For the first term of (5.24), we have

k(k − d)!2nd−1/2τ2

πdn2k−dσ2
min

( ∑
(A,B)∈Jf,d

nk−d

(k − d)!|Aut(GA,B)|

)2

6
kπdn

−1/2τ2

σ2
min

.

For the second term of (5.24), we have for d + 1 6 ` 6 k, by (5.18), and recalling that
n > k2,

(k − d− 1)!2nd+1−`

(k − `)!2
6

(
(k − d− 1)2

n

)(`−d−1)

6 1,

then we have

(k − d)!2

πdn2k−dσ2
min

k∑
`=d+1

π`n
2k−`τ2

(k − `)!2
6

k2τ2

πdnσ2
min

k∑
`=d+1

π` 6
kτ2

πdn1/2σ2
min

k∑
`=d+1

π`. (5.25)

Therefore, we have

E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

∣∣∣∣ 6 Cn−1/2 kΛk,dτ
2

σ2
min

, (5.26)

where Λk,d is as defined in (2.6). Taking D∗ = |D|, by Lemma 5.5,

1

λ
E
∣∣E{D∗∆ |X,Y, Y ′}∣∣
6

1

4σ̃2
n

∑
(A1,B1)∈Jf,d

∑
(A2,B2)∈Jf,d

µA1,B1νA2,B2

×

(
Var

{ ∑
(i,j)∈An,2

∣∣∣∣ ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

∣∣∣∣( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A2,B2)

)})1/2

6 Cn−1/2 kΛk,dτ
2

σ2
min

.

(5.27)
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Now, by (5.20) and (5.25), Lemma 5.3, and the orthogonality property, we have

E |U |2 6 Cσ̃−2
n,d

k∑
`=d+1

σ̃2
n,`

6 C
(k − d)!2

πdn2k−dσ2
min

k∑
`=d+1

π`n
2k−`τ2

(k − `)!2

6 Cn−1 k
2τ2

σ2
min

(
1

πd

k∑
`=d+1

π`

)
,

E(U − U (i,j))2 6 Cσ̃−2
n,d

k∑
`=d+1

E{(Sn,k(f(`))− S
(i,j)
n,k (f(`)))

2}

6 Cn−3 k
2τ2

σ2
min

(
1

πd

k∑
`=d+1

π`

)
.

Thus, noting that τ > σmin and by (5.12) and (5.21), we have

E |U | 6 Cn−1/2 kτ

σmin

(
1

πd

k∑
`=d+1

π`

)1/2

,

6 Cn−1/2 kτ
2

σ2
min

(
1

πd

k∑
`=d+1

π`

)1/2

6 Cn−1/2 kΛk,dτ
2

σ2
min

, (5.28)

1

λ
E
∣∣D(U − U (I,J))

∣∣ =
1

σ̃n

∑
(i,j)∈In,2

E

{∣∣∣∣( ∑
α∈An,d

∑
(A,B)∈Jf,d

µA,Bξ
(i,j)
α(A,B)

)
(U − U (i,j))

∣∣∣∣}

6 Cn−1/2 kτ
2

σ2
min

(
1

πd

k∑
`=d+1

π`

)1/2

6 Cn−1/2 kΛk,dτ
2

σ2
min

. (5.29)

Applying Corollary 4.3, and combining (5.26)–(5.29) we obtain the desired result.

5.3 Proof of Theorem 2.4

The proof of Theorem 2.4 is similar to that of Theorem 2.3. Without loss of generality,
we assume that k > d + 1, otherwise the proof is even simpler. Again, let C denote a
positive absolute constant, which might take different values in different places.

For any A ⊂ [k] and B ⊂ [k]2, recall that

µA,B :=
1

|Aut(GA,B)||B|

(
n− vA,B
n− k

)
,

νA,B := |B|µA,B =
1

|Aut(GA,B)|

(
n− vA,B
n− k

)
.

By (2.2) and Proposition 5.2, we have there exists a Hoeffding decomposition of g as
follows:

g(y) =
∑

B⊂[k]2

gB(yB),

where gB : Y |B| → R is defined as

gB(yB) =
∑

B′:B′⊂B
(−1)|B|−|B

′|E
{
g(Y1,2, . . . , Yk−1,k)

∣∣ YB′ = yB′
}
, (5.30)
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and where y = (y1,2, . . . , yk−1,k) and yB = (yi,j : (i, j) ∈ B). Also, for any B ⊂ [`]2 and
α ∈ An,` (` = 1, . . . , k), let

η
(i,j)
α(B) = gB(Yα(B))− gB(Y

(i,j)
α(B)),

and let V (B) be the node set of the graph with edge set B, as defined in (2.1). Recall that
from the condition of Theorem 2.4, it follows that f(X[k];Y[k]2) = g(Y[k]2) almost surely for
some symmetric function g. For any r ∈ V (B), let B(r) = {(i, j) : (i, j) ∈ B, i 6= r, j 6= r}.
Recall that Jf,d+1 = {(A,B) : A ⊂ [k], B ⊂ [k]2, vA,B = d + 1, σA,B > 0} and we define

J̃f,d = {(A,B) ∈ Jf,d : GA,B is strongly connected.}.
We need to apply the following lemma in the proof of Theorem 2.4.

Lemma 5.6. Assume that k > d + 1. For all (Aj , Bj) ∈ J̃f,d ∪ Jf,d+1, j = 1, 2, let
vj = vAj ,Bj , we have

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,v1

η
(i,j)
α1(B1)

)( ∑
α2∈A(i,j)

n,v2

η
(i,j)
α2(B2)

)}
6 Ck2n2d−2τ4.

Now, we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Let C denote a positive absolute constant that may take differ-
ent values in different places. Recall that without loss of generality, we assume that
E{f(X[k], Y[k]2)} = 0. Write T = σ̃−1

n Sn,k(f), and let

W = σ̃−1
n (Sn,k(f(d)) + Sn,k(f(d+1))), U = σ̃−1

n

k∑
`=d+2

Sn,k(f(`)). (5.31)

Here, if d + 1 > k, then set
∑k
`=d+1 Sn,k(f(`)) = 0. Then, T = W + U . Now we apply

Corollary 4.3 again to prove the desired result. To this end, we need to construct an
exchangeable pair. For each (i, j) ∈ An,2, let

W (i,j) =
1

σ̃n
(S

(i,j)
n,k (f(d)) + S

(i,j)
n,k (f(d+1))), U (i,j) = σ̃−1

n

k∑
`=d+2

S
(i,j)
n,k (f(`)).

By assumption and recall that f(X[k];Y[k]2) = g(Y[k]2) almost surely, W can be rewrit-
ten as

W =
1

σ̃n

∑
(A,B)∈J̃f,d∪Jf,d+1

∑
α∈An,vA,B

νA,BgB(Yα(B)).

Let (I, J) be a random 2-fold index uniformly chosen in An,2, which is independent of
all others. Then, ((X,Y ), (X,Y (I,J))) is an exchangeable pair. Let

∆ = W −W (I,J) =
1

σ̃n

( ∑
(A,B)∈J̃f,d∪Jf,d+1

∑
α∈An,vA,B

νA,Bη
(I,J)
α(B)

)
.

Also, define

D =
1

σ̃n

( ∑
(A,B)∈J̃f,d∪Jf,d+1

∑
α∈An,vA,B

µA,Bη
(I,J)
α(B)

)
.

Then, D is antisymmetric with respect to (X,Y ) and (X,Y (I,J)).
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Following a similar argument leading to (5.22),

E{D |X,Y } =
2

n(n− 1)
W. (5.32)

Thus, (4.3) is satisfied with λ = 2/(n(n− 1)) and R = 0. Moreover, by exchangeability,

E{D∆} = 2E{DW} = 2λE{W 2} = 2λ(σ̃2
n,d + σ2

n,d+1)/σ̃2
n. (5.33)

Now, by the Cauchy inequality, (5.33) and Lemmas 5.3 and 5.6, and using a similar
argument to the proof of (5.26), we have

E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

∣∣∣∣
6 E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

2λ
E{D∆}

∣∣∣∣+
σ̃2
n − σ̃2

n,d − σ2
n,d+1

σ̃2
n

6 Cn−1 k
2Λk,dτ

2

σ2
min

.

With D∗ = |D|, and by Lemma 5.5 again,

1

λ
E
∣∣E{D∗∆ |X,Y, Y ′}∣∣ 6 Cn−1 k

2Λk,dτ
2

σ2
min

.

Now, by (5.31) and Lemma 5.3, and similar to (5.28) and (5.29), we have

E |U |2 6 Cσ̃−2
n

k∑
`=d+2

E(S2
n,k(f(`))) 6 Cn−2 k

4τ2

σ2
min

(
1

πd

k∑
`=d+1

π`

)
,

E(U − U (i,j))2 6 Cσ̃−2
n

k∑
`=d+2

E{(Sn,k(f(`))− S
(i,j)
n,k (f(`)))

2} 6 Cn−4 k
4τ2

σ2
min

(
1

πd

k∑
`=d+1

π`

)
.

Thus,

E |U | 6 Cn−1 k
2Λk,dτ

2

σ2
min

,

1

λ
E
∣∣D(U − U (I,J))

∣∣
=

1

σ̃n

∑
(i,j)∈In,2

E

{∣∣∣∣( ∑
(A,B)∈Jf,d∪Jf,d+1

∑
α∈An,vA,B

µA,Bη
(i,j)
α(A,B)

)
(U − U (i,j))

∣∣∣∣}

6 Cn−1 k
2Λk,dτ

2

σ2
min

,

where the last inequality follows from (5.12). Applying Corollary 4.3, we obtain the
desired result.

6 Proof of other results

6.1 Proof of Theorem 3.2

Note that there is no X involved in the function g, and it follows that the principle
degree is at least 2. As f inj

F does not dependent on X if κ ≡ p for some 0 < p < 1. Fix F .
Define

ginj(Y ) = f inj
F (X;Y )
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and by Proposition 5.2, we have ginj has the following decomposition:

ginj(Y ) =
∑

B⊂[k]2

ginj
B (YB). (6.1)

By [13, p. 361], we have

ginj
{(1,2)}(y1,2) = E{ginj(Y )|Y1,2 = y1,2}

=
2e(F )(v(F )− 2)!

|Aut(G)|
pe(F )−1(1(y1,2 6 p)− p) 6= 0.

Therefore, by Theorem 2.4 with d = 2, we complete the proof.

6.2 Proof of Theorem 3.3

Again, let

gind(Y ) = f ind
F (X;Y ),

and similar to (6.1), we have

gind(Y ) =
∑

B⊂[k]2

gind
B (YB).

Recall that s(F ) is the number of 2-stars in F and t(F ) is the number of triangles in
F . Let

ē(F ) =

(
v(F )

2

)−1

e(F ), s̄(F ) =

(
v(F )

3

)−1
s(F )

3
, t̄(F ) =

(
v(F )

3

)−1

t(F ).

Let

N(F ) =
v(F )!

|Aut(F )|
pe(F )(1− p)(

v(F )
2 )−e(F ).

By Section 9 of [13], letting B1 = {(1, 2)}, B2 = {(1, 2), (1, 3)} and B3 = {(1, 2), (1, 3),

(2, 3)}, we have

gind
B1

(y1,2) = E{gind(Y )|Y1,2 = y1,2}

=
N(F )

p(1− p)
(ē(F )− p)

(
1(y1,2 6 p)− p

)
,

gind
B2

(y1,2, y1,3) = E{gind(Y )|Y1,2 = y1,2, Y1,3 = y1,3}

=
N(F )

p2(1− p)2
(s̄(F )− 2pē(F ) + p2)

(
1(y1,2 6 p)− p

)(
1(y1,3 6 p)− p

)
,

gind
B3

(y1,2, y1,3, y2,3) = E{gind(Y )|Y1,2 = y1,2, Y1,3 = y1,3, Y2,3 = y2,3}

=
N(F )

p3(1− p)3
(t̄(F )− 3ps̄(F ) + 3p2ē(F )− p3)

×
(
1(y1,2 6 p)− p

)(
1(y1,3 6 p)− p

)(
1(y2,3 6 p)− p

)
.

We now consider the following three cases.

Case 1. If e(F ) 6= p
(
v(F )

2

)
. In this case, we have gind

B1
6≡ 0. Then, by Theorem 2.4, we

have (3.2) holds.

Case 2. If ē(F ) = p and s̄(F ) 6= p2. In this case, we have

gind
B1
≡ 0, gind

B2
6≡ 0.
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However, the graph generated by B2 is a 2-star, which is not strongly connected. Then,
by Theorem 2.3, we have (3.3) holds.

Case 3. If ē(F ) = p, s̄(F ) = p2 and t̄(F ) 6= p3. In this case, we have

gind
B1
≡ 0, gind

B2
≡ 0, gind

B3
6≡ 0.

Because the graph generated by B3 is a triangle, which is strongly connected. Then,
by Theorem 2.4, we have (3.2) holds.

A Proofs of some lemmas

A.1 Proof of Lemma 5.1

Proof of Lemma 5.1. We write {α} = {α(1), . . . , α(k)} for any α = (α(1), . . . , α(k)) ∈ An,k.
Also, write rα = r(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k)). Now, observe that

Var

{ ∑
α∈In,k

rα

}
=

∑
α∈In,k

∑
α′∈In,k

Cov
(
rα, rα′

)
. (A.1)

Note that if {α} ∩ {α′} = ∅, then rα and rα′ are independent, then clearly it follows
that

Cov
(
rα, rα′

)
= 0 (A.2)

if {α} ∩ {α′} = ∅. If there exists i ∈ {1, . . . , n} such that {α} ∩ {α′} = {i}, then

Cov
(
rα, rα′

)
= E

{
Cov

(
rα, rα′

∣∣ Xi

)}
+ Cov

(
E{rα|Xi},E{rα′ |Xi}

)
. (A.3)

By independence, we have the first term of (A.3) is 0. For the second term, note that for
any i ∈ {α}, then E{rα|Xi} = 0, and thus the second term of (A.3) is also 0. Therefore,

Cov
(
rα, rα′

)
= 0, if |{α} ∩ {α′}| = 1. (A.4)

For any α and α′ such that |{α} ∩ {α′}| > 2, by the Cauchy inequality, we have

Cov
(
rα, rα′

)
6
√

Var
(
rα
)

Var
(
rα′
)

= Var
(
rα
)
,

where the equality follows from the fact that rα
d.
= rα′ . Recall that rα and f1(Xj) are

orthogonal for every j ∈ {α}. By (5.1), we have

Var
(
rα
)

= Var
(
ψ(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k))

)
−
∑
j∈{α}

E{f1(Xj)
2} 6 τ2.

Thus, it follows that

∣∣Cov
(
rα, rα′

)∣∣ 6 τ2, if |{α} ∩ {α′}| > 2. (A.5)
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Moreover, note that∑
α∈In,k

∑
α′∈In,k

1(|{α} ∩ {α′}| > 2)

=

k∑
t=2

∑
α∈In,k

∑
α′∈In,k

1(|{α} ∩ {α′}| = t)

=

k∑
t=2

(
n

k

)(
n− k
k − t

)(
k

t

)

=

k−2∑
u=0

(
n

k

)(
n− k

k − u− 2

)(
k

u+ 2

)

=

k−2∑
u=0

(
n

k

)
k(k − 1)

(u+ 2)(u+ 1)

(
n− k

k − u− 2

)(
k − 2

u

)

6

(
k

2

)(
n

k

) k−2∑
u=0

(
n− k

k − u− 2

)(
k − 2

u

)
=

(
k

2

)(
n

k

)(
n− 2

k − 2

)
,

(A.6)

where in the last line we used the fact that(
n

k

)
=

k∑
t=0

(
n− k
k − t

)(
k

t

)
for all n > k.

Combining (5.2), (A.1), (A.2) and (A.4)–(A.6), we have

E{U2} 6 τ2

σ̃2
n

∑
α∈In,k

∑
α′∈In,k

1(|{α} ∩ {α′}| > 2)

=
nτ2

k2σ2
1

(
k

2

)(
n

k

)−1(
n− 2

k − 2

)
=

(k − 1)2τ2

2(n− 1)σ2
1

.

(A.7)

This proves (5.3).
Now we prove (5.4). Let I(i)

n,k = {α = {α(1), . . . , α(k)} : α(1) < · · · < α(k), i ∈ {α}}.
Note that

U − U (i) =
1

σ̃n

∑
α∈I(i)n,k

r
(i)
{α}.

where

r(i)
α = rα − r(X(i)

α(1), . . . , X
(i)
α(k);Yα(1),α(2), . . . , Yα(k−1),α(k)).

For each α ∈ I(i)
n,k, by independence and the definition of r(i)

α , we have

E{r(i)
α |Xj , j ∈ {α} \ {i}, Yα(1),α(2), . . . , Yα(k−1),α(k)} = 0.

Therefore, for α ∈ I(i)
n,k, we have

Var
(
r(i)
α

)
= E

{
Var
(
r(i)
α

∣∣ Xj , j ∈ {α} \ {i}, Yα(1),α(2), . . . , Yα(k−1),α(k)

)}
+ Var

(
E
{
r(i)
α

∣∣ Xj , j ∈ {α} \ {i}, Yα(1),α(2), . . . , Yα(k−1),α(k)

})
= 2E

{
Var
(
rα
∣∣ Xj , j ∈ {α} \ {i}, Yα(1),α(2), . . . , Yα(k−1),α(k)

)}
6 2 Var

(
rα
)
6 2τ2.
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Similar to (A.4), we have

Cov
(
r(i)
α , r

(i)
α′

)
= 0 if |{α} ∩ {α′}| = 1.

Moreover, we have for fixed i,∑
α∈I(i)n,k

∑
α′∈I(i)n,k

1(|{α} ∩ {α′}| > 2)

=

k∑
t=2

∑
α∈I(i)n,k

∑
α′∈I(i)n,k

1(|{α} ∩ {α′}| = t)

=

k∑
t=2

(
n− 1

k − 1

)(
n− k
k − t

)(
k − 1

t− 1

)

=

k−2∑
u=0

(
n− 1

k − 1

)(
n− k

k − u− 2

)(
k − 1

u+ 1

)

=

k−2∑
u=0

k − 1

u+ 1

(
n− 1

k − 1

)(
n− k

k − u− 2

)(
k − 2

u

)
6 (k − 1)

(
n− 1

k − 1

)(
n− 2

k − 2

)
.

Similar to (A.7), we have

E{(U − U (i))2} =
1

σ̃2
n

∑
α∈I(i)n,k

∑
α′∈I(i)n,k

Cov
(
r(i)
α , r

(i)
α′

)

6
2nτ2

k2σ2
1

(
n

k

)−2 ∑
α∈I(i)n,k

∑
α′∈I(i)n,k

1(|{α} ∩ {α′}| > 2)

6
2n(k − 1)τ2

k2σ2
1

(
n

k

)−2(
n− 1

k − 1

)(
n− 2

k − 2

)
=

2(k − 1)2τ2

n(n− 1)σ2
1

.

This completes the proof.

A.2 Proof of Lemmas 5.4 and 5.5

Recall that {α} = {α(1), . . . , α(`)} for α ∈ An,`. To prove Lemma 5.4, we need the
following lemma. In this subsection, we denote by C a positive absolute constant that
may take different values in different places.

Lemma A.1. Let (A1, B1), (A2, B2) ∈ Jf,d, (i, j), (i′, j′) ∈ An,2, α1, α2 ∈ A(i,j)
n,d and α′1, α

′
2 ∈

A(i′,j′)
n,d . Let

s = |{α1} ∩ {α2}|, t = |{α′1} ∩ {α′2}|.

If |({α1} ∪ {α2}) ∩ ({α′1} ∩ {α′2})| 6 2d− (s+ t), then

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= 0. (A.8)

Proof of Lemma A.1. Let

V0 = {α1} ∩ {α2}, V1 = {α1} \ V0, V2 = {α2} \ V0, s = |V0|,
V ′0 = {α′1} ∩ {α′2}, V ′1 = {α′1} \ V ′0 , V ′2 = {α′2} \ V ′0 , t = |V ′0 |.

(A.9)

EJP 27 (2022), paper 134.
Page 28/36

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP860
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Generalized U -statistics

Then, we have V1 ∩ V2 = ∅, V ′1 ∩ V ′2 = ∅, 2 6 s, t 6 d. Without loss of generality, assume
that s 6 t.

If 2d − (s + t) = 0, which is equivalent to s = d, t = d, then {α1} = {α2} and

{α′1} = {α′2}. If {a1} ∩ {a′1} = ∅, then (ξ
(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2)) and (ξ

(i′,j′)
α′1(A1,B1), ξ

(i′,j′)
α′2(A2,B2))

are independent, which implies that (A.8) holds.
If 2d− (s+ t) > 0 and |({α1} ∪ {α2}) ∩ ({α′1} ∪ {α′2})| < 2d− (s+ t), then there exists

r ∈ [n] such that r ∈ (V ′1 ∪ V ′2) \ ({α1, α2}). Now, assume that r ∈ V ′2 \ ({α1, α2}) without
loss of generality. Let

Fr = σ(Xp, Yp,q, p, q ∈ [n] \ {r}) ∨ σ(Y ′i′,j′). (A.10)

Therefore, we have ξ(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1) ∈ Fr. Then, by (5.6),

E{ξ(i′,j′)
α′2(A2,B2) | Fr}

= E
{
fA2,B2

(
Xα′2(A2,B2);Yα′2(A2,B2)

)
− fA2,B2

(
Xα′2(A2,B2);Y

(i′,j′)
α′2(A2,B2)

) ∣∣∣ Fr}
= 0. (A.11)

Hence,

E
{
ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2) | Fr

}
= 0,

which further implies that

E
{
ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= 0,

and
Cov

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= E{ξ(i,j)

α1(A1,B1)ξ
(i,j)
α2(A2,B2)ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)}

= E
{
E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2)ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2) | Fr

}}
= E

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2)ξ

(i′,j′)
α′1(A1,B1)E

{
ξ

(i′,j′)
α′2(A2,B2) | Fr

}}
= 0.

(A.12)

If 2d−(s+t) > 0 and |({α1}∪{α2})∩({α′1}∩{α′2})| = 2d−(s+t), then either the following
two conditions holds: (a) there exists r ∈ V ′1 ∪ V ′2 \ ({α1} ∪ {α2}) or (b) V0 ∩ V ′0 = ∅. If (a)
holds, then following a similar argument that leading to (A.12), we have (A.8) holds.

If (b) is true, letting F = σ(X, {Yp,q : p, q ∈ V1 ∪ V2 ∪ V ′1 ∪ V ′2}), we have conditional on

F , (ξ
(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2)) is conditionally independent of (ξ

(i′,j′)
α′1(A1,B1), ξ

(i′,j′)
α′2(A2,B2)), and thus,

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= Cov

{
E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2) | F

}
,E
{
ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2) | F

}}
.

Without loss of generality, we assume that V1 ∪ V2 ∪ V ′1 ∪ V ′2 6= ∅, otherwise the argument
is even simpler. Moreover, we may assume that V1 6= ∅. Let F0 = σ(Y ′i,j , Yp,q : p, q ∈
V0), and we have ξ

(i,j)
α1(A1,B1) and ξ

(i,j)
α2(A2,B2) are conditionally independent given F ∨

F0. Moreover, by (5.6), E{ξ(i,j)
α1(A1,B1) | F ∨ F0} = E{ξ(i,j)

α2(A2,B2) | F ∨ F0} = 0, and thus

E{ξ(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2) | F} = 0. Therefore, we have under the condition (b),

Cov{ξ(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)} = 0. (A.13)

EJP 27 (2022), paper 134.
Page 29/36

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP860
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Generalized U -statistics

Combining (A.12) and (A.13) we prove that (A.8) holds for |{α1, α2}∩{α′1, α′2}| = 2d−(s+t).
This completes the proof.

Proof of Lemma 5.4. In this proof, we denote by C a constant depending on k and d,
which may take different values in different places. For α1, α2, α

′
1, α
′
2 ∈ A

(i,j)
n,d , let s, t

be defined as in Lemma A.1, and note that {α1} and {α2} has at least one common
element {i, j}, and {α′1} and {α′2} has at least one two common elements {i′, j′}, we have
2 6 s, t 6 d. and

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,d

ξ
(i,j)
α1(A1,B1)

)( ∑
α2∈A(i,j)

n,d

ξ
(i,j)
α2(A2,B2)

)}

=
∑

(i,j)∈An,2
(i′,j′)∈An,2

∑
α1∈A

(i,j)
n,d

α2∈A
(i,j)
n,d

∑
α′1∈A

(i′,j′)
n,d

α′2∈A
(i′,j′)
n,d

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}

=

d∑
s,t=2

∑
(i,j)∈An,2

(i′,j′)∈An,2

∑
α1∈A

(i,j)
n,d

α2∈A
(i,j)
n,d

∑
α′1∈A

(i′,j′)
n,d

α′2∈A
(i′,j′)
n,d

(A.14)

× Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
1(Os,t), (A.15)

where Os,t = {|{α1}∩{α2}| = s}∩{|{α′1}∩{α′2}| = t}. If |({α1}∪{α2})∩ ({α′1}∩{α′2})| 6
2d− (s+ t), by (A.8) in Lemma A.1, we have

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= 0.

If |({α1}∪{α2})∩({α′1}∩{α′2})| > 2d−(s+t), then, recalling that (ξ
(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2))

d.
=

(ξ
(i′,j′)
α′1(A1,B1), ξ

(i′,j′)
α′2(A2,B2)), we have∣∣Cov{ξ(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)}

∣∣
6 E{(ξ(i,j)

α1(A1,B1))
2(ξ

(i,j)
α2(A2,B2))

2}

6 C
(
E{ψ4

A1,B1
(Xα1(A1,B1);Yα1(A1,B1))}+ E{ψ4

A1,B1
(Xα2(A2,B2);Yα2(A2,B2))}

)
6 Cτ4. (A.16)

Therefore, with

O1 = {|({α1} ∪ {α2}) ∩ ({α′1} ∪ {α′2})| > 2d− (s+ t)},

we have

Var

{ ∑
(i,j)∈An,2

( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)}

6 Cτ4
d∑

s,t=0

∑
(i,j)∈An,2

(i′,j′)∈An,2

∑
α1∈A

(i,j)
n,d

α2∈A
(i,j)
n,d

∑
α′1∈A

(i′,j′)
n,d

α′2∈A
(i′,j′)
n,d

1(O1 ∩Os,t)

6 Cτ4
d∑

s,t=0

n(2d−s)+(2d−t)−(2d−s−t+1)

6 Ck2n2d−1τ4.
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Proof of Lemma 5.5. If k < d + 1, then it follows that ξα(G) = 0 for all G ∈ Γd+1 and
α ∈ An,d+1. Therefore, we assume k > d+ 1 without loss of generality.

Observe that

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
}

=
∑

(i,j)∈An,2

∑
(i′,j′)∈An,2

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,
( ∑
α′1∈A

(i′,j′)
n,v1

ξ
(i′,j′)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i′,j′)
n,v2

ξ
(i′,j′)
α′2(A2,B2)

∣∣∣∣
}
.

(A.17)
Letting

F1 = σ(X) ∨ σ(Yp,q, Y
′
p,q : {p, q} 6= {i, j}),

and noting that ( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
is anti-symmetric with respect to (Yij , Y

′
ij), we have

E

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
}

= 0.

Now, we consider the following two cases. First, if {i, j} 6= {i′, j′}, we have( ∑
α′1∈A

(i′,j′)
n,v1

ξ
(i′,j′)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i′,j′)
n,v2

ξ
(i′,j′)
α′2(A2,B2)

∣∣∣∣ is F1 measurable

and by anti-symmetry again,

E

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
∣∣∣∣∣ F1

}
= 0.

Therefore,

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,
( ∑
α′1∈A

(i′,j′)
n,v1

ξ
(i′,j′)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i′,j′)
n,v2

ξ
(i′,j′)
α′2(A2,B2)

∣∣∣∣
}

= 0 (A.18)

for {i, j} 6= {i′, j′}.
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It suffices to consider the case where {i, j} = {i′, j′}. Observe that

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,( ∑
α′1∈A

(i,j)
n,v1

ξ
(i,j)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α′2(A2,B2)

∣∣∣∣
}

= E

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)( ∑
α′1∈A

(i,j)
n,v1

ξ
(i,j)
α′1(A1,B1)

)
∣∣∣∣( ∑

α2∈A(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)

)( ∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α′2(A2,B2)

)∣∣∣∣
}

=
∑

α1∈A(i,j)
n,v1

∑
α′1∈A

(i,j)
n,v1

E

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2∈A(i,j)

n,v2

∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}
.

(A.19)
Let H1 = {α1}\{α′1} and H ′1 = {α′1}\{α1}. Let t = |α1∩α′1|, and then we have 2 6 t 6 v1.
Now, as ∑

α2∈A(i,j)
n,v2

∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2) =

∑
α2,α′2∈A1

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

+
∑

α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

+
∑

α2,α′2∈A3

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2),

where A1 = {α2, α
′
2 ∈ A

(i,j)
n,v2 : (H1∪H ′1)\{α2, α

′
2} 6= ∅}, A2 = {α2, α

′
2 ∈ A

(i,j)
n,v2 : (H1∪H ′1)\

{α2, α
′
2} = ∅, {α1}∩{α′1} ⊂ {α2}∩{α′2}}, andA3 = {α2, α

′
2 ∈ A

(i,j)
n,v2 : (H1∪H ′1)\{α2, α

′
2} =

∅, ({α1} ∩ {α′1}) \ ({α2} ∩ {α′2}) = ∅}. Given α1 and α′1. We have we have to choose at
most another 2(t− 2) + {(v2 − v1) ∨ 0} elements to form α2 and α′2, and then

|A2| 6 Cn2(t−2)(nv2−v1 ∨ 1).

If there exists r ∈ (H1 ∪H ′1) \ {α2, α
′
2}, letting Fr = σ(Xp, Yp,q, Y

′
p,q : p, q ∈ [n] \ {r}), then

we have ∑
α2,α′2∈A1

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2) ∈ Fr,

and by orthogonality, we have

E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)|Fr

}
= 0.

Therefore, we have

E

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2,α′2∈A1

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}

= 0.

Similarly, by independence, we have

E

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2,α′2∈A3

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}

= 0.
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Hence, by Cauchy’s inequality, we have∣∣∣∣∣E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2,α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}∣∣∣∣∣

6 E

{∣∣ξ(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣∣∣ ∑
α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}

6 Cτ2

√√√√E{∣∣∣∣ ∑
α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣2
}
.

Following the similar argument in the proof of Lemma 5.4, and recalling that {α1∩α′1} = t

and |A2| 6 Cn2(t−2)(nv2−v1 ∨ 1), we have

E

{∣∣∣∣ ∑
α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣2
}

6 Ck2n2(t−2)(nv2−v1 ∨ 1)τ4.

Therefore, we have∣∣∣∣∣E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2,α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}∣∣∣∣∣ 6 Ck2n2(t−2)(nv2−v1 ∨ 1)τ4.

Substituting the foregoing inequality to (A.19), we have

∑
(i,j)∈An,2

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,
( ∑
α′1∈A

(i,j)
n,v1

ξ
(i,j)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α′2(A2,B2)

∣∣∣∣
}

6 Ck2n2 max{v1,v2}−2τ4. (A.20)

By (A.17), (A.18) and (A.20), we complete the proof.

A.3 Proof of Lemma 5.6

Lemma 5.6 follows from a similar argument as that in the proof of Lemma 5.4 and the
following lemma. Recall that J̃f,` = {(A,B) ∈ Jf,` : GA,B is strongly connected}. Now,
as the function g does not depend on X, we set Am = ∅ in the following lemma. With a
slight abuse of notation, For j = 1, 2 and for Bm ⊂ [k]2, let Gm be the graph generated
by Bm and let vm be the number of nodes of Gm.

Lemma A.2. Let Bm ∈ J̃f,d ∪ Jf,d+1 for m = 1, 2. Let (i, j), (i′, j′) ∈ An,2, and let

αm ∈ A(i,j)
n,vm , α′m ∈ A

(i′,j′)
n,vm for m = 1, 2. Let s = |{α1} ∩ {α2}| and t = |{α′1} ∩ {α′2}|. For

m = 1, 2, let γm indicate that Bm ∈ J̃f,d ∪ J̃f,d+1. Then

Cov
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2), η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

}
= 0 (A.21)

for |{α1, α2} ∩ {α′1, α′2}| < v1 + v2 + γ1 + γ2 − (s+ t).

Proof. The proof is similar to that of Lemma A.1.
Let V0, V

′
0 , V1, V

′
1 , V2, V

′
2 be defined as in (A.9). Note that if GB has isolated nodes,

then ηα(B) = 0 for all α ∈ An,vB , where vB is the number of nodes of the graph generated
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by the index set B. If v1 + v2 = s+ t, then it follows that {α1} = {α2} and {α′1} = {α′2}. If

|{α1} ∩ {α′1}| < 2, then η(i,j)
α1(B1)η

(i,j)
α2(B2) and η(i′,j′)

α′1(B1)η
(i′,j′)
α′2(B2) are independent, which further

implies that (A.21) holds.
Now we consider the case where v1+v2 > s+t. If |{α1, α2}∩{α′1, α′2}| < v1+v2−(s+t),

then following the same argument as that leading to (A.12), we have (A.21) holds.
If G1 is connected and |{α1, α2}∩{α′1, α′2}| = v1 +v2− (s+ t), then either the following

two conditions holds: (a) there exists r ∈ V ′2 \ ({α1} ∪ {α2} ∪ V ′0 ∪ V ′1) or (b) V0 ∩ V ′0 = ∅.
If (a) holds, then following a similar argument as before, we have (A.21) holds. Now we
consider that the case where (b) holds. Let H1 = {(p, q) : p ∈ V0, q ∈ V1} and

F1 = σ(Yp,q, Y
′
p,q, : An,2 \H1).

By orthogonality, we have E{η(i,j)
α1(B1)|F1} = 0.

Note that ηα2(B2), ηα′1(B1), ηα′2(B2) ∈ F1, we have

E
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2)

}
= E

{
η

(i,j)
α2(B2)E

{
η

(i,j)
α1(B1)

∣∣∣ F1

}}
= 0,

Cov
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2), η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

}
= E

{
E
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2)η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

∣∣∣ F1

}
= E

{
η

(i,j)
α2(B2)η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)E

{
η

(i,j)
α1(B1)

∣∣∣ F1

}}
= 0.

This proves (A.21) for the case where |{α1, α2} ∩ {α′1, α′2}| = v1 + v2 − (s+ t).
Now, we further assume that γ1 = γ2 = 1. If G1 or G2 is a graph containing one

single edge, then the proof is even simpler. Without loss of generality, we now assume
that G(r)

m is connected for every r ∈ [n] for m = 1, 2. We then prove that (A.21) holds
when |{α1, α2} ∩ {α′1, α′2}| = v1 + v2 − (s + t) + 1. Under this condition, additional to
(a) and (b), there is still another event that may happen: (c) there exists r ∈ [n] such
that {r} = V0 ∩ V ′0 . As the cases (a) and (b) have been discussed, we only need to prove
that (A.21) holds under (c).

As {i, j} ⊂ V0, we have s > 2, and V0 \ {r} is not empty. Let

F2 = σ{Yp,q, Y ′p,q : p ∈ V1 ∪ V2 ∪ V ′1 ∪ V ′2 , q ∈ V1 ∪ V2 ∪ V ′1 ∪ V ′2 ∪ {r}}.

Then, conditional on F2, we have η
(i,j)
α1(B1)η

(i,j)
α2(B2) and η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2) are conditionally

independent. Hence,

Cov
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2), η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

}
= Cov

{
E{η(i,j)

α1(B1)η
(i,j)
α2(B2)|F2},E{η(i′,j′)

α′1(B1)η
(i′,j′)
α′2(B2)|F2}

}
.

Letting

F3 = σ{Yp,q, Yp,q : p ∈ V0 \ {r}, q ∈ V2 ∪ {r}}.

Now, if G(r)
1 is connected for every r ∈ [n], there is at least one edge in G1 connecting

V0 \ {r} and V1, and thus

E{η(i,j)
α1(B1)η

(i,j)
α2(B2)|F2 ∨ F3} = η

(i,j)
α2(B2)E{η

(i,j)
α1(B1)|F2 ∨ F3} = 0,

where the last equality follows from orthogonality. Noting that F2 ⊂ F3, then
E{η(i,j)

α1(B1)η
(i,j)
α2(B2)|F2} = 0 and thus (A.21) holds.
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