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Abstract

We derive Berry-Esseen approximation bounds for general functionals of independent
random variables, based on a continuous-time integration by parts setting and discrete
chaos expansions methods. Our approach improves on related results obtained in
discrete-time integration by parts settings and applies to U -statistics satisfying the
weak assumption of decomposability in the Hoeffding sense, and yield Kolmogorov dis-
tance bounds instead of the Wasserstein bounds previously derived in the special case
of degenerate U -statistics. Linear and quadratic functionals of arbitrary sequences
of independent random variables are included as particular cases, with new fourth
moment bounds, and applications are given to Hoeffding decompositions, weighted
U -statistics, quadratic forms, and random subgraph weighing. In the case of quadratic
forms, our results recover and improve the bounds available in the literature, and
apply to matrices with non-empty diagonals.
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1 Introduction

Significant progress in probability approximation has been achieved in recent years
by combining the Chen-Stein method with the Malliavin calculus. See for example [30],
[36], [37], for the derivation of distance bounds on the Wiener and Poisson spaces, and
also [34] and [24] in the case of Rademacher sequences. Those results rely on covariance
representations based on the inverse of the Ornstein-Uhlenbeck operator L acting on
multiple Wiener-Poisson stochastic integrals. While the inverse operator L−1 is well
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Berry-Esseen bounds for functionals

adapted to certain random functionals such as multiple stochastic integrals, it can prove
more difficult to use in applications to other, more specific functionals. Other covariance
representations based on the Clark-Ocone representation formula and not relying on L−1

have been used in [43] on the Wiener and Poisson spaces, and in [44] for Rademacher
sequences.

In [27], second order Poincaré inequalities in the Kolmogorov and Wasserstein dis-
tances have been obtained for functionals of a Poisson point process by using the iterated
Malliavin gradient instead of L−1. This approach relies on probabilistic representations
for the inverse operator L−1 using Mehler’s formula on the Poisson space, see e.g.
Lemma 6.8.1 in [39]. Second order Poincaré inequalities for functionals of Rademacher
sequences have also been obtained in [25], with application to renormalized triangle
counting using the Kolmogorov distance in the Erdős-Rényi random graph, see also [41]
and references therein for the treatment of arbitrary subgraph counting.

In [4], a method based on difference operators has been introduced with the aim of
obtaining Stein bounds in the Wasserstein distance for functions of vectors of indepen-
dent random variables. This approach has been extended in [26] to the derivation of
bounds in the Kolmogorov distance, see also [19] for earlier related results..

An integration by parts setting for related difference operators has been exploited in
[10] to derive normal Stein approximation bound for functionals of independent random
variables, see also [29], and [3] for concentration inequalities. In [16], this framework
has been unified with the approaches of [4] and [26] with applications in statistical
physics, see also [17].

In [40], a general framework for the derivation of Wasserstein distance bounds for
functionals of independent random sequences has been developed in the continuous-time
integration by parts setting of [38], using an analog of the operator L−1 on discrete
chaos expansions based on discrete multiple stochastic integrals. This approach allows
us to extend chaos-based arguments from the binomial and Wiener-Poisson settings to
general i.i.d. sequences of random variables.

Bounds in total variance distance have also been obtained therein using Clark-Ocone
covariance representation formulas under stronger smoothness conditions. Applications
to normal approximation in the Wasserstein distance have been obtained in [42] for the
weights of subgraphs in the Erdős-Rényi random graph.

Our first goal in this paper is to extend existing Stein normal approximation bounds
proved in the Kolmogorov distance for Rademacher sequences, see e.g. [25], [13], to
general sequences of independent random variables. This is achieved in the general
framework of [40], by replacing the Wasserstein distance with the Kolmogorov distance
for which obtaining rates is known to be more difficult and requires new ideas. In
Theorem 3.1 we derive a general Berry-Esseen bound in the Kolmogorov distance for
functionals of independent random variables. In comparison with Theorem 4.2 in [26],
the variance term (3.2) in Theorem 3.1 can be easier to control, see also Theorem 2.3 in
[16].

The bound of Theorem 3.1 is then specialized to sums of multiple stochastic integrals
in Proposition 3.2, and then to multiple stochastic integrals in Proposition 3.3. Note
that multiple stochastic integrals of order d coincide with degenerate (generalized)
U -statistics of order d, and can then be used to represent Hoeffding decompositions as a
chaos summations, see the examples given below.

Our second goal is to show that the obtained bounds remain sharp despite the very
general framework of the paper, as demonstrated in the following examples. Consider
a sequence (X1, . . . , Xn) of (not necessarily identically distributed) independent ran-
dom variables, and the d-homogeneous random multilinear forms Wn,d written in the
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Berry-Esseen bounds for functionals

Hoeffding form as
Wn,d =

∑
J⊂{1,...,n}, |J|=d

WJ ,

where, for each J ⊂ {1, . . . , n}, WJ is a random variable with variance σ2
J , measurable

with respect to the σ-algebra FJ := σ (Xj : j ∈ J), and such that E [WJ | FK ] = 0,
J 6⊆ K ⊂ [n]. In [9], a central limit theorem has been proved for the sequence (Wn,d)n≥1

under the conditions

lim
n→∞

max
1≤i≤n

∑
J3i

σ2
J = 0 and lim

n→∞
E[W 4

n,d] = 3,

generalizing earlier results by [8] for quadratic random functionals. The results of [8, 9]
have been refined by the derivation of bounds in the Wasserstein distance in Theorem 1.3
in [14] in the case of degenerate U -statistics, for which |J | is constrained to a fixed value
|J | = d for some d ∈ {1, . . . , n} in the sum (2.17).

Applications of Proposition 3.2 are given to Kolmogorov distance bounds in Theo-
rem 4.1 for general U -statistics, and in Theorems 4.2 and 4.3 for degenerate U -statistics.
This extends the bounds of [14] by using the Kolmogorov distance instead of the Wasser-
stein distance, and by applying to Hoeffding decompositions in full generality and not
only to degenerate U -statistics. This also extends the bounds in the Kolmogorov distance
derived in [13] for U -statistics in the particular case of Rademacher chaoses, where
(X1, . . . , Xn) is a sequence of independent Bernoulli random variables.

More specifically, given an i.i.d. sequence (Xk)k≥1 of centered random variables with
unit variance, and the sum

Zn :=
1√
n

n∑
k=1

Xk, n ≥ 1,

convergence bounds to the standard normal distribution N of the form

dW (Zn,N ) ≤
E
[
|X1|3

]
√
n

have been obtained in e.g. Theorem 1.1 in [20] in the Wasserstein distance

dW (X,N ) := sup
h∈Lip(1)

|E[h(X)]− E[h(N )]|.

See also Corollary 2.11 of [11] for related bounds in the Kolmogorov distance

dK(X,N ) := sup
x∈R
|P (X ≤ x)− P (N ≤ x)|,

including the case of random sums. In the case of quadratic functionals of the form

Qn :=
∑

1≤k,l≤n

aklXkXl, (1.1)

where A = (aij)1≤i,j≤n is a symmetric matrix, the bound

dK(Qn,N ) ≤ C
(
E
[
|X1|3

])2 |λ1|, (1.2)

where λ1 denotes the largest absolute eigenvalue of A and C > 0 is an absolute constant,
has been obtained in [21] when the diagonal of A vanishes, see e.g. Theorem 1 therein,
and also Theorem 3.1 of [47].
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In this vanishing diagonals setting, Theorem 4.3 is applied to derive a version of
Theorem 3.3 of [15] for the Kolmogorov distance instead of the Wasserstein distance in
Corollary 4.4. Theorem 4.3 also yields Corollary 5.1 which recovers Theorem 3.1 in [47],
and improves on the above bound (1.2) of Theorem 1 in [21]. In addition, Corollary 5.1
extends the Kolmogorov bounds of Theorem 1.1 in [13], restricted to the quadratic case,
from Rademacher sequences to general sequences of random variables by using fourth
moment differences as in e.g. Theorem 1.3 of [14].

In case the diagonal of A = (aij)1≤i,j≤n may not vanish, the bound

dK

(
Qn
σn

,N
)
≤ C(γ)

(
E
[
|X|3

])2
+ γE[X6]√∑

1≤i,j≤n a
2
ij

|λ1|, (1.3)

has been obtained in Theorem 1.1 of [22] for some γ > 0 depending on A. See also Propo-
sition 3.1 in [4] for a result in the Wasserstein distance using Rademacher sequences, and
Theorem 2.2 in [5] for related normal approximation bounds in total variation distance
for a smooth function of finite-dimensional random vectors via second order Poincaré
inequalities.

In comparison with Theorem 1.1 of [22], the bound (5.7) in Theorem 5.2 gives better
rates under weaker assumptions according to the inequality (5.5). Theorem 5.2 also
provides an additional bound (5.6) which is valid for any i.i.d. sequence (Xn)n≥1 and
holds in the Kolmogorov distance, instead of the Wasserstein distance used in [14]. This
bound is related to the so-called fourth moment phenomenon ([35]), which has been the
object of intense research work, see e.g. [31] and references therein.

We proceed as follows. In Section 2 we recall the framework of [38] for the treatment
of functionals of independent random sequences, including the construction of discrete
multiple stochastic integrals and the associated finite difference gradient operator
and integration by parts formula, which are used to derive a fourth moment bound in
Section 2.3. Section 3 contains our main result Theorem 3.1 which states a general
Berry-Esseen bounds for general functionals of independent random sequences, and
its applications to the derivation of Kolmogorov bounds for discrete multiple integrals
and for sums of discrete multiple integrals in Propositions 3.2-3.3. Applications to
Hoeffding decompositions, weighted U -statistics and random subgraph weighing in the
[18] random graph are given in Section 4. Section 5 focuses on quadratic forms.

2 Preliminaries

2.1 Setting

We work on the probability space (Ω,F ,P) where Ω = [−1, 1]N and F , P are the
natural σ-algebra and probability measure generated on Ω by the cylindrical Borel sets
and Lebesgue measure, respectively. Let (Uk)k≥1 denote the i.i.d. sequence of uniformly
distributed [−1, 1]-valued random variables on (Ω,F ,P), constructed as the canonical
projections from Ω to [−1, 1]. We define the finite difference gradient operator ∇ of a
functional F (U1(ω), U2(ω), . . .) of the sequence (U1(ω), U2(ω), . . .) as

∇tF := E
[
F
∣∣∣U1, . . . , Ub t

2 c, Ub
t
2 c+1 = t− 1− 2

⌊ t
2

⌋
, Ub t

2 c+2, . . .
]

− E
[
F
∣∣∣U1, . . . , Ub t

2 c, Ub
t
2 c+2, . . .

]
,

t ∈ R+. In other words, using the shifted sequence

Φt(ω) :=
(
U1(ω), . . . , Ub t

2 c(ω), t− 1− 2
⌊ t

2

⌋
, Ub t

2 c+2(ω), . . .
)
, t ∈ R+,
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we have

∇tF := F ◦ Φt −
1

2

∫ 2bt/2c+2

2bt/2c
F ◦ Φsds, t ∈ R+, (2.1)

provided that (F ◦Φs)s∈R+
is integrable on R+, P-a.s., see Definition 5 and Proposition 10

in [38]. Although ∇t does not satisfy the chain rule of derivation, we have the following
identity.

Lemma 2.1. The finite difference operator ∇ satisfies the relation

∇t(FG) = (F ◦ Φt)∇tG+ (G ◦ Φt)∇tF −
1

2

∫ 2bt/2c+2

2bt/2c
(∇tF∇tG+∇uF∇uG)du, (2.2)

t ∈ R+, provided that (F ◦ Φs)s∈R+ , (G ◦ Φs)s∈R+ and (F 2 ◦ Φs)s∈R+ , (G2 ◦ Φs)s∈R+ are
integrable on [2n− 2, 2n], n ≥ 1, P-a.s.

Proof. By (2.1), we have

∇t(FG) =
1

2

∫ 2bt/2c+2

2bt/2c
((FG) ◦ Φt − (FG) ◦ Φu)du

=
1

2

∫ 2bt/2c+2

2bt/2c
(F ◦ Φu)(G ◦ Φt −G ◦ Φu)du+

1

2

∫ 2bt/2c+2

2bt/2c
(G ◦ Φt)(F ◦ Φt − F ◦ Φu)du

=
1

2
(F ◦ Φt)

∫ 2bt/2c+2

2bt/2c
(G ◦ Φt −G ◦ Φu)du+

1

2
(G ◦ Φt)

∫ 2bt/2c+2

2bt/2c
(F ◦ Φt − F ◦ Φu)du

−1

2

∫ 2bt/2c+2

2bt/2c
(F ◦ Φt − F ◦ Φu)(G ◦ Φt −G ◦ Φu)du

= (F ◦ Φt)∇tG+ (G ◦ Φt)∇tF −
1

2

∫ 2bt/2c+2

2bt/2c
(F ◦ Φt − F ◦ Φu)(G ◦ Φt −G ◦ Φu)du.

Furthermore, we have∫ 2bt/2c+2

2bt/2c
(F ◦ Φt−F ◦ Φu)(G ◦ Φt−G ◦ Φu)du =

∫ 2bt/2c+2

2bt/2c
(∇tF−∇uF )(∇tG−∇uG)du

=

∫ 2bt/2c+2

2bt/2c
(∇tF∇tG+∇uF∇uG)du,

from the equality
∫ 2bt/2c+2

2bt/2c ∇uFdu = 0.

For any X ∈ L1(Ω) and k ∈ N we also note the identity

E[X] =
1

2
E

[∫ 2k+2

2k

X ◦ Φudu

]
. (2.3)

In addition, since
∫ 2k+2

2k
∇uXdu = 0 a.s. holds directly from the formula (2.1), for any

X,Y ∈ L1(Ω) we obtain∫ 2k+2

2k

∇uX∇uY du =

∫ 2k+2

2k

∇uXΦuY du−
∫ 2k+2

2k

ΦsY ds

∫ 2k+2

2k

∇uXdu

=

∫ 2k+2

2k

∇uXΦuY du, a.s. (2.4)
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Definition 2.2. Given fn in the space L̂2(Rn+) of square integrable symmetric functions
on Rn+ that vanish outside of

∆n :=
⋃

ki 6=kj≥1

1≤i6=j≤n

[2k1 − 2, 2k1]× · · · × [2kn − 2, 2kn],

we define the multiple stochastic integral

In(fn) = n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)d(Yt1 − t1/2) · · · d(Ytn − tn/2),

with respect to the jump process Yt :=
∑∞
k=1 1[2k−1+Uk,∞)(t), t ∈ R+, which satisfies

In(fn) =

n∑
r=0

(
−1

2

)n−r (
n

r

)
(2.5)

×
∑

k1 6=···6=kr≥1

∫ ∞
0

· · ·
∫ ∞

0

fn(2k1−1 + Uk1 , . . . , 2kr−1 + Ukr , y1, . . . , yn−r)dy1 · · · dyn−r.

The multiple stochastic integral In(fn) satisfies the bound

E
[
(In(fn))2

]
≤ n! ‖fn‖2L2(Rn

+,dx/2) , n ≥ 1,

which allows us to extend the definition of In(fn) to all fn ∈ L̂2(Rn+), see Propositions 4
and 6 in [38]. Under the additional condition∫ 2k

2k−2

fn(t, ∗)dt = 0, k ≥ 1, (2.6)

i.e. fn is canonical in the sense of [48], the multiple stochastic integral In(fn) can be
written as the U -statistics of order n

In(fn) =
∑

k1 6=···6=kn≥1

fn(2k1 − 1 + Uk1 , . . . , 2kn − 1 + Ukn),

with the isometry and orthogonality relation

E [In(fn)Im(fm)] = 1{n=m}n!〈fn, fm〉L2(R+,dx/2)⊗n , fn ∈ L̂2(Rn+), fm ∈ L̂2(Rm+ ), (2.7)

see Proposition 6 in [38], which shows that the sequence (In(fn))n≥1 forms a family of
mutually orthogonal centered random variables. Under the condition (2.6) we have the
relation

∇tIn(fn) = nIn−1 (fn(t, ∗)) , t ∈ R+, (2.8)

see Proposition 10 in [38].
The operator ∇ also admits an adjoint operator ∇∗ given by

∇∗ (In(gn+1)) := In+1(1∆n+1 g̃n+1),

where g̃n+1 is the symmetrization of gn+1 ∈ L̂2(Rn+)⊗L2(R+) in n+1 variables. Precisely,
the operator ∇ is closable with domain

Dom(∇) =
{
X ∈ L2(Ω) : E[‖∇X‖2L2(R+)] <∞

}
⊂ L2(Ω×R+),

see Proposition 8 in [38], and satisfies the duality relation (or integration by parts
formula)

E
[
〈∇X,u〉L2(R+,dx/2)

]
= E[X∇∗(u)], (2.9)
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which shows that ∇∗ is closable as well, with domain Dom(∇∗) ⊂ L2(Ω). The operators
(∇,∇∗) are linked by the Skorohod isometry

E[∇∗u∇∗v] = E

[∫ ∞
0

utvtdt

]
+ E

[∫ ∞
0

∫ ∞
0

∇sut∇tvs ds dt
]
,

see Proposition 9 in [38], which yields the Poincaré inequality

E
[
|∇∗u|2

]
≤ E

[∫ ∞
0

|ut|2dt
]

+ E

[∫ ∞
0

∫ ∞
0

|∇sut|2ds dt
]
. (2.10)

Finally, every X ∈ L2(Ω) admits the chaos decomposition

X = E[X] +

∞∑
n=1

In(fn), (2.11)

for some sequence of functions fn in L̂2(Rn+), n ≥ 1, cf. Proposition 7 in [38]. Moreover,

under the condition (2.6) the sequence (fn)n≥1 is unique in L̂2(Rn+) due to the isometry
relation (2.7), and in this case we have

E[X2] = (E[X])2 +

∞∑
n=1

n!‖fn‖2L2(Rn
+,(dx/2)⊗n). (2.12)

The operator L defined on linear combinations of multiple stochastic integrals as

LIn(fn) := −∇∗∇tIn(fn) = −nIn(fn), fn ∈ L̂2(Rn+),

is called the Ornstein-Uhlenbeck operator. By (2.11) the operator is invertible for
centered X ∈ L2(Ω), and its inverse operator L−1 is given by

L−1In(fn) = − 1

n
In(fn), n ≥ 1. (2.13)

In fact, we can easily derive the form of any real power of −L, i.e. it holds

(−L)αIn(fn) = nαIn(fn), n ≥ 1, α ∈ R.

We also recall that, by Proposition 5.3 in [42], for every fn ∈ L̂2(Rn+) there exists

f̄n ∈ L̂2(Rn+) given by

f̄n(t1, . . . , tn) = Ψt1 · · ·Ψtnfn(t1, . . . , tn), (2.14)

satisfying (2.6) and such that In(fn) = In(f̄n), where

Ψtif(t1, . . . , tn) := f(t1, . . . , tn)− 1

2

∫ 2bti/2c+2

2bti/2c
f(t1, . . . , ti−1, s, ti+1, . . . , tn)ds,

i = 1, . . . , n, t1, . . . , tn ∈ R+. We end this section with the following multiplication formula
for multiple stochastic integrals, see Proposition 5.1 in [40]. Letting n ∧m := min(n,m),
for 0 ≤ l ≤ k ≤ n∧m we define the contraction fn ?lk gm of fn ∈ L̂2(Rn+) and gm ∈ L̂2(Rm+ )

as

fn ?
l
k gm(y1, . . . , yn−l, z1, . . . , zm−k) (2.15)

:=
1

2l

∫
Rl

+

fn(x1, . . . , xl, y1, . . . , yn−l)gm(x1, . . . , xl, y1, . . . , yk−l, z1, . . . , zm−k)dx1 · · · dxl,
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and we let fn ?̃
l
kgm denote the symmetrization

fn ?̃
l
k gm(x1, . . . , xn+m−k−l)

:=
1∆m+n−k−l

(x1, . . . , xn+m−k−l)

(m+ n− k − l)!
∑

σ∈Σm+n−k−l

fn ?
l
k gm(xσ(1), . . . , xσ(m+n−k−l)).

Then, for fn ∈ L̂2(Rn+) and gm ∈ L̂2(Rm+ ) satisfying (2.6), the following multiplication
formula holds:

In(fn)Im(gm) =

m∧n∑
k=0

k!

(
m

k

)(
n

k

) k∑
i=0

(
k

i

)
Im+n−k−i

(
fn ?̃

i
kgm

)
, (2.16)

whenever fn ?ik gm ∈ L2(Rm+n−k−i
+ ) for every 0 ≤ i ≤ k ≤ m ∧ n.

2.2 Multiple stochastic integrals and Hoeffding decomposition

Although the multiple integrals (chaoses) seem a little abstract, they are in fact a
very well known objects. Namely, we can call them degenerate U -statistics. To explain
the context, let us recall the definition of the Hoeffding decomposition.

Given (X1, . . . , Xn) a family of independent random variables and [n] := {1, . . . , n},
n ≥ 1, the family (FJ)J⊂[n] of σ-algebras is defined as

FJ := σ(Xj : j ∈ J), J ⊂ [n].

Definition 2.3. A centered F[n]-measurable random variable Wn admits a Hoeffding
decomposition if it can be written as

Wn =
∑
J⊂[n]

WJ , (2.17)

where (WJ)J⊂[n] is a family of random variables such that WJ is FJ -measurable, J ⊂ [n],
and

E [WJ | FK ] = 0, J 6⊆ K ⊂ [n].

If we take the sum over |J | = d for a fixed 1 ≤ d ≤ n, we call Wn a degenerate U -statistic
of order d. In particular, for any U -statistic we may write

Wn =

n∑
d=1

W (d)
n , (2.18)

where W (d)
n are the degenerate U -statistics of order d

For J = {k1, . . . , k|J|} with k1 < k2 < · · · < k|J|, any WJ in Definition 2.3 can be
written as a function WJ = gJ

(
Xk1 , . . . , Xk|J|

)
of
(
Xk1 , . . . , Xk|J|

)
, with in particular

E
[
gJ (Xj : j ∈ J) | FJ\{k}

]
= 0, k ∈ J, (2.19)

and

Wn =
∑
J⊂[n]

gJ
(
Xk1 , . . . , Xk|J|

)
. (2.20)

Note that if Xi = Ui, i ∈ [n], then the chaos decomposition (2.11) coincides with the
Hoeffding decomposition (2.17), by taking

WJ :=
1

|J |!
f|J|
(
2k1 + 1 + U1, . . . , 2k|J|−1 + 1 + U|J|−1, 2k|J| + 1 + U|J|

)
, J ⊂ [n],
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and condition (2.19) is equivalent to (2.6). Furthermore, any sequence (X1, . . . , Xn) of
independent random variables with distribution functions (FX1

, . . . , FXn
) is distributed

as (
F−1
X1

(
U1 + 1

2

)
, . . . , F−1

Xn

(
Un + 1

2

))
,

where
(
F−1
X1
, . . . , F−1

Xn

)
are the generalized inverses of (FX1 , . . . , FXn). For instance, for

f1 ∈ L2([0, 2n]), the stochastic integral

I1(f1) :=

n−1∑
k=0

(
f1(2k + 1 + Uk)− 1

2

∫ 2k+2

2k

f1(t)dt

)

represents a sum of independent centered random variables (degenerate U -statistic of
order 1)

I1(f1)
d
=

n∑
k=1

(Xk − E[Xk]) (2.21)

by taking f1(x) = F−1
Xk

((x + 2)/2 − k), x ∈ [2k − 2, 2k), 1 ≤ k ≤ n. Analogously, we may
represent any degenerate U -statistic of order d as Id(fd) for suitable function fd and
therefore the chaos decomposition (2.11) becomes the Hoeffding decomposition (2.18).
For this reason, investigating the multiple stochastic integrals is very natural. It also
explains the special attention we put on the sums of the multiple stochastic integrals, as
it allows us to deal with any U -statistic in the most general sense.

2.3 Fourth moment bound

The main result of this subsection is the below-given fourth order moment bound
stated in terms of the gradient operator ∇.

Proposition 2.4. For any X ∈ L4(Ω) we have

E
[
X4
]
≤ 36E[‖∇X‖4L2(R+)] + 15E[‖∇X‖4L4(R+)] + 2

(
E
[
X2
])2

. (2.22)

Before passing to the proof, we present a covariance relation, that can be obtained
as in Proposition 2.1 in [23] and also plays a crucial role in the proof of Theorem 3.1.

Lemma 2.5. Let α ∈ R and X,Y ∈ L2(Ω) such that Lα−1X ∈ Dom(∇) and L−αY ∈
Dom(∇). Then we have the covariance relation

Cov (X,Y ) = E

[∫ ∞
0

(∇t(−L)α−1X)(∇t(−L)−αY )
dt

2

]
. (2.23)

Proof. We have

Cov (X,Y ) = E[(X − E[X])(Y − E[Y ])]

= −E[L(−L)α−1(X − E[X])(−L)−α(Y − E[Y ])]

= E[∇∗∇(−L)α−1(X − E[X])(−L)−α(Y − E[Y ])]

=
1

2
E

[∫ ∞
0

(∇t(−L)α−1X)(∇t(−L)−αY )dt

]
.

Proof of Proposition 2.3. By the covariance relation (2.23), we have

E
[
X4
]

= Var
[
X2
]

+
(
E
[
X2
])2
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=
1

2
E

[∫ ∞
0

∇t
(
X2 − E

[
X2
])
∇tL−1

(
X2 − E

[
X2
])
dt

]
+
(
E
[
X2
])2

≤ 1

2

√
E

[∫ ∞
0

|∇t(X2)|2dt
]
E

[∫ ∞
0

‖∇tL−1 (X2 − E [X2]) ‖2dt
]

+
(
E
[
X2
])2

≤ 1

2
E

[∫ ∞
0

|∇t(X2)|2dt
]

+
(
E
[
X2
])2

,

where we applied (2.8), (2.12) and (2.13). Since

(X ◦ Φt)∇tX = X∇tX + (X ◦ Φt −X)∇tX

= X∇tX +

(
∇tX −

(
X − 1

2

∫ 2bt/2c+2

2bt/2c
X ◦ Φudu

))
∇tX,

by the relations (2.3)-(2.2) and the bound (a + b + c)2 ≤ 3
(
a2 + b2 + c2

)
, a, b, c ≥ 0, we

have

E

[∫ ∞
0

|∇t(X2)|2dt
]

= E

[∫ ∞
0

(
2(X ◦ Φt)∇tX −

1

2

∫ 2bt/2c+2

2bt/2c

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

≤ 3E

[
4

∫ ∞
0

(X∇tX)
2
dt+ 4

∫ ∞
0

((
∇tX −

(
X − 1

2

∫ 2bt/2c+2

2bt/2c
X ◦ Φudu

))
∇tX

)2

dt

+
1

4

∫ ∞
0

(∫ 2bt/2c+2

2bt/2c

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

= 12E

[∫ ∞
0

(X∇tX)
2
dt

]

+ 12E

[∫ ∞
0

∫ 2bt/2c+2

2bt/2c

((
∇tX −

(
X ◦ Φv −

1

2

∫ 2bt/2c+2

2bt/2c
X ◦ Φudu

))
∇tX

)2
dv

2
dt

]

+
3

4
E

[∫ ∞
0

(∫ 2bt/2c+2

2bt/2c

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

= 12E

[
X2

∫ ∞
0

(∇tX)
2
dt

]
+ 12E

[∫ 2bt/2c+2

2bt/2c

(
(∇tX −∇vX)∇tX

)2 dv
2
dt

]

+
3

4
E

[∫ ∞
0

(∫ 2bt/2c+2

2bt/2c

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

≤ 12

√√√√E[X4 ]E

[(∫ ∞
0

|∇tX|2dt
)2
]

+12E

[∫ ∞
0

|∇tX|2
∫ 2bt/2c+2

2bt/2c

(
|∇tX|2+|∇vX|2

)dv
2
dt

]

+ 3E

[∫ ∞
0

(∇tX)4dt

]

≤ 12

√√√√E[X4 ]E

[(∫ ∞
0

|∇tX|2dt
)2
]

+ 15E

[∫ ∞
0

(∇tX)4dt

]
.

Thus, we get

E
[
X4
]
≤ 6

√√√√E [X4]E

[(∫ ∞
0

|∇tX|2dt
)2
]

+
15

2
E

[∫ ∞
0

(∇tX)4dt

]
+
(
E
[
X2
])2

.
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Denoting

a =

√√√√E[(∫ ∞
0

|∇tX|2dt
)2
]
, b =

15

2
E

[∫ ∞
0

(∇tX)4dt

]
+
(
E
[
X2
])2

and x =
√
E [X4], we rewrite the last inequality as x2 ≤ 6ax + b, which gives x ≤

3a+
√

9a2 + b and consequently x2 ≤ 2(9a2 + b) + 18a2 = 36a2 + 2b, which yields (2.22).

3 General results

3.1 Statements and discussion

Our main result is a Berry-Esseen bound on the Kolmogorov distance dK(X,N )

between the standard normal distribution N on R and a general functional X of the
uniform i.i.d. sequence (Uk)k∈N on [−1, 1], using the operators ∇ and L. This result
extends Proposition 4.1 in [25], see also Theorem 3.1 in [24] and Proposition 2.1 in [41],
from functionals of Bernoulli sequences to more general functionals of independent
random variables. We note that in comparison with Theorem 4.2 of [26], which is
obtained in a discrete-time integration by parts setting, the variance term (3.2) in
Theorem 3.1 can be easier to control, in particular it vanishes when X = I1(f1) is a
first chaos random variable. Before stating our main result, let us mention that the
Wasserstein distance has been approached in the framework of this paper in [40] and
[42], which resulted in the bound (see Proposition 2.4 in [42])

dW (X,N ) ≤ |1− E[X2]|+

√
Var

[∫ ∞
0

∇tX∇tL−1X
dt

2

]
(3.1)

+ 2

√
E[((−L)−1/2X)2]

∫ ∞
0

E [|∇tX|4]
dt

2
.

Below, we present an extension of (3.1) to the Kolmogorov distance. This general result
will be specialized to sums of multiple stochastic integrals in the next two propositions.
Those results will be applied to general and degenerate U -statistics in Sections 4 and 5.

Theorem 3.1. Let X ∈ Dom(∇) be such that E[X] = 0. We have

dK(X,N ) ≤ |1− E[X2]|+

√
Var

[∫ ∞
0

∇tX∇tL−1X
dt

2

]
(3.2)

+
3

2

√
E

[∫ ∞
0

(∇tX)4dt

]((
E
[
X4
]
E

[(∫ ∞
0

|∇tL−1X|2dt
)2
])1/4

+

√
π

2

√
E
[
((−L)−

1
2X)2

])

+4

(
E

[∫ ∞
0

((
I + 2(−L)

1
2

) (
|∇tX|2

))2

dt

]
E

[∫ ∞
0

((
I + 2(−L)

1
2

)(
(∇tL−1X)2

))2

dt

])1/4

.

Direct application of Theorem 3.1 might be quite cumbersome, however, this is
rather typical in the area. One difficulty is estimation of the variance term, the other
one is involvement of the operator L−1. The next proposition applies Theorem 3.1 to
sums of multiple stochastic integrals, which, as explained in Section 2.2, covers U -
statistics in full generality. It extends Theorem 3.1 of [41] from functionals of Bernoulli
sequences to functionals of independent random variables, see also earlier results such
as Proposition 3.7 in [30] in the case of multiple Wiener integrals. In the sequel, we
denote dW/K(X,Y ) := max {dW (X,Y ), dK(X,Y )}.
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Proposition 3.2. For any X ∈ L2(Ω) written as a sum X =
∑d
k=1 Ik(fk) of multiple

stochastic integrals where fk ∈ L̂2(Rk+) satisfies (2.6), k = 1, . . . , d, we have

dW/K(X,N ) ≤ E
[∣∣1− E[X2]

∣∣] (3.3)

+Cd

√ ∑
0≤l<i≤d

∥∥fi ?li fi∥∥2

L2(Ri−l
+ )

+
∑

1≤l<i≤d

(∥∥fi ?ll fi∥∥2

L2(R
2(i−l)
+ )

+
∥∥fl ?ll fi∥∥2

L2(Ri−l
+ )

)
,

for some Cd > 0.

We note that the constant Cd might be precisely calculated from the proof of Propo-
sition 3.2. The simplest example of application of Proposition 3.2 to sum of multiple
stochastic integrals is the quadratic form discussed in Section 5, which leads to the
bound (5.8).

Next, due to the identity ∇tL−1Id(fd) = Id−1 (fd(t, ∗)), d ≥ 1, the bound in Theo-
rem 3.1 can be significantly simplified in the case of multiple stochastic integrals Id(fd),
which represent degenerate U -statistics.

Proposition 3.3. For X = Id(fd) a multiple stochastic integral of order d ≥ 1, we have

dW/K(X,N )

≤ |1− E[X2]|+ 1

d

√
Var

[∫ ∞
0

(∇tX)2
dt

2

]
+

12 + 5 4
√
E [X4]√
d

√
E

[∫ ∞
0

(∇tX)4dt

]

≤ |1− E[X2]|+

√
Var

[∫ ∞
0

(∇tX)2dt

]
+ 31

√
E

[∫ ∞
0

(∇tX)4dt

]
. (3.4)

The bound (3.4) has been obtained for the Wasserstein distance in [42] with different
constants, see Proposition 2.4 therein. As an example, recall that by (2.21), a sum of
independent random variables Sn =

∑n
k=1Xk might be represented as a single stochastic

integral I1(f1) of f1. Then, since the variance term in (3.4) vanishes for X = I1(f1), for
S̃n = (Sn − E[Sn])/

√
Var[Sn] we get

dW/K
(
S̃n,N

)
≤ 31∑n

k=1 Var[Xk]

√√√√ n∑
k=1

∫ 1

−1

(
F−1
Xk

(
x+1

2

)
− E[Xk]

)4
dx

=
31∑n

k=1 Var[Xk]

√√√√2

n∑
k=1

E
[
(Xk − E[Xk])

4
]
,

which provides a quantitative bound with explicit constant in the Kolmogorov distance
for the L4 Lyapunov Central Limit Theorem, and implies the fourth moment bound

dW/K
(
S̃n,N

)
≤ 31

√
2

√∣∣E[S̃4
n

]
− 3
∣∣.

In order to formulate the bound (3.4) in a framework closer to e.g. [26], let us assume
that X as written as X = f(U) with U = (U1, U2, U3, . . .) and let

∆jf(U,U ′) = f(U)− f
(
U1, . . . , Uj−1, U

′
j , Uj+1, . . .

)
,

where U ′ = (U ′1, U
′
2, U

′
3, . . .) is an independent copy of U . Then, for j ∈ N and sufficiently

integrable h : R→ R we have

E

[∫ 2j+2

2j

h(∇tf(U))
dt

2

]
= E

[
h
(
E[∆jf(U,U ′) | U ]

)]
,
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hence (3.4) can be rewritten as

dW/K(X,N ) ≤ |1− E[X2]|

+ 2

√√√√√Var

 ∞∑
j=1

Ej
[(
E[∆jf(U,U ′)|U ]

)2]+ 31
√

2

√√√√ ∞∑
j=1

E
[(
E [∆jf(U,U ′)|U ]

)4]
,

where by Ej we denote the expectation with respect to Uj only.

3.2 Proofs

Proof of Theorem 3.1. The beginning of the proof of Theorem 3.1 follows the
general argument applied in the literature on the Stein method and the Malliavin
calculus in discrete settings, see [36], [34], [37], [44], [24], [25]. However, the rest of
the proof presents significant differences as specific arguments are needed to bound
the remainder terms using the Kolmogorov distance. For any x ∈ R, let fx denote the
unique bounded solution of the Stein equation

f ′x(z)− zfx(z) = 1{z≤x} − P (N ≤ x) , (3.5)

which is continuous, infinitely differentiable on R\{x}, and satisfies 0 < fx(z) <
√
π/8

and |f ′x(z)| ≤ 1, z ∈ R\{x}, see Lemmas 2.2 and 2.3 in [6]. From the Stein equation (3.5)
we have the bound

dK(X,N ) ≤ sup
x∈R

E[f ′x(X)−Xfx(X)].

For every f ∈ C1(R), the finite difference operator ∇ satisfies

∇tf(X) =
1

2

∫ 2bt/2c+2

2bt/2c
(f(X ◦ Φt)− f(X ◦ Φs))ds

=
1

2

∫ 2bt/2c+2

2bt/2c

∫ X◦Φt−X

X◦Φs−X
f ′(X + u)duds

=
1

2

∫ 2bt/2c+2

2bt/2c

(∫ X◦Φt−X

X◦Φs−X
(f ′(X + u)− f ′(X))du+

∫ X◦Φt−X

X◦Φs−X
f ′(X)du

)
ds

= f ′(X)∇tX +
1

2

∫ 2bt/2c+2

2bt/2c

∫ X◦Φt−X

X◦Φs−X
(f ′(X + u)− f ′(X))du ds, t ∈ R+.

Hence by the duality relation (2.9), we have

E[f ′(X)−Xf(X)] = E[f ′(X)− f(X)(−∇∗∇)L−1X]

= E

[
f ′(X)− 1

2

∫ ∞
0

∇tf(X)(−∇tL−1X)dt

]
= E

[
f ′(X)

(
1− 1

2

∫ ∞
0

∇tX(−∇tL−1X)dt

)]
+

1

4
E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

∫ X◦Φt−X

X◦Φs−X
(f ′(X + u)− f ′(X))duds∇tL−1Xdt

]
. (3.6)

By the covariance relation (2.23) applied with α = 0 and the fact that E[X] = 0, we have

E
[
X2
]

= E

[∫ ∞
0

(∇tX)(−∇tL−1X)
dt

2

]
,
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hence from the bound ‖f ′x‖∞ ≤ 1 and Jensen’s inequality we obtain∣∣∣∣E [f ′(X)

(
1− 1

2

∫ ∞
0

∇tX(−∇tL−1X)dt

)]∣∣∣∣
≤ E

[∣∣∣∣1− 1

2

∫ ∞
0

∇tX(−∇tL−1X)dt

∣∣∣∣]
≤ |1− E[X2]|+ E

[∣∣∣∣12
∫ ∞

0

∇tX(−∇tL−1X)dt− E
[∫ ∞

0

(∇tX)(−∇tL−1X)
dt

2

]∣∣∣∣]
≤ |1− E[X2]|+ Var

[∫ ∞
0

∇tX(−∇tL−1X)
dt

2

]
. (3.7)

Next, from the Stein equation (3.5) we have∫ X◦Φt−X

X◦Φs−X
(f ′x(X + u)− f ′x(X))du = As,t(x,X) +Bs,t(x,X), x ∈ R,

where

As,t(x,X) :=

∫ X◦Φt−X

X◦Φs−X
((X + u)fx(X + u)−Xfx(X))du

and

Bs,t(x,X) :=

∫ X◦Φt−X

X◦Φs−X

(
1{X+u≤x} − 1{X≤x}

)
du.

Thus, applying this and (3.7) to (3.6), we get

|E[f ′(X)−Xf(X)]| ≤ |1− E[X2]|+ Var

[ ∫ ∞
0

∇tX(−∇tL−1X)
dt

2

]
(3.8)

+
1

4

∣∣∣∣E[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c
As,t(x,X)ds∇tL−1Xdt

]∣∣∣∣
+

1

4

∣∣∣∣E[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c
Bs,t(x,X)ds∇tL−1Xdt

]∣∣∣∣.
Using the inequality

|(u+ w)fx(u+ w)− wfx(w)| ≤
(
|w|+

√
2π

4

)
|u|, u, w ∈ R,

see Lemma 2.3 in [6], we estimate

|As,t(x,X)| ≤
∫ max(X◦Φs−X,X◦Φt−X)

min(X◦Φs−X,X◦Φt−X)

(
|X|+

√
2π

4

)
|u|du

≤

(√
2π

4
+ |X|

)∫ |X◦Φt−X|

|X◦Φs−X|
|u|du

=
1

2

(√
2π

4
+ |X|

)(
|X ◦ Φs −X|2 + |X ◦ Φt −X|2

)
.

Then, by the Cauchy-Schwarz inequality we have∣∣∣∣E[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c
As,t(x,X)ds∇tL−1Xdt

]∣∣∣∣
≤ 1

2
E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

(√
2π

4
+ |X|

)(
|X ◦ Φt −X|2 + |X ◦ Φs −X|2

)
|∇tL−1X|ds dt

]
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≤ 1

2

√
E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

(
|X ◦ Φt −X|2 + |X ◦ Φs −X|2

)2

ds dt

]

×

(√
π

2

√
E

[∫ ∞
0

(∇tL−1X)2dt

]
+

√
2E

[∫ ∞
0

(X∇tL−1X)2dt

])
. (3.9)

Next, by the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), a, b, c ≥ 0, formula (2.23) with α = 0

and the relation (2.3), we get

E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

(
|X ◦ Φt −X|2 + |X ◦ Φs −X|2

)2

ds dt

]
=

1

2
E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

∫ 2bt/2c+2

2bt/2c

(
|X ◦ Φt −X ◦ Φv|2 + |X ◦ Φs −X ◦ Φv|2

)2

dv ds dt

]
=

1

2
E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

∫ 2bt/2c+2

2bt/2c

(
|∇tX −∇vX|2 + |∇sX −∇vX|2

)2

dv ds dt

]
≤ E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

∫ 2bt/2c+2

2bt/2c

(
|∇tX|2 + |∇sX|2 + 2|∇vX|2

)2
dv ds dt

]
≤ 3E

[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

∫ 2bt/2c+2

2bt/2c
(∇tX)4 + (∇sX)4 + 4(∇vX)4dv ds dt

]
= 72E

[∫ ∞
0

(∇tX)4dt

]
.

Furthermore, by Lemma 2.5 applied to X and (−L)−1X with α = 1/2, we have

E

[∫ ∞
0

(
∇tL−1X

)2
dt

]
= 2E

[(
(−L)−1/2X

)2]
and

E

[∫ ∞
0

(X∇tL−1X)2dt

]
≤

√√√√E [X4] E

[(∫ ∞
0

(∇tL−1X)2

)2

dt

]
.

Applying the last three inequalities to (3.9), we finally obtain∣∣∣∣∣E
[ ∫ ∞

0

∫ 2bt/2c+2

2bt/2c
As,t(x,X)ds∇tL−1Xdt

]∣∣∣∣∣
≤ 6

√
E

∫ ∞
0

(∇tX)4dt

((
E
[
X4
]
E

[(∫ ∞
0

(∇tL−1X)2

)2

dt

])1/4

+

√
π

2

√
E
[
((−L)−1/2X)2

])
.

Regarding the last term in (3.8), we use (2.3) and the equivalence (∇tL−1X) ◦ Φv =

(∇tL−1X), which is valid for 2bt/2c ≤ v < 2bt/2c+ 2, and get∣∣∣∣∣E
[ ∫ ∞

0

∫ 2bt/2c+2

2bt/2c
Bs,t(x,X)ds∇tL−1Xdt

]∣∣∣∣∣
=

∣∣∣∣E[ ∫ ∞
0

∫ 2bt/2c+2

2bt/2c

(∫ X◦Φt

X◦Φs

(1{u≤x} − 1{X≤x})du

)
ds∇tL−1Xdt

]∣∣∣∣
=

1

2

∣∣∣∣E[ ∫ ∞
0

(∫ 2bt/2c+2

2bt/2c

∫ 2bt/2c+2

2bt/2c

∫ X◦Φt

X◦Φs

(1{u≤x} − 1{X◦Φv≤x})duds dv

)
∇tL−1Xdt

]∣∣∣∣
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=
1

2

∣∣∣∣∣E
[ ∞∑
m=0

∫ 2m+2

2m

Km(t,X)∇tL−1Xdt

]∣∣∣∣∣, (3.10)

where

Km(t, x,X) :=

∫ 2m+2

2m

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φv≤x}

)
du ds dv, 2m ≤ t < 2m+ 2.

Next, we rewrite Km(t,X) as follows

Km(t, x,X) =

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

∫ 2m+2

2m

(
1{X◦Φt≤x} − 1{X◦Φv≤x}

)
dv du ds

+

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

∫ 2m+2

2m

(
1{u≤x} − 1{X◦Φt≤x}

)
dv du ds

= 4∇tX∇t1{X≤x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φt≤x}

)
du ds

= −4∇tX∇t1{X>x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φt≤x}

)
du ds, (3.11)

where we used the equality ∇t1{X≤x} = −∇t1{X>x}. Next, we consider two cases.
(i) If X ◦ Φt > x, we have

Km(t, x,X) = −4∇tX∇t1{X>x} + 2

∫ 2bt/2c+2

2bt/2c

∫ X◦Φt

X◦Φs

1{u≤x} du ds

= −4∇tX∇t1{X>x} + 2

∫ 2bt/2c+2

2bt/2c
1{X◦Φs≤x}(x−X ◦ Φs) ds. (3.12)

Note that the last expression depends only on m := bt/2c and may be bounded for
x <

∫ 2m+2

2m
X ◦ Φu du/2 as follows

0 ≤
∫ 2bt/2c+2

2bt/2c
1{X◦Φs≤x}(x−X ◦ Φs) ds

= x

∫ 2m+2

2m

1{X◦Φs≤x} ds−
∫ 2m+2

2m

X ◦ Φudu+

∫ 2m+2

2m

1{X◦Φu>x}X ◦ Φudu

=

(
x− 1

2

∫ 2m+2

2m

X ◦ Φu du

)∫ 2m+2

2m

1{X◦Φs≤x} ds

+

∫ 2m+2

2m

1{X◦Φu>x}X ◦ Φudu−
1

2

∫ 2m+2

2m

1{X◦Φs>x}ds

∫ 2m+2

2m

X ◦ Φudu

≤
∫ 2m+2

2m

(
1{X◦Φu>x} −

1

2

∫ 2m+2

2m

1{X◦Φs>x}ds

)
X ◦ Φudu

=

∫ 2m+2

2m

∇u1{X>x}X ◦ Φudu

=

∫ 2m+2

2m

∇u1{X>x}∇uXdu,

where we used (2.4) to obtain the last identity. Consequently, for x <
∫ 2m+2

2m
X ◦ Φu du/2

we get ∫ 2m+2

2m

1{X◦Φt>x}Km(t,X)∇tL−1Xdt
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≤ 4

∫ 2m+2

2m

∣∣∇tX∇t1{X>x}∇tL−1X
∣∣ dt (3.13)

+ 2

∣∣∣∣∫ 2m+2

2m

∇uX∇u1{X>x}du
∣∣∣∣ ∣∣∣∣∫ 2m+2

2m

∇t1{X>x}∇tL−1Xdt

∣∣∣∣ ,
where we also changed 1{X◦Φt>x} into ∇t1{X>x} in the last integral, which is justified

by (2.4). In order to obtain the same bound in the case x ≥
∫ 2m+2

2m
X ◦ Φu du/2, we

rewrite (3.12) as

Km(t, x,X) = −4∇tX∇t1{X>x} + 2

∫ 2bt/2c+2

2bt/2c
1{X◦Φs≤x}(x−X ◦ Φt +∇tX −∇sX) ds

= 2

∫ 2bt/2c+2

2bt/2c
1{X◦Φs≤x}(x−X ◦ Φt −∇sX) ds

= 2

∫ 2m+2

2m

∇s1{X>x}∇sXds− 2

∫ 2m+2

2m

1{X◦Φs≤x} (X ◦ Φt − x) ds,

and we estimate the last integral by

0 ≤
∫ 2m+2

2m

1{X◦Φs≤x} (X ◦ Φt − x) ds

≤
∫ 2m+2

2m

1{X◦Φs≤x} ds

(
X ◦ Φt −

1

2

∫ 2m+2

2m

X ◦ Φu du

)
= −∇tX∇t1{X≤x} = ∇tX∇t1{X>x},

which shows that the inequality (3.13) is valid for all x ∈ R under the condition x <

X ◦Φt. Thus, applying the Cauchy-Schwarz inequality several times and using the bound
|∇t1{X≤x}| ≤ 1, we obtain∣∣∣∣∣E

[ ∞∑
m=0

∫ 2m+2

2m

1{X◦Φt>x}Km(t, x,X)∇tL−1Xdt

]∣∣∣∣∣
≤ 4

√√√√E[ ∞∑
m=0

∫ 2m+2

2m

∣∣∇u1{X>x}∣∣ |∇uX|2du
]
E

[ ∞∑
m=0

∫ 2m+2

2m

∣∣∇u1{X>x}∣∣ (∇uL−1X)2du

]

+4

√√√√E[ ∞∑
m=0

∫ 2m+2

2m

(∇u1{X>x})2|∇uX|2du

]
E

[ ∞∑
m=0

∫ 2m+2

2m

(∇u1{X>x})2(∇uL−1X)2du

]

≤ 8

√
E

[∫ ∞
0

∣∣∇u1{X>x}∣∣ |∇uX|2du] E [∫ ∞
0

∣∣∇u1{X>x}∣∣ (∇uL−1X)2du

]
.

By the duality relation (2.9), Hölder’s inequality and the formula (2.10), we get

E

[∫ ∞
0

∣∣∇u1{X>x}∣∣ |∇uX|2du]
= E

[∫ ∞
0

∇u1{X>x}sgn(∇u1{X>x})|∇uX|2du
]

= 2E
[
1{X>x}∇∗

(
sgn(∇u1{X>x})|∇uX|2

)]
≤ 2

√
E
[(
∇∗
(
sgn(∇u1{X>x})|∇uX|2

))2]
= 2

√
E

[∫ ∞
0

(∇uX)4dt

]
+ E

[∫ ∞
0

∫ ∞
0

(
∇s
(
sgn(∇u1{X>x})|∇uX|2

))2
ds du

]
. (3.14)
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Next, we observe that by the covariance relation (2.23) with α = 1
2 , we have

E

[∫ ∞
0

∫ ∞
0

(
∇s
(
sgn(∇u1{X>x})|∇uX|2

))2
ds du

]
= E

[ ∫ ∞
0

1{∇u1{X>x}>0}

∫ ∞
0

(
∇s
(
|∇uX|2

))2
ds

+ 1{∇u1{X>x}<0}

∫ ∞
0

(
∇s
(
−|∇uX|2

))2
ds du

]
≤ E

[∫ ∞
0

∫ ∞
0

(
∇s
(
|∇uX|2

))2
ds du

]
= 2E

[∫ ∞
0

(
(−L)1/2

(
|∇uX|2

))2

du

]
.

Applying this to (3.14), we get

E

[∫ ∞
0

∣∣∇u1{X>x}∣∣ |∇uX|2du] ≤ 2

√
E

[∫ ∞
0

((
I + 2(−L)1/2

)
(|∇uX|2)

)2
du

]
,

and analogously we obtain

E

[∫ ∞
0

∣∣∇u1{X>x}∣∣ (∇uL−1X)2du

]
≤ 2

√
E

[∫ ∞
0

((
I + 2(−L)1/2

)
((∇uL−1X)2)

)2
du

]
,

which eventually gives us∣∣∣∣∣E
[ ∞∑
m=0

∫ 2m+2

2m

1{X◦Φt>x}Km(t, x,X)∇tL−1Xdt

]∣∣∣∣∣ (3.15)

≤ 16

(
E

[∫ ∞
0

((
I + 2(−L)1/2

) (
|∇uX|2

))2

du

]

× E

[∫ ∞
0

((
I + 2(−L)1/2

)1/2 (
(∇uL−1X)2

))2

du

])1/4

. (3.16)

(ii) In case X ◦ Φt ≤ x we observe that, denoting

K̃m(t, x,X) := −4∇tX∇t1{X≥x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u<x} − 1{X◦Φt<x}

)
du ds,

which comes from (3.11) by changing weak inequalities into strict ones and conversely,
and repeating all the above argument, we arrive at∣∣∣∣∣E

[ ∞∑
m=0

∫ 2m+2

2m

1{X◦Φt≥x}K̃m(t, x,X)∇tL−1Xdt

]∣∣∣∣∣ (3.17)

≤ 16

(
E

[∫ ∞
0

((
I + 2(−L)1/2

) (
|∇uX|2

))2

du

]

× E
[∫ ∞

0

((
I + 2(−L)1/2

) (
(∇uL−1X)2

))2

du

])1/4

. (3.18)

Next, by (3.11) we have, for m = bt/2c and X ◦ Φt ≤ x,

Km(t, x,X) = −4∇tX∇t1{X>x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φt≤x}

)
du ds
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= 4∇tX∇t1{X≤x} −
∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≥x} − 1{X◦Φt≥x}

)
du ds

= 4∇tX∇t1{−X≥−x} −
∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{−u≤−x} − 1{−X◦Φt≤−x}

)
du ds

= −4∇t(−X)∇t1{−X≥−x} +

∫ 2m+2

2m

∫ −X◦Φt

−X◦Φs

(
1{u≤−x} − 1{−X◦Φt≤−x}

)
du ds

= K̃m(t,−x,−X).

Thus, using (3.17) with −x and −X instead of x and X respectively, we get∣∣∣∣∣E
[ ∞∑
m=0

∫ 2m+2

2m

1{X◦Φt≤x}Km(t, x,X)∇tL−1Xdt

]∣∣∣∣∣
=

∣∣∣∣∣E
[ ∞∑
m=0

∫ 2m+2

2m

1{−X◦Φt≥−x}K̃m(t,−x,−X)∇tL−1(−X)dt

]∣∣∣∣∣
≤ 16

(
E

[∫ ∞
0

((
I + 2(−L)1/2

) (
|∇uX|2

))2

du

]
(3.19)

× E
[∫ ∞

0

((
I + 2(−L)1/2

) (
(∇uL−1X)2

))2

du

])1/4

.

Combining (3.15) and (3.19) with (3.10), we finally obtain

1

4

∣∣∣∣∣E
[∫ ∞

0

∫ 2bt/2c+2

2bt/2c
Bs,t(x,X)ds∇tL−1Xdt

]∣∣∣∣∣
=

1

8

∣∣∣∣∣E
[ ∞∑
m=0

∫ 2m+2

2m

(
1{X◦Φt>x} + 1{X◦Φt≤x}

)
Km(t,X)∇tL−1Xdt

]∣∣∣∣∣
≤ 4

(
E

[∫ ∞
0

((
I + 2(−L)1/2

) (
|∇uX|2

))2

du

]

× E
[∫ ∞

0

((
I + 2(−L)1/2

) (
(∇uL−1X)2

))2

du

])1/4

,

which ends the proof.

�

Proof of Proposition 3.2. The bound for Wasserstein distance has been derived
in Theorem 3.2 in [42], so we will focus of the Kolmogorov distance. Since |∇tX|2 and
(∇tL−1X)2 are sums of multiple integrals of orders 2d− 2 and below, the relation (2.12)
shows the bound

E
[ ((

I + 2(−L)1/2
) (
|∇tX|2

))2 ]
≤ 2dE

[
(∇tX)

4
]
,

and

E
[ ((

I + 2(−L)1/2
) (

(∇tL−1X)2
))2 ]

≤ 2dE
[ (
∇tL−1X

)4 ]
.

Additionally, by (2.12) we also have

E
[
((−L)−1/2X)2

]
≤ E

[
X2
]
≤
√
E [X4].
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Applying these inequalities to (3.2) in Theorem 3.1, we get

dK(X,N ) ≤ |1− E[X2]|+

√
Var

[∫ ∞
0

∇tX∇tL−1Xdt

]

+
3

2

(
E
[
X4
])1/4√

E

∫ ∞
0

(∇tX)4dt

(
1 +

(
E

[(∫ ∞
0

(∇tL−1X)2dt

)2
])1/4)

+ 6d

√
E

[∫ ∞
0

(∇tX)
4
dt

]
E

[∫ ∞
0

(∇tL−1X)
4
dt

]
.

Denoting

RX :=
∑

1≤i≤j≤d

i∑
k=1

k∑
l=0

1{i=j=k=l}c
∥∥fi ?lk fj∥∥2

L̂2(Ri+j−k−l
+ )

,

it follows from the proof of Theorem 3.2 in [42] that

RX ≤ cd

 ∑
0≤l<i≤d

∥∥fi ?li fi∥∥2

L2(Ri−l
+ )

+
∑

1≤l<i≤d

(∥∥fi ?ll fi∥∥2

L2(R
2(i−l)
+ )

+
∥∥fl ?ll fi∥∥2

L2(Ri−l
+ )

) ,

(3.20)

and

Var

[∫ ∞
0

∇tX∇tL−1Xdt

]
≤ cdRX , E

[∫ ∞
0

(∇tX)4dt

]
≤ cdRX , (3.21)

for some cd ≥ 0. Taking L−1X as X in the last inequality, we also have

E

[∫ ∞
0

(∇tL−1X)4dt

]
≤ c′dRX ,

for some c′d ≥ 0. Furthermore, since

∇tL−1X =

d−1∑
k=0

Ik (fk+1(t, ·))

and the functions fk satisfy (2.6), the multiplication formula (2.16) gives∫ ∞
0

(∇tL−1X)2dt =

∫ ∞
0

∑
0≤i≤j<d−1

i∑
k=0

k∑
l=0

ci,j,l,kIi+j−k−l
(
fi+1(t, ·) ?̃lkfj+1(t, ·)

)
dt

=
∑

0≤i≤j<d−1

i∑
k=0

k∑
l=0

ci,j,l,kIi+j−k−l

(∫ ∞
0

fi+1(t, ·) ?̃lkfj+1(t, ·)dt
)

for some ci,j,l,k ≥ 0, and consequently

E

[(∫ ∞
0

(∇tL−1X)2dt

)2
]

≤ cd
∑

0≤i≤j<d

i∑
k=0

k∑
l=0

∥∥∥∥(∫ ∞
0

fi+1(t, ·) ?lkfj+1(t, ·)dt
)∥∥∥∥2

L2(Ri+j−k−l
+ )

= cd
∑

0≤i≤j<d

i∑
k=0

k∑
l=0

∥∥(fi+1 ?
l+1
k+1fj+1

)∥∥2

L2(Ri+j−k−l
+ )
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= cd

 ∑
1≤i≤j<d

i∑
k=1

k∑
1=0

1{i=j=k=l}c
∥∥(fi ?lkfj)∥∥2

L2(Ri+j−k−l
+ )

+

d∑
i=1

(
fi ?

i
ifi
)2

≤ cd
(
RX + (E[X2])2

)
.

Similarly, we get for some Ci,j,k,l ≥ 0

E
[
X4
]
≤ cdE


 ∑

0≤i≤j<d

i∑
k=0

k∑
l=0

Ci,j,l,kIi+j−k−l

(
fi ?̃

l
kfj

)2


≤ cd
∑

0≤i≤j<d

i∑
k=0

k∑
l=0

∥∥fi ?lkfj∥∥2

L2(Ri+j−k−l
+ )

= cd

RX +

d∑
i=1

(
fi ?

i
ifi
)2

+
∑

1≤i≤j≤d

∥∥fi ?0
0fj
∥∥2

L2(Ri+j
+ )


= cd

RX +

d∑
i=1

‖fi‖4L2(Ri) +
∑

1≤i≤j≤d

‖fi‖2L2(Ri) ‖fj‖
2
L2(Rj)


≤ cd

(
RX + (E[X2])2

)
.

This finally gives us

dK(X,N ) ≤ |1− E[X2]|+ cd
√
RX

(
1 +

(
(RX + E[X2])1/4 + 1

)2 )
.

Since dK(X,N ) ≤ 1, we may assume that E[X2] and RX are bounded, which implies

dK(X,N ) ≤ |1− E[X2]|+ cd
√
RX ,

and the assertion of the corollary follows from (3.20).

�

Proof of Proposition 3.3. First, let us observe that we have

(−L)1/2Id(fd) =
1√
d
Id(fd),

and, by the covariance identity (2.23) applied with α = 0,

E[X2] =
1

d
E

[∫ ∞
0

|∇tX|2dt
]
. (3.22)

Then, Theorem 3.1 and the bound (3.1) give us

dW/K(X,N ) ≤ |1− E[X2]|+ 1

d

√
Var

[∫ ∞
0

|∇tX|2
dt

2

]

+
3

2
√
d

√
E

∫ ∞
0

(∇tX)4dt

[(
E
[
X4
]( 1

d2
Var

[∫ ∞
0

|∇tX|2dt
]
+4(E[X2])2

))1/4

+

√
π

2

√
E [X2]

]

+
4

d

(
E

[∫ ∞
0

((
I + 2(−L)1/2

) (
|∇tX|2

))2

dt

])1/2

.
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Since dK(X,N ) ≤ 1 by definition, we may assume that
√

Var
[∫∞

0
|∇tX|2dt/2

]
≤ d and

E
[
X2
]
≤ 2. Hence we get

(
E
[
X4
]( 1

d2
Var

[∫ ∞
0

|∇tX|2dt
]

+ 4(E[X2])2

))1/4

+

√
π

2

√
E [X2]

≤ 4
√
E [X4]

(
4
√

18 +

√
π

2

)
≤ 10

3
4
√
E [X4].

Furthermore, since |∇uX|2 is a sum of multiple integrals of orders 2d− 2 and below, we
have by (2.12)

E
[((

2(−L)1/2 + I
)
(|∇tX|2)

)2] ≤ (2
√

2d− 2 + 1
)2

E
[
(∇tX)

4
]
≤ 9dE

[
(∇tX)

4
]
.

Combining all together we obtain the first inequality from the assertion. Next, applying
Proposition 2.4 and enlarging some constants, we get

dW/K(X,N )

≤ |1− E[X2]|+

√
Var

[∫ ∞
0

|∇tX|2dt
]

+

√
E

[∫ ∞
0

(∇tX)4dt

]

×

(
12 +

5√
d

((
36E

[(∫ ∞
0

|∇tX|2dt
)2
]

+ 15E

[∫ ∞
0

(∇tX)4dt

])
+ 2

(
E[X2]

)2)1/4)
.

Using once again the inequality dK(X,N ) ≤ 1, we may assume
√

Var
[∫∞

0
|∇tX|2dt

]
≤ 1,√

E
[∫∞

0
(∇tX)4dt

]
≤ 1

17 and E[X2] ≤ 2. Employing additionally (3.22), we get

12 +
5√
d

((
36E

[(∫ ∞
0

|∇tX|2dt
)2
]

+ 15E

[∫ ∞
0

(∇tX)4dt

])
+ 2

(
E[X2]

)2)1/4

= 12+
5√
d

((
36Var

[(∫ ∞
0

|∇tX|2dt
)2
]

+15E

[∫ ∞
0

(∇tX)4dt

])
+(2+36d2)

(
E[X2]

)2)1/4

≤ 12 + 5

(
36 +

15

17
+ 4(2 + 36)

)1/4

≤ 12 + 5
4
√

189 < 31,

which ends the proof.

�

4 Applications to U-statistics

4.1 General U-statistics

The next Theorem 4.1 is a consequence of Proposition 3.2, using the fact that
any random variable can be represented in distribution as a function of a uniformly
distributed random variable, and makes more precise the central limit theorem of [8, 9].
In comparison with Theorem 1.3 in [14], see also Theorem 3.7 in [12], Theorem 4.1 is
stated for the Kolmogorov distance instead of the Wasserstein distance, it applies to
Hoeffding decompositions in full generality and not only to degenerate U -statistics for
which |J | is constrained to a fixed value |J | = d for some d ∈ {1, . . . , n} in the sum (2.17).
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Theorem 4.1. Let 1 ≤ d ≤ n. For any Wn ∈ L4(Ω) admitting the Hoeffding decomposi-
tion (2.17) with |J | ≤ d, and such that E

[
W 2
n

]
= 1, we have

dW/K(Wn,N )

≤ Cd

 ∑
0≤l<i≤d

∑
|J|=i−l

E

[( ∑
|K|=l,K∩J=φ

E
[

(WJ∪K)
2 | FJ

])2]

+
∑

1≤l<i≤d

∑
|J1|=|J2|=i−l
J1∩J2=φ

E

[( ∑
|K|=l,K1∩(J1∪J2)=φ

E
[
WJ1∪KWJ2∪K | FJ1∪J2

])2]

+
∑

1≤l<i≤d

∑
|J|=i−l

E

[( ∑
|K|=l,K∩J=φ

E
[
WKWJ∪K | FJ

])2]1/2

, (4.1)

where Cd > 0 depends only on d.

Proof. By representing Xi as Xi
d
= F−1

i ((Ui + 1)/2) where F−1
i is the generalized

inverse of the cumulative distribution function Fi of Xi, i = 1, . . . , n, we rewrite (2.20) as
the sum of multiple stochastic integrals

Wn
d
=

d∑
k=1

Ik(fk),

where

fk(x1, . . . , xk) :=
1

k!

∑
J={i1,...,ik}⊂[n]

gJ

(
F−1
i1

(x1

2
−
⌊x1

2

⌋)
, . . . , F−1

ik

(xk
2
−
⌊xk

2

⌋))
(4.2)

× 1[2i1−2,2i1)×···×[2ik−2,2ik)(x1, . . . , xk),

(x1, . . . , xk) ∈ Rk+. Next, denoting

N̂m :=
{

(k1, . . . , km) : k1, . . . , km ≥ 1, ki 6= kj if i 6= j, 1 ≤ i, j ≤ m
}
,

we have

‖fi ?li fi‖2L2(Ri−l
+ )

=
1

22l

∑
j∈N̂i−l

∫
[2j1−2,2j1)×···×[2ji−l−2,2ji−l)∑
k∈N̂l

∫
[2k1−2,2k1)×···×[2kl−2,2l)

(fi(x1, . . . , xi))
2dx1 · · · dxl

2

dxl+1 · · · dxi

≤ (i− l)!(l!)2
∑
|J|=i−l

J={j1,...,ji−l}

∫
[2j1,2j1+2)×···×[2ji−l,2ji−l+2)

 ∑
|K|=l

K={k1,...,kl}

∫
[2k1,2k1+2)×···×[2kl,2l+2)

(
fi(x1, . . . , xi)

)2
dx1 · · · dxl


2

dxl+1 · · · dxi

≤ C
∑
|J|=i−l

E

[( ∑
|K|=l,K∩J=φ

E
[

(WJ∪K)
2 | FJ

])2]
,
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for some C = C(d). Similarly, we get

∥∥fi ?ll fi∥∥2

L2(R
2(i−l)
+ )

≤ C
∑

|J1|=|J2|=l−i
J1∩J2=φ

E

[( ∑
|K|=l,K∩(J1∪J2)=φ

E
[
WJ1∪KWJ2∪K | FJ1∪J2

])2]

and

∥∥fl ?ll fi∥∥2

L2(Ri−l
+ )
≤ C

∑
|J|=i−l

E

[( ∑
|K|=l,K∩J=φ

E
[
WKWJ∪K | FJ

])2]
, 1 ≤ l < i ≤ d.

We conclude by applying the above to Proposition 3.2, which yields the required bound.

4.2 Degenerate U-statistics

In this section we narrow our attention to the degenerate U -statistics of a given order
d ≥ 1, which are random variables Wn,d admitting the Hoeffding decomposition (2.17)
with |J | = d.

Theorem 4.2. For any degenerate U -statistics Wn,d ∈ L4(Ω) of order d ≥ 1, and such
that E

[
W 2
n,d

]
= 1, we have

dW/K(Wn,d,N )

≤

√√√√Var

[ ∞∑
k=1

E
[ (
Wn,d − E

[
Wn,d|{Xk}c

])2 |{Xk}c
]]

+ 24

√√√√2E

∞∑
k=1

E
[(
Wn,d − E

[
Wn,d|{Xk}c

])4]

≤ Cd

( ∑
0≤l<d

∑
|J|=d−l

E

[( ∑
|K|=l,K∩J=φ

E
[

(WJ∪K)
2 | FJ

])2]

+
∑

1≤l<d

∑
|J1|=|J2|=d−l
J1∩J2=φ

E

[( ∑
|K|=l,K1∩(J1∪J2)=φ

E
[
WJ1∪KWJ2∪K | FJ1∪J2

])2])1/2

,

where {Xk}c = {X1, . . . , Xk−1, Xk+1, . . . , Xn} and Cd > 0 depends only on d.

Proof. The first bound is just the latter bound from Proposition 3.3 rewritten in
a different form. Namely, it is enough to take fd as in (4.2) and then we have for
t ∈ [2k, 2k + 2)

∇tWn,d = E [Wn,d | {Xk}c, Xk = t]− E [Wn,d | {Xk}c] .

The other bound in the assertion follows from Proposition 3.3 in view of (3.21), (3.20) –
where the last sum is vanishing – and the proof of Theorem 4.1.

Weighted U-statistics

As an example, we consider degenerate weighted U -statistics. Precisely, given (X1,

. . . , Xn) an i.i.d. sequence of random variables with distribution ν, we define

Un,d =

(
n

d

)−1 ∑
1≤k1<···<kd≤n

w(k1, . . . , kd)g (Xk1 , . . . , Xkd) , 1 ≤ d ≤ n, (4.3)
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where w(k1, . . . , kd) ∈ R is symmetric and vanishes on diagonals, and g (xk1 , . . . , xkd) ∈
L2(Rd+, ν

⊗d), 1 ≤ k1 < · · · < kd ≤ n, is symmetric and satisfies

E [g (X1, x2, . . . xd)] = 0, (x2, . . . , xd) ∈ Rd−1. (4.4)

The variance σ2 of Un,d is given by

σ2 := Var[Un,d] =

(
n

d

)−2

‖g‖2L2(Rd,ν⊗d)

∑
1≤k1<···<kd≤n

w2(k1, . . . , kd).

The assumption (4.4) plays a technical role, which helps in simplifying the deriva-
tions. Nevertheless, it covers important examples of U -statistics such as quadratic
forms and their multidimensional generalizations. Sharp bounds have been provided
in [7] in case (4.4) is not satisfied, but only in the case of classical (i.e. non-weighted)
U -statistics. See also [24] for weighted first order U -statistics based on symmetric
Rademacher sequences, and [32] for a fourth moment type central limit theorem in case
g(x1, . . . , xn) = x1 · · ·xn and X1 has a vanishing third moment.

In order to formulate the next result, given ν a probability measure on R+ we use
the notation

fn
(ν)
? k
l
gm(y1, . . . , yn−l, z1, . . . , zm−k) :=

1

2l

∫
Rl

+

fn(x1, . . . , xl, y1, . . . , yn−l) (4.5)

×gm(x1, . . . , xl, y1, . . . , yk−l, z1, . . . , zm−k)ν(dx1) · · · ν(dxl),

where fn ∈ L2(Rn+, ν
⊗n), gm ∈ L2(Rn+, ν

⊗m), which is a generalization of (2.15). Never-
theless, the two definitions are used in different contexts since ν is a probability measure
and (4.5) can be interpreted as an expected value of function of a random vector, while
the contraction (2.15) can be used to compute the expected value of a stochastic integral.

Theorem 4.3. Let Un,d be a degenerate weighted U -statistics of the form (4.3). We have

dW/K

(
Un,d
σ

,N
)

≤ Cd

max1≤l≤d−1

{
‖g

(ν)
? l

l
g‖L2(Rd,ν⊗(d−l))

√∑
k,r∈Nd−l

(∑
m∈Nl w(k,m)w(r,m)

)2}
‖g‖2

L2(Rd,ν⊗d)

∑
1≤k1,...,kd≤n w

2(k1, . . . , kd)

≤ Cd
‖g‖2L4(Rd,ν⊗d)

‖g‖2
L2(Rd,ν⊗d)

max1≤l≤d−1

√∑
k,r∈Nd−l

(∑
m∈Nl w(k,m)w(r,m)

)2∑
m∈Nd w2(m)

for some Cd > 0 depending only on d ∈ {1, . . . , n}, where ν denotes the distribution of
X1.

Proof. By Theorem 4.2, we have

dW/K

(
Un,d
σ

,N
)

≤ cd
σ2

(
n

d

)−2
( ∑

0≤l≤d−1

∫
Rd−l

(∫
Rl

g2(x, y)ν⊗l(dx)

)2

ν⊗(d−l)(dy)
∑

k∈Nd−l

 ∑
m∈Nl

w2(k,m)

2

+
∑

1≤l≤d−1

∫
Rd−l

∫
Rd−l

(∫
Rl

g(x, y)g(x, z)ν⊗l(dx)

)2

ν⊗(d−l)(dy)ν⊗(d−l)(dz)
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×
∑

k,r∈Nd−l

 ∑
m∈Nl

w(k,m)w(r,m)

2)1/2

.

Applying the inequality

∑
k∈Nd−l

 ∑
m∈Nl

w2(k,m)

2

≤
∑

k,r∈Nd−l

 ∑
m∈Nl

w(k,m)w(r,m)

2

,

to the terms in the first sum, as well as the inequality∫
Rd−l

∫
Rd−l

(∫
Rl

g(x, y)g(x, z)ν⊗l(dx)

)2

ν⊗(d−l)(dy)ν⊗(d−l)(dz)

=

∫
Rd−l

∫
Rd−l

∫
Rl

g(x1, y)g(x1, z)ν
⊗l(dx1)

∫
Rl

g(x2, y)g(x2, z)ν
⊗l(dx)ν⊗(d−l)(dy)ν⊗(d−l)(dz)

=

∫
Rl

∫
Rl

(∫
Rd−l

g(x1, y)g(x2, y)ν⊗(d−l)(dy)

)2

ν⊗l(dx1)ν⊗l(dx2)

=

∫
Rl

∫
Rl

∫
Rd−l

g2(x1, y)g2(x2, y)ν⊗(d−l)(dy)ν⊗l(dx1)ν⊗l(dx2)

=

∫
Rd−l

(∫
Rl

g2(x, y)ν⊗l(dx1)

)2

ν⊗(d−l)(dy) = ‖g
(ν)
? l

l
g‖2L2(Rd,ν⊗(d−l)),

where we used Jensen’s inequality, to the terms in the latter sum, we arrive at

dW/K

(
Un,d
σ

,N
)

≤ c′d
σ2

(
n

d

)−2
( ∑

0≤l≤d−1

‖g
(ν)
? l

l
g‖2L2(Rd,ν⊗(d−l))

∑
k,r∈Nd−l

 ∑
m∈Nl

w(k,m)w(r,m)

2)1/2

≤ Cd
max1≤l≤d−1

{
‖g

(ν)
? l

l
g‖L2(Rd,ν⊗(d−l))

√∑
k,r∈Nd−l

(∑
m∈Nl w(k,m)w(r,m)

)2}
‖g‖2

L2(Rd,ν⊗d)

∑
1≤k1,...,kd≤n w

2(k1, . . . , kd)
,

which is the first bound from the assertion. To obtain the other one, it is enough to
employ Jensen’s inequality once again as follows

‖g
(ν)
? l

l
g‖L2(Rd,ν⊗(d−l)) =

∫
Rd−l

(∫
Rl

g2(x, y)ν⊗l(dx)

)2

ν⊗(d−l)(dy)

≤
∫
Rd−l

∫
Rl

g4(x, y)ν⊗l(dx)ν⊗(d−l)(dy) = ‖g‖4L4(Rd,ν⊗d).

This ends the proof.

Taking w ≡ 1, we have for 1 ≤ l ≤ d− 1√√√√√ ∑
k,r∈Nd−l

 ∑
m∈Nl

w(k,m)w(r,m)

2

≈
∑

1≤k1,...,kd≤n

w2(k1, . . . , kd) ≈ nd

as n tends to infinity, where f ≈ g for non-negative functions f, g means that there
is a constant C > 0 depending on d such that f/C ≤ g ≤ C f . Applying the above
equivalence to the first inequality of Theorem 4.3, we immediately obtain the next
corollary.
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Corollary 4.4. Let Un,d be a degenerate weighted U -statistics of the form

Un,d =

(
n

d

)−1 ∑
1≤k1<···<kd≤n

g (Xk1 , . . . , Xkd) , 1 ≤ d ≤ n.

We have

dW/K

(
Un,d
σ

,N
)
≤ Cd max

1≤l≤d−1

‖g
(ν)
? l

l
g‖L2(Rd,ν⊗(d−l))

‖g‖2
L2(Rd,ν⊗d)

.

An analogous result dealing only with the Wasserstein distance has been provided in
Theorem 3.3 of [15]. Although the explicit values of constants have not been provided
for simplicity in Theorem 4.3 and Corollary 4.4, they can be fully computed from the
proof arguments.

4.3 Random graphs

Consider the [18] random graph Gn(p) constructed by independently retaining any
edge in the complete graph Kn on n vertices with probability p ∈ (0, 1). Here, we assign
an independent sample of a random weight X to every edge in Gn(pn), and we define the
weight of a graph contained in Gn(pn) as the sum of weights of its edges. Then, consider
the renormalized random weight

W̃G
n :=

WG
n − E[WG

n ]√
Var[WG

n ]
,

where WG
n denotes the combined weight of graphs in Gn(pn) that are isomorphic to a

fixed graph G. By writing the combined weight WG
n of graphs in Gn(pn) that are isomor-

phic to a fixed graph G as a sum of multiple stochastic integrals (which is equivalent
to finding its Hoeffding decomposition) we obtain the following result as in [42], by
replacing the use of Theorem 5.1 therein with Theorem 3.2 above.

Theorem 4.5. Let G be a graph without isolated vertices. The renormalized weight W̃G
n

of graphs in Gn(pn) that are isomorphic to G satisfies

dW/K
(
W̃G
n ,N

)
≤ C

√
E
[
(X − E[X])

4
]

+ (1− p)(E[X])2

Var[X] + (1− p)(E[X])2

(1− p) min
H⊂G
eH≥1

nvHpeH

−1/2

,

for some constant C = C(eG) > 0, where vH , eH denotes the numbers of vertices and
edges, respectively, of a graph H.

Theorem 4.5 extends other Kolmogorov distance bounds previously obtained for
triangle counting in [46], and in [25] using the Malliavin approach to the Stein method,
see also [45] for triangle counting, [41] for arbitrary subgraph counting, and [24] for
weighted first order Rademacher U -statistics in the symmetric case p = 1/2. As a
consequence, if pn satisfies pn < c < 1, n ≥ 1, we have

dW/K
(
W̃G
n ,N

)
≤ C

√
E [X4]

E[X2]

(1− pn) min
H⊂G
eH≥1

nvHpeHn

−1/2

, (4.6)

and for pn > c > 0, n ≥ 1, it holds

dW/K
(
W̃G
n ,N

)
≤ C

√
E [X4]

n
√

1− pnVar[X]
. (4.7)
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In particular, when X ≡ 1 is a constant, (4.6) and (4.7) recover the Wasserstein and
Kolmogorov bounds of Theorem 2 in [2] and Theorem 4.2 in [41]. Applications to cycle
graphs, complete graphs trees can be treated as in [42] by replacing the Kolmogorov
distance with the Wasserstein distance.

5 Quadratic forms

5.1 Context and results

We consider the quadratic form Qn defined as

Qn =
∑

1≤i,j≤n
i 6=j

aijXiXj +

n∑
k=1

akk
(
X2
k − E[X2

k ]
)
,

where An = (aij)1≤i,j≤n is a symmetric matrix, n ≥ 1, and (Xk)k≥1 denotes i.i.d. copies

of a given random variable X satisfying E [X] = 0. In the sequel, we let µk := E[Xk],

µ̃k := E
[ (
X2 − E[X2]

)k/2 ]
, k ≥ 2, and

σ2
n := Var[Qn] = E

[
Q2
n

]
= 2µ2

2

∑
1≤i,j≤n
i 6=j

a2
ij + µ̃4

n∑
i=1

a2
ii.

Many papers in the literature are devoted to asymptotical normality of quadratic forms.
The best known convergence rates in the general case where the diagonal of A may not
vanish are given in [22], as

dK

(
Qn
σn

,N
)
≤ C(γ)

(
E
[
|X|3

])2
+ γE[X6]√∑

1≤i,j≤n a
2
ij

|λ1|, (5.1)

see Theorem 1.1 therein, where λ1 denotes the largest absolute eigenvalue of An,
γ =

∑n
i=1 a

2
ii/
∑

1≤i,j≤n a
2
ij , and the constant C(γ) blows up when γ tends to one, i.e.

when the linear part is dominating.

Vanishing diagonals

More is known if we assume the diagonal of An to be empty, in which case [8] proved
the asymptotic normality of Qn/σn under the conditions

E
[
(Qn/σn)

4
]
−→ 3 and

1

σ2
n

max
1≤i≤n

n∑
j=1

a2
ij −→ 0. (5.2)

In addition, for (Xk)k≥1 a Rademacher sequence, Theorem 1.1 in [13] restricted to
double integrals gives the corresponding bound

dK

(
Qn
σn

,N
)
≤ C

√∣∣E [(Qn/σn)4]− 3
∣∣+

1

σn

√
max

1≤i≤n

∑
1≤j≤1

a2
ij

 . (5.3)

The same bound may be concluded from [14] for (Xk)k≥1 being any i.i.d. sequence, but
only in Wasserstein distance. Note that the quantity max1≤i≤n

∑n
j=1 a

2
ij corresponds to

“maximal influence”, see [28], [33].
The bound

dW

(
Qn
σn

,N
)
≤ C µ4

σ2
n


√√√√ n∑

i=1

(
n∑
k=1

a2
ik

)2

+

√√√√ n∑
i,j=1

(
n∑
k=1

aikakj

)2
 . (5.4)
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has been provided for Rademacher sequences using the Wasserstein distance in Proposi-
tion 3.1 of [4], and has been recently extended to arbitrary i.i.d. sequences using the
Kolmogorov distance in [47], Theorem 3.1.

Corollary 5.1 recovers this bound as an immediate consequence of Theorem 4.3
by taking d = 2, w(k1, k2) = ak1k2 , 1 ≤ k1, k2 ≤ n, k1 6= k2, and g(y1, y2) = y1y2. Note
however that only the second term is significant in the right-hand side of (5.4), making
the conjecture at the end of Section 3.1 in [47] pointless.

Corollary 5.1. Assume aii = 0, i = 1, . . . , n. Then, there exists a constant C > 0 such
that

dK

(
Qn
σn

,N
)
≤ C µ4

σ2
n

√√√√ n∑
i,j=1

(
n∑
k=1

aikakj

)2

= C
µ4

σ2
n

√
Tr(A4

n), n ≥ 1.

Corollary 5.1 also improves (5.1) for matrices An with empty diagonal, since

√
Tr(A4

n) =

√√√√ n∑
k=1

λ4
k ≤ |λ1|

√√√√ n∑
k=1

λ2
k ≤ |λ1|

√√√√ n∑
i,j=1

a2
ij ≤

σn
µ2
|λ1|. (5.5)

Non-empty diagonals

Theorem 5.2 below generalizes and improves all the aforementioned results. First, in
comparison with the above bound (5.1) of [21, 22], it gives better rates under weaker
assumptions, as noted in (5.5). Furthermore, it extends every other result by applying
as well to non-vanishing diagonals. In addition, it completes Corollary 5.1 with an
additional bound related to the so-called fourth moment phenomenon ([35]), and it also
extends (5.3) from the Rademacher case to any distribution. Finally, it deals with the
Kolmogorov distance instead of the Wasserstein distance considered in [14]. See also
Theorem 3.11 in [1] for some bounds in total variation and Kolmogorov distances, which
however provide worse rates and require slightly stronger assumptions.

Theorem 5.2. There exist absolute constants C1, C2 > 0 such that

dW/K

(
Qn
σn

,N
)
≤ C1

√∣∣E [(Qn/σn)4]− 3
∣∣+

αn
σn

√
max

1≤i≤n

∑
1≤j≤1

a2
ij

 , (5.6)

and

dK

(
Qn
σn

,N
)
≤ C2

βn
σ2
n

√
Tr(A4

n), (5.7)

where

αn := µ2 +
µ4

µ2
1{

a211+···+a2nn>0
}, and βn = µ4 +

√
µ8 1{

a211+···+a2nn>0
}.

Contrary to what is stated on page 1590 of [4], the conditions σ−2
n

√
Tr(A4

n)→ 0 and
E
[
(Qn/σn)4

]
→ 3 are not equivalent as n tends to infinity, and therefore fourth moment

convergence is not sufficient for the central limit theorem to hold for quadratic func-
tionals. The next proposition clarifies this point via inequalities between the quantities
appearing in Theorem 5.2. In the sequel, we let a ∧ b := min(a, b), a, b ∈ R.

Proposition 5.3. There exist absolute constants C1, C2, C3 > 0 such that

C1
µ4

2 ∧ µ̃8

σ4
n

Tr(A4
n) ≤

∣∣E [(Qn/σn)4
]
− 3
∣∣+

α2
n

σ2
n

max
1≤i≤n

∑
1≤j≤n

a2
ij
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≤ C2

β2
n

σ4
n

Tr(A4
n) +

α2
n

σ2
n

max
1≤i≤n

∑
1≤j≤n

a2
ij

 ≤ C3
β2
n

µ2
2σ

2
n

√
Tr(A4

n),

where αn, βn are as in Theorem 5.2

Theorem 5.2 and Lemma 5.3 immediately imply

Corollary 5.4. Assume (Xi)i∈N is a fixed i.i.d. sequence with zero means and finite 8th

moments. The following two conditions are equivalent:

a) E
[
(Qn/σn)4

]
−→ 3 and σ−2

n max1≤i≤n
∑n
j=1 a

2
ij −→ 0,

b) σ−4
n Tr(A4

n) −→ 0,

and they imply Qn/σn
L−→ N with the Kolmogorov rates (5.6) and (5.7).

This extends (5.2) for any matrix An and completes it with the equivalent condition
in terms of the trace of An.

5.2 Proofs

Proof of Theorem 5.2. The quadratic form Qn admits the Hoeffding decomposition

Qn =
∑

1≤i,j≤n

W{i,j} +

n∑
k=1

W{k},

where

W{i,j} = 2aijXiXj , W{k} = akk
(
X2
k − E

[
X2
k

])
.

Thus, Theorem 4.1 gives

dW/K

(
Qn
σn

,N
)
≤ C

σ2
n

(
µ̃8

n∑
i=1

a4
ii + 2µ2

4

∑
1≤i,j≤n
i 6=j

a4
ij + 2µ2

2µ4

∑
1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

a2
ija

2
ik (5.8)

+ µ4
2

∑
1≤i,j≤n
i6=j

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

+ µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i 6=j

ajjaij

)2)1/2

.

Next, we estimate this bound by means of E
[
Q4
n

]
and max1≤i≤n

∑
1≤j≤n a

2
ij . A direct

calculation shows that
E
[
Q4
n

]
= S1 + 3S2 + 4S3,

where

S1 := µ̃8

n∑
i=1

a4
ii + 16µ2

4

∑
1≤i<j≤n

a4
ij + 48µ2

2µ4

∑
1≤i,j,k≤n
i6=j,i 6=k,j 6=k

a2
ija

2
ik

+ 48µ4
2

∑
1≤i1,i2,i3,i4≤n
ik 6=il if k 6=l

ai1i2ai2i3ai3i4ai4i1 + 48µ2
3µ2

∑
1≤i,j,k≤n
i6=j,i 6=k,j 6=k

aiiajjaikakj

+ 48µ2
3µ2

∑
1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

a2
kjaikaij ,

and
S2 := µ̃2

4

∑
i 6=j

a2
iia

2
jj + 4µ̃4µ

2
2

∑
1≤i,j,k≤n
j 6=k, j,k 6=i

a2
iia

2
jk + 4µ4

2

∑
1≤i1,i2,i3,i4≤n
ik 6=il if k 6=l

a2
i1i2a

2
i3i4 ,
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and

S3 := 3µ̃2
4

∑
1≤i,j≤n
i 6=j

aiiajja
2
ij + 8µ3 (µ5 − µ3µ2)

∑
i6=j

aiia
3
ij + 6µ2 (µ̃6 + µ̃4µ2)

∑
1≤i,j≤n
i 6=j

a2
iia

2
ij

+ 12µ2
3µ2

∑
1≤i,j,k≤n
i6=j,j 6=k,i 6=k

aiiaija
2
jk + 24µ2

2µ̃4

∑
1≤i,j,k≤n
i6=j,j 6=k,i 6=k

aiiaijaikakj .

The sum S1 is to dominate the right-hand side of (5.8), S2 is approximating σ2, and S3

contains remainder terms that are more difficult to handle due to their unknown sign.
Note also that S3 vanishes if the diagonal of A is empty. First, by

∑
1≤i,j≤n
i 6=j

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

=
∑

1≤i1,i2,i3,i4≤n
ik 6=il if k 6=l

ai1i2ai2i3ai3i4ai4i1 +
∑

1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

a2
ika

2
kj

and
n∑
i=1

( ∑
1≤j≤n
i6=j

ajjaij

)2

=
∑

1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

aiiajjaikakj +
∑

1≤i,j≤n
i6=j

a2
iia

2
ij ,

we get

S1 := µ̃8

n∑
i=1

a4
ii + 16µ2

4

∑
1≤i<j≤n

a4
ij + 48µ2

2µ4

∑
1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

a2
ija

2
ik

+ 48µ4
2

∑
1≤i,j≤n
i 6=j

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

+ 48µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i 6=j

ajjaij

)2

− 48µ4
2

∑
1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

a2
ika

2
kj − 48µ2

3µ2

∑
1≤i,j≤n
i 6=j

a2
iia

2
ij + 48µ2

3µ2

∑
1≤i,j,k≤n
i6=j,i 6=k,j 6=k

a2
kjaikaij .

The first two lines dominate the right-hand side of (5.8) with substantial surplus, which
will be used to deal with the last term of S1 and some terms of S3. Indeed, by µ2

3µ2 ≤ µ4µ
2
2

and the inequality of arithmetic and geometric means, we have

48µ2
3µ2

∣∣∣∣∣∣∣∣
∑

1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

a2
kjaikaij

∣∣∣∣∣∣∣∣
≤ 46µ4µ

2
2

∑
1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

1

2

(
(akjaik)2 + (akjaij)

2
)

+
∑

1≤k,j≤n
k 6=j

(
(µ4a

2
kj)

2 +

(
µ2

2

∑
1≤i≤n
i 6=j,k

aikaij

)2)

= 46µ2
2µ4

∑
1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

a2
ija

2
ik + µ2

4

∑
1≤i<j≤n

a4
ij + µ4

2

∑
1≤i,j≤n
i 6=j

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

. (5.9)

Since, additionally∣∣∣∣∣∣∣∣µ
4
2

∑
1≤i,j,k≤n
i6=j,i 6=k,j 6=k

a2
ika

2
kj + µ2

3µ2

∑
1≤i,j≤n
i 6=j

a2
iia

2
ij

∣∣∣∣∣∣∣∣
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≤ σ2
nµ

2
2 max

1≤i≤n

n∑
j=1

a2
ij + σ2

n

µ2
3

µ2
1{

a211+···+a2nn>0
} max

1≤i≤n

n∑
j=1

a2
ij ≤ σ2

nα
2
n max

1≤i≤n

n∑
j=1

a2
ij , (5.10)

we arrive at

dW/K

(
Qn
σn

,N
)
≤ C

σ2
n

(
S1 + 48σ2

nα
2
n max

1≤i≤n

n∑
j=1

a2
ij

+46µ4
2

∑
1≤i,j≤n
i 6=j

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

+ 47µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i6=j

ajjaij

)2)1/2

≤ C

σ2
n

(
E
[
Q4
n

]
− 3σ4

n + 48σ2
nα

2
n max

1≤i≤n

n∑
j=1

a2
ij + 3(σ4

n − S2)

−4S3 − 24µ4
2
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1≤i,j≤n
i 6=j

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

− 24µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i 6=j

ajjaij

)2)1/2

.(5.11)

Next, in order to bound 3(σ4
n − S2), we calculate

σ4
n =

(
2µ2

2

∑
1≤i,j≤n
i6=j

a2
ij + µ̃4

n∑
i=1

a2
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)2
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( ∑
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( ∑
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)(
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∑
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∑
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2
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,

hence

3
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( ∑
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∑
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2
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1≤i,j≤n
i 6=j

a2
ij + 27µ4µ̃41{
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4
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ij . (5.12)

Regarding S3, we have∣∣∣∣∣∣∣∣µ̃
2
4

∑
1≤i,j≤n
i 6=j

aiiajja
2
ij

∣∣∣∣∣∣∣∣ ≤ µ̃
2
4
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i 6=j
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iia

2
ij ≤ σ2
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∑
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and

8µ3 (µ5 − µ3µ2)
∑
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i 6=j
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iia
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Furthermore, using the correction terms from (5.11), we get
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as well as
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∑
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Hence, we arrive at
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( ∑
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for some C > 0, since S3 vanishes if a11 = · · · = ann = 0. Applying this and (5.12)
to (5.11), we obtain the first inequality from the assertion. To prove the other one, we
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use (5.8) and write

dW/K

(
Qn
σn

)
≤ C

σ2
n

µ2
4

∑
1≤i,j≤n

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

+µ8

n∑
i=1

a4
ii + µ8

n∑
i=1

( ∑
1≤j≤n
i 6=j

ajjaij

)2


1/2

.

Next, we bound

∑
1≤i,j≤n

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

=
∑

1≤i,j≤n

( ∑
1≤k≤n

aikakj − aiiaij − aijajj

)2

≤
∑

1≤i,j≤n

2

( ∑
1≤k≤n

aikakj

)2

+ 4a2
iia

2
ij

 ≤ 2Tr(A4
n) + 4

∑
1≤i≤n

( ∑
1≤k≤n

a2
ik

)2

≤ 6Tr(A4
n),

(5.13)

and, by the inequality ab ≤ (a2 + b2)/2,

n∑
i=1

a4
ii +

n∑
i=1

( ∑
1≤j≤n
i 6=j

ajjaij

)2

=

n∑
i=1

a4
ii +

n∑
i=1

∑
1≤j,k≤n
i6=j

(aijakk)(aikajj)

≤
n∑
i=1

a4
ii +

∑
1≤i,j,k≤n

i 6=j

(aijakk)2 ≤ 2
∑

1≤i≤n

( ∑
1≤k≤n

a2
ik

)2

≤ 2Tr(A4
n). (5.14)

This ends the proof.

�

Proof of proposition 5.3. The proof of Theorem 5.2 shows that the right hand
side of (5.6) is larger than the right hand side of (5.8) up to an absolute multiplicative
constant, hence we have

∣∣E [(Qn/σn)4
]
−3
∣∣+α2

nσ
2
n max

1≤i≤n

∑
1≤j≤n

a2
ij ≥ C

µ4
2 ∧ µ̃8

σ4
n

(
n∑
i=1

a4
ii+

∑
1≤i,j≤n

( ∑
1≤k≤n
k 6=i,j

aikakj

)2)
.

Employing the inequalities (a+ b)2 ≤ 2a2 + 2b2 and ab ≤ (a2 + b2)/2, a, b ≥ 0, we get

∑
1≤i,j≤n

( ∑
1≤k≤n

aikakj

)2

=
∑

1≤i,j≤n

( ∑
1≤k≤n
k 6=i,j

aikakj + aiiaij + aijajj

)2

≤
∑

1≤i,j≤n


( ∑

1≤i,j≤n
k 6=i,j

aikakj

)2

+ 8a2
iia

2
ij


=

∑
1≤i,j≤n

( ∑
1≤i,j≤n
k 6=i,j

aikakj

)2

+ 8
∑

1≤i≤n

a2
ii

∑
1≤j≤n
j 6=i

a2
ij + 8

∑
1≤i≤n

a4
ii

≤ 5
∑

1≤i,j≤n

( ∑
1≤i,j≤n
k 6=i,j

aikakj

)2

+ 12
∑

1≤i≤n

a4
ii,
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which gives the first inequality in the assertion. In order to justify the latter one, we will
show

∣∣E [(Qn/σn)4
]
− 3
∣∣ ≤ C

β2
n

σ4
n

Tr(A4
n) +

α2
n

σ2
n

max
1≤i≤n

∑
1≤j≤n

a2
ij

 , (5.15)

for some C > 0. Following notation from the proof of Theorem 5.2, we obtain the
inequality

∣∣E [(Qn/σn)4
]
− 3
∣∣ ≤ (|S1|+ 3|S2 − σ4

n|+ 4|S3|
)
/σ4

n. By (5.9), (5.10), (5.12)
and bounding terms from the first three sums in S3 by a2

iia
2
ij + a4

ij and the last two sums
from S3 by

n∑
i=1

[( ∑
1≤k≤n
k 6=i

a2
ik

)2

+

( ∑
1≤j≤n
j 6=i

ajjaij

)2]
,

and ∑
1≤i,j≤n
i 6=j

[
a2
iia

2
ij +

( ∑
1≤k≤n
k 6=i,j

aikakj

)2]
,

respectively, we arrive at∣∣E [(Qn/σn)4
]
− 3
∣∣

≤ C β
2
n

σ4
n

[
n∑
i=1

a4
ii +

∑
1≤i,j≤n

( ∑
1≤k≤n
k 6=i,j

aikakj

)2

+

n∑
i=1

( ∑
1≤j≤n
i 6=j

ajjaij

)2]
+ α2

nσ
2
n max

1≤i≤n

∑
1≤j≤n

a2
ij ,

and (5.15) follows from (5.13) and (5.14). Finally, the last bound in the assertion is a
consequence of

max
1≤i≤n

n∑
j=1

a2
ij ≤

√√√√ n∑
i=1

(
n∑
j=1

a2
ij

)2

≤
√

Tr(A4
n),

and

Tr(A4
n) ≤

n∑
i,j=1

(
n∑
k=1

a2
ik

)(
n∑
k=1

a2
kj

)
≤ σ4

n

µ4
2

.
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Erdős-Rényi random graph, To appear in Probability in the Engineering and Informational
Sciences, 27 pages, 2021, https://doi.org/DOI:10.1017/S0269964821000061, pp. 1–27.

[46] N. Ross, Fundamentals of Stein’s method, Probab. Surv. 8 (2011), 201–293. MR2861132

[47] Q.M. Shao and Z.S. Zhang, Berry-Esseen bounds of normal and nonnormal approximation for
unbounded exchangeable pairs, Ann. Probab. 47 (2019), no. 1, 61–108. MR3909966

[48] D. Surgailis, Non-CLTs: U -statistics, multinomial formula and approximations of multi-
ple Itô-Wiener integrals, Theory and applications of long-range dependence (P. Doukhan,
G. Oppenheim, and M. Taqqu, eds.), Birkhäuser Boston, Boston, MA, 2003, pp. 129–142.
MR1956047

Acknowledgments. We are grateful to the anonymous referees whose valuable com-
ments helped us improve the presentation and structure of the article.

EJP 27 (2022), paper 71.
Page 37/37

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2962301
https://mathscinet.ams.org/mathscinet-getitem?mr=3500415
https://mathscinet.ams.org/mathscinet-getitem?mr=2722791
https://mathscinet.ams.org/mathscinet-getitem?mr=2735379
https://mathscinet.ams.org/mathscinet-getitem?mr=2118863
https://mathscinet.ams.org/mathscinet-getitem?mr=2642882
https://mathscinet.ams.org/mathscinet-getitem?mr=3083936
https://mathscinet.ams.org/mathscinet-getitem?mr=1467207
https://mathscinet.ams.org/mathscinet-getitem?mr=2531026
https://mathscinet.ams.org/mathscinet-getitem?mr=3761564
https://mathscinet.ams.org/mathscinet-getitem?mr=4036045
https://mathscinet.ams.org/mathscinet-getitem?mr=4417024
https://mathscinet.ams.org/mathscinet-getitem?mr=3126574
https://mathscinet.ams.org/mathscinet-getitem?mr=3357130
https://doi.org/DOI:10.1017/S0269964821000061
https://mathscinet.ams.org/mathscinet-getitem?mr=2861132
https://mathscinet.ams.org/mathscinet-getitem?mr=3909966
https://mathscinet.ams.org/mathscinet-getitem?mr=1956047
https://doi.org/10.1214/22-EJP795
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Preliminaries 
	Setting
	Multiple stochastic integrals and Hoeffding decomposition
	Fourth moment bound

	General results
	Statements and discussion
	Proofs

	Applications to U-statistics
	General U-statistics
	Degenerate U-statistics
	Random graphs

	Quadratic forms
	Context and results
	Proofs

	References

