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Well-posedness of stochastic 2D hydrodynamics type
systems with multiplicative Lévy noises*
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Abstract

This paper presents the existence and uniqueness of solutions to an abstract nonlinear
equation driven by multiplicative noise of Lévy type. This equation covers many
hydrodynamical models, including 2D Navier-Stokes equations, 2D MHD equations,
the 2D Magnetic Bernard problem, and several Shell models of turbulence. In the
literature on this topic, besides the classical Lipschitz and linear growth conditions,
other atypical assumptionsare also required on the coefficients of the stochastic
perturbations. The goal of this paper is to eliminate these atypical assumptions. Our
assumption on the coefficients of stochastic perturbations is new even for the Wiener
cases and, in one sense, is shown to be quite sharp. A new cutting off argument and
energy estimation procedure play an important role in establishing the existence and
uniqueness under this assumption.
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1 Introduction

Stochastic partial differential equations (SPDEs) driven by jump-type noises such
as Lévy-type or Poisson-type perturbations are drastically different from those driven
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by Wiener noises. The difference is due to the presence of jumps concerning the
well-posedness, Burkholder-Davis-Gundy inequality, Girsanov theorem, time regularity,
ergodicity, irreducibility, mixing property, and other long-time behaviour of the solutions.
Usually, the results and techniques available for the SPDEs with Gaussian noise are not
suitable for the treatment of SPDEs with Lévy noise, and therefore we require new and
different techniques. For more details, please refer to [3, 10, 19, 22, 24, 29, 30, 39] and
the references therein.

In this paper, we are concerned about the well-posedness of SPDEs with multiplicative
Lévy noise. The reader is referred to [40] for a thorough introduction of SPDEs with
Lévy noise. There are extensive results on the well-posedness of SPDEs with Gaussian
noise. Here we only list several of them: see [4, 5, 11, 14, 26, 27, 28] and the references
therein. The standard assumptions on the coefficients of the Wiener noises are the
classical Lipschitz and one-sided linear growth assumptions. The main approaches to
solving SPDEs with Gaussian noises are (1) local monotonicity arguments combined with
Galerkin approximation methods and cutting off; see, e.g., [26, 27], and (2) the Banach
fixed point theorem; see, e.g., [4, 11]. However, using the same idea as in the Lévy
case, one needs to assume other conditions on the coefficients of Lévy noise; see, e.g.,
[6, 7]. In fact, besides the classical Lipschitz and one-sided linear growth assumptions,
previous publications on the solvability of SPDEs with Lévy noise always require other
assumptions on the coefficients of the stochastic perturbations. We give details below.

To solve SPDEs with Lévy noises, one natural approach is based on approximating the
Poisson random measure 7 by a sequence of Poisson random measures {7, }new whose
intensity measures are finite. Dong and Xie [16] used this approach to establish the
well-posedness of the strong solutions in a probabilistic sense for 2D stochastic Navier-
Stokes equations with Lévy noise. However, besides (H1) and (H2) with L, = L5 =0
in Condition 2 below, this method needs the following assumption on the control of the
“small jump”: For any k£ > 0,

sup / |G(t,v,2)|*v(dz) — 0, as § — 0.
lv]<k Szl z<o

Another approach is the local monotonicity method combined with the Galerkin
approximation. This approach is suitable for treating SPDEs with Wiener noise (see
e.g. [26]). However, applying this approach to the Lévy cases (see [6, 7]), the following
assumption is essential: For some p > 2,

/ |G(t,v,2)[Pr(dz) < K(1+ |[v|P).
z

In particular, when applying this framework to 2D stochastic Navier-Stokes equations,
these methods need to assume the following:

(J1) (Lipschitz)
H‘P(tvvl)—‘l/(t?vz)lliﬁ/z |G(t,v1,2) = G(t,v2, 2)Pv(d2) < Li|vi —va|*+ La|jvr —v2]|%;
(J2) (Growth)
1e(t, )12, + /Z |G(t,0,2)|*v(dz) < Ly + Lafo[* + Ls [v]|*;

(3) Ly €[0,2) and Ls € [0, 1);
09 [z 1G(t v, 2)'v(d2) < K(1+[v]").
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See (H1)-(H4), Theorem 1.2, and page 292 in [6]. Previous techniques cannot deal
with the case of ¥(t,v) = 0 and G(¢,v,2) = 62Vv with 0 # 0 (see (2.1)). For the Wiener
case, i.e., G(t,v,z) = 0, assumptions (J1)-(J3) are the best in the previous literature.
We also refer to [12, 17, 37, 38, 42] and the references therein, in which the existence
of martingale solutions for SPDEs with Lévy noises was established. In these papers,
the Galerkin approximation method is applied, and some atypical assumptions like (J4)
are needed. Consequently, motivation exists to find a unified approach to eliminate
atypical assumptions on the coefficients of the stochastic perturbations and also makes it
possible to cover a wide class of mathematical coupled models from fluid dynamics. Our
unified approach is based on an abstract stochastic evolution equation (2.1) that covers
many hydrodynamical models (see Remark 2.2). We apply localization arguments and
fixed point methods. A new cutting off argument and energy estimation procedure play
an important role. Our assumption about the coefficients of stochastic perturbations
(see Condition 2) is new even for the Wiener cases, and allows to study SPDEs with the
gradient type noise in the Lévy noise case, and in some sense, we show it to be quite
sharp (see Remark 2.5 for more details). SPDEs with the gradient type noise in the
Gaussian noise case has been crucial part of works by Flandoli, Krylov and Rozovskii;
see e.g., [20], [21], [34], [35], [36]. We refer the readers to Remark 2.2 (page 390) in
[14] for other reason why we consider the case Ly, Ls € (0, 2).

Together with Zdzistaw Brzezniak, Peng and Zhai introduced a new cutting off
argument in [9], showing that there exists a unique strong solution in probability sense
to stochastic 2D Navier-Stokes equations with Lévy noises under (H1) and (H2) with
Ly = Ls = 0 in Condition 2. However, this method is not suitable for the case of
Lo, L5 € (0,2). In this paper, we employ a slightly different localization method, and
using a similar cutting off argument, we establish a finer a priori estimate of I,, than
that in [9] (see pages 14-20 in [9] and Lemma 3.2 in this paper). Also, we introduce
a new energy estimation procedure to obtain the Lipchitz property of {y,,n € IN} (see
Propositions 3.4 and 3.5). The whole program is technical and highly nontrivial.

We should mention that the existence and uniqueness of a strong solution in PDE
sense to several stochastic hydrodynamical systems with Lévy noise were established
in [2]. They also used some localization arguments and fixed-point methods, but theirs
are different from those in this paper. Their approach required that for any x,y € V and
g = 1,2, there exists a constant ¢, > 0 such that

/Z IG(t, 2, 2) — Gt . 2)|*w(dz) < €]z — y.

In [9], an idea similar to that in this paper is used to prove the existence and uniqueness
of a strong solution in PDE sense to stochastic 2D Navier-Stokes equations with Lévy
noises without the above assumption of ¢ = 2. We believe that our method in this paper
and [9] can be used to deal with other SPDEs and PDEs.

The layout of the present paper is as follows. In Section 2, we introduce the abstract
stochastic evolution equation upon which our result is based, and we give our main
result. Section 3 is devoted to the proof of our main result.

2 Preliminaries and main result

Suppose that (2, F,F = {F; }+>0, P) is a filtered probability space satisfying the usual
conditions. Let (Z,B(Z)) be a measurable space and v be a given o-finite measure on
Z,v({0}) =0. Let n: Q x B(Ry) x B(Z) — N be a time-homogeneous Poisson random
measure on (Z,B(Z)) with intensity measure v. We write

i7(0,8] x 0) = ([0, 1] x O) — tw(0), t>0, O € B(Z)
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for the compensated Poisson random measure associated with n. Let {W(¢)};>0 be a
K-valued cylindrical Wiener process on ({2, F,IF,P), where K is a separable Hilbert
space.

The aim of this paper is to study the well-posedness of the abstract evolution equation
given by

du(t) + Au(t)dt + B(u(t), u(t))dt

_ f(t)dt+/ Gt u(t—), 2)if(dz, dt) + W(t, u(t))dW (1), 2.1)
zZ
U(O) =ug € H,

where H is a separable Hilbert space, and A is a (possibly unbounded) self-adjoint
positive linear operator on H. We denote the scalar product and the norm of H by (-, )
and | - |, respectively. Set V = dom(.A'/2) equipped with norm ||z|| := |A%z|,z € V. The
operator B : V x V — V' is a continuous mapping, where V' is the dual of V. With a
slight abuse of notation, the duality between V' and V is also denoted by (f, v) for f € V'
and v € V, whose meaning should be clear from the context. The coefficients of the
stochastic perturbations G and ¥ are measurable functions, satisfying certain conditions
specified later.

Our condition on the operator B is the following.

Condition 1. Assume that B : V xV — V' is a continuous bilinear mapping satisfying
the following conditions:

(B1) (Skewsymmetricity of B)

(B(u1,u2),usz) = —(B(uy,us),us), forall uj,us,us € V; (2.2)

(B2) there exists a reflexive and separable Banach space (@, | - |¢) and a constant ag > 0
such that

VcQCH, (2.3)
[v|% < aolv] - |Jv]|, forall v e V; (2.4)

(B3) there exists a constant C' > 0 such that

[(B(u,v), w)| < Clulgl|lv|||wl|q, forall u,v,w € V. (2.5)

Remark 2.1 (2.2). implies that
<B(U1,’LL2),’LL2> = 0, for all Uy, Uz € V. (26)

Remark 2.2. This type of abstract evolution equation (2.1) covers stochastic 2D Navier-
Stokes equations, 2D stochastic Magneto-Hydrodynamic equations, 2D stochastic Boussi-
nesq model for the Bénard Convection, 2D stochastic Magnetic Bérnard problem, 3D
stochastic Leray a-Model for Navier-Stokes equations, and several stochastic Shell
models of turbulence. For more details, we refer the reader to [7], [13, Section 2.1].

We now give the definition of a solution to (2.1).

Definition 2.3. An H-valued cadlag IF-adapted process {u(t)}+c(o,1] is called a solution
of (2.1) if the following conditions are satisfied,

(S1)u € D([0,T), H)NL3([0,T],V), P-a.s., where D([0,T], H) denotes all of the cadlag
functions from [0, T] into H equipped with the Skorohod topology.
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(S2) the following equality holds for every ¢ € [0,T], as an element of V', P-a.s.
t t t
u(t) = wug —/ Au(s)ds —/ B(u(s),u(s))ds —|—/ f(s)ds
0 0 0
t t
—|—/ / G(s,u(s—), 2)n(dz,ds) +/ U (s, u(s))dW (s).
0Jz

0

An alternative version of Condition (S2) is to require that for every ¢ € [0, 7], P-a.s.
t t t
w(t).d) = (uo,d)— / (Au(s), ¢)ds — / (Blus), u(s)), 6)ds + / (f(s), 6)ds
0 0 0
4 / /Z (G(s, u(s—), 2), 8)7i(dz, ds) + / (U(s, u(s))dW (s), 6), YV € V.

Before presenting the main result of this paper, let us first formulate the main assump-
tions on the coefficients G and ¥. Let us denote by (L2(K, H), || - ||z,) the Hilbert space
of all Hilbert-Schmidt operators from K into H.

Condition 2. G: [0,T] x H x Z - H and ¥ : [0,T] x H — L5(K, H) are measurable
mappings. There exist constants L; > 0, i = 1,--- ,5 such that, forall ¢ € [0,T], v,v1,v2 €
Vv,

(H1) (Lipschitz)
\\\I/(t7v1)—\11(t702)||§;2+/z |G(t,01,2) = G(t, 09, 2)Pv(dz) < Lo —va|*+La[Jor —val|*;
(H2) (Growth)
19 (t,v)]2, + /Z |G(t,v,2)[Pv(dz) < Ly + Lalv|* + Ls]|v||*;

(H3) Lo, Ls € [0,2).

Now we state our main result, whose proof is provided in Section 3.

Theorem 2.4. Assume that Conditions 1 and 2 hold. Then for any Fy-measurable
H-valued initial data ug satisfying E[|uo|?] < oo and f € L?([0,T],V’), there exists a
unique solution {u(t)}c[o,1) to problem (2.1). Moreover,

T
sup Eflu(t)[’] +E[/ [Ju(t)]|*dt] < oo.
te[0,7T] 0

Remark 2.5. Theorem 2.4 is the best in the following sense. We can apply It6’s Formula
to |u(t)|? to yield

[u()]? +2 / Ju(s)[[2ds = Juol? +2 / (F(s), uls))ds
+2/O /Z<G(s,u(s—),z),u(s—)>'ﬁ(dz7ds)+2/0 (W(s,u(s)), u(s))dW (s)
+A /Z\G(s,u(s—),z)|2n(dz,ds)+/0 H\I/(s,u(s))nizds.

It is reasonable to suppose that [, [, (G(s,u(s—), 2),u(s—))ii(dz,ds), [5 (¥ (s, u(s)),u(s))
dW (s) are local martingales. Then, using a suitable stopping time technique, we can
obtain, for any ¢ > 0,

ElJu(t)?] + 28| / Jlu(s)|?ds]
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< Bljuo)+ 280 (5(6)uts)as) + B[ [ (Gt uto-)2) Ptz ds)
B[ 92,0
< Efluof?] + <Ef / fuolas)+ = [ 15 ds

/ [ 16 u(s). 2)Fv(az)as +E/ 19 (s, u(s)) 2, ds].

The above inequality and (H2) in Condition 2 imply that
t
Elu(t)]’] + (2 — Ls — E)E[/ [u(s)|*ds]

< B+ L [ 1A ds + Lot + Lo [ Blu(o)las.

It is easy to see that the best assumption for L5 is L; < 2. Using a similar argument in
proving the uniqueness, the best assumption for L, is Ly < 2. Therefore, problem (2.1)
seems not to be well-posed if (H3) in Condition 2 does not hold.

3 Proof of Theorem 2.4

We start by introducing the notation and main ideas used in this paper. After that, we
will give the proof of Theorem 2.4.
In the following, D(I; M) denotes the space of all cadlag paths from a time interval I
into a metric space M.
Set
Y = D([0,t], H) N L*([0,t], V).

Forany ¢ > 0 and y € Ty, define

t
w2 = / ly(s)12ds.

Let A; be the space of all T;-valued {F}.c|o,s-adapted processes y satisfying

W, == sup Elly(s)?] + E[ / ly(s)|2ds] <
s€[0,t]

For any m € W, fix a function ¢,, : [0,00) — [0, 1] satisfying

bm € C?[0, 00),

Ly := 8up,efg,00) |95 (t)| < 00,
dm(t) =1, te]0,m],
Odm(t) =0, t>m+1.

Here we mention that L is independent of m.
For any § > 0, fix a function g5 : [0,00) — [0, 1] satisfying

gs € 02[0,00),
SUD;e(0,00) 195 (1) < 5,
gs(t) =1, te€]0,4],
gg(t) =0, t > 20.
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Here K is independent of §.

Main ideas:

Next, we introduce the main idea in this paper, which will be divided into four steps:

Step 1: Cutting off argument. For any m € IN, § > 0 and yo € A, we prove that there
exists a unique solution to (3.1), which is stated in Lemma 3.1.

Step 2: Energy estimation. Set yo(t) = 0, and by Lemma 3.1, we define y,, 1 satisfying
(3.9) recursively. Thanks to yo(t) = 0, we can prove that there exist 6o > 0 and 7y > 0
such that

e} To
S (B[ a9~ )] 2as]) " +ZE Sy 1(t) = ya(8)]] < .
n=2 0

t€[0,To)

Here y,,+1 is the solution of (3.9) with ¢ replaced by dy. See Propositions 3.4 and 3.5.
To do this, we need a priori estimates. See Lemmas 3.2 and 3.3.

Step 3: Local existence. By Propositions 3.4 and 3.5, we can prove that for any 7' > 0
and m > 0, there exists a solution to (3.66) on [0, 7]. See Proposition 3.6. This implies
the local existence of (2.1).

Step 4: Global existence. Finally, we prove the global existence, and for the unique-
ness, we refer to [6] or [7].

Now we are in a position to give the details.

Lemma 3.1. Under the same assumptions as in Theorem 2.4, for anym € IN, § > 0 and
Yo € Ar, we have

Claim 1. For any H-valued progressively measurable process h = {h(t), t € [0,T]}
satisfying

T
sup E[Jh(s)?] + E[ / Ih(s)|%ds] < oo,

s€[0,T]
there exists a unique element ®" € A7 satisfying, for every t € [0,T], as an element of
V/, P-a.s.

) = up— / A" (s)ds — / B(yo(s), ©"(5))bm310(5) g [vo0le, )ds

/f ds—i—/ /Gs h(s), 2)ii(dz, ds) + /Ot\ll(s,h(s))dW(s).

Claim 2. There exists a unique element y; = ©Y € Ay satisfying, for everyt € [0,T], a
an element of V', P-a.s.

n(t) = uo— / Ay (s)ds - / B(yo(s), 11(5)bm(10(5) ) g5 30le, )ds 3.1)

+ [ sast [ [ Gt itz + [ wisman

Moreover,

T T
sup Enyl<t>|2]+1E[/O s (5)1ds] < € (Buof?, / IFEds.T). G2

te[0,7)
Here C(E|u0\2, fOT Hf(s)||%,,ds,T) is independent of m, 8, and yq.

Proof of Lemma 3.1. We first verify (Claim 1).
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For any H-valued progressively measurable process h = {h(¢), t € [0,T]} satisfying

T
sup E[Jh(s)?] + E| / Ih(s)|%ds] < oo,

s€[0,T]

by Condition 2, we have

B [ 166, Praz)as) + B G, 0

< LT+ LyT sup E[|h(s)|2}+L5IE[/ |h(s)|*ds] < oo. (3.3)
s€1[0,T) 0

From the classical Galerkin approximation arguments, it is easy to prove that there
exists a unique Z" € Y7, P-a.s. such that for every t € [0, 7], as an element of V/, P-a.s.

/Azh ds+/ /Gs h(s), 2)7(dz, ds) + /Ot\I/(s,h(s))dW(s).

For any fixed w € (), consider the deterministic PDE:

dM"(t,w) + AM" (t,w)dt
+ B(yo(t,w), Z"(t,w) + M"(t,w)) b (|yo(t, w)|)gs (|yo(w)le, )dt = f(t)dt, (3.4)
M"(0) = ug(w).

According to [43], there exists a unique M"(w) € C([0,T], H) N L?([0,T], V) satisfying
(3.4), i.e., for every ¢ € [0,T], as an element of V’,

M"(t,w) = uo(w /AMhsw

gs)ds—&-/o f(s)ds

We see that {@h(t,w) = ZM(t,w) + M"(t,w), t €[0,T], w € Q} satisfies that

—/0 B(yo(s,w), Z"(s,w) + M" (5,w)) dm (lyo(s,w) )5 (150 (w)

(P1) ®" € Y7, P-ass.,
(P2) for everyt € [0,7], as an element of V’, P-a.s.

o"(t) = Uo*/ AD" (s ds/tB(yo() "(5))m (190 (s))gs(|vole, ) ds
/f d8+/ /Gs h(s), 2)ii(dz, ds) + /Ot\ll(s,h(s))dW(s).
Applying Ité&’s formula to |®”(¢)|? and using (2.6), one obtains
@ OF+2 [ @ ()]s
_ |u0|2+2/ (F(s), " (s ds+2/ / (5, h(s), 2), " (s))7f(dz, ds)
=3 (W5, (), @ ()W (5

+ / /Z (G (s, h(s), 2)|Pn(dz, ds) + / 19 (s, h(s))|2,ds.
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We observe that
! h ! 2 Eh a2
2 [0 s < [ 1@)Ruds+ [ 187G
and in addition, both [, [;(G(s,h(s),z), ®"(s))7j(dz,ds) and [ (¥(s,h(s)),®"(s))dW (s)

are local martingales. Therefore, a suitable stopping time technique (see e.g. [7, 6]) and
(3.3) assure that

(P3)

sup E[|" (1)) + E| / " (5)]2ds]

te[0,T]
T T
< Blluolfl+ [ 1f(6)ds + Lo + LT sup E[(s))+ L[ | [(s)|Pds]
0 s€[0,T 0
< oQ.

Combining (P1)-(P3), the proof of (Claim 1) is complete.

We now prove (Claim 2).

Let ho(t) = e~*tug, then hg € Ar. (Claim 1) implies that we can define h,,,; = ®"» €
Ar, n > 0 recursively; that is, for every t € [0, 7], as an element of V', P-a.s.

e (£)=up — / Al (3)ds — / Bo(5), hns1(5))dm(10(5))gs (190

¢.)ds
(3.5)

+ /O fs)ds+ /0 t /Z Gs, hu(s—), 2)if(dz, ds) + /O (s, (5)) W (5)

Next, we will estimate h,1(t) — hy(¢).
By (2.6), (3.5) and Ito’s formula, we get

|hag1 (1) = b () * + 2/ [hns1(s) = ha(s)]*ds
0
_ 2/0 /Z<G(s, B (5—-),2) — G (5, B 1(5—), ), 1 (5—) — b (5—))ii(dz, ds)
+2/0 (U(s, hn(s)) = ¥(s,hn-1(5)), hny1(s) — hn(s)))dW (s)
+/0 /Z 1G5, hn(5—), 2) — G5, hn_1(5—), 2) 2n(dz, ds)

n / 19 (5. h(5)) — (s, s ()%, s

= Y L)

i=1

Moreover, I; and I» are local martingales. It follows from a suitable stopping time
technique that

T
sup B[ 11 (t) — ha(8)]*] + QE[/ [ng1(s) = hn(s)|%ds]
te[0,T) 0

T
— G(8,hp_1(8), 2)|*v(dz)ds
< E[/O /Z|G<s,hn<s>,z> G, hn_1(5), 2) Po(dz)ds]
T

| / 19 (5. h (5)) — (s, rns ()2, 5]
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< MMA\mw%Wwﬂﬂ%ﬂ+hE% () — P ()] 2]
T
< LT swp lEnhn<s>—-hn_4<sn2}+-zanag/" V() — B ()] Pds].
s€[0,T) 0

Here Condition 2 has been used to get the second inequality. Multiplying both sides of
the above inequality by % we obtain

1 T
sup B[S [n1() = hn (b)) +E[/O 11 (s) = hn(s)]|*ds]

t€[0,T]

L 1 T
< TV P s Bl ~ haa(P] B[ n(s) — ua(9)]%ds]).
s€[0,T] 0
Choosing Ty > 0 such that L7y < 1 and noticing that L, < 2 (see Condition 2), we
get the following. There exists an H-valued process © such that © has a F-progressively
measurable version, denoted by O,

lim sup E[lh,(t) —O(t)*] =0, (3.6)
n,/'00 (0, T0]
and
To
Jim E[/ 7 () — O()|2dt] = 0. 3.7)
n, oo 0
Note that (3.6), (3.7), and Condition 2 assure that
Q1)
To
/ / |G (s, hn( — G(5,0(s), 2)|*v(dz)ds]
+MA 19(5, hu(s)) — (5, 00(s))]|2, ds]
T() TO
< MEJ MM@—Mﬂ%ﬂ+ME/ Ihn(5) — O(s)||%ds]
0 0
To
< LTy sup Ellba(s) - O]+ LE[ [ [ha(s) - 6(s)|Pas
s€[0,To] 0
— 0, asn — oo.
(Q2) B[ | AR (s) — AO(s)[2ds] = B[ | n(s) — O(s)|2ds] — 0, asn — oo.

(Q3) For any t € [0,7p] and e € V, by Condition 1

|/’ (50(). 7 () Dm(310(5) 95 (30l )
—B(yo(s),0(5))dm(lyo(s)])gs(|yole. ), e)ds|]

To 1 1 1 1
< E[/O yo(8)[2[lyo(s)[12[e]2[lel|2 ¢m (lyo()))gs (lyole. )1 hn(s) — O(s)l|ds]
1 1 1,1 To %
< m+n%mmwﬂm4um®—mmw®
To i
(B o0l Pgs(lsnle.)ds])
0
3,1 To 3
< (200m+ Dlelllel)) T04(E[/ In(s) = ©()|Pds])* = 0, asn - o.
0
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(Q4) For any t € [0, Tp], there exists a subsequence ny 1 co such that

Jim [h, (1)~ ()] =0, P-a.s..

By the definition of h,,; := ®"~(see (P2)), for every t € [0, Tp], P-a.s. forany e € V,
(hnt1(t),€)
t

= (uore) - / (Al 1(s), €)ds + / (Byo(5), s (5)bm(0(5))gs (lwoe. ). €)ds

/ ds+/ / (5, hin ),e}ﬁ(dz,ds)+/Ot(\ll(s,hn(s)),e>dW(s).

Applying (Q1)-(Q4) and taking the limits in the above equation (choosing a subsequence
if necessary), we obtain

(©(t), €)
= (uo,€) — /(A@() >d8+/ (B(yo(s), ©(s))m (lyo(s))gs([yole. ), €)ds

/ ds+/ / Le)i(dz, ds) + /Ot(\I/(s,(:)(s))@)dW(s).

Applying Itéd's formula to |©(¢)|?, it holds that
O +2 / 10(s)|Pds = uol> + 2 / (f(5), ©(s))ds
2 / / (G(s,6(s), ), 6(s))7(dz, ds) + 2 / (W(s,6(s)), B(s))dW (s)

//|G 2)Pn(dz, ds) + / 19 (s, B(s))II2, ds.

Because [, [;(G(s,0(s),2),0(s))7i(dz, ds) and 2 [;(¥(s,O(s)), we know that O(s))dW (s)
are local martingales, and we acquire the following inequality by using a suitable
stopping time technique again:

E[l0()]] + 2E[/ 16(s)[|*ds]

< Bffuol ]+21E[/ (£(5), O(s))ds] +E/ [ 166:.85). ) Putaz)as
L[ 19(5,806)) 12,05
T
< Blluol?) + B[ / je)Pds) +< [ 1)l ds
t t
+ Lyt + L4E[/ 10(s)|2ds] + L5]E[/ 16(s)[2ds].
0 0
Choosing ¢ = 2= L° , the above inequality shows that
L
Ello()) o / 19(s)]2ds]
2 t
< Efluf] + / I£(6) s + Lat + L | Elj0()ds
2—Ls Jo 0
EJP 27 (2022), paper 55. https://www.imstat.org/ejp

Page 11/31


https://doi.org/10.1214/22-EJP779
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Well-posedness of stochastic 2D hydrodynamics type systems

Gronwall’s Lemma ensures that

2, 2= Lo [T >
sup E[O()[] + — E[/ 1©(s)]["ds]
t€[0,To] 0
To
< (Blluwl +5 L/ 1£(5)[}ds + LsTy ) exp(LaTy). (3.8)
— L5 Jo

(Claim 1) demonstrates that © € Ap, and © is a solution of (3.1) on [0, Tp]. By a standard
argument, for any T > 0, there exists a solution of (3.1) on [0, T]. The uniqueness proof is
standard, and thus we omit it here. (3.8) implies that (3.2) holds. Hence, the statements
in (Claim 2) are proved, and the proof of Lemma 3.1 is thus complete. O

Set yo(t) := 0. By Lemma 3.1, for any m € IN and 6 > 0, we can define the sequence
{yn}52, recursively by y, 11 := ©¥», which satisfies the following equation

dyn11(t) + Ayn1(O)dt + B(yn(t), yn+1(8)dm(1yn (t))) g5 (|yn e, ) dt

— f()dt + /Z Gt Yoy (=), 2)7i(d2, dt) + Ut g (£) AW (1), (3.9
yn+1<0) = Up-
Moreover,
T T
2 2 2 2
2 Elln®)) + Bl / I (s)]%ds] < € (Eljuol?, / 17s) s, ). (3.10)

Here, C’(]E[|u0|2], fOT £ ()12 ds, T) is independent of m, J, n.

Note that
dyr (t) + Ay (t)dt = f(t)dt + / G(t,y1(t=), 2)n(dz, dt) + W (t,y1(t))dW (), 3.11)
z .
y1(0) = ug.
We will prove that §; > 0 and 7y > 0 exist such that
oo To 9 1/2 >
S (B[ lonea(s) ~ va)Pds)) "+ B sup fyna(®) - val0)] < 0. (312)
n=2 0 =5  t€[0,To]

Here y,,+1 is the solution of (3.9) with § replaced by §g. The proof of this claim needs
Lemmas 3.2 and 3.3 below. To reduce the proof length, we need some more notation. Let

L(t) = (Bl (8), 91 (0)ém (9 (O))gs ([yne,)

(3.13)
- B(yn—l(t)v yn(t))¢m(|yn—1(t)|)g(5(|yn—1|§t,)v yn+1(t) - yn(t)>
Let Ifp, : (—o0,00) — {0, 1} be an indicator function defined by
1, ifze0,1,
I T) =
[0’”( ) {0, else.
Forany n € N,e,p,t > 0, we set
En(t) = llyn—1(0)1*T10,35) ([yn—1le.) + 1yn (D11 T10,35 (|ynle. ), (3.14)

and

$,(t) =3 (1 b (m+2)2 40 m+2)2 + (m+1)267% 4 (m+ 1)2635—41’)5”(75).(3.15)
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Lemma 3.2. For any ¢,p,t > 0 and n > 1, the following inequality holds:

1u(0) < Tellpman () = 5O + (22 + 2728 3 (8) = s (O]
" C(W L 1/2520-2 4 5200 1))|yn — Y1 2,En(0) (3.16)
+ 3elyn(t) — yn-1(t) Hn( )+ O3, () |yna(t) — yn(t)‘Qa

where C' is a constant independent of €,9,n, p,t.

Proof of Lemma 3.2. We will prove this lemma in the following four cases.

D |yn|Et < 34 and |ynfl|§t < 39,
(I1) - |yn|5t < 36 and |yn_1|5t > 36,

(I11) : |ynle, > 30 and |yn—1le, < 36,

(V) : [ynle, > 36 and |yn_1le, > 36.

(D: [ynle, < 36 and |y, _1[¢, < 34.

We need to divide this case (I) into the following four subcases.

(I-1) : |y (t)] <m+2and |y,—1(t)] <m+2,
(I-2) : |lyn(®)] <m+2and |y,—1(t)] > m+2,
(I-3) : |yn(t)] > m+ 2 and |y,—1(¢)| < m +2,
(I-4) : |yn(t)] > m+ 2 and |y,—1(¢)| > m + 2.

(I-1): |yn(t)] < m+ 2 and |y,—1(t)] < m+ 2.
Observing (2.2) and (2.6), we have

L,(t)

= (BWn(t), Yn+1(t)) P (|yn ()95 ([ynle.) — Byn(t), yn(t)) Pm (lyn () gs([ynle. ),
Ynt1(t) — yn(t))

H(BYn (1), yn () Sm[yn (O)])gs ([ynle,) — B(yn-1), yn () dm [y (£)))gs(|ynle.),
Yn+1(t) — yn(t))

+<B(yn—1( )a n(t))¢m(|yn(t)|)g5(‘yn|&) - B(yn—l(t)a yn(t))(bmqyn—l(t)|)gz§(|yn—1|fr,)a
Yn+1(t) — yn(t))
= 0+J1(t) +J2(t>. (3.17)

We estimate J; (t) and Jo(t) respectively. By (2.2), (2.4), (2.5), and the Young inequality,
for any € > 0, we get

Ji(t)
< [{(BWa(t) = yn—11),¥n () Ynt1(t) — yn(t))
< Clyn(®) = Yn-1B)lq - Nyn O - [yn+1(t) — yn(t)lo
< Clyn(t) = yna O [lyn(t) — yn(t )H”QHynH(t)—ynll”Q\ynH(t) ynl "2 yn (0]
< ellyns1®) = YOI - 19n() — yn—a1 (D)l
Ce™ My O P lynt1(t) = yn ()] - [yn (t) — yn-1(t)]
< ellyna(®) = yn O + llyn(t) = yn-1@)1* + Ce 3 lyn ()1} [yn+1(t) — yn(t)]?

+ellyn ()1 |y () — yn—1(t)]?, (3.18)

(t) = <B(yn—1(t)7yn(t))[¢m(|yn(t)|)95(|yn|gt)—¢m(|yn—1(t)|)95(|yn—1Ist)]7
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yn+1 t >
_ <B<yn 1(0) () B ()95 () — Sm1 (D3l )]
Ynt1(t n(t) >

+<B(yn—1(t),yn(t)) [ S ([yn—1(E))gs (1ynle,) — Sm(lyn-1(B))gs ([yn—1le,)]

ynJrl(t) - yn(t)>
= Jaa(t) + Jaal(t). (3.19)

Combining (2.4), (2.5), the Lipchitz property of ¢,, and gs, and the Young inequality gives
that for any € > 0,

J2,1(t) Clyn(t) = yn—1(O] - [yn-1®)l@ - lyn O] - [yn+1(t) — yn ()l

Clyn(t) = yn-1 ()] [gnr1(t) = yn O+ [ynsr () — yu (1)

Ny 2 g1 ()2 [y (B)]]

Ce ™ |yns1(t) = Yn ()P [1yn—1 ()|} lyn-1(t)?

+elyn () = a1 (D12 yn O 2 yns1(t) — yn (O IP?

Ce™?(m 4 2)*[yns1(t) — Yn (O [Yn—1(E)1* + €lyn () = yn-1(t)[*[lyn ()|
+ellynr1(t) = ya ()] (3.20)

VARVAN

IN

IN

o

Y

=
A

1
O3l = ynrles - [yn-1 (Bl - 9 (Ol - a1 () = 3 (D)o
1
Cg|yn - yn—1|5t ||yn+1(t) - yn(t)||1/2|yn+1(t) - yn(t)|1/2
Nm 1 Ol (012l (1)
yat
C™(5) a1 (8) = yn () Pllyn—1 @2 l—r (D)

e ()l = v [ O 1) = 3 O

€ m 42 (3 r ()~ 1O s 017 +2(5) " I~ paca 2l

+el[yns1(t) — yn (). (3.21)

Combining (3.18)-(3.21) with (3.17), and |y,|¢, < 36, and |y,—1¢, < 36, yields that for
any € > 0, the following inequality holds for this subcase:

L(t) < 3ellynsa(t) = gal®)* +elya() = yaar (DI
S
+m||yn(t)||2|yn - yn_l\éf[o,sa}(lynlg,,)

+2¢ | yn (112 yn (£) = Yn—1(0)* L 10,36 (|ynle.) (3.22)
FCe3 (14 (m+2)% + 67 (m +2)?) [yns1(t) — yn (B)[*Zn(2).

(I-2): |lyn(t)] <m+2 and |y,—1(t)| > m + 2.
In this subcase, according to the definition of ¢,, and I,(¢), it holds that

IN

IN

IN

In(8) - Ljynle, <36} " Llya-sle, <30} * Llyn®)l<mt2y * Ljyai (@) >m+2}
= In() - iy te, <363 " Hlynile, <383 * Lyn@l<m1} * Ly (9)1>m+2}-

For any ¢ such that Iy, |, <36} I{jy.-1le, <36} " Hyn 01<m+1} * Hiyaos (1 >m+2y = 1, we have
[Yn(t) — yn—1(t)] > 1. (3.23)
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This and (2.2) with (2.4)-(2.6) show that

I(t) (B(yn(); Ynt1(8))Pm (lyn (E)Dgs ([ynle.), yn41(t) = yn(t))
[(B(yn(t), ynt1(t)), —ya(t))]
(B (yn(8), yn+1(8) = yn (1)), —yn(t))]
(B Wn (1) yn (1)), ynr1(t) — yn(t))]

Clyn(®le - IIyn( M- Nyn1(8) = yn ()l

Cllyn+1(t) =y )1 - lyn+1 (1) —yn(t)l”2 Ay O - g OF2 - llya ()],

(3.23) and the Young inequality therefore assure that for any ¢ > 0,

L(t) < Clyns1(t) = yaOI 2 lynra () = yu ()12 [y (0]
Oy O 21y (t) = g1 (2)]
Clm+ 12 g1 (t) = yu O ynrr (8) = v (012 lyn ()]
Ny Ol (t) = g1 (1))
C(m + 1% |y Ol |yn-+1() = yn (D)
Felyns1(8) = ya @I lyn @12 lyn(t) = yu-r (O
C(m+1)%~ 3IIyn( WP yn+1(8) = v B To 35 ([ymle.) + €llyn1(2) = yn ()]
+ellyn Oy (t) = Yn-1()*Ijo,35 (1ynle.)- (3.24)
To get the last inequality, we have used the fact that for this subcase |y,|¢, < 3 and
[Yn—1le, < 36.

(I-3): |y (t)| > m+ 2 and |y,—1(t)] < m+ 2.
In this subcase, by the definition of ¢,,,, we obtain

IN

IN A

IN IN

IN

In() - Iijyale, <38y * L{lyaile, <36} * L{lya@)>m+2)  Ijya_1(0)]<m+2)
= In(t)  Ijy,le, <361 L{lyn11e, <31 " Llyn@1>mr2}  Llyn_1(0)|<m+1}-

For any ¢ such that Iy, |, <36} I{jy.-1le, <36} " Hlyn 01>m+2} " Liyaos (91 <mr1y = 1, we have
yn(t) = yn—1 ()] = 1. (3.25)

Moreover, (2.4), (2.5) ensure that for any € > 0,

11n(t)] (B(Yn—1(t); Yn () m (|yn—1(&))gs ([yn-1le,)s Yn+1(t) — yn(t))|

Clyn—1)lq - lyn @O [Yn+1(E) — yn ()|

Cllynt1(t) = yn I - ynir (D) = g O Ny O yn—a (O |yn—1 (8)]*/?
Cm+ DY ynr1(t) = ya O - 1yns1() = yu O [yn @) - [yn-1(8)]*/2
Ce 3 (m +1)2|ynr1(t) — Yn (O lyn—1 01 + ellygn O 2 yns1 () — v (£)|*/*
Ce?(m + 1) |yns1(t) = yn ()P lyn—1 O + ellyn O + ellynt1 () — ya ()|
Ce(m +1)%|ynia(t) — yn(t)l [yn—1 O + llyn () = yn—1(®)* + ellyn—1 (D)
+ellynra(t) = ya ()]

This and (3.25) together imply that

L) < Ce™(m+1)|yns1(t) = Y@ P lyn-1 (O + ellya(t) — yn-1(8)]?
Fellyn-1 Oy (t) = ya-1 @) + ellynr1(t) — ya ()]

(VAN VAN VAN VAN VAR VAN

Considering that for this subcase |y,|¢, < 3d and |y,—1l¢, < 39, we have

L) < Ce(m+1)2[yns1(t) = yn (@) lyn—1 (0)* 10,351 ([yn—1le.) + €llyn(t) = yn-1(t)®
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Fellyn-1 Oy () = ya-1 () Lo,35 (yn-1le,) + ellyns1 () — g @)]*.  (3.26)

(I-4): |yn(t)] > m+ 2 and |yn—1(t)| > m + 2.
For this subcase, note that

I,(t) = 0. (3.27)

Therefore, (3.22), (3.24), (3.26), and (3.27) ensure that for case (I) the following
equality holds: for any ¢ > 0,

L(t) < Bellynsr(t) — yn(@))® + 2ellyn(t) — yn—1(t)]?
13 —_
+W”yn(t)”2|yn — Yn-1lz,110,35) ([ynle,) + 3lyn(t) — yn-1(t)*En(t)
+Ce 3 (14 (m+2)* + 6 (m+2)?)|yn+1(t) — yu(B)*Zn(t). (3.28)

I1): ‘ynkt < 35 and |yn,1|5t > 39.
In this case, note that the definition of ¢,,, and g5 yields that

Ln(t) - iy, e, <36y * Lignoale, 36y = Inlt) - Ljyole, <261 " Llyule, 36} - Ly (H))<mt1}-

For any ¢ such that Iy, |, <25} * I{jyn e, >36} * L{lyn ()| <m+1} = 1, we have

Yn — Yn—1le, > 6, (3.29)
and by (2.2), (2.4)-(2.6), we see
I(t) = (B(yn(t), Yn+1(8)myn () gs([Ynle, ), Ynt1(t) — yn(t))
< [(Bal), ynsa (), —yn(t))]
= [(BWn(t),ynt1(t) = yn(t)), —yn(t))]
= [(BWn(t),yn(t), yns1(t) — yn(1))]
< Clya(®)lg - IIyn(t)II [Yn+1(t) — yn(t)lq
< Clynrr () = yn O - ynaa (t) *yn(t)l”z-llyn(t)ll Ny (@1 [y (8],

yn(t)] < m+ 1, and the Young inequality, we can show that for any ¢,p > 0,

L(t) < Clynsr®) = yn @O - [ynr1(t) = yn Y2 - Jya(t)]]
1
'|yn(t)|1/2”yn(t)”1/2 ) ‘yn - yn—1|£t ) s

Cm+ 12 g1 (t) = yu O - fynra () — yu ()2
Nyn O Nyn @12 - lyn = Ynrle, - e=>/4677 - Y4507
Cm+1)%e 720~ |lyn ()7 [yn+1 () — yn ()

+e0* P2y 1 () = g O [y O g0 = g le?

IN

IN

le, <26 < 36 and the Young inequality imply that

L(t) < Cm+ 1% |yn(®)Pyns1(t) — yn(®)* 110,36 ([ynle,) + elynr1(t) — yn (1)
+Ce8* Py, (1)1 yn — Yn—1lz,Z10,36) (|ynle,)- (3.30)

AID): |y,le, > 30 and |y,_1]¢, < 34.
In this case, from the definitions of ¢,,, and g5, we find

In(@) - Ijyale, >3} Llyn-ile, <36y = In(t) L{jyale, 36} * L{lynle, <26} * L{lyn_r (&) <m+1}-
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For any ¢ such that Iy, |, >35} * {{|y,_1l¢, <25} " L{lyu—r(t)|<m+1} = 1, We have

Yn — Yn—1le, = 6. (3.31)
_1(t)] £ m + 1, and the Young inequality prove that for any
e,p>0,
[ (t)]
= [(BWn-1(0), yn(t))dm (lyn-1(0)))gs([yn—1le.); Yn+1(t) — yn (1))
< Clyn-1t)lq - ||yn( N Tyt (t) = yn (Bl
< Olynsa(t) = yn O Nyt () = ya O - Ny O] - [gn—a O |y ()2
< Cm+ 1" yni1(t) = a2 19nr1(t) = ya O lyn O] - lyn-—1 (D)[]'/257767
< Cm+1)%6""lynsr(t) = ya(OF - g1 (D)l
+642 g1 (1) = yn (D1 lya ()2 - 713 - 1/
< Cm+125""lyn1(t) = YO Pllya—1 0N + ellyns1 () — yal®
+e 1262 |y (8)°
< Cm+ 126" |yns1(t) = Y@ Pllyn-1 O + ellyns1() — yal®

+e 262 [y () — yn—1 (0)]1* + €726 |Jyn_1 (1)
Hence, by (3.31) and |y,—1]¢, < 20 < 30, we obtain

1] < Clm+ 126yt (t) = yn(OPlyn-1 O + ellgns1 (t) — ynl®

_ _ |yn - yn71|2f
+e 267 |lyn () — 1 (01?4 262 |[yn—1 (1)) - 5725
= C(m~+1)%0"*[yni1(t) = yn () (lyn—1 ()1 T10,35) (lyn—1le,) +
e 267 |y () — Yn-1 (O + ellyn+1(t) — yul®
+e7 1262072y (D1 - Jyn — yn—1|§,, “T10,35) ([Yn—1le,)- (3.32)

aV): |ynle, > 36 and |y,—1]e, > 36.
In this case, by the definition of g5, we know

I,(t) = 0. (3.33)
Summing up cases (I)- (IV), the following inequality holds for any ¢, p,¢ > 0,
L) < Telynia(t) = g + (22 + 27267 fyn(8) = g1 (0]

+C (g +2 20772 4+ 202070 [y, — g1, E0(2)

53/2
+3elyn(t) = Yn-1(OEn(t) + C8 () |yn+1(t) — ya(B)*.
The proof of Lemma 3.2 is complete. O

Lemma 3.3. For any € > 0 such that 2 — Ly, — 2¢ > 0 and any to > 0, we have

exp < —12¢-186% — tho) sup E(|y2(t) - yl(t)|2)
t€[0,to]

to
+<2 — Ly — 25) exp < —12¢-186% — tho)E/ ly2(s) — y1(s)||ds
0

to
2exp (~ 1261887~ Lity ) E / (6Z2(9) luats) — 10 (5) s
0

< ;m252, (3.34)

where C' is a constant independent of €, 9, tg.
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Proof of Lemma 3.3. Applying It6’s formula to exp ( - fot 12eZ5(s) + les) ly2(t) — y1(t)|?
and recalling (3.11) and (3.9), we have

exp ( - /Ot 12eE5(s) + leS) ly2(t) — y1 (1)
+2 /Ot exp ( — /OS 12e25(1) + lel) lly2(s) — y1(s)||ds
+ /Ot (12552(3) + Ll) exp ( - / 12625 (1) + lel) lya(s) — y1 (s)[2ds

0

55)7

— 2 [ (= [ 12000 + L1 (B (5) 12061 (a5 sl
ya2(s) — y1(s))ds + 2/0 /Zexp ( — /0 12e25(1) + lel>
(G(s,y2(s—),2) = G(s,51(s—), 2), y2(s—) — y1(s—))7(dz, ds)

+2 /Ot exp ( _ /OS 12eZ5(1) + L1dl) (U(s,92(5)) — W(s,y1(5)), y2(s) — y1(s))dW (s)
+/Ot/zexp ( - / 12e55(1) + L1dl)|G(s,y2(s—),z) — G(s,y1(s—), 2)|*n(dz, ds)

0
tex [ Eo 1 5.y2(5)) = U(s,y1(s))[Z,ds
+/0 b ( /0 12555 (1) + Ladl) |95, 2(s)) — V(5,51 (5)) 2, d
= Y L(t). (3.35)

From the fact that y;,y2 € D([0,7T], H) P-a.s., (3.10), and Condition 2, there exist
stopping times 7, * oo IP-a.s. such that

{12(t ATp)+ I3(tATy), t > O} is an F-martingale. (3.36)

Hence, we obtain
tATH
Elexp (= [ 1262a(5) + Luds) it A ) = (¢ A )P
0

tAT, s

+2E] / exp (- / 12:25(01) + Ladl )y (s) = 1 (s)]2ds]
0 0
tATh

+B[| (12552(5) + L1) exp ( - /O 12625 (1) + lez) lya(s) — y1(5)|2ds]
= E[LEAT)]+E[L(EAT)] +E[I5(EAT)]- (3.37)
By Condition 1 and (2.6), we have
E[L(t ATy)]

= 28 e (= [ 126000+ L) (B () 6D ()as )
2(5) — 1 (5))ds]

tAT, S
< 2EE[/ exp (- / 12:55(01) + Ladl ) lya(s) — w1 (s) 2]
0 0
C tATH s
SB[ e (= [ 12:220) + Lidt) ln(9) Pln(s) P (5))gslnle, s
0 0
EJP 27 (2022), paper 55. https://www.imstat.org/ejp
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< QEE[/OMTn exp ( — /08 12eE5(1) + lel) ly2(s) — yi(s)|*ds] + gm262. (3.38)
Condition 2 shows that
E[L4(t AT)] + E[I5(t A Th)]
/MTW / exp / 12e=5(1) + lel) |G (s,92(5), 2) — G(s,y1(s), 2)|*v(dz)ds]

HE[/O T"exp(/o 12€Ez(l)+L1dl>|\11(s,y2(s))f\IJ(s,yl(s))Fﬁzds] (3.39)

< B[ o (- [ 12620 + L) (alas) - O+ Eallon(s) - n(9)17) s

0

Combining (3.35) and (3.37)-(3.39), we can prove
tAT,
Elexp ( - / 126Z5(s) + L1ds) lya(t A ) — g1 (8 A7) 2]
0
tATR s
(2 Lo - QE)E[/ esxp (- / 19255 (1) + Lyl ya(s) — v (9)]Pds]
0 0

- /O (125200 o - /0 12:55(1) + Ladl ) |ya(s) -y (5)|ds]

< gm252. (3.40)

Taking the limit as n tends to infinity assures that
t

E(exp(—/ 12625(s) +L1ds>|y2(t) fyl(t)\z)

0

t s
(2 Lo - 25)1@/ exp (- / 12525(1) + L) a(s) — v ()]s
0 0
t s
+IE/ (12552(5)) exp ( - / 12e=5(1) + lel) ly2(s) — y1(s)|*ds
0 0

< gm262. (3.41)
Thanks to the fact that foranyn > 1and S > 0
S
| @1 Tl < 08%
we obtain T
0< / 12e25(s) + Lids < 12¢ - 186% + Lit,Vt > 0 and Vn.
0
Applying this inequality to (3.41) demonstrates that
exp ( 126 185% — L1t>E[|y2(t) O
t
(2 Lo —2¢) exp (120 1807 - th)]E[/ lya(s) — 31 (5)[[2ds]
0
t
+2exp ( 1261882 — L1t>IE[ / (6552(5)) lya(s) — y1(s)[2ds]
0
< gm252 (3.42)
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Therefore, we obtain that for € such that 2 — Ly — 2¢ > 0 and any #5 > 0,

exp  — 1221862 — Lito) sup Ellya(t) - 11 ()]
te(0,to]

to
(2 Lo 22) exp (120 185% - tho)E[/ lya(s) — v (s)|2ds]
0

to
+2exp ( —12¢-186% — tho)E[/ (6532(5)) ly2(s) — y1(s)|*ds]
0
< €m252.
€

The proof of Lemma 3.3 is complete. O

If we can prove Propositions 3.4 and 3.5 below, then (3.12) follows immediately.

Proposition 3.4. There exist §y, Ty > 0 independent of the initial value ug such that

5= (Bl ()~ a0+ 3 (B o)~ vaCoas))

n=2 n=2

+ i (]E[/TO (Zea () bt (5) - yn(s)|2ds]>1/2 < 0. (3.43)
n=2 0

Here y,, 11 is the solution of (3.9) with § replaced by d.

Proof of Proposition 3.4. Recall the definitions of $,, and I,, in (3.15) and (3.13), respec-
tively. Set
Fo(s) = Co$n(s) + Enq1(s) + L,

where Cj is a constant to be decided later. Applying 1t6’s formula to exp ( — fg Fn(s)ds>

Yns1(t) — yn(t)?, we have

o (= [ Fuo)ds) s (8~ val0)
w2 (o0 (= [ R0a)lms) - o)
# [ Fren (~ [ R ) - vao)Pas
- Q/Otexp(/OSFn(l)dl>In(s)ds+2/Ot/2exp(/OSFn(l)dl)
(G5, s (5-),2) = G, 0 (57),2)s 11 (5) — (5}, )
2 [Cexp (= [ R 09001 (5) = $010 (). 1 () = ()W ()

s
0

+/Ot/2exp<_/ Fn(l)dl)‘G(S,yn-H(S—),Z) _G(Svyn(s_)az)‘zn(dz,ds)
+/Ot exp ( _ /03 Fn(z)dl>|\11(8,yn+1(s)) — \I’(S,yn(s))lf;st

5

= Y JN(). (3.44)
=1

With the help of y; € D([0,T], H) P-a.s., for any i € IN, and by (3.10) as well as Condition 2,
we have that for any N € N, there exist stopping times /¥ * oo P-a.s. as k /* oo such

EJP 27 (2022), paper 55. https://www.imstat.org/ejp
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that, for any n € {2,3,--- , N},
{J;(t AT+ TR ATY), t > 0} is a F-martingale. (3.45)

Hence
Besp (= [ P s ¢4 ) sl AP
e[ oo (= [ F ) s 4 - s

Bl (R@) e (= [ ) (s) - )P
= EJPtAT)] +EJREATY)] +EJ2EATY))]. (3.46)
Similar to (3.39), we have
E[Jy (A7) + E[JE(EATY)] (3.47)
< uf e (- / Fa ) (Lalysn(5) — un() + Lollyra(s) — w(s)]?) s

Using the fact that

s t t
Fudl) < 1, [ Ea(5)ds < 185 and o~ ol = [ lon(s) = s (9],
0

exp ( —
0 0

it is easy to have the following three estimates:

o[ s (= [ R0 ne) - o0

o (3.48)
< / 190 (5) — g ()2ds].
t/\'r]kN S
B[ e (= [ Fudt)l  vacsfE Zu(s)ds
0 0
t/\‘rkN
SE[Iyn—yHIEWN/ 2, (s)ds] (3.49)
tAT
< 185°E / 19 () — g () 2ds).
0
t/\‘rkN S
B[ ow (= [ F0d)unl) - moa)PEa(5)ds
0 0 (3.50)

< E[/Ol s = ne1(5)PEn(s)ds.

Throughout our proof, C' denotes the constant which appears in (3.16). Thanks to
(3.48)-(3.50) and (3.16), one has

E[J(tAT)]

< 1kl " o (- [ )l (9) - 6}
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(e, 5. p)E] / 1) — g ()2

62| / " 10n(S) = Yo (9)PEn(5)ds]

t/\'rkN s
B[ e (= [ Bd)208,(0) i (s) < p(o)Pds), (35D)
0 0
where
Cle,6,p) = 2(25 e /2% 4 0(53% e 1/29%-2 552@—1)) : 1852). (3.52)

Let us set Cp = 2C. Combining (3.46), (3.47), and (3.51), we obtain
t/\‘rkN
Elexp (= [ Fulo)ds)lyman (¢ A7) — yult A )P
0
t/\THfV s
+(2- L2 - 148)]E[/ exp (- / Fo(D)dl) [gn+1(5) = ya(s) |2ds]
0 0

. /mfv = a(5) e~ / ’ Fo(D)L) [gn41(5) — yn(5)/2ds]

0 0

IN

C(Evavp)E[/Ol k Hyn(s) - ynfl(S)HQdS]

t/\‘rkN
+65]E[/ 1Y (5) = Yn—_1(8)|*Zn(5)ds]. (3.53)
0

Using fg Z,.(s)ds < 1862 again,
/ Fo()dl < Coe® (1 F(m+22 4+ m+2)2+ (m+1)26% + (m+ 1)2535*417)
0

1862 4+ 185% + Ly

=: J(g,0,p,s), (3.54)

which is independent of n. Also, for any s € [0, ¢],

J(e,0,p,8) < J(e,6,p,t).

Hence,

exp (= 3(e,8,p.8) ) Ellynss (¢ ATY) = gt A7)
(2 Lo 1) exp (<3650 0)EL T uss) — o)
vosp (= 36,80 0)EL " (2020 ) - ()P
Besp (— [ Bt A7) A7

(2= 1 - 142)El | S [ E )l (9) = (5) P

+E[/OtATkN (En+1(3)) exp ( - /OS Fn(l)dl) Y1 (s) — yn(s)[2ds]. (3.55)
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By (3.53) and (3.55), we arrive at
exp (= 3(2,6,9,8) ) Ellyn 1 (t A7) = yalt A7) ]
t/\T[(JV
(2= Lo-1a)exp (“IEERDO)EL lunia(s) -~ va(5)ds)
0
t/\TﬁV
e (=3 EpO)EL[ T (Z0n1(9) i s) — o) s
0
t/\T]k
< O, 6,p)E| / 19n(5) = g1 (5)]|%ds]

tAT
6] / Wn(5) — 1 (5)[2Zn (5)ds]. (3.56)
0

Combining the two inequalities a + b+ c > $(v/a+ Vb + c)? and a + b < (ya + vb)? for
any a,b,c > 0 gives the following result:

B exp (= 7.65.0)/2) (Bllgns (1 ) = A ) 1)

3
7

+?(2 — Loy — 14,3)1/2 exp ( J(e,d,p, )/2)( [/ st () — yn(5)||2d5])1/2

P exp (— 3. 02) (EL / T Ea$lmea(s) - plPas))

3
< Ol (B[ o) - na(o)Pas)
+(66)1/2 (E[/O " |yn (s) — yn_l(s)\QEn(s)dle/Q. (3.57)

Summing n from 2 to N, we obtain

B exp (- 1(e.0.0)/2)1 Z (Bllyess (A7) — ot 0 ) 21)
+(2- L - 145)1/2 i (E[/Om‘ lyn1(s) = yn(8)||2d51)1/2
3 (B Er o) P )
n=2
< cloneY (ol ) - vna (o))
n=2
623 (et " s) = b Ea(s)as])
n=2
~ Cesn Y (B / " hia(6) - vaCoPas])
n=1
#6972 X (61 linos) - P ) (3.58)
n=1
EJP 27 (2022), paper 55. https://www.imstat.org/ejp

Page 23/31


https://doi.org/10.1214/22-EJP779
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Well-posedness of stochastic 2D hydrodynamics type systems

Rearranging the inequality above gives that

B o (= e 0/2) Y- (Ellmn(t A7) e n )
.
l

+ 2— Ly — 145)1/2 exp ( — J(e, 6, p, t)/2) — C(e, &p)”ﬂ

i}:( /MTK [Yn+1(s) —yn(S)HQd‘S})l/2

N tArY
7; (E[/o Ent1(8)|Yn+1(s) — yn(5>|2ds])

1/2

1/2

< e np (B[ o) - o)

1/2

t/\TkN
09 (B lualo) — m(9)PZas)as]) (3.59)
0
Letp=1/4ande = 51, Noting that Ly < 2 (see Condition 2), by the definitions of C and

J in (3.52) and (3.54), there exist positive constants dq, Ty, 7;, ¢ = 0,1,2--- , 4, such that
1
the following holds. In this, we define g = 4.

V3
? exp ( - ‘]](607 507177 TO)/2) 2 Mo,
1/2
(2 - L2 - 1450) eXp ( - ‘]](603 607p7 TO)/2) - C(an (50,]))1/2 Z m,

V3

{? exp ( — J(eo, do, p, To)/2) - (660)1/2} > 12,
(2 Lo 250) exp ( 122 - 1852 — LlTO) > 13,
2 exp ( —12¢g - 1863 — LlTO) > 4.

Then, by (3.34) and (3.59), we get

L[ 10n(6) ~ o)) L[ (6022060 ) — )]

< ¢ m262, (3.60)
€o
and
N2 1/2
UOZ( a1 (To) A7) =y (To A 7))
T()/\'r]k 1/2
> (E [ Tma(s) = o))
n=2 0
N Tonmy b, \1/2
i3 (B (E0a) (o) - ma(o)Pas)
n=2 0
1o TO/\TkN ) 1/2
< Cleodop) (B[ llals) - (o))
0
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To/\TkN

+(650)1/2(]E[/0 12(s) — () Za()as]) (3.61)

Notice that y,,, n > 1 now is the solution of (3.9) with § replaced by Jj.
Let k 7 oo firstly and then let N oo in (3.61). Then we can use (3.60) to obtain

103" (Bllyn(T0) ~ wu@)P)

+m i (E[/o

To 1/2
[341(5) = (o) 2ds])

oo To 1/2
+n E/ Zrs1(8) ) [Yns1(8) — yn(s)|?ds
2;([0 (Z001(9)) g1 (5) = a(s)/ds))
To 1/2
< Clesdnn) (B[ la(s) () |Ps])
0
To 1/2
020 2(BL lna(s) = (5)*Za(s)ds])
0
< oo. (3.62)
The proof of Proposition 3.4 is complete. O

Proposition 3.5. Assume that y,,,n > 1 is the solution of (3.9) with § replaced by ¢, and
where 6y, Ty > 0 are the constants appearing in Proposition 3.4. We have

D B[ sup |yara(t)) = yal(t)]] < oo
n=2 tE[O,To]

Proof of Proposition 3.5. For any A > 0, define a stopping time
= inf{s 2 0 Jyaii(s) — ()] > A}

Since {|yn+1(s) — yn(s)|, s > 0} is cadlag, we have |y,+1(7¥) — yn(T¥)| > A and

IA

NP(sup [gasa(t) = ya()] > )

A2P (7;‘ < TO)
t€[0,To)

< EHyn-‘rl (TO A T)T\L)) - yn(TO A 7)7\')|2]

=! Kn,

and

E[ sup [ynt1(t)) = yn(t)]]
t€[0,To)

[ R( st ) = (0] > 2)ax

t€[0,Tp)

IN

oo
/ (A "2k,) A 1dX
0
= 2rL/2 (3.63)
. 0 1/2
Now we estimate )~ , Ky ~.
Using a suitable stopping time technique, similar to (3.57), we can obtain

\/g " " 1/2
3 exp ( — J(eo0, do, p, TO)/2) (EHynH(TO ATYA Tﬂév) —yn(To AT A Tuév)|2])

ToATYNA T]kN

< Clen, 0, (61 | [90(9) = -1 as])

0
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To /\T;L/\TkN

+(o0z0)2 (L | 9009 — 1 (9P Zn()ds)|
< ot (B Ioals) ~nr(o)Pas))

#6e0) 2 (B[ on(e) ~ yar P Za(e1a])

In the above inequality, let k ~ oo firstly, and then sum n from 2 to co. We get

\ggexp(—ﬂ(50760,p,To)/2)fo}/Q
1/2
< Cleos0,p) /QZ( [ 1on) = v )1Pas])
#0023 (61 ) ~ver (P )
< oo, (3.64)

(3.62) has been used to get the last inequality.
Combining (3.63) and (3.64) yields

E[ sup |ynt+1(t) — yn(t)]] < o0. (3.65)
n—o t€[0,T0]
The proof of Proposition 3.5 is complete. O

Using Propositions 3.4 and 3.5, we now prove the following result, which implies the
local existence of (2.1).

Proposition 3.6. For any T' > 0 and m > 0, there exists a solution to the following
equation on [0,T].

du(t) + Au(t)dt + B(u(t), w(t))dm (|u(t)|)dt

= f(t)dt Jr/ G(t,u(t—), 2)n(dz, dt) + U (t, u(t))dW(t), (3.66)
z

u(0) = up.

Proof of Proposition 3.6. Propositions 3.4 and 3.5 imply that for any fixed m € N, there
exist Tp > 0, 6o > 0, Y7 € T, P-a.s., and a subsequence of {y,(t),t € [0,To]}nen, denoted
by {yn, (t),t € [0,To]}ren, such that,

To
lim sup [Yi(t)) —yn,.(t)] =0and lim / |Y1(2)) — yn, (t)||?dt = 0, P-a.s.. (3.67)
k00 (0,10 koo Jo

Then it is not difficul to prove that {Y7(¢),¢ € [0, To]} is a solution of the following SPDE:

dy + Aydt + B(y(t), y(t))m ([y(£)])gs, (|yle, ) dt

= F(Odt+ [ Gleylt-), 2z, dt) + (e y(0)aW (), (3.68)
zZ
y(0) = ug.
Let o = 0 and
T = inf{t >0, ‘Yllft > (50} A Tp.
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By induction, consider the following time-inhomogeneous equation: Fori > 1,

)ds = Yi(r) + [ f(s)ds

* / J, Gtov(s 2tz )+ [ W s 6), ¢ € i+ T

y(t) =Yi(t), t € 0,7

l
/ Ay(s)ds + / Bly(s), y())bm (19(5))gss (19

(3.69)

¢
Tip1 :=1nf{t > 7 / 1Yie1(s)||?ds > 6} A (15 + To)-

Here, for any h() € L3, ([0,00).V), [h@le: = ( [ ) IhL)?a) " ¥s = ().

Note that the value of Tj is independent of the initial value. Using similar arguments
as were used to prove {Y7(t),t € [0,Tp]} is a solution of (3.68), there exists {Y;1(¢),t €
[0, 7; + Tp]} which is a solution of (3.69). We can see that {Y},, 7, }ncn satisfies

. K,(w) S Trn(w) P-a.s,,

s Yo(tATy) € F, VE>0,
*0=m0<T <7 ST STy <o,
* YVoi1(t) =Y,(t), t €0, 7,] P-as.,

* Y, is a solution of (3.66) on [0, 7,,].

Define

Let

Tmax = lim 7.
n, oo

Then u is a solution to equation (3.66) on [0, Tax), and
/ T u(s)|2ds = 00, on {w, Tmax < 00} P-as. (3.70)
0

We explain the equality above in detail. By the definition of 7;,, for each i, either
Ti+1 9
[ Ml =s

or 7,41 = 7; + Tp holds. Owing to 7nax(w) < 0o, there are only finitely many ¢ such that
Ti+1 = 7; + To, and there are infinitely many i with [7*" ||Y;11(s)||*ds = 6, which implies
(3.70). ‘

It remains to show that P(rpax > T) =1, VT > 0.

By Ito’s formula to |u(t)|?, we have

u t)|2+2/ l|lu(s)|*ds

— w42 / (F(5), u(s))ds + 2 / [ (Gl uts=).2) uts= iz, i

/ [ 16 uts).2)Pa(azas)

+2/0 (u(s), U (s, u(s))dW (s) / 19 (s, u(s)|%,ds, Ve € [0,T A,
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Using a suitable stopping time technique and Condition 2, we indeed have

T ATy,

E[[u(T A )] + 2E| / lu(s)||?ds]

IN

E| / (s, ()%, ds]

IA

T TN,
Eljuof?+ £ [ 1R+ <BL [ u(s) s

T ATy, TNATn
+L4E[/ lu(t)|dt] + L5IE[/ |lu(t)||?dt] + LsT.
0 0

Thus,

ElJu(T A m)/?] + (2 - Ly — )| / " u(s) 2ds]

T T
< B+ 3 [ ISR+ La( [ Blute APl + LT

Lete = % and by Gronwall’s Lemma,

Efju(T A )] + E[/O " Jus)ds] < Cr(1+ Eljuof?]) < oo.

Taking n " oo, we have

BT A a4 B[ ats) ] < Cr(1 4 Bl < o
The above inequality and (3.70) imply that
P(Tmax > T) = 1.
The proof of Proposition 3.6 is complete.

Now we prove Theorem 2.4.

TATy, TATy,
]EHUO|2]+2E[/O <f(s)7U(s)>ds]+1E[/0 /Z G (s, u(s), 2)Pv(dz)ds]

(3.71)

(3.72)

Proof of Theorem 2.4. For the uniqueness, we refer to [6] or [7]. In the following, we

will prove the global existence.

By the results in Proposition 3.6, for any m € NN, let U,,, be a solution to the following

equation:
du(t) + Au(t)dt + B(u(t), w(t))dm (|u(t)|)dt
= f(t)dt +/ G(t,u(t—), z)n(dz, dt) + ¥ (t, u(t))dW (t), (3.73)
z
u(0) = up.
Define
Om = inf{t > 0,|Ux(t)] > m}.
Then {U,,(t), ¢t € [0,0,,]} is a local solution of (2.1). By the uniqueness,
Un+t1(t) = Un(t), ont < op,
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and
Om S Om+1-
Let

u(t) = Up(t), if t < oy, and oppax = lm oy,
m oo

It is obvious that u is a solution to (2.1) on [0, Oymax), @and

lm |u(om)] =00, on {w,omax < o0} P-a.s..
m oo

Using arguments similar to those proving (3.71), we can get, for any 7" > 0,
T'Aomax
E[Ju(T A 0max)[*] + E[/ lu(s)|*ds] < Cr(1 + |uol?)-
0

which implies that
P(omax <T)=0.

and hence
P(0max = 0) = 1.
The proof of Theorem 2.4 is complete. O
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