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Abstract

We prove large deviation principles for the distribution of the empirical measure of
the eigenvalues of Lax matrices following the Generalized Gibbs ensembles of the
classical Toda chain introduced in [9]. We deduce the almost sure convergence of
this empirical measure towards a limit which we describe in terms of the limiting
empirical measure of Beta-ensembles. Our results apply to general smooth potentials.
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1 Introduction

In a breakthrough paper [9], Herbert Spohn introduced the generalized Gibbs ensem-
bles of the classical Toda chain as invariant measures of the dynamics of the classical
Toda lattice. He analyzes them by comparing the Toda Lax matrices for these Generalized
Gibbs ensembles with Dumitriu-Edelman tri-diagonal representations of β-ensembles.
Thanks to this beautiful comparison, [9] showed that the empirical measure of the eigen-
values of Toda Lax matrices converges towards a probability measure related with the
equilibrium measure for β-ensembles. One of the key tools of Herbert Spohn analysis is
the use of transfer matrices, which are restricted to polynomial potentials. We refer the
interested reader to subsequent developments in [7, 8, 10] and [5] where the transfer
matrix approach is used in the similar context of the so-called Ablowitz-Laddik lattice.

The main goal of this article is to generalize some of the results of [9] by using large
deviations theory, which allows to consider more general potentials. More precisely,
we will show the convergence of the free energy and of the empirical measure of
the eigenvalues of Toda Lax matrices following these Generalized Gibbs ensembles.
Moreover, we will express the limits in terms of the well known β-ensembles. Indeed, a
key tool is again to compare the Toda Lax matrices with Dumitriu-Edelman tri-diagonal
representations of β-ensembles. Moreover, we will derive large deviation principles for
the empirical measure of the eigenvalues of tri-diagonal matrices with more general
coefficients. However, in this generality, the rate functions and the limits will not be
explicit as the comparison with β-ensembles is not possible.

More precisely, the Hamiltonian of the Toda chain on sites j = 1, . . . , N is given by

H =

N∑
j=1

(
1

2
p2j + e−rj ), rj = qj+1 − qj

with the periodic conditions qN+j = qj + cN for some real constant c. The equations of
motion are then given by

d

dt
qj = pj ,

d

dt
pj = e−rj−1 − e−rj . (1)

Let LN be the Lax matrix given by the N ×N tri-diagonal matrix with entries

(LN )j,j = pj and (LN )j,j+1 = (LN )j+1,j = e−rj/2 (2)

with periodic boundary conditions (LN )1,N = (LN )N+1,N and (LN )N,1 = (LN )N,N+1, then
for all integer number p,

QpN = Tr(LpN )

is conserved by the dynamics (1) as well as
∑N
i=1 ri. It is therefore natural to consider

that the finite N Toda chain is distributed according to the Gibbs measure with density
e−Tr(W (LN ))−P

∑
ri with respect to Lebesgue measure. Here, P > 0 controls the pressure

of the chain and W is a potential to be chosen later, which can be a polynomial or a
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general measurable function from R into R. We will assume it goes to infinity faster than
x2: namely there exists c > 0 and a finite constant C such that for all x ∈ R

W (x) ≥ cx2 + C . (3)

This assumption is used to compare our distribution to the case where W (x) = cx2 in
which case the entries of the Lax matrix LN are independent. We can without loss of
generality assume c = 1

2 up to rescaling and therefore put

W (x) =
1

2
x2 + V (x). (4)

In the following we will denote

dTV,PN (p, r) =
1

Z
V,P
N,T

exp{−Tr(V (LN ))− 1

2
Tr(L2

N )}
N∏
i=1

e−Pridridpi (5)

where ZV,PN,T is the partition function of the Toda Gibbs measure:

Z
V,P
N,T =

∫
exp{−Tr(V (LN ))− 1

2
Tr(L2

N )}
N∏
i=1

e−Pridridpi . (6)

We denote in short TPN for T0,P
N . Our goal in this article is to study the empirical measure

of the eigenvalues λN ≤ · · · ≤ λ1 of LN denoted by

µ̂LN =
1

N

N∑
i=1

δλi .

We shall call µ̂LN the empirical measure of LN , or the empirical density of states of
the Lax matrix following [9]. Our main result is a large deviations principle for the
distribution of µ̂LN under dTV,PN , from which we deduce the almost sure convergence of
µ̂LN under dTV,PN .

Theorem 1.1. Let P > 0 and assume that V is continuous. Assume that either V is
uniformly bounded or there exists k ∈ N∗ such that

lim
|x|→∞

V (x)

x2k
= a , (7)

with a > 0 if k > 1 and a > −1/2 if k = 1. Then:

(1) The law of µ̂LN under TV,PN satisfies a large deviation principle in the scale N with
good rate function TVP .

(2) TVP achieves its minimal value at a unique probability measure νVP .

(3) As a consequence µ̂LN converges almost surely and in L1 towards νVP .

νVP corresponds to the density of states of the Lax matrix in [9]. Moreover, following
[9], we can identify the equilibrium measure νVP using the equilibrium measure for
Coulomb gases in dimension one at temperature of order of the number of particles.
More precisely, for a probability measure µ on the real line, we define the function fVP by

fVP (µ) =
1

2

∫ (
1

2
(x2 + y2) + V (x) + V (y)− 2P ln |x− y|

)
dµ(x)dµ(y) +

∫
ln
dµ

dx
dµ(x)
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if µ� dx, whereas fVP is infinite otherwise. fVP achieves its minimal value at a unique
probability measure µVP � dx which satisfies the non-linear equation

1

2
x2 + V (x)− 2P

∫
ln |x− y|dµVP (y) + ln

dµVP
dx

= λVP a.s (8)

where λVP is a finite constant. We show in section 3 that µVP is absolutely continuous with
respect to Lebesgue measure and that its depends smoothly on the parameter P . In
Lemma 3.6, we show it is in fact differentiable in P . We then show that

Theorem 1.2. Let P be a positive real number. Then, for any bounded continuous
function f on the real line,∫

f(x)dνVP (x) = ∂P (P

∫
f(x)dµVP (x))

This result was already shown in [9] when V is a polynomial. Our strategy is to prove
first a large deviation principle in the case when V vanishes: then, LN has independent
entries (modulo the symmetry constraint) under TPN . We then derive large deviation
principles for more general bounded continuous potentials by using Varadhan’s Lemma,
see section 2.

Indeed, in the case where V vanishes, the random variables (pj , rj)16j6N are inde-
pendent, (LN )j,j are standard Gaussian N(0, 1) variables and

√
2(LN )j,j+1 follows a χ2P

distribution with density with respect to Lebesgue measure given by

χ2P (x) =
21−Px2P−1e−x

2/2

Γ(P )
1x>0. (9)

The central observation is that we can compare this matrix to the tri-diagonal matrix
CβN introduced by Dumitriu and Edelman [3]. This is the symmetric matrix with inde-
pendent (up to symmetry) entries whose diagonal elements are independent standard
Gaussians variables, and off diagonal elements so that

√
2CβN (j, j + 1) follow a χ distri-

bution with parameter β(N − j). When β = 2P/N , the matrix is therefore similar to
LN except that the parameters of the off-diagonal entries vary linearly. The key point
is that the law of the eigenvalues of CβN is explicit and given by the β-ensemble, see
Section 3. This comparison allows to compare the free energy, the rate function and
the equilibrium measure of the Toda chain with those of Coulomb gases in section 3.
In section 4, we study the case of general potentials. The proof is nearly independent
from the quadratic case, but requires additional arguments in particular because the
eigenvalues of the Toda matrix are not simple functions of the empirical measure of
the entries. Note that the proof given in section 4 also applies to the case where V is
bounded. We nevertheless choose to give a separate proof, dedicated to this case: the
computations being simpler, the core of the proof seems more accessible and introduces
ideas we re-use in the case where V is unbounded.

Moreover, our result allows to derive large deviation principles for the empirical
measure of the tri-diagonal matrices with independent standard Gaussian entries on
the diagonal and independent chi distributed variables with general parameters profile
on the off-diagonal. Namely let LσN be a tri-diagonal symmetric matrix with indepen-
dent Gaussian variables on the diagonal and independent variables

√
2LσN (j, j + 1) chi

distributed with parameter σ( iN ), 1 ≤ i ≤ N . Let TV,σN be the distribution with density
e−Tr(V (LσN ))/Z with respect to the distribution of LσN .

Theorem 1.3. Assume that V is continuous and satisfies (7). Then, if σ is bounded
continuous,
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(1) the law of µ̂LσN under TV,σN satisfies a large deviation principle in the scale N with
good rate function TVσ ,

(2) TVσ achieves its minimal value at a unique probability measure νVσ =
∫ 1

0
νVσ(P )dP ,

(3) As a consequence, µ̂LσN converges almost surely and in L1 towards νVσ .

Acknowledgments: We are very grateful to Herbert Spohn for asking us to investi-
gate the convergence of the density of states for general potentials V and many fruitful
discussions that followed. We would also like to thank David García-Zelada for showing
us how to derive Theorem 3.1 from [4]. We thank an anonymous referee for helping us
to improve the presentation of our results.

2 Large deviation principles for tri-diagonal matrices

In this section, we consider a tri-diagonal matrix MN with entries

(MN )j,j = aj and (MN )j,j+1 = (MN )j+1,j = bj (10)

with periodic boundary conditions, the random variables (ai, bi)1≤i≤N being iid, with
(a1, b1) with law Qa ⊗Qb on R2. We denote by µ̂MN

the empirical measure of the eigen-
values of MN and prove the existence of a large deviation principle for the distribution
of µ̂MN

. In [11, Theorem 4.2], the author proves a large deviation principle for the
empirical moments µ̂MN

(xk) by noticing that

µ̂MN
(xk) =

1

N

N∑
i=1

fk(aj , bj , |i− j| ≤ k)

where fk(aj , bj , |i− j| ≤ k) = (Mk
N )ii is an homogeneous polynomial of degree k in the

entries aj , bj , |i − j| ≤ k. Noting that fk does not depend on i, one can use the large
deviation principle for Markov chains (or k-dependent large deviation principle), see e.g
[2, Theorem 3.1.2 or Section 6.5.2], as well as the contraction principle, to deduce a
large deviation principle for the distribution of the empirical moments {µ̂MN

(xk), k ≤ p}.
This could be used to deduce the existence of a large deviation principle for µ̂MN

for
the weak topology after approximations, but the rate function would not be particularly
explicit. We prefer to develop a more straightforward sub-additivity argument and prove
separately the existence of a weak large deviation principle and exponential tightness,
see e.g [2, Lemma 1.2.18].

2.1 Exponential tightness

In this section we assume that

Assumption 2.1. There exists γ > 0 such that

Dγ :=

∫
eγx

2

dQa(x)×
∫
eγy

2

dQb(y) <∞ .

We equip the set of probability measures on the real line P(R) with the weak topology.
We then show that

Lemma 2.2. If (aj , bj)1≤j≤N are iid with law Qa ⊗ Qb satisfying Assumption 2.1, the
sequence (µ̂MN

)N≥0 is exponentially tight, namely for each L ≥ 0 there exists a compact
set KL (KL = {µ ∈ P(R) :

∫
x2dµ(x) ≤ 2

γ (L+ lnDγ)} with γ as in Assumption 2.1) such
that

lim sup
N

1

N
lnP(µ̂MN

∈ Kc
L) < −L. (11)
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Proof. For N > 1, notice that∫
x2dµ̂MN

(x) =
1

N
Tr(M2

N )

=
1

N

N∑
j=1

((MN )j,j)
2

+
1

N

N∑
j=1

(√
2(MN )j,j+1

)2
. (12)

As a consequence, Tchebychev’s inequality implies that, for any γ > 0,

P

(∫
x2dµ̂MN

(x) > K

)
≤ e−

1
2γNKE[e

1
2Nγ

∫
x2dµ̂MN (x)] ≤ e− 1

2γNKDN
γ .

The conclusion follows by taking K = 2
γ (L+ lnDγ).

2.2 Weak large deviation principle

We next establish a weak large deviation principle, based on the general ideas
developed in [2, Lemma 6.1.7]. To this end, we use the following distance on P(R):

d(µ, ν) = sup
‖f‖BV61,|f |Lip61

{∣∣∣∣∫
R

f(x)dµ(x)−
∫
R

f(x)dν(x)

∣∣∣∣} , (13)

where ‖f‖BV is the total variation norm of f given by

‖f‖BV = sup
∑
k∈N

|f(xk+1)− f(xk)|,

where the supremum holds over all increasing sequences (xk)k∈N ∈ RN. ‖f‖L is the
Lipschitz norm of f . If f is continuously differentiable and we put without loss of
generality f(0) = 0, ‖f‖BV =

∫ +∞
−∞ |f

′(y)|dy and ‖f‖L = ‖f ′‖∞. The distance d is smaller
than the Wasserstein distance where one takes the supremum over all functions whose
L∞ and Lipschitz norms are bounded by one, and is easily seen to be as well compatible
with the weak topology. Then, we shall prove that if Bµ(δ) = {ν ∈ P(R) : d(µ, ν) < δ}
denotes the open ball with radius δ centered at µ, we have:

Lemma 2.3. For any µ in P(R), there exists a limit

lim
δ→0

lim inf
N

1

N
lnP (µ̂MN

∈ Bµ(δ)) = lim
δ→0

lim sup
N

1

N
lnP (µ̂MN

∈ Bµ(δ)) . (14)

We denote this limit by −JM (µ).

Proof. The advantage of the distance d is the following control: For any symmetric N×N
matrices A and B with empirical measures of eigenvalues µ̂A and µ̂B, we have:

d(µ̂A, µ̂B) 6 min

 rank(A−B)

N
,

1

N

∑
i,j

|A(i, j)−B(i, j)|

 . (15)

Indeed, for any function f with bounded variation we have thanks to Weyl interlacing
property, see e.g. [6, (1.17)],∣∣∣∣∫ fdµ̂A −

∫
fdµ̂B

∣∣∣∣ ≤ 1

N
rank(A−B) . (16)
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Moreover, one can check that, if f is continuously differentiable, we have∫
fdµ̂A −

∫
fdµ̂B =

∫ 1

0

1

N
Tr ((A−B)f ′(αA+ (1− α)B)) dα

=

∫ 1

0

 1

N

N∑
i,j=1

(A−B)ijf
′(αA+ (1− α)B)ji

 dα

which implies since for all indices i, j, |f ′(αA+ (1− α)B)ji| ≤ ‖f ′‖∞ that∣∣∣∣∫ fdµ̂A −
∫
fdµ̂B

∣∣∣∣ ≤ ‖f ′‖∞ 1

N

N∑
i,j=1

|(A−B)ij | . (17)

Since continuously differentiable functions with bounded L∞ norm are dense in Lipschitz
functions, we deduce (15) from (16) and (17). We are now ready to prove Lemma
2.3. To this end, we shall approximate our matrix MN by a diagonal block matrix
with independent blocks. Let q > 1. For N > 1 we decompose N = kNq + rN with
rN ∈ {0, . . . , q − 1} and set MN = Mq

N +RqN , where Mq
N is the diagonal block matrix

Mq
N =


M1
q

. . .

MkN
q

B

 . (18)

Here, for all i ∈ {1, . . . , kN}, M i
q has the same distribution than Mq and B the same dis-

tribution than MrN . The matrices M i
q, 1 ≤ i ≤ kN , are independent, and are independent

from B. RqN is the self-adjoint matrix with null entries except RqN (1, N) = RqN (N, 1) = bN ,
RqN (kNq + 1, N) = RqN (N, kNq + 1) = −bN , and those given, for k ∈ {1, . . . , kN}, by
RqN (kq+1, kq) = RqN (kq, kq+1) = bkq, R

q
N ((k−1)q+1, kq)) = RqN (kq, (k−1)q+1) = −bkq.

Therefore rank(RqN ) 6 2kN + 2 6 4kN . By (15), we deduce that

d(µ̂MN
, µ̂Mq

N
) 6

4

q
. (19)

Moreover, we can write µ̂Mq
N

as the sum

µ̂Mq
N

=

kN∑
i=1

q

N
µ̂Mi

q
+
rN
N
µ̂B .

Therefore, for any µ ∈ P(R) and δ > 0, we have

P
(
µ̂M1

q
∈ Bµ(δ)

)kN
P
(
µ̂MrN

∈ Bµ(δ)
)

= P
(
∀ i ∈ {1, . . . , kN}, µ̂Mi

q
∈ Bµ(δ), µ̂B ∈ Bµ(δ)

)
6 P

(
µ̂Mq

N
∈ Bµ(δ)

)
6 P

(
µ̂MN

∈ Bµ(δ +
4

q
)

)
,

where we used the convexity of balls and (19). As a consequence,

uN (δ) := − lnP (µ̂MN
∈ Bµ(δ))

satisfies
uN (δ + 4/q) 6 kNuq(δ) + urN (δ).
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It is easy (and classical) to deduce the convergence of uN (δ)/N when N goes to infinity,
and then δ goes to zero. Indeed let δ > 0 be given and choose q large enough so that
4
q < δ. Then, since δ → uN (δ) is decreasing and non-negative, we have:

uN (2δ)

N
6
uN (δ + 4/q)

N
6
uq(δ)

q
+
urN (δ)

N
. (20)

Since
urN (δ)

N 6 max16i6q−1 ui(δ)

N goes to zero when N →∞, we conclude that

lim sup
N

uN (2δ)

N
6
uq(δ)

q
.

Since this is true for all q large enough, we get

lim sup
N

uN (2δ)

N
6 lim inf

N

uN (δ)

N
.

Since the left and right hand sides decrease as δ goes to zero, we conclude that

lim
δ→0

lim sup
N→∞

− 1

N
lnP (µ̂MN

∈ Bµ(δ)) ≤ lim
δ→0

lim inf
N→∞

− 1

N
lnP (µ̂MN

∈ Bµ(δ)) ,

and the conclusion follows.

2.3 Full large deviation principle

As a consequence of Lemmas 2.2 and 2.3, we have by [2, Theorem 1.2.18] the
following large deviation principle.

Theorem 2.4. Under Assumption 2.1, the law of µ̂M satisfies a large deviation principle
in the scale N with a good rate function JM . Moreover, JM is convex. In other words,

• JM : P(R) → [0,+∞] has compact level sets {µ : JM (µ) ≤ L} for all L ≥ 0.
Moreover, JM is convex.

• For any closed set F ⊂ P(R),

lim sup
N→∞

1

N
lnP(µ̂MN

∈ F ) ≤ − inf
F
JM ,

whereas for any open set O ⊂ P(R)

lim inf
N→∞

1

N
lnP(µ̂MN

∈ O) ≥ − inf
O
JM .

Proof. JM exists and is defined by Lemma 2.3. The lower semi-continuity of JM follows
from [2, Theorem 4.1.11]. We then deduce that the level sets of JM are compact by the
exponential tightness, see [2, Lemma 1.2.18 (b)].

In the spirit of [2, Lemma 4.1.21], we show that JM is convex. Let µ1, µ2 ∈ P(R).
Since µ̂M2N

can be decomposed as the independent sum of µ̂MN
divided by 2 plus an

error term of smaller than 4/N by (16), we have for all δ1, δ2 > 0

P (d(µ̂MN
, µ1) < δ1)P (d(µ̂MN

, µ2) < δ2) 6 P

(
d(µ̂M2N

,
µ1 + µ2

2
) < δ3

)
. (21)

for any δ3 ≥ 1
2 (δ1 + δ2) + 4

N . Taking the logarithm, dividing by 2N and letting N go to
infinity, δ1, δ2 and then δ3 to zero, we conclude that

JM

(
µ1 + µ2

2

)
6

1

2

(
JM (µ1) + JM (µ2)

)
, (22)

from which we deduce the convexity of JM as in [2, Lemma 4.1.21].
The second point, namely that a weak large deviation principle and exponential

tightness implies a full large deviation principle, is classical, see [2, Lemma 1.2.18].

EJP 27 (2022), paper 46.
Page 8/29

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP771
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations for Gibbs ensembles of the classical Toda chain

2.4 Large deviation principle for the Toda-Chain with quadratic potential

Recall that we denoted by Qa and Qb respectively the laws of the ai’s and bi’s,
see (10). In the case of the Toda chain with Gaussian potential, that is V = 0, with
entries following TPN , we take Qa to be the standard Gaussian law and Qb to be the chi

distribution
√

2
−1
χ2P given in (9). We let LN (P ) be the tridiagonal matrix whose entries

follow TPN . These entries clearly satisfy Assumption 2.1 and therefore we have

Corollary 2.5. For any P > 0, the law of µ̂LN (P ) satisfies a large deviation principle in
the scale N with good, convex, rate function denoted by TP .

For further use, we show that

Lemma 2.6. For each µ ∈ P(R), the map P ∈ (0,+∞) 7→ TP (µ) is lower semi-
continuous.

Proof. Let P, h be positive real numbers. We first couple the matrices (LN (P ), LN (P +

h))N , where LN (u) follows TuN for u = P and u = P + h, in such a way that there exists
a finite constant c so that

P
(
d(µ̂LN (P ), µ̂LN (P+h)) > δ

)
6 eN(c−

√
− ln(h)δ/2) . (23)

This coupling is done as follows:
• The diagonal coefficients are the same set of standard independent Gaussian

variables
• The coefficient below and above the diagonal Xi

u, follow a
√

2
−1
χ2u for u = P , u = h

and P + h. By definition of the χ distribution we can construct these variables so that
almost surely

Xi
P+h =

√
(Xi

P )2 + (Xi
h)2 . (24)

This coupling allows by (15) to write

d(µ̂LN (P ), µ̂LN (P+h))) 6
2

N

N∑
i=1

|Xi
P+h −Xi

P | =
2

N

N∑
i=1

(Xi
P+h −Xi

P ) ≤ 2

N

N∑
i=1

Xi
h,

where we ultimately used that, for all i ∈ {1, . . . , N}, Xi
P+h ≤ Xi

h +Xi
P because Xi

hX
i
P

is non-negative and (24) holds. Equation (23) follows by Tchebychev inequality since
E[exp{

√
lnh−1Xi

h}] is finite, see (40). (23) implies that (µ̂LN (P+h))N≥0 is an exponential
approximation of (µ̂LN (P ))N≥0 when h goes to zero. By [2, Theorem 4.2.16 ], we deduce
that for any µ ∈ P(R), we have

TP (µ) = lim
δ→0

lim inf
h→0

inf
Bµ(δ)

TP+h.

By monotonicity of the right hand side and the lower semi-continuity of TP+h we deduce
that, see [2, (4.1.2)],

lim
δ→0

inf
Bµ(δ)

TP+h = TP+h(µ),

and therefore
TP (µ) = lim

δ→0
lim inf
h→0

inf
Bµ(δ)

TP+h 6 lim inf
h→0

TP+h(µ),

and so P 7→ TP (µ) is lower semi-continuous.

We shall also use later that Corollary 2.5 gives a large deviation principle for the
empirical measure of the Toda chain with general bounded continuous potential.

Corollary 2.7. Let V be a bounded continuous function on the real line and P be a
positive real number. Let LN (P ) be the tridiagonal matrix whose entries follow T

V,P
N .

Then:
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Large deviations for Gibbs ensembles of the classical Toda chain

• The law of µ̂LN (P ) satisfies a large deviation principle in the scale N with convex
good rate function given, for any µ ∈ P(R),

TVP (µ) = TP (µ) +

∫
V dµ− inf

ν
{TP (ν) +

∫
V dν} .

• The set MV
P where TVP achieves its minimum value is a compact convex subset of

P(R). It is continuous in the sense that for any ε > 0, there exists δε > 0 such that
for all δ < δε, any P,Q > 0 such that for |P −Q| ≤ δ,

MV
P ⊂ (MV

Q )ε

where Aε = {µ : d(µ,A) ≤ ε}.

Proof. The first point is a direct consequence of Varadhan’s lemma since when V is
bounded continuous, µ→

∫
V (x)dµ(x) is also continuous. We hence need only to prove

the second point, that is the continuity of P ∈ (0,+∞) 7→ MV
P . Note that since TVP is

a good rate function, MV
P is compact for all positive real number P . We let TN be the

coupling of LN (P ) and LN (Q) introduced in Lemma 2.6. By definition, for R = P and Q,
B a measurable subset of P(R), we have

T
V,R
N (µ̂LN ∈ B) =

1

ZV,RN,T

∫
1{µ̂LN (R)∈B}e

−N
∫
V (x)dµ̂LN (R)(x)dTN ,

where we used the notation

ZV,RN,T =

∫
e−N

∫
V (x)dµ̂LN (R)(x)dTRN .

Therefore, since ((MV
Q )ε)c is open, we can use the large deviation principle for the

empirical measure of LN (P ), Corollary 2.5, to state that for any κ > 0

− inf
((MV

Q )ε)c
TVP ≤ lim sup

N→∞

1

N
ln

1

ZV,PN,T

∫
{d(µ̂LN (P ),M

V
Q )>ε}

e−N
∫
V (x)dµ̂LN (P )(x)dTN

6 max{lim sup
N→∞

1

N
ln

1

ZV,PN,T

∫
{d(µ̂LN (P ),M

V
Q )>ε}∩{d(µ̂LN (P ),µ̂LN (Q))≤κ}

e−N
∫
V (x)dµ̂LN (P )(x)dTN,

2‖V ‖∞ + c−
√
− ln |P −Q|κ/2} (25)

where we used (23) and ZV,PN,T ≥ e−N‖V ‖∞ . We next remark that by Lemma 2.2, there
exists a positive constant c and a finite constant C such that uniformly on P in a compact
set, if we denote by KL = {

∫
x2dµ(x) ≤ L},

TPN (µ̂LN ∈ Kc
L) ≤ e−(cL+C)N .

Hence, fixing some L > 0, (25) implies

− inf
((MV

Q )ε)c
TVP 6 max

{
2‖V ‖∞ + c−

√
− ln |P −Q|κ/2, 2‖V ‖∞ − cL− C, (26)

lim sup
N→∞

1

N
ln

1

ZV,PN,T

×
∫

1d(µ̂LN (P ),M
V
Q )>ε1d(µ̂LN (P ),µ̂LN (Q))≤κ1µ̂LN (P ),µ̂LN (Q)∈KLe

−N
∫
V (x)dµ̂LN (P )(x)dTN

}
.

We next notice that
∫
V (dµ − dν) is bounded by some εLV (κ) going to zero as κ does

uniformly on {d(µ, ν) ≤ κ} and µ, ν in the compact set KL. Indeed, this is obvious if
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Large deviations for Gibbs ensembles of the classical Toda chain

V has bounded variation and Lipschitz norms, with εV (κ) = max{‖V ‖BV, ‖V ‖L}κ. If V
is bounded continuous, we let η > 0 and choose M =

√
2η−1L so that µ([−M,M ]c) +

ν([−M,M ]c) ≤ η for µ, ν ∈ KL, and then Vη with finite bounded variation and Lipschitz
norm so that

sup
x∈[−M,M ]

|V (x)− Vη(x)| ≤ η .

We then check that∣∣∣∣∫ V (dµ− dν)

∣∣∣∣ ≤ ‖V ‖∞η+ 2η+

∣∣∣∣∫ Vη(dµ− dν)

∣∣∣∣ ≤ (‖V ‖∞+ 2)η+ max{‖Vη‖BV, ‖Vη‖L}κ .

We finally choose η = η(κ) going to zero slowly enough with κ so that the above right
hand side goes to zero. Hence, we can bound the third term in the right hand side of
(26) to find that

1

ZV,PN,T

∫
1d(µ̂LN (P ),M

V
Q )>ε1d(µ̂LN (P ),µ̂LN (Q))≤κ1µ̂LN (P ),µ̂LN (Q)∈KLe

−N
∫
V (x)dµ̂LN (P )(x)dTN

≤ eNε
L
V (κ)

ZV,QN,T

ZV,PN,T

1

ZV,QN,T

∫
1{d(µ̂LN (Q),M

V
Q )≥ε−κ}e

−N
∫
V (x)dµ̂LN (Q)(x)dTN .

Similarly, we find that

ZV,QN,T ≤
∫
e−N

∫
V dµ̂LN (Q)1µ̂LN (P ),µ̂LN (Q)∈KL1{d((µ̂LN (P ),µ̂LN (Q))≤κ}dTN

+e(‖V ‖∞+c−
√
− ln |P−Q|κ/2)N + 2e(‖V ‖∞−cL−C)N

≤ ZV,PN,T(eNε
L
V (κ) + e(2‖V ‖∞+c−

√
− ln |P−Q|κ/2)N + 2e(2‖V ‖∞−cL−C)N )

where we used that the partition function is bounded from below by e−‖V ‖∞N . Moreover
the previous large deviation principle implies if κ ≤ ε/2 that

lim sup
N→∞

1

N
ln

1

ZV,QN,T

∫
{d(µ̂LN (Q),M

V
Q )≥ε−κ}

e−N
∫
V (x)dµ̂LN (Q)(x)dTN ≤ − inf

d(µ,MV
Q )≥ε/2

{TVQ } .

Hence, we find that if L is big enough, P −Q small enough so that εLV (κ) > max{2‖V ‖∞+

c−
√
− ln |P −Q|κ, 2‖V ‖∞ − cL− C}, (26) yields

− inf
((MV

Q )ε)c
TVP ≤ 2εLV (κ)− inf

d(µ,MV
Q )≥ε/2

{TVQ }

We then conclude that the right hand side is negative for such choices of parameters if κ
is small enough and therefore inf((MV

Q )ε)c T
V
P > 0 so that ((MV

Q )ε)c ⊂ (MV
P )c which yields

the result.

3 β-ensembles

3.1 Large deviation principles for β-ensembles

In this section we consider the β-ensembles and collect already known results about
their large deviation principles. We then relate these large deviation principles with the
previous ones thanks to Dumitriu-Edelman tri-diagonal representation, as pioneered in
[9]. Coulomb gases on the real line are given by the following β-ensembles distribution:

dPV,βN (x1, · · · , xN ) =
1

ZV,βN,C

∏
i<j

|xi − xj |βe−
∑N
i=1(

1
2x

2
i+V (xi))dx1 · · ·dxN . (27)
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Large deviations for Gibbs ensembles of the classical Toda chain

V will be a continuous potential. When V = 0 and β = 1, it is well known [1, Section
2.5.2] that dP0,1

N is the law of the eigenvalues of the Gaussian orthogonal ensemble of
random matrices with standard Gaussian entries. Hereafter, we keep the potential to
be under the form of a quadratic potential plus a general potential only to have simpler
notations later on. In this article, we are however interested in the scaling where β = 2P

N .

The large deviation principles for the empirical measure µ̂N = 1
N

∑N
i=1 δxi have been

derived in [4] and yields the following result.

Theorem 3.1. [4] Let PN be a sequence of positive real numbers converging towards
P > 0. Let W (x) = 1

2x
2 + V (x) be a continuous function such that for some P ′ > P + 1

there exists a finite constant CV such that for all x

W (x) ≥ P ′ ln(|x|2 + 1) + CV (28)

Then the law of µ̂N under P
V,

2PN
N

N satisfies a large deviation principle in the scale N and
with good rate function IVP (µ) = fVP (µ)− inf fVP where

fVP (µ) =
1

2

∫
(W (x) +W (y)− 2P ln |x− y|)dµ(x)dµ(y) +

∫
ln
dµ

dx
dµ(x)

if µ� dx and ln dµ
dx is µ-integrable, whereas fVP is infinite otherwise.

In fact, neglecting the singularity of the logarithm, this result would be a direct
consequence of Sanov’s theorem and Varadhan’s lemma. Dealing with this singularity
requires extra-care, a difficulty which was addressed in [4]. Indeed, [4, Theorem 1.1]
can be applied, as was kindly shown to us by David García-Zelada. For 1

2P ′ < α < 1− P
P ′ ,

we can rewrite

dP
V,

2PN
N

N (x1, . . . , xN ) =
1

Z̃V,PNN

e−2PNNHN (x1,...,xN )dπ(x1) . . . dπ(xN ),

where, if γ(N) = (1−N−1) 1
2P ′ + α−1

2PN
, we set

HN (x1, . . . , xN ) =
1

N2

∑
16i<j6N

(
W (xi)

2P ′
+
W (xj)

2P ′
− ln |xi − xj |

)
− γ(N)

N

N∑
i=1

W (xi)

and π is the probability measure given by

dπ(x) =
1

Z
e−αW (x)dx.

The sequence (HN )N≥0 is (up to considering N large enough) uniformly bounded from
below by (28). Moreover, letting γ(∞) = 1

2P ′ + α−1
2P , we set for µ ∈ P(R),

H(µ) :=
1

2

∫ (
W (x)

2P ′
+
W (y)

2P ′
− ln |x− y|

)
dµ(x)dµ(y)− γ(∞)

∫
W (x)dµ(x),

we find [4, Lemma 2.1] that the couple ({HN}N≥0, H) fulfills the assumptions of [4,
Theorem 1.1]. Thus the law of µ̂N satisfies a large deviation principle at speed N with
rate function IVP = fVP − inf fVP , where

fVP (µ) =

{
2PHV (µ) +

∫
ln dµ

dπdµ if µ� π and ln dµ
dx is µ-integrable

+∞ otherwise.

It is not hard to see that

Lemma 3.2. For any continuously differentiable function W , any P ′ > P + 1 such that
(28) holds,
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Large deviations for Gibbs ensembles of the classical Toda chain

• µ 7→ IVP (µ) is strictly convex,

• IVP achieves its minimal value at a unique probability measure µVP (dx)� dx which
satisfies the non-linear equation

W (x)− 2P

∫
ln |x− y|dµVP (y) + ln

dµVP
dx

= λVP a.s (29)

where λVP is a finite constant. Furthermore the support of µVP is the whole real line

and the density of dµVP
dx is bounded from above by CP (|x|+ 1)2(P−P

′) where CP is a
constant which is uniformly bounded on compact subsets of (0, P ′ − 1).

• Let D be the distance on P(R) given by

D(µ, µ′) =

(
−
∫

ln |x− y|d(µ− µ′)(x)d(µ− µ′)(y)

)1/2

=

(∫ ∞
0

1

t

∣∣∣∣∫ eitxd(µ− µ′)(x)

∣∣∣∣2 dt
)1/2

(30)

Then P 7→ µVP is locally 1/2-Hölder for the distance D: For any δ > 0 such that
[P − δ, P + δ] ⊂ (0, P ′ − 1), there exists a constant D > 0 such that for all P − δ 6
R 6 P + δ, we have

D(µVP , µ
V
R) ≤ D

√
|P −R|.

We will see later that in fact P : (0, P ′ − 1) → µVP is differentiable, see Lemma 3.6.
Observe that if f is in L2 with derivative in L2, we can set ‖f‖ 1

2
= (
∫∞
0
t|f̂t|2dt)1/2. Then,

for any measure ν with zero mass,∫
f(x)dν(x) =

∫ ∞
−∞

f̂tν̂tdt =

∫ ∞
−∞

√
tf̂t

1√
t
ν̂tdt

so that by Cauchy-Schwartz inequality, we get,∣∣∣∣∫ f(x)dν(x)

∣∣∣∣2 ≤ ∫ ∞
−∞
|tf̂t|2dt

∫ ∞
−∞

1

|t|
|ν̂t|2dt = 4‖f‖21/2D(ν, 0)2 (31)

In particular, the last point in the theorem shows that for any f with finite ‖f‖1/2,
P →

∫
fdµVP is Hölder 1/2.

Proof. For P ′′ > 1, we denote by λP ′′ the probability measure on the real line given by
λP ′′(dx) := Z−1P ′′(|x2|+ 1)−P

′′/2dx and rewrite fVP (up to a constant lnZP ′′) as

fVP (µ) =
1

2

∫
(W̄ (x) + W̄ (y)− 2P ln |x− y|)dµ(x)dµ(y) +

∫
ln

dµ(x)

dλP ′′(x)
dµ(x)

where W̄ (y) := W (y) − 1
2P
′′ ln(|y|2 + 1). Because λP ′′ is a probability measure so that,

for every probability measure µ,∫
ln

dµ

dλP ′′
(x)dµ(x) ≥ 0

by Jensen’s inequality since x 7→ x lnx is convex.
The first point of the lemma is clear as µ 7→

∫
(W̄ (x) + W̄ (y)− 2P ln |x− y|)dµ(x)dµ(y)

is strictly convex [1, Lemma 2.6.2] whereas the relative entropy µ 7→
∫

ln dµ
dλP ′′

(y)dµ(y) is

well known to be convex. Since fVP is a good rate function, it achieves its minimal value
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Large deviations for Gibbs ensembles of the classical Toda chain

at a unique probability measure µVP . Writing that for any measure ν with mass zero such
that µVP + εν is a probability measure for small enough ε, IVP (µVP + εν) ≥ IVP (µVP ), we get
that (29) holds µVP almost surely and that the left hand side in (29) is greater or equal
than the right hand side outside of the support of µVP . Since the left hand side equals
−∞ when the density vanishes, we conclude that the support is the whole real line. We
finally show the boundedness of the density. Note that (29) implies that

dµVP
dx

(x) = eλ
V
P e−W (x)+2P

∫
ln |x−y|dµVP (y) (32)

We get from (28), and the fact that ln |x− y| ≤ 1
2 ln(|x|2 + 1) + 1

2 ln(|y|2 + 1) the bound

−W (x) + 2P

∫
ln |x− y|dµVP (y) ≤ −(P ′ − P ) ln(|x|2 + 1) + CV + P

∫
ln(|x|2 + 1)dµVP .

We thus only need to bound
∫

ln(|x|2 + 1)dµVP and λVP from above. We first notice that

P 7→ inf fVP is concave since it is the limit of the free energy −N−1 lnZ
V, 2PN
N . This is

enough to guarantee that this quantity is uniformly bounded on compact sets (as it is at
any given point). We denote by C such a bound for a fixed compact set. As in [1, Lemma
2.6.2 (b)], since the relative entropy is non-negative we find that∫

(W̄ (x)− P ln(|x|2 + 1))dµVP (x) ≤ fVP (µVP ) ≤ C .

This implies by our hypothesis (28) that

(P ′ − P ′′ − P )

∫
ln(|x|2 + 1)dµVP (x) ≤ C − CV

and therefore plugging this estimate in the infimum of fVP gives if P ′−P −P ′′ > 0 (which
is always possible as we assumed P ′ − P > 1)∫

W (x)dµVP (x) ≥ C +
C − CV

2(P ′ − P − P ′′)

Moreover, again because the relative entropy is non-negative,

−PΣ(µVP ) := −P
∫

ln |x− y|dµVP (x)dµVP (y)

≤ C −
∫
W̄ (x)dµVP (x) ≤ C − 2(P ′ − P ′′)

∫
ln(|x|2 + 1)dµVP (x)− CV

is uniformly bounded. Finally, from (29) we have after integration under µVP

λVP = inf fVP − P
∫

ln |x− y|dµVP (x)dµVP (y) (33)

is thus uniformly bounded from above. This completes the proof of the upper bound of

the density: dµVP
dx is bounded by CP (|x| + 1)2(P−P

′) where CP is uniformly bounded on
compacts so that P ′ − P − 1 ≥ ε > 0 for some fixed ε.

We next study the regularity of the equilibrium measure µVP in the parameter P . Let
δ > 0 be such that [P − δ, P + δ] ⊂ (0, P ′− 1), and let P − δ 6 R 6 P + δ. If ∆µ = µVP −µVR ,
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since µVP minimizes fVP , we have

0 ≥ fVP (µVP )− fVP (µVR)

=

∫
W (x)d∆µ(x)− 2P

∫
ln |x− y|dµVR(x)d∆µ(y)− P

∫
ln |x− y|d∆µ(x)d∆µ(y)

+

∫
ln
dµVP
dx

dµVP −
∫

ln
dµVR
dx

dµVR

=

∫
(2R

∫
ln |x− y|dµVR(y)− ln

dµVR
dx

)(x)d∆µ(x)− 2P

∫
ln |x− y|dµVR(x)d∆µ(y)

−P
∫

ln |x− y|d∆µ(x)d∆µ(y) +

∫
ln
dµVP
dx

dµVP −
∫

ln
dµVR
dx

dµVR

= 2(R− P )

∫
ln |x− y|dµVR(x)d∆µ(y)− P

∫ ∫
ln |x− y|d∆µ(x)d∆µ(y)

+

∫
ln
dµVP
dµVR

dµVP

where in the second line we used (29) and the fact that ∆µ(1) = 0. By using the Fourier
transform of the logarithm, the centering of ∆µ and the definition (30) we deduce∫

ln
dµVP
dµVR

dµVP + PD(µVP , µ
V
R)2 ≤ 2(P −R)

∫ ∫
ln |x− y|dµVR(x)d∆µ(y) . (34)

We can assume without loss of generality that R < P . We now show that the integral

of the right hand side is bounded independently of R ∈ [P − δ, P ]. We have dµVR
dx 6

CR
(1+|x|)2(P ′−R) , where R 7→ CR is bounded on any compact of (0, P ′ − 1), and in particular

on [P − δ, P + δ]. Thus there exists C > 0 such that
dµVR
dx

6 C
(1+|x|)2 , and the same bound

holds for µVP . Using that for any x, y with x 6= y we have ln(|x−y|) 6 ln(1+ |x|)+ln(1+ |y|)
and the previous bound on the density of µVR , we conclude that

∫ ∫
ln |x−y|dµVR(x)d∆µ(y)

is uniformly bounded in R ∈ [P − δ, P + δ]. Since
∫

ln
dµVP
dµVR

dµVP ≥ 0 by Jensen’s inequality

equation (34) gives the existence of a finite constant D such that

D(µVP , µ
V
R) ≤ D

√
|P −R| .

3.2 Relation with the large deviation principle for Toda matrices with quadratic
potential

When V = 0, for any β > 0, Dumitriu and Edelman [3, Theorem 2.12] have shown
that P0,β

N is the law of the eigenvalues of a N × N tri-diagonal matrix CβN such that(
(CβN )j,j

)
16j6N

are independent standard normal variables, independent from the off

diagonal entries (CβN )j,j+1 = (CβN )j+1,j which are independent and such that
√

2CβN (j, j+

1) follows a χ(N−j)β distribution. As in the case of the Toda measure we hereafter identify

P
0,β
N with PβN . We are now going to give an alternate large deviation principle for the

empirical measure under P2P/N
N based on this representation, this will allow to relate the

rate function IP = I0P of the Coulomb Gas in terms of the large deviation rate function
Ts, s ≤ P for Toda matrices.

Lemma 3.3. The law of the empirical measure µ̂N under P2P/N
N satisfies a large deviation

principle in the scale N and with good rate function

IP (µ) = lim
δ→0

lim inf
M→∞

inf
νP/M ,··· ,νP s.t.

1
M

∑
i νiP/M∈Bµ(δ)

{
1

M

M∑
i=1

TiP/M (νiP/M )

}
. (35)
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Observe for later purpose that we must have IP = I0P where IVP is defined just above
Lemma 3.2.

Proof. We shall proceed by exponential approximation. We write N = kNM + rN ,
0 6 rN 6M − 1, and consider the matrices

SMN =


L1
kN

. . .

LMkN
0

 ,

with (LikN )16i6M a family of independent square matrices with size kN distributed

according to T

(
P
N−ikN
N

)
kN

, and a block with null entries of size rN × rN . We shall prove

that they provide good exponential approximation for the matrix C
2P
N

N following the

distribution P2P/N
N , see [2, Definition 4.2.14]. More precisely, we show that for any

positive real number δ:

lim
M→+∞

lim sup
N

1

N
lnP(d(µ̂

C
2P
N
N

, µ̂SMN ) > δ) = −∞ . (36)

The lemma is then a direct application of [2, Theorem 4.2.16 and Exercise 4.2.7]. We
first approximate SMN by the following matrix

UMN =



C1

∗
∗

. . .
∗

∗
CM

∗
∗

RMN



,

where the symbols ∗ denote entries following the law of a matrix distributed according
to P2P/N

N :

UN (ikN , ikN + 1) = UN (ikN + 1, ikN ) ∼ 1√
2
χ
2P

N−ikN
N

, 1 6 i 6M ;

RMN has same distribution as the rN × rN -bottom-right corner of a P2P/N
N - distributed

matrix. Ci has the same coefficients as LikN except for the top-right and bottom-left
corner entries which are put to zero:

Ci =


g(i−1)kN+1

. . . 0
. . .

. . . 1√
2
cij

1√
2
cij

. . .
. . .

0
. . . gikN


.
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The (cij)16j6kN−1 are distributed according to χ
2P

N−ikN
N

.

For 1 ≤ i ≤M and 1 ≤ j ≤ kN − 1, let bij =
√

(cij)
2 + χ2

i,j , where (χi,j)1≤i≤M,1≤j≤kN is

an independent family of χ variables with parameter 2P kN−j
N , independent from UNM .

We set, for 1 ≤ i ≤M , Bi to be the matrix

Bi =


g(i−1)kN+1

. . . 0
. . .

. . . 1√
2
bij

1√
2
bij

. . .
. . .

0
. . . gikN


.

The matrix

C
2P/N
N =



B1

∗
∗

. . .
∗

∗
BM

∗
∗

RMN


is distributed according to P2P/N

N , where the symbols ∗ denote the same coefficients as
those of UMN . Because the rank of SMN − UMN is bounded by 2M + rN 6 3M , by (15) we
have

d(µ̂UMN , µ̂SMN ) 6
3M

N
=

3

kN
. (37)

Let δ be a positive real number. Then for N large enough so that kN verifies 3
kN

6 δ/2,

P
(
d(µ̂

C
2P/N
N

, µ̂SMN ) > δ
)
6 P

(
d(µ̂

C
2P/N
N

, µ̂UMN ) + d(µ̂UMN , µ̂SMN ) > δ
)

6 P
(
d(µ̂

C
2P/N
N

, µ̂UMN ) > δ/2
)
.

Moreover (15) yields

d(µ̂UMN , µ̂C2P/N
N

) 6
2

N

N∑
i=1

|Yi|, (38)

where Yi is the ith coefficient above or below the (i, i) the coefficient of C2P/N
N − UMN .

Applying the inequality
√
a+ b 6

√
a+
√
b for a, b > 0 and a = cij and b = χi,j , we deduce

d(µ̂UMN , µ̂C2P/N
N

) 6

√
2

kNM

kNM∑
i=1

χi2P/M , (39)

where the last sum denotes the sum of iid variables with law χ2P/M (and we used that
there exists a coupling between a χ

2P
kN−j
N

and a χ2P/M variable such that the first is

always bounded above by the second).
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Thus for all δ > 0, for any integer numbers N such that 3
kN

6 δ/2 (i.e for N larger
than some N0 depending on M ) and for any non-negative function A : M 7→ A(M)

P
(
d(µ̂SMN , µ̂C2P/N

N

) > δ
)
6 P

(
kNM∑
i=1

χ2P/M >
kNMδ

2
√

2

)

6 e−A(M)kNMδ/(2
√
2)E

[
eA(M)χ2P/M

]kNM
.

It is not hard to see that with A(M) =
√

ln(M), there exists a finite constant K such that

sup
M≥0

E

∫
eA(M)xdχ1/M (x) ≤ K (40)

insuring that
1

N
lnP(d(µ̂

C
2P/N
N

, µ̂SMN > δ) 6 −A(M)
δ

2
√

2
+K,

which yields the result.

We shall use the previous lemma to study the case with a non trivial potential. Indeed,
as a direct consequence of Lemma 3.3 and Varadhan’s lemma, we deduce the following
Theorem.

Theorem 3.4. For any continuous function V such that

lim sup
|x|→∞

|V (x)|
x2

= 0, (41)

the law of the empirical measure µ̂N under PV,2P/NN satisfies a large deviation principle
in the scale N and with good rate function IVP (µ) = fVP (µ)− inf fVP where

fVP (µ) = lim
δ→0

lim inf
M

inf
νP/M ,··· ,νP s.t.

1
M

∑
i νiP/M∈Bµ(δ)

{
1

M

M∑
i=1

(TiP/M (νiP/M ) +

∫
V dνiP/M )

}
. (42)

Remark 3.5. Varadhan’s lemma gives the result for bounded continuous function V .
However, we can approximate V by V (x)(1 + εx2)−1 with overwhelming probability
thanks to Lemma 2.2, which allows to conclude for any potential V satisfying (41)

We shall use this relation to give a better description of the rate function TP . In fact
we first consider the free energy

FV,PT = lim
N→∞

1

N
lnZV,PN,T, F

V,P
C = lim

N→∞

1

N
lnZV,PN,C = − inf fVP .

Lemma 3.6. For any continuous function V satisfying (41),

• P 7→ FV,PC = − inf fVP is continuously differentiable on (0,+∞). Moreover, for any
P > 0

FV,PT = ∂P (PFV,PC )

• For any bounded continuous function f , the map P ∈ (0,+∞) 7→ PµVP (f) is
continuously differentiable. Moreover, there exists a unique minimizer νVP of
µ 7→ TP (µ) +

∫
V dµ(x), which satisfies, for any bounded continuous function f ,

νVP (f) = ∂P (PµVP (f)).

Therefore, we have
νVP = ∂P (PµVP ) . (43)
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• For any probability measure µ,

TP (µ) = − inf
V ∈C0b

{∫
R

V dµ+ FV,PT

}
. (44)

Proof. First notice that, for any probability measure µ, Lemma 3.3 implies that

fVP (µ) = IP (µ) +

∫
R

V dµ ≥ lim inf
M

1

M

M∑
i=1

inf
ν

{
TiP/M (ν) +

∫
R

V dν

}
=

∫ 1

0

inf
ν

{
TsP (ν) +

∫
R

V dν

}
ds = −

∫ 1

0

FV,sPT ds . (45)

In the equality between the lim inf and the integral, we used the fact that s ∈ (0, 1) 7→
FV,sPT is convex and therefore continuous. We claim that this lower bound is achieved.
For s ∈ [0, 1], let ν∗sP be a minimizer of µ 7→ TsP (µ) +

∫
V dµ. By Corollary 2.7, we can

choose ν∗sP such that s 7→ ν∗sP is continuous. Hence, µ∗P :=
∫ 1

0
ν∗sPds makes sense and is

a probability measure on R. We claim it minimizes fVP . Indeed, by Lemma 3.3, we have

fVP (µ∗P ) = lim
δ→0

lim inf
M

inf
1
M

∑M
i=1 νiP/M∈Bµ∗P (δ)

{
1

M

M∑
i=1

TiP/M (νiP/M ) +

∫
R

V dνiP/M

}

≤ lim inf
M

1

M

M∑
i=1

{
TiP/M (ν∗iP/M ) +

∫
R

V dν∗iP/M

}

= lim inf
M

1

M

M∑
i=1

inf
ν

{
TiP/M (ν) +

∫
R

V dν

}
=

∫ 1

0

inf
ν

{
TsP (ν) +

∫
R

V dν

}
ds= −

∫ 1

0

FV,PsT ds.

With (45), we deduce that the above inequality is an equality and that fVP achieves its
minimal value at µ∗P . By Lemma 3.2, this minimizer is unique and therefore µ∗P = µVP for
any choices of paths ν∗. and any positive real number P . Hence, we find that

−FV,PC = inf fVP = IP (µVP ) +

∫
R

V dµVP = −
∫ 1

0

FV,PsT ds .

By a change of variable we deduce

PFV,PC =

∫ P

0

FV,sT ds .

Since s 7→ FV,sT is convex, it is continuous. This shows that P 7→ PFV,PC is continuously
differentiable, and that for all P > 0,

FV,PT = ∂P (PFV,PC ) .

Moreover, we have seen that for any choice of continuous minimizing path ν∗· of µ 7→
T·(µ) +

∫
V dµ and any positive real number P ,

µVP =

∫ 1

0

ν∗sP ds =
1

P

∫ P

0

ν∗sds .

Integrating the last equality against f bounded continuous we have

µVP (f) =
1

P

∫ P

0

ν∗s (f)ds .
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By continuity of s 7→ ν∗s (f), we deduce that P 7→ µVP (f) is continuously differentiable and
that

ν∗P (f) = ∂P (PµVP (f)).

But Corollary 3.2 implies that any probability which minimizes TVP can be seen as the
endpoint of a continuous path s ∈ (0, P ] 7→ ν∗s where each ν∗s minimizes TVs . By the latter,
such a measure is then equal to ∂P (PµVP (f)), showing the uniqueness of the minimizer
νVP of TVP and the equality

νVP = ∂P (PµVP ).

The last point of the Lemma is a direct consequence of [2, Theorem 4.5.10] since TVP
is convex for all bounded continuous function V .

By Lemma 3.2, νVP is a probability measure which satisfies almost surely

dνVP (x) = (CVP + 2P

∫
ln |x− y|dνVP (y))dµVP (x)

with CVP a constant such that

CVP + 2P

∫
ln |x− y|dνVP (y)dµVP (x) = 1

Furthermore we must have CVP + 2P
∫

ln |x− y|dνVP (y) ≥ 0 for all x.

4 Large deviations for Toda Gibbs measure with general poten-
tials

We now consider the measures TV,PN given by (5), with potential given by W : x ∈
R 7→ ax2k + U(x), k > 2, with U(x)/x2k going to zero at infinity. We show that under
these laws, the law of the empirical measures (µ̂LN )N>1 still fulfills a large deviation
principle, by extending the subadditivity argument previously used. We then identify the
rate function as before. By Varadhan’s Lemma, it is enough to consider the case where
U(x) = 1

2x
2 (we detail this in Section 5). We hereafter continue to use the notation (5)

with now V (x) = ax2k.

4.1 Exponential tightness

In this section we prove that if W (x) = ax2k+ 1
2x

2, i.e V (x) = ax2k with k > 2 and
a > 0, then the law of the empirical measure of the eigenvalues is exponentially tight
under TV,PN . More precisely, we let KL = {µ ∈ P(R) |

∫
V (x)dµ(x) 6 L} which is a

compact of P(R). Then we shall prove

Lemma 4.1. There exists a finite constant cW such that

T
V,P
N (µ̂N ∈ KcL) ≤ e−(L−cW )N .

Proof. We first bound from below the free energy by Jensen’s inequality

ZV,PN,T =

∫
R2N

e−N
∫
R
V dµ̂NdTPN > exp{−N

∫
R2N

∫
R

V dµ̂NdT
P
N} ≥ exp{−cVN} . (46)

From here we deduce exponential tightness for (µ̂N )N under TV,PN : for L > 0,

T
V,P
N

(∫
R

V dµ̂N > L

)
=

1

ZV,PN,T

∫
R2N

1{∫R V dµ̂N>L}e
−N

∫
R
V dµ̂NdTPN

6 eN(cV −L). (47)
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For later purpose we prove the following result showing that the off diagonal entries
bi = e−ri/2, 1 ≤ i ≤ N of the Lax matrix LN do not become too small:

Lemma 4.2. For any P > 0

lim sup
L

lim sup
N

1

N
lnTV,PN

(
1

N

N∑
i=1

ln bi ≤ −L

)
= −∞.

Proof. Since V is bounded from below and we have bounded from below the partition
function (46), it enough to prove this estimate when V = 0. But, in this case the entries
are independent and so we only need to prove it for independent chi distributed variables.
But then, for any 0 < δ < P , with ZPN,T = Z

0,P
N,T the partition function in (6), we find

TPN

(
1

N

N∑
i=1

ln bi ≤ −L

)
≤ e−δLN

Z
P−δ/2
N,T

ZPN,T
= e−δLN

(
Γ(P − δ/2)

2δ/2Γ(P )

)N
from which the result follows by taking for instance δ = P/2.

4.2 Weak LDP

In this section, we prove that µ̂LN satisfies a weak large deviation principle, namely
Lemma 2.3. In this more general setup, we follow again a subadditivity argument, which
is however more sophisticated since the entries of LN are not independent anymore. We
will restrict ourselves to the case where V (x) = ax2k, a > 0, the case of a more general
potential with the same asymptotic behavior being again a consequence of Varadhan’s
Lemma. We first show that the large deviation principles is the same if we remove the
entries (equal to bN ) in the corners (N, 1) and (1, N) in the Toda matrix. Namely, let L̃N
be the tridiagonal matrix with entries equal to those of LN except for the entries (1, N)

and (N, 1) which vanish and consider the following modification of TV,PN given by

dT̃V,PN =
1

Z̃V,PN

e−TrV (L̃N )dTPN . (48)

Lemma 4.3. For any probability measure µ, we have

lim
δ→0

lim inf
N→∞

1

N
ln

∫
1d(µ̂LN ,µ)<δe

−TrV (LN )dTPN = lim
δ→0

lim inf
N→∞

1

N
ln

∫
1d(µ̂L̃N ,µ)<δ

e−TrV (L̃N )dTPN

Moreover,

lim inf
N→∞

1

N
ln

∫
e−TrV (LN )dTPN = lim inf

N→∞

1

N
ln

∫
e−TrV (L̃N )dTPN .

The same results hold if we replace all the liminf by limsup.

Proof. To simplify the notations we take a = 1 in the proof. First notice that V (LN ) −
V (L̃N ) is an homogeneous polynomial of degree 2k in LN and ∆LN = LN − L̃N , with
degree at least one in the latter. Observe that ∆LN only depends on bN . Therefore,
there exists a finite constant Ck such that on BK,MN := {bN ≤ K} ∩ { 1

NTr(L2k
N ) ≤M} (or

B̃M,K
N := {bN ≤ K} ∩ { 1

NTr(L̃2k
N ) ≤M}), Hölder’s inequality implies

∣∣∣∣ 1

N
Tr
(
V (LN )− V (L̃N )

)∣∣∣∣ ≤ Ck 2k∑
l=1

(
1

N
Tr
(
(∆LN )2k

))l/2k ( 1

N
Tr
(
L2k
N

)) 2k−l
2k

≤ C(M,K)N−
1
2k
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where C(M,K) is a finite constant depending only on M,K, k. Note that in the above
right hand side Tr(L2k

N ) can be replaced by Tr(L̃2k
N ) as they play a symmetric role.

Moreover, by (16), d(µ̂LN , µ̂L̃N ) ≤ 2/N since ∆LN has rank at most two. We fix a
probability measure µ and first prove that

lim inf
N→∞

1

N
ln

∫
1d(µ̂LN ,µ)<δe

−TrV (LN )dTPN ≥ lim inf
N→∞

1

N
ln

∫
1d(µ̂LN ,µ)<δe

−TrV (L̃N )dTPN .

(49)
We can assume without loss of generality that the right hand side does not equal −∞.
Then, we have by the previous remark∫

1d(µ̂LN ,µ)<δe
−TrV (LN )dTPN ≥ e−C(M,K)N

2k−1
2k

∫
1B̃M,KN ∩{d(µ̂L̃N ,µ)<δ−

2
N }
e−TrV (L̃N )dTPN

≥ C ′e−C(M,K)N
2k−1
2k

×
∫

1{TrV (L̃N )≤NM}∩{d(µ̂L̃N ,µ)<δ−
2
N }
e−TrV (L̃N )dTPN

≥ C ′e−C(M,K)N
2k−1
2k

×
{∫

1{d(µ̂L̃N ,µ)<δ−
2
N }
e−TrV (L̃N )dTPN − e−NM

}
where in the second line we integrated over bN ≤ K and in the last line we used that∫

1{TrV (L̃N )≥NM}e
−TrV (L̃N )dTPN ≤ e−NM .

We next choose M so that this term is smaller than the first term (which we assumed
bounded below by e−NC for some finite C). We deduce that (49) holds. To prove the
converse inequality, we notice that there exists one bi bounded by K with probability
greater than 1 − e−a(K)N under TPN , with a(K) = − lnP (b ≥ K) > 0 which goes to +

infinity when K does. By symmetry with respect to the order of the indices, we may
assume it is bN . Therefore, because V is bounded below by some finite constant C,
setting a′(K) = a(K)− C, and using Lemma 4.1, we find∫

1d(µ̂LN ,µ)<δe
−TrV (LN )dTPN ≤ e−Na

′(K) +N

∫
1{bN≤K}∩{d(µ̂LN ,µ)<δ}e

−TrV (LN )dTPN

≤ e−Na
′(K) +Ne−N(M−cV )

+NeC(M,K)N
2k−1
2k

∫
1BM,KN ∩{d(µ̂L̃N ,µ)<δ+

2
N }
e−TrV (L̃N )dTPN

≤ e−Na
′(K) +Ne−N(M−cV ) +NeC(M,K)N

2k−1
2k

∫
1{d(µ̂L̃N ,µ)<δ+

2
N }
e−TrV (L̃N )dTPN

which gives the converse bound, letting N going to infinity, provided K and M are large
enough. The same arguments also hold when there is no indicator function, giving the
same estimates for the free energy.

Lemma 4.4. Let V (x) = ax2k and P > 0. For any µ in P(R), there exists a limit

lim
δ→0

lim inf
N

1

N
lnTV,PN (µ̂LN ∈ Bµ(δ)) = lim

δ→0
lim sup

N

1

N
lnTV,PN (µ̂LN ∈ Bµ(δ)) . (50)

We denote this limit by −TVP (µ). Then, µ 7→ TVP (µ) is convex.

Proof. We use the notations of Lemma 2.3. Let q > 1 be fixed. For N > 1 we write
N = kNq + rN , 0 6 rN 6 q − 1, and define LqN by removing the off diagonal entries
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b`q = LN (`q, `q + 1), LN (`q + 1, `q), 1 ≤ ` ≤ kN , as well as the entries LN (1, N), LN (N, 1),
from LN . We set RqN = LN − LqN . Let ZVN = ZV,PN,T denote in short the partition function
for the Toda Gibbs measure with potential V and set

ZVN,q = ETPN

[
e−TrV (LqN )

]
=

∫
e−TrV (LqN )dTPN .

We first show that there is some constant Ck (independent of N ) such that for all
N > 1,

1

N
ln
ZVN,q
ZVN

> − Ck
q1/2k

. (51)

By Jensen’s inequality we have

1

N
ln
ZVN,q
ZVN

=
1

N
lnE

T
V,P
N

[
eTr(V (LN )−V (LqN ))

]
>

1

N
E
T
V,P
N

[
Tr(V (LN )− V (LqN ))

]
. (52)

As in the proof of Lemma 4.1, we bound the right hand side by first noticing that
V (LN )− V (LqN ) is an homogeneous polynomial of degree 2k in LN and LN − LqN , with
degree at least one in the latter. Therefore, Hölder’s inequality implies that there exists
a finite constant C depending only on k such that∣∣∣∣ 1

N
E
T
V,P
N

[
Tr(V (LN )− V (LqN ))

]∣∣∣∣
≤ C

2k∑
l=1

E
T
V,P
N

[
1

N
Tr
(
(LN − LqN )2k

) ]l/2k
E
T
V,P
N

[
1

N
Tr(L2k

N )

] 2k−l
2k

Now, RqN = LN − LqN has non zero entries only at the sites (i, i + 1) and (i + 1, i),
i ∈ J = {`q, 1 ≤ ` ≤ kN}, as well as (N, 1) and (1, N). We can assume without loss of
generality that q > 2k so that Tr(RqN )2k simply depends on the 2kth power of the its
non-vanishing entries. Thus, there exists a finite constant Ck which only depends on k
such that

Tr
(
(RqN )2k

)
≤ Ck

∑
i∈J

LN (i, i+ 1)
2k

+ CkLN (N, 1)
2k
.

Next notice that

LN (i, i+ 1)2 6 LN (i, i)2 + LN (i, i+ 1)2 + LN (i, i− 1)2 = L2
N (i, i).

Moreover, diagonalizing LN =
∑
λjvjv

T
j , we find by Hölder’s inequality (since

∑
vj(i)

2 =

1 for all i ∈ {1, . . . , N}) that

L2
N (i, i)k =

(∑
λ2jvj(i)

2
)k
≤
∑

λ2kj vj(i)
2 = L2k

N (i, i).

Thus,

LN (i, i+ 1)2k ≤ L2
N (i, i)k ≤ L2k

N (i, i) .

Because LN has periodic boundary conditions, the distribution of the entries of LN
are invariant under the shift θ : i → i + 1, so that under TV,PN , LN (i, i+ 1) has the
same law than LN (i+ 1, i+ 2), and LN (i, i) has the same law than LN (i+ 1, i+ 1). As a
consequence, we have

E
T
V,P
N

[
1

N
Tr
(
(LN − LqN )2k

) ]
≤ 1

N
Ck
∑
i∈J

E
T
V,P
N

[
L2k
N (i, i)

]
= Ck

kN
N
E
T
V,P
N

[
1

N
Tr(L2k

N )

]
.
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But (47) implies that E
T
V,P
N

[
1
NTr(L2k

N )

]
is bounded by some finite constant independent

of N . We therefore deduce (51) from (52).
We next prove the subadditivity property. Let δ > 0 and L > 0 be given. Let

KL = {µ̂LN (V ) ≤ L}. As in equation (19), we have for q big enough,

T
V,P
N ({µ̂LN ∈ Bµ(δ)} ∩ KL) >

ZVN,q
ZVN

1

ZVN,q

∫
KL∩KA

1µ̂Lq
N
∈Bµ(δ−4/q)e

−Tr(V (LN ))dTPN , (53)

where we set KA = KA,N = ∩i∈J{ b2ki 6 A} ∩ {b2kN ≤ A}. As before, noticing that
V (LN ) − V (LqN ) is a polynomial in LqN and LN − LqN , we find a finite constant C such
that, on KL ∩KA, for N large enough,

1

N
|Tr(V (LN )− V (LqN ))| ≤ C

(
kN
N
CkA

)1/2k

L
2k−1
2k .

Therefore if we set KqL = {µ̂LqN (V ) ≤ L}, we deduce that KA ∩KL contains KA ∩KqL−ε(q)
for some ε(q) going to zero as q goes to infinity. We deduce from (51) and (53) that there
exists a finite constant C independent of q (but dependent on L and k) such that

T
V,P
N ({µ̂LN ∈ Bµ(δ)} ∩ KL) >

e−NCq
−1/2k

ZVN,q

∫
KA∩KqL−ε(q)

1µ̂Lq
N
∈Bµ(δ−4/q)e

−Tr(V (LqN ))dTPN ,

(54)

Since LqN is independent of the entries bi, i ∈ J and therefore of KA, we see that we
can integrate the indicator function of KA yielding a contribution CkNA for some positive
constant CA depending only on A. We observe as well that LqN is a block diagonal
matrix diag(L1

q, . . . , L
kN
q , B) where Liq, 1 6 i 6 kN , are independent and independent

from B, Liq following T̃Pq defined in (48) and B following T̃PrN . Finally, we notice that
KqL−ε(q) contains ∩16i6kN { 1qTr((Liq)

2k) ≤ L − ε(q)} ∩ { 1
N−kNqTr(B2k) ≤ L − ε(q)} since

the trace of (LqN )2k is a linear combination of the latter traces. Thus by independence
of the matrices L1

q, . . . , L
kN
q under 1

ZVN,q
e−TrV (LqN )dTPN and convexity of balls, we deduce

by taking the logarithm that if we set uN (δ, L) = − lnTV,PN ({µ̂MN
∈ Bµ(δ)} ∩ KL) and

vN (δ, L) = − ln T̃V,PN ({µ̂L̃N ∈ Bµ(δ)} ∩ {Tr(L̃N )2k) ≤ LN}), then we have

uN (δ + 4/q, L+ ε(q)) 6 N(Cq−1/2k + ln(CA)/q) + kNvq(δ, L) + vrN (δ, L). (55)

We conclude as in Lemma 2.3 that

lim sup
N

uN (δ + 4/q, L+ ε(q))

N
6
vq(δ, L)

q
+ Cq−1/2k +

ln(CA)

q
. (56)

We then notice that for all N, δ, uN (δ, L) ≥ uN (δ,∞) and vN (δ, L) ≤ vN (δ,∞) + ln 2 for L
large enough by Lemma 2.2 (for L̃N ). If therefore we choose a subsequence q going to
infinity along which the liminf is taken, we deduce by Lemma 4.3 that

lim sup
N

uN (2δ,∞)

N
6 lim inf

q→∞

vq(δ,∞)

q
= lim inf

q→∞

uq(δ,∞)

q

If there is no such subsequence then both sides go to infinity and there is nothing to say.
Otherwise we conclude as in Lemma 2.3.

We see that we can adapt in the same fashion the proof of Theorem 2.4 (which stands
for quadratic V ) to our setting and get that µ 7→ TVP (µ) is convex, which concludes the
proof.
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4.3 Convergence of the free energy and large deviation principle

In the case where V (x) = ax2k, a > 0, Lemmas 4.1 and 4.4 of the previous two
sections showed that a large deviation principle holds for the empirical measure of the
eigenvalues of LN under TV,PN with good, convex rate function which, using [2, Theorem
4.5.10], can be represented as

TVP (µ) = − inf
W∈C0

b

{
∫
Wdµ+ FV+W,P

T − FV,PT } (57)

where

FV,PT = lim
N→∞

1

N
ln

∫
e−TrV (LN )dTPN .

To identify TVP and its minimizer, our goal is to show that

Lemma 4.5. For a > 0 and V (x) = ax2k + U(x) with U ∈ C0
b (R), for every P > 0, we

have ∫ 1

0

FV,sPT ds = FV,PC . (58)

As a consequence, the unique minimizer of TVP is given by νVP = ∂P (PµVP ) with µVP the
equilibrium measure for the β-ensemble with parameter β = 2P/N .

Proof. We first prove (58). Clearly, for all bounded continuous functions U,U ′, uniformly
in P ,

|F ax
2k+U,P

T − F ax
2k+U ′,P

T | ≤ ‖U − U ′‖∞ and |F ax
2k+U,P

C − F ax
2k+U ′,P

C | ≤ ‖U − U ′‖∞ .

Therefore it is enough to prove (58) for U ∈ C1
b (R) by density. We prove that for

U ∈ C1
b (R),

FV,PT = ∂P (PFV,PC ) . (59)

Let us consider the tridiagonal matrix CNP of the Coulomb model with distribution P
2P
N

N .
We decompose, for ε > 0, this matrix as

CNP =

(
M
bεNc
P RN
RTN CNεP εN

)

where MbεNcP is a bNεc × bNεc tri-diagonal symmetric matrix with standard independent
Gaussian variables on the diagonal and chi distributed variables above the diagonal with
parameters 2 i

N P,N − bεNc ≤ i ≤ N − 1, CNεP εN
is a Nε = N − bεNc square tridiagonal

Coulomb matrix with parameter 2P εN/N with P εN = NεN
−1P = (1− bεNc/N)P , and RN

has only one non-zero entry r at position (bεNc, bεNc+ 1). Our first goal is to show that,
with V (x) = ax2k + U(x), we have

lim
N→∞

1

εN
lnE[e−TrV (M

bεNc
P )] =

1

ε
(FV,PC − FV,P−εC ) + FV,P−εC . (60)

We will then complete the argument by showing that

lim
ε↓0

lim
N→∞

1

εN
lnE[e−TrV (M

bεNc
P )] = FV,PT (61)

We next turn to the proof of (60). Let us denote

C̃NP =

(
M
bεNc
P 0

0 CNεP εN

)
.
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We now show that
Tr((CNP )2k) ≥ Tr((C̃NP )2k) . (62)

Indeed, by Klein’s lemma [1, Lemma 4.4.12], B 7→ Tr(B2k) is convex on the set of
symmetric matrices. Moreover ∇Tr(B2k) = (2kB2k−1)ij . As a consequence, for any
symmetric matrices A,B

Tr((A+B)2k)− Tr(B2k) ≥ Tr(2kB2k−1A) .

We apply the above inequality with A = CNP − C̃NP and B = C̃NP and notice that the entry
bεNc, bεNc+ 1 of (C̃NP )2k−1 vanishes so that Tr((C̃NP )2k−1(CNP − C̃NP )) = 0, proving (62).

Moreover, if U is C1
b ,

|Tr(U(CNP ))−Tr(U(C̃NP ))| ≤
∫ 1

0

|Tr(U ′(αCNP +(1−α)C̃NP )(CPN−C̃PN ))|dα ≤ ‖U ′‖∞|r| (63)

Consequently, using the independence of r and C̃NP and the fact that CU = E[e+‖U
′‖∞|r|]

is finite since r has sub-Gaussian distribution, we deduce from (62) that

E[e−Tr(V (CNP ))] ≤ E[e−Tr(V (C̃NP ))+‖U ′‖∞|r|] ≤ CUE[e−Tr(V (C̃NP ))] . (64)

As a consequence

E[e−Tr(V (CNP ))] ≤ CUE[e−TrV (M
bεNc
P )]E[e

−Tr(V (CNε
Pε
N
))

]

which gives the desired lower bound:

lim inf
N→∞

1

N
lnE[e−TrV (M

bεNc
P )] ≥ FP,VC − (1− ε)FP (1−ε),V

C (65)

where we used that Theorem 3.1 is valid for P εN → (1− ε)P .
To get the complementary lower bound we restrict ourselves to

{|r| ≤ 1

N
} ∩ { 1

N
Tr((C̃NP )2k) ≤M}

Because of (63) and applying Hölder’s inequality as in the proof of Lemma 4.3, we see
that on this set Tr(V (CNP ))− Tr(V (C̃NP )) goes to zero uniformly for all M . On the other
hand the probability of the set {|r| ≤ 1

N } is of order 1/N . Again by independence we
deduce that

E[e−Tr(V (CNP ))] ≥ eo(1)E[1{|r|≤ 1
N }∩{

1
N Tr((C̃NP )2k)≤M}e

−Tr(V (C̃NP ))]

≥ eo(1)
(
E[e−Tr(V (C̃NP ))]− E[1{ 1

N Tr((C̃NP )2k)≥M}e
−Tr(V (C̃NP ))]

)
. (66)

But we can show exactly as in the proof of Lemma 4.1 that for M large enough

lim sup
N→∞

E[1{Tr((C̃NP )2k)≥MN}e
−Tr(V (C̃NP ))]

E[e−Tr(V (C̃NP ))]
≤ 1

2
,

yielding the desired lower bound and therefore (60).
To prove (61), we proceed by approximation. We notice that if we denote by Dε

T the

density of the distribution of MbεNcP with respect to the distribution of a Toda matrix
L̃bεNc with parameter P to which we removed the extreme entries at (1, bεNc) and
(bεNc, 1), then we get

Dε
T =

Nε∏
i=1

b
−2P ( iN )
i .
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Therefore

E[e−TrV (M
bεNc
P )] ≥ e−ε

2NME[e−TrV (L̃bεNc)1−2P
∑εN
i=1

i
N ln bi≥−ε2NM ]

= e−ε
2NME[e−TrV (L̃bεNc)](1− T̃V,PbNεc(−2P

εN∑
i=1

i

N
ln bi ≤ −ε2NM))

On the other hand

{2P
εN∑
i=1

i

N
ln bi ≥ ε2NM} ⊂ {P

1

Nε

εN∑
i=1

b2i ≥M} ⊂ {
1

Nε
Tr((L̃bNεc)

2) ≥M/P}

has exponentially small probability under T̃V,PbNεc for ge enough. This shows, using Lemma
4.3, that there exists a finite constant M such that

lim inf
N→∞

1

Nε
lnE[e−TrV (M

bεNc
P )] ≥ FV,PT +Mε

Similarly, we can see that the density D̃ε
T =

∏Nε
i=1 b

2P ( iN−ε)
i of the law a Toda matrix L̃bεNc

with respect to MbεNcP is bounded below by −ε2NM on {
∑εN
i=1(ε− i

N ) ln bi ≤ ε2NM} so
that we get similarly a finite constant M ′ such that

lim sup
N→∞

1

Nε
lnE[e−TrV (M

bεNc
P )] ≤ FV,P (1−ε)

T +M ′ε (67)

We hence conclude by the continuity of ε → F
V,P (1−ε)
T (which is due to its convexity)

Equality (59) follows then from (67).
We finally show that (58) implies that TVP achieves its minimum value at ∂P (PµVP ).

Indeed, by (57), for any bounded continuous U , any probability measure ν, we have

TVP (ν) ≥ −
(∫

Udν + FV+U,P
T − FV,PT

)
We integrate this inequality at ν = νsP a measurable probability measure valued process
such that µ =

∫ 1

0
νsP ds to deduce from (58) that∫ 1

0

TVP (νsP )ds ≥ −
(∫

Udµ+ FV+U,P
C − FV,PC

)
.

We finally optimize over U to conclude that∫ 1

0

TVP (νsP )ds ≥ − inf
U

(∫
Udµ+ FV+U,P

C − FV,PC

)
= IVP (µ) .

Since IVP vanishes only at µVP we deduce that any measurable minimizing path (νsP )0≤s≤1
must satisfy

∫ 1

0
νsP ds = µVP . If we can consider a continuous s 7→ νsP , we conclude that

∂P (PµVP ) makes sense and that it is equal to νP . We therefore now show that such a
path can be chosen to be continuous. But we can follow arguments similar to those
of Corollary 2.7 to show that the set MV

P where TVP achieves its minimum value is a
compact convex subset of P(R) and is continuous in the sense that for any ε > 0, there
exists δε > 0 such that for all δ < δε, any P,Q > 0 such that for |P −Q| ≤ δ

MV
Q ⊂ (MV

P )ε .

Indeed, even if we do not have the coupling of Corollary 2.7, we easily see that the
density of TV,QN with respect to TV,PN is bounded by eMN |P−Q| with probability greater
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than 1− e−c(M)N with c(M) going to infinity when M goes to infinity. Indeed, the density
equals (P −Q)

∑
ln bi from which the remark follows from Lemma 4.2. This implies that

− inf
((MV

P )ε)c
TVQ ≤ max{M |Q− P | − inf

((MV
P )ε)c

TVP ,−c(M)N}

which implies that for any ε > 0, for M large enough and |Q − P | small enough
inf((MV

P )ε)c T
V
Q > 0, from which the continuity follows.

5 Proof of Theorem 1.1 and 1.3

Lemma 4.4 combined with the exponential tightness of Lemma 4.1 proves a large
deviation principle for the potential V (x) = ax2k. If now we consider the case where
V (x)/x2k goes to a > 0 at infinity, we can always write V (x) = ax2k + U(x) where
U(x)/x2k goes to zero at infinity. We have seen by Lemma 4.1 that under TP,VN , the
event { 1

NTr(L2k
N ) > M} has exponentially small probability. Let for ε > 0, Vε(x) =

ax2k + (1 + εx2k)−1U(x). Then, the large deviation principle for the distribution of
µ̂LN under TVε,PN follows from Varadhan’s lemma. Moreover, on {Tr(L2k

N ) ≤ MN}, if
|U(x)| ≤ δx2k on |x| ≥ L,∣∣∣∣ 1

N
TrV (LN )− 1

N
TrVε(LN )

∣∣∣∣ ≤ εL2k

1 + εL2k
max
|x|≤L

|U(x)|+ δε
1

N
Tr(

L4k
N

1 + εL2k
N

)

≤ εL2k

1 + εL2k
max
|x|≤L

|U(x)|+Mδ

which is as small as wished if M is fixed, L taken large so that δ is small, provided
ε is taken small enough. This shows that we can approximate TV,PN by TVε,PN in the
exponential scale from which the result follows.

The proof of Theorem 1.3 follows the same arguments than those developed in the
last section: we approximate the general variance profile by a stepwise constant profile,
remove a negligible number of off diagonal entries and then use the large deviation
principle for the Toda matrices. We leave the details to the reader.
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