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Abstract

We study the Markov chain on Fp obtained by applying a function f and adding ±γ
with equal probability. When f is a linear function, this is the well-studied Chung–
Diaconis–Graham process. We consider two cases: when f is the extension of a
non-linear rational function which is bijective, and when f(x) = x2. In the latter case,
the stationary distribution is not uniform and we characterize it when p = 3 (mod 4).
In both cases, we give an almost linear bound on the mixing time, showing that the
deterministic function dramatically speeds up mixing. The proofs involve establishing
bounds on exponential sums over the union of short intervals.
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1 Introduction

Recent work of Chatterjee and Diaconis studied how Markov chains can be sped up
by interspersing a deterministic function between steps of the Markov chain [5]. For
“most” bijective functions, the mixing time becomes logarithmic in the size of the state
space. They asked for concrete examples where this speedup takes place. Currently, one
of the only known examples is the Chung–Diaconis–Graham process, which is a Markov
chain on the finite field Fp given by

Xn+1 = aXn + εn+1, (1.1)

where the εn are uniform on {−1, 0, 1} and independent. While the walkXn+1 = Xn+εn+1

mixes in order p2 steps, for certain a ∈ Fp and almost all p, the walk defined by (1.1)
mixes in order log(p) steps [11].

The purpose of this paper is to study the mixing times of non-linear analogues of
(1.1). In particular, for bijections which are extensions of rational functions on Fp, we
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Markov chains on finite fields with deterministic jumps

are able to show that the mixing time is faster than p1+ε for any ε > 0. This provides
more examples of Markov chains which mix faster after adding deterministic jumps. We
also consider the case when f(x) = x2. We consider a slightly different version of the
Markov chains considered in [5], and so we also explain how to apply our methods to the
Markov chains appearing there.

1.1 Main results

Let us now define the class of functions f that we will work with. For a prime p

and d ∈ N, let B(p, d) denote the set of functions f : Fp → Fp which are bijections,
and for which there exist coprime P,Q ∈ Fp[x] polynomials of degree at most d such
that f = P/Q except at the zeroes of Q, and such that P/Q is not a linear or constant
function.

Remark 1.1. Some examples of functions f to keep in mind are permutation polynomials,
which are polynomials P ∈ Fp[x] that are also bijections, and the function f(x) = x−1 for
x 6= 0 and f(0) = 0. A specific family of permutation polynomials is given by f(x) = x3

for primes p > 3 with (3, p− 1) = 1.

Theorem 1.2. Let p be a prime and d ∈ N. Let f ∈ B(p, d), and let γ ∈ Fp be non-zero.
Let εi denote independent random variables uniform on ±γ. Consider the lazy Markov
chain defined by

Xn+1 =

{
f(Xn) + εn+1 with probability 1/2,

Xn with probability 1/2.

Then if π denotes the uniform distribution on Fp, for any ε > 0, there is some constant
C = C(ε, d) such that

sup
X0∈Fp

‖P(Xn ∈ ·)− π‖TV ≤ e
−C n

p1+ε .

Remark 1.3. The mixing time tmix(ε) of an ergodic Markov chain P is the minimum n

such that

sup
X0∈Fp

‖P(Xn ∈ ·)− π‖TV ≤ ε,

where π is the stationary distribution. The total variation bound in Theorem 1.2 (and
the corresponding bounds in Theorems 1.8 and 4.5) imply that tmix(ε) is O(p1+δ) for any
δ > 0, assuming that f is the extension of rational functions of bounded degree.

We also remark that the O(p1+δ) could be improved to O(p logC p) for some large
constant C (probably C = 100 would work). Since the bound we obtain is most likely far
from optimal (see Remark 1.6), we do not bother to explicitly state the stronger bound.

Remark 1.4. The assumption that the εi are uniform on ±γ is easily relaxed. By
considering the bijection f + γ0, we can choose the εi to be supported on any two point
set. Since the bound from Cheeger’s inequality can only get worse as edges are removed,
this extends to any distribution µ for the εi as long as µ is supported on at least two
points, with the constant depending on minγ∈suppµ µ(γ).

The laziness can also be removed at the cost of some assumptions on the distribution
of the εi, see Theorem 4.5.

Remark 1.5. This random walk is a slight modification of the walks considered in
[5], which always applies the function f , but possibly adds 0 instead of ±γ. A small
modification to the argument allows a similar result to be established in this setting as
well, see Theorem 4.5. This gives a large class of examples where adding a deterministic
bijection dramatically speeds up the mixing time. Finding such examples was a question
raised in [5].
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Remark 1.6. By an entropy argument, it’s easy to see that at least order log(p) steps are
necessary in order for the random walk to be close to uniform. This leaves a large gap
between the upper and lower bounds and determining the correct order of the mixing
time seems to be a challenging problem.

The proof of Theorem 1.2 involves applying a version of Cheeger’s inequality for
directed graphs to reduce the problem to giving a lower bound for the number of
solutions to y = f(x)± γ with x ∈ S and y ∈ Sc. This bound is obtained using some ideas
from analytic number theory, namely exponential sum bounds, with a key ingredient
being the Weil bound. While applications of the Weil bound have previously appeared
in the study of expanders (see [7] for example), our approach does not require the
eigenvalues to be exactly identified. This provides a more flexible approach, but gives a
weaker bound.

The main technical tools are exponential sum bounds of the form

J∑
j=1

∣∣∣∣∣∣
∑
x∈Ij

exp(2πikf(x)/p)

∣∣∣∣∣∣ ≤ Cp log2(L), (1.2)

where the Ij are disjoint intervals of length L, and C is some constant depending on f ,
along with bounds for linear exponential sums. These bounds appear to be new, although
the proof of (1.2) closely follows ideas of Browning and Haynes [4], who proved the
bound when f(x) = 1/x.

Finally, we also give some results for the square-and-add Markov chain, which is
the case when f(x) = x2. This is obviously not a bijection, but when p = 3 (mod 4),
the stationary distribution can be determined and a similar mixing time bound can be
established.

Theorem 1.7. Let p be a prime, p = 3 (mod 4), and let γ ∈ Fp be non-zero. Let εi
denote independent random variables uniform on ±γ. Define a Markov chain on Fp by
Xn+1 = X2

n + εn+1. Then the chain has a unique recurrent communicating class, and
thus a unique stationary distribution. The stationary distribution is given by

π(α) =
|{β ∈ Fp | β2 ± γ = α}|

2p
.

Furthermore, the Markov chain is aperiodic if γ = 1.

Theorem 1.8. Let p be a prime, p = 3 (mod 4), and let γ ∈ Fp be non-zero. Let εi denote
independent random variables uniform on ±γ. Consider the lazy Markov chain defined
by

Xn+1 =

{
X2
n + εn+1 with probability 1/2,

Xn with probability 1/2.

Then if π denotes the stationary distribution on Fp, for any ε, there is some constant
C = C(ε) such that

sup
X0∈Fp

‖P(Xn ∈ ·)− π‖TV ≤ e
−C n

p1+ε .

These results partially answer some questions raised in [10]. The case of p = 1

(mod 4) seems to be more mysterious and even the stationary distribution is not well-
understood. Some heuristics and a conjecture are given in Section 2.2.

1.2 Related work

The Markov chains considered in this paper can be viewed as a non-linear analogue
of the Chung–Diaconis–Graham process, defined by Xn+1 = aXn + εn+1 on Fp (or more
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generally on Z/(p) for composite p). This was first introduced in [8], and studied in
[15, 16, 20, 17, 3]. Recent work of Eberhard and Varjú established cutoff for this Markov
chain for many values of a [11]. Specifically, they show that when a = 2, the Markov
chain has cutoff at c log2 p for an explicit c ≈ 1.01136 for almost all p, and extend this to
many other values of a. These works all rely heavily on the linear nature of the problem.

Chatterjee and Diaconis studied how deterministic jumps can increase the speed of
convergence for Markov chains [5]. They showed that for a state space of size n, applying
a (fixed) random bijection gives a mixing time of order log(n) with high probability, but
noted that specific examples were hard to find. The random walks treated in this paper
provide some progress in this direction. This fits into a broader theme of finding ways to
accelerate the convergence of Markov chains to their stationary distribution [14, 2, 1].

The Markov chain when f(x) = x2 studied in this paper can be viewed as a random
version of a discrete dynamical system on Fp. The dynamical system defined by iterating
the map x 7→ x2 + c has been well-studied although many questions remain, see [21, 22,
18].

The exponential sum bounds are obtained using arguments that closely follows that
of [4], who considered the case when f(x) = 1/x. Their work is based on an argument of
Heath-Brown [13]. These arguments work for any finite field, not just prime fields. It
would be interesting to see if these ideas could be useful in studying the mixing times of
random walks on Fq, for q a prime power.

1.3 Outline

Section 2 establishes some basic properties of the square-and-add Markov chain,
including the proof of Theorem 1.7. In Section 3, we prove the exponential sum bounds
needed, which are the main technical tool. Finally, in Section 4, we apply the bounds
from Section 3 to prove Theorem 1.2, and explain how to extend the arguments to
establish Theorem 1.8 and to study some of the random walks defined in [5].

1.4 Notation

Let ep(x) = exp(2πix/p). We will use C to denote a constant that may change from
line to line.

2 The square-and-add Markov chain

In this section, we establish some basic properties of the Markov chain when f(x) =
x2. The reason this case is more involved is that f is not a bijection, and so even the
stationary distribution is not obvious. While the case of p = 1 (mod 4) seems wild,
surprisingly the case of p = 3 (mod 4) is tractable.

2.1 The case p = 3 (mod 4)

The reason that the case of p = 3 (mod 4) is much easier is that in this case, exactly
one of α and −α is a quadratic residue mod p. Using this fact, we are able to prove all
essential properties about the Markov chain.

Lemma 2.1. A stationary distribution for the Markov chain defined in Theorem 1.7 is
given by

π(α) =
|{β ∈ Fp | β2 ± γ = α}|

2p
.

Proof. The result can be shown by checking that∑
α2±γ=β

1

2
π(α) = π(β)
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for all β ∈ Fp, which is equivalent to showing that∑
α2±γ=β

|{ρ | ρ2 ± γ = α}| = 2|{ρ | ρ2 ± γ = β}|. (2.1)

Note that
|{ρ | ρ2 ± γ = α}|+ |{ρ | ρ2 ± γ = −α}| = 4

because exactly one of α+ γ and −α− γ is a quadratic residue, and similarly for α− γ
and −α + γ (if α = ±γ, the equation also holds since the solution to ρ2 = 0 is counted
twice). Since the sum in (2.1) is over pairs ±α, this implies (2.1) holds for β 6= ±γ.

If β = ±γ, the only difference is there is an extra term |{ρ | ρ2 = ±γ}| = 2 in the
left hand side of (2.1) corresponding to α = 0 which is not paired. But of course this
corresponds to the solution to ρ2 = 0 on the right hand side of (2.1).

Lemma 2.2. The Markov chain defined in Theorem 1.7 has a unique recurrent commu-
nicating class, and the restriction to this component is aperiodic if γ = 1.

Proof. Any recurrent state must be of the form α2±γ, and so must be contained in suppπ.
Conversely, since π is a stationary distribution, every element of suppπ is recurrent. It
thus suffices to show that suppπ contains a single communicating class. We do so as
follows.

We claim for any α, β ∈ suppπ, we can find a sequence of moves α 7→ −α and
α 7→ α± 2γ taking us from α to β, while staying entirely inside suppπ. We’ll then show
that these moves stay within a single communicating class, from which we can conclude
that suppπ contains a single communicating class.

To see that we can go from α to β using these moves while staying in suppπ, we argue
as follows. Either α, α+2γ ∈ suppπ, or −α,−α− 2γ ∈ suppπ, as one of α+ γ and −α− γ
will be a quadratic residue. A similar statement holds for α and α− 2γ. In particular, at
least one of α or −α lies in suppπ. We thus partition Fp into sets {±α} and {0}, and note
that each set contains an element of suppπ. Starting from α ∈ suppπ, we can then move
to an element in {±(α+ 2γ)} while staying inside suppπ, by either moving directly from
α to α+ 2γ if it lies in suppπ, or moving from α to −α, and then −α− 2γ which are both
guaranteed to lie in suppπ if α+ 2γ does not. Similarly, we can move to an element in
{±(α− 2γ)}. In this way, we can reach an element in any set of the form {±(α+ 2kγ)}.
But this exhausts Fp, since 2γ is non-zero as p 6= 2, so we can reach either β or −β. If we
reach −β, then as β by assumption also lies in suppπ, we can move from −β to β.

Now we show the claims that if α,−α ∈ suppπ, then α and −α belong to the same
communicating class, and that if α, α + 2γ ∈ suppπ, then they belong to the same
communicating class.

Suppose that α and −α both lie in suppπ. Then as there is a path from α to α2 + γ,
and α ∈ suppπ so it must be recurrent, there must be a path from α2 + γ to α. But then
there is a path from −α to α2 + γ, and then α. Thus, α and −α must belong to the same
communicating class.

Now suppose that α and α+2γ both lie in suppπ. If α+ γ is a quadratic residue, then
note that one of its square roots lies in suppπ. This square root must then be recurrent,
and so from α, we must be able to reach it, after which we can move to α+2γ. If α+ γ is
not a quadratic residue, then −α− γ is a quadratic residue, and so both −α and −α− 2γ

lie in suppπ and by the same argument lie in the same communicating class. We can
then use the fact that −α and α lie in the same communicating class, as well as −α− 2γ

and α+ 2γ, to conclude that α and α+ 2γ lie in the same communicating class.
To see that the random walk is aperiodic if γ = 1, first note that there is a cycle of

length 2, namely 0→ 1→ 0, and so it suffices to find an odd cycle. Now if a path from
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α2+1 to α were of even length, we would immediately be done because then after taking
the step α→ α2 + 1, we would obtain an odd cycle, so assume otherwise. Then moving
from −α to α2+1, and then back to α, is a path of even length. If α+1 and is a quadratic
residue, we obtain an odd length path going from α+ 2 to

√
α+ 1 and then moving to

α gives an even length path from α + 2 to α. If −α − 1 were a quadratic residue, we
would obtain an even length path from −α − 2 to −α. We can similarly assume paths
from α2 − 1 to α are odd length, and obtain even length paths from either α− 2 to α or
−α+ 2 to −α. But then using these we can construct an even length path from α2 + 1

back to α, since we proved above that we can move from any element in suppπ to any
other using these moves. Thus, there must be an odd cycle.

Theorem 1.7 follows immediately from Lemmas 2.1 and 2.2.

Example 2.3. Consider the case p = 11 and γ = 1. Then the stationary distribution is
given by

π =

(
2

22
,
1

22
,
4

22
,
2

22
,
4

22
,
2

22
,
2

22
,
0

22
,
2

22
,
0

22
,
3

22

)
,

and it can be checked that the numerators are indeed given by counting solutions to
β2 ± 1 = α.

2.2 The case p = 1 (mod 4)

The case when p = 1 (mod 4) is more wild, but there is some evidence to suggest
that much of the behavior is similar to that of a random directed graph with certain
degree constraints.

The following heuristic was suggested by Alex Cowan (private communication). For
convenience, we work with the graph whose edges are given by (α, β) for β = (α±1)2. Let
π′ denote the stationary distribution of this walk. It’s clear that the stationary distribution
of the original walk can be recovered from the new one by π(x) = π′(x−1)/2+π′(x+1)/2.

The idea is that the degree distribution of the graph is determined, with about half
the vertices having indegree 0 and half having indegree 4 (we just ignore 0, 1, and −1).
Now the key observation is that the vertices with indegree 0 come in pairs, as if α is
not a quadratic residue, then neither is −α. This means after removing all vertices with
indegree 0, if the edges were random subject to this constraint then we have 1/4 of the
vertices have indegree 0, 1/2 have indegree 2 and 1/4 have indegree 4. If we assume
that the resulting graph is random, then by applying work of Cooper and Frieze [9], we
can obtain a precise conjecture for the size of the support.

Conjecture 2.4. Let εn be uniformly distributed on ±1 and independent. Consider the
Markov chain defined by Xn+1 = X2

n+εn+1 on Fp with p = 1 (mod 4). Then conjecturally
it has a unique stationary distribution π, and

| suppπ|
p

→ 1− 1

4
(1 + α)2,

where α ≈ 0.2956 is the smallest positive root of x4 + 2x2 − 4x+ 1.

This conjecture agrees with computer computations done by Steve Butler, which
suggests that asymptotically the support of π contains 58% of the elements in Fp.

3 Counting solutions with exponential sum bounds

To obtain lower bounds on the Cheeger constant, after a reduction we will need to
show that f(x) ± γ = y has many solutions for x ∈ S and y ∈ S′, where S and S′ are a
disjoint union of arithmetic progressions. This will be shown following the argument of
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Browning–Haynes [4], who actually proved the needed result in the case of f(x) = x−1

(the sum was restricted to F×p but this is unimportant). We give the modifications needed
to generalize to the class of functions B(p, d) as well as the function f(x) = x2. The key
is the Weil bound for exponential sums. We use the following convenient formulation
given in [12, Lemma 3].

Lemma 3.1. Let P,Q ∈ Fp[x] be coprime polynomials such that P (x)/Q(x) is not a
constant function on Fp. Then∣∣∣∣∣∣∣∣

∑
x∈Fp

Q(x)6=0

ep(P (x)/Q(x))

∣∣∣∣∣∣∣∣ ≤ Cp
1/2,

where the constant C depends only on the degree of P and Q.

We now give bounds for averaged exponential sums over intervals. A separate
elementary argument is given when f(x) = x2.

Lemma 3.2. Let f ∈ B(p, d). Then for any interval I, and any k ∈ F×p ,

p∑
n=1

∣∣∣∣∣∑
x∈I

ep(kf(x+ n))

∣∣∣∣∣
2

≤ Cp|I|,

where the constant C depends only on d.

Proof. We have

p∑
n=1

∣∣∣∣∣∑
x∈I

ep(kf(x+ n))

∣∣∣∣∣
2

=
∑
x,y∈I

p∑
n=1

ep(k(f(x+ n)− f(y + n)))

=
∑
x,y∈I

p∑
α=1

p∑
a,b=1

p−1ep(k(a− b))ep(α(f−1(a)− f−1(b)− x+ y))

=p−1
p∑

α=1

∣∣∣∣∣
p∑
a=1

ep(αa+ kf(a))

∣∣∣∣∣
2 ∣∣∣∣∣∑
x∈I

ep(αx)

∣∣∣∣∣
2

,

where the second equality follows from the fact that the sum over α enforces the
condition f−1(a)− f−1(b) = x− y (taking n = f−1(a)− x = f−1(b)− y, this is equivalent
to a = f(x + n) and b = (y + n)) and the third equality uses that f is bijective. Now
αa+ kf(a) is not constant as a function of a, because f(a) is not linear. Then∣∣∣∣∣

p∑
a=1

ep(αa+ kf(a))

∣∣∣∣∣ ≤ Cp1/2
for a constant C depending only on d, by Lemma 3.1. Since there are a bounded number
of poles for f , the additional terms introduced by extending to Fp are negligible up to
changing C.

Note that for α ∈ [−p/2, p/2]∣∣∣∣∣∑
x∈I

ep(αx)

∣∣∣∣∣ ≤ min(|I|, p/2|α|).
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Thus,

p−1
p∑

α=1

∣∣∣∣∣
p∑
a=1

ep(αa+ kf(a))

∣∣∣∣∣
2 ∣∣∣∣∣∑
x∈I

ep(αx)

∣∣∣∣∣
2

≤ p−1C
∑

|α|≤p/|I|

p|I|2 + p−1C
∑

|α|>p/|I|

p3

α2

≤ Cp|I|,

using the bound
∞∑
α=n

1

α2
≤ 1

n− 1
.

Lemma 3.3. For all k ∈ F×p , we have

p∑
n=1

∣∣∣∣∣∑
x∈I

ep(k(x+ n)2)

∣∣∣∣∣
2

= p|I|.

Proof. Expanding the square, we have

p∑
n=1

∣∣∣∣∣∑
x∈I

ep(k(x+ n)2)

∣∣∣∣∣
2

=
∑
x,y∈I

p∑
n=1

ep(2k(x− y)n+ k(x2 − y2))

= p|I|.

These averaged estimates feed into an argument originally due to Heath-Brown [13],
to give the following bound. We include the proof for completeness.

Proposition 3.4. Let Ij be a collection of J disjoint arithmetic progressions of length
L, with common difference δ ∈ F×p . Suppose that f ∈ B(p, d) or f(x) = x2. Then for all
k ∈ F×p ,

J∑
j=1

∣∣∣∣∣∣
∑
x∈Ij

ep(kf(x))

∣∣∣∣∣∣
2

≤ Cp log2(L+ 1),

where the constant depends only on d.

Proof. By replacing f(x) with f(δx) (or in the case of f(x) = x2, absorbing δ2 into
k), we may work with intervals Ij instead of arithmetic progressions. The proof then
proceeds exactly as in the proof of Theorem 2 in [4] (this argument is originally due to
Heath-Brown [13]).

Let S(n, h) =
∑n+h
x=n+1 ep(kf(x)). Let xj be defined such that the first element in the

interval Ij is xj + 1. Then the sum we are interested in is simply

J∑
j=1

|S(xj , L)|2.

Now for any 1 ≤ l ≤ L and xj − L < n ≤ xj , we have

|S(xj , l)| = |S(n, xj − n+ l)− S(n, xj − n)| ≤ 2max
l≤2L

|S(n, l)|,

and so

|S(xj , L)| ≤
2

L

∑
xj−L<n≤xj

max
l≤2L

|S(n, l)|.

Then by Cauchy’s inequality,

|S(xj , L)|2 ≤
4

L

∑
xj−L<n≤xj

max
l≤2L

|S(n, l)|2,
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and summing over j gives

J∑
j=1

|S(xj , L)|2 ≤
4

L

∑
n∈Fp

max
l≤2L

|S(n, l)|2,

where we use the fact that the intervals are disjoint. Now pick t an integer so that 2L ≤
2t ≤ 4L, and for each n ∈ Fp, pick l∗ depending on n so that |S(n, l∗)| = maxl≤2L |S(n, l)|.
Then writing the binary expansion l∗ =

∑
s∈D 2t−s, we have

S(n, l∗) =
∑
s∈D

S(n+ vn,s2
t−s, 2t−s),

where
vn,s =

∑
u∈D,u<s

2s−u < 2s.

Then we have

|S(n, l∗)|2 ≤ |D|
∑
s∈D
|S(n+ vn,s2

t−s, 2t−s)|2

≤ (t+ 1)
∑

0≤s≤t

∑
0≤v<2s

|S(n+ v2t−s, 2t−s)|2.

Finally, we can sum over n and use Lemma 3.2 or Lemma 3.3 to obtain

4

L

∑
n∈Fp

max
l≤2L

|S(n, l)|2 ≤ Cp(t+ 1)

L

∑
0≤s≤t

∑
0≤v<2s

2t−s

≤ Cp(t+ 1)22t

L

≤ Cp log2(L+ 1).

We now prove a bound for linear exponential sums over a union of intervals.

Proposition 3.5. Let Ij be a collection of J disjoint arithmetic progressions of length L,
with common difference δ ∈ F×p . Then

p−1∑
k=1

∣∣∣∣∣∣
J∑
j=1

∑
x∈Ij

ep(kx)

∣∣∣∣∣∣ ≤ CJ1/2p log3/2(p),

for some constant C > 0.

Proof. First, note that the sum is the same if we replace the arithmetic progressions
Ij by intervals Ij/δ, so we may assume that δ = 1 and the Ij are all intervals. Let xj
be defined such that Ij = I0 + xj for I0 = {1, 2, . . . , L}. By relabeling the intervals if
necessary, we will assume that the xj are ordered. Since the intervals are disjoint, if
j 6= j′ then |xj − xj′ | ≥ L.

The idea is to now break the sum over k up into intervals of length p/L, and take
advantage of the different scales at which the oscillations for the sums over j and x

occur. For 1 ≤ l ≤ (L− 1)/2 let I ′l denote the interval [lp/L, (l + 1)p/L] and let I ′−l = −I ′l .
Then

p−1∑
k=1

∣∣∣∣∣∣
J∑
j=1

∑
x∈Ij

ep(kx)

∣∣∣∣∣∣
≤L

p/L∑
k=−p/L

∣∣∣∣∣∣
J∑
j=1

ep(kxj)

∣∣∣∣∣∣+
(L−1)/2∑

l=−(L−1)/2
l 6=0

L

|l|
∑
k∈I′l

∣∣∣∣∣∣
J∑
j=1

ep(kxj)

∣∣∣∣∣∣ ,
(3.1)
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where we use
∣∣∑

x∈I0 ep(kx)
∣∣ ≤ min(L, p/2|k|). Now note that for any interval I ′ of length

p/L,

∑
k∈I′

∣∣∣∣∣∣
J∑
j=1

ep(kxj)

∣∣∣∣∣∣ ≤ (p/L)1/2

∑
k∈I′

∣∣∣∣∣∣
J∑
j=1

ep(kxj)

∣∣∣∣∣∣
2


1/2

. (3.2)

Now

∑
k∈I′

∣∣∣∣∣∣
J∑
j=1

ep(kxj)

∣∣∣∣∣∣
2

=

J∑
j,j′=1

∑
k∈I′

ep(k(xj − xj′))

≤
J∑

j,j′=1

min(p/L, p/|xj − xj′ |)

where xj−xj′ is the representative mod p between −p/2 and p/2. But now by the spacing
condition and the ordering of the xj , we have |xj − xj′ | ≥ |j − j′|L (where again j − j′ is
the representative between −J/2 and J/2 mod J). Thus,

J∑
j,j′=1

min(p/L, p/|xj − xj′ |) ≤
Jp

L
+

J/2∑
m=1

∑
|j−j′|=m

p

mL
≤ 3

Jp

L
log(p),

and combined with (3.2) this gives

∑
k∈I′

∣∣∣∣∣∣
J∑
j=1

ep(kxj)

∣∣∣∣∣∣ ≤ 3
pJ1/2

L
log1/2(p).

Finally, this together with (3.1) gives the desired inequality.

Using the exponential bounds established in this section, we can prove the following
estimate for the number of solutions to f(x) = y with x ∈ S and y ∈ S′ when S and S′

are the union of arithmetic progressions.

Proposition 3.6. Let S ⊆ Fp be a disjoint union of J arithmetic progressions Ij of
length L and common difference δ ∈ F×p , and let S′ be a disjoint union of J arithmetic
progressions of length L′ and common difference δ. Suppose that f ∈ B(p, d) or f(x) = x2,
and suppose that JLL′ ≥ p3/2+ε for some ε > 0. Then for large enough p,

|{x ∈ S|f(x) ∈ S′}| ≥ c |S||S
′|

p
,

where c > 0 is some constant depending only on ε and d.

Proof. We have

|{x ∈ S|f(x) ∈ S′}| = 1

p

p∑
k=1

∑
x∈S

∑
y∈S′

ep(k(f(x)− y))

=
|S||S′|
p

+R,

where

R =
1

p

p−1∑
k=1

∑
x∈S

∑
y∈S′

ep(k(f(x)− y)).
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By the triangle inequality,

|R| ≤ 1

p

p−1∑
k=1

∣∣∣∣∣∑
x∈S

ep(kf(x))

∣∣∣∣∣
∣∣∣∣∣∣
∑
y∈S′

ep(−ky)

∣∣∣∣∣∣ .
Now by Cauchy–Schwarz,

∣∣∣∣∣∑
x∈S

ep(kf(x))

∣∣∣∣∣ ≤
J∑
j=1

∣∣∣∣∣∣
∑
x∈Ij

ep(kf(x))

∣∣∣∣∣∣ ≤ J1/2

 J∑
j=1

∣∣∣∣∣∣
∑
x∈Ij

ep(kf(x))

∣∣∣∣∣∣
2


1/2

.

Since k 6= p, Proposition 3.4 implies,∣∣∣∣∣∑
x∈S

ep(kf(x))

∣∣∣∣∣ ≤ J1/2Cp1/2 log(L).

By Proposition 3.5,
p−1∑
k=1

∣∣∣∣∣∣
∑
y∈S′

ep(−ky)

∣∣∣∣∣∣ ≤ CJ1/2p log3/2(p).

Thus,
|R| ≤ CJp1/2 log5/2(p).

Now if JLL′ ≥ p3/2+ε, then |S||S′|/p ≥ Jp1/2+ε which dominates R. Finally, as C depends
only on d, we can choose c > 0, depending only on the degree d and ε, so that for large
enough p, we have |{x ∈ S|f(x) ∈ S′}| ≥ c|S||S′|/p.

4 Mixing time bounds

The mixing time bounds for the cases when f ∈ B(p, d) and when f(x) = x2 are both
established using the same overall argument. This involves using Cheeger’s inequality
for directed graphs to reduce to a problem of counting edges between two sets, and then
utilizing the results in Section 3 to show that there are many edges. The argument for
the case when f(x) = x2 is complicated by the fact that the stationary distribution does
not have full support, and we explain how to work around this.

Let P be an ergodic Markov chain on X with stationary distribution π. Define the
Cheeger constant h(P ) by

h(P ) = min
S⊆X

∑
x∈S,y∈Sc π(x)P (x, y)

min(π(S), π(Sc))
,

where S ranges over all non-trivial subsets of X. Note that if P is simple random walk
on a k-regular (i.e. both in and out-degrees are k) directed graph G, then this definition
reduces to

h(P ) = min
S⊆X

e(S, Sc)

kmin(|S|, |Sc|)
, (4.1)

where e(S, Sc) is the number of edges going from S to Sc in G. When f is a bijection, our
random walk falls into this case. Note also that because π is the stationary distribution,∑

x∈S,y∈Sc

π(x)P (x, y) =
∑

y∈S,x∈Sc

π(x)P (x, y),

and in particular for a random walk on a regular directed graph, e(S, Sc) = e(Sc, S).
Thus, we may consider edges in both directions up to a factor of 2.
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The key tool for the bounds on the mixing times is Cheeger’s inequality for non-
reversible Markov chains. The following theorem follows from some standard facts about
the spectral theory of Markov chains. See for example, page 23 of [19], noting that
(I + P )/2 is lazy, and h((I + P )2) = h(P )/2 (see also [6] for the special case of random
walk on a directed graph).

Theorem 4.1. Let P be an ergodic Markov chain on X with stationary distribution π.
Consider the lazy chain Xn with transition matrix (I + P )/2, and starting from some
deterministic X0. Then if

n ≥ 4h(P )−2(max
x∈X

log(π(x)−1) + 2c)

for some c > 0, we have
sup
X0∈X

‖P(Xn ∈ ·)− π‖TV ≤ e−c.

4.1 Proof of Theorem 1.2

We show that in the supremum over S, the set S can be assumed to have some
structure, at the cost of a constant. Since we are only interested in the order of the
mixing time, the loss of a constant is okay.

First, we define a decomposition of any set S ⊆ Fp into certain types of arithmetic
progressions. We will call an arithmetic progression with difference d a d-AP. A 2γ-AP
decomposition of S is a decomposition S =

⊔
Ik where the Ik are 2γ-APs, the number of

Ik’s is minimal. Such a decomposition always exists and is unique.
It is easy to see that if S has a 2γ-AP decomposition into J 2γ-APs, then the same is

true of Sc.
We now show that when computing minS

e(S,Sc)
min(|S|,|Sc|) , we may assume that there are

at most |S|p−1/2−ε/2 2γ-APs in the 2γ-AP decomposition of |S|. Thus, let P denote the set
of S whose 2γ-AP decomposition contains at most |S|p−1/2−ε/2 2γ-APs.

Lemma 4.2. We have for large enough p,

min
S

e(S, Sc)

min(|S|, |Sc|)
≥ min

(
p−1/2−ε/2,min

S∈P

e(S, Sc)

min(|S|, |Sc|)

)
.

Proof. Assume that |S| ≤ |Sc|. Write S =
⊔
Ik the 2γ-AP decomposition. Note that each

right endpoint of a 2 γ-AP contributes an edge from either S to Sc or from Sc to S,
because if x is a right endpoint, then x+ 2γ ∈ Sc and x and x+ 2γ are both connected to
f−1(x+ γ). If there were more than |S|p−1/2−ε/2 many 2γ-APs, then this would imply

e(S, Sc)

min(|S|, |Sc|)
≥ p−1/2−ε/2.

The 2γ-AP decomposition of sets in P have arithmetic progressions of different
lengths. The following lemma lets us reduce to the case when all arithmetic progressions
have the same length.

Lemma 4.3. Let S =
⊔J
j=1 Ij ⊆ Fp be a disjoint union of arithmetic progressions with

common difference δ ∈ F×p . Let L = |S|/J denote the average length of the Ij . Then
S contains J disjoint arithmetic progressions I ′j with common difference δ and length
bL/4c.

Proof. First, note that it suffices to prove the result for intervals. We have∑
|Ij |≥L/2

|Ij | ≥ |S|/2,
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and by splitting the intervals Ij with |Ij | ≥ L/2 up into intervals of length exactly bL/4c,
we throw away at most JL/4 points. Thus, we obtain disjoint intervals of length bL/4c,
whose total length is at least |S|/4, and so there must be at least J such intervals.

We are now in a position to prove Theorem 1.2 using the bounds given by Proposition
3.6.

Proof of Theorem 1.2. By Cheeger’s inequality, it suffices to show that the Cheeger
constant is bounded from below by p−1/2−ε/2. By Lemma 4.2, it suffices to give a lower
bound for

min
S∈P

e(S, Sc)

min(|S|, |Sc|)

of order p−1/2−ε/2 (in fact when S ∈ P we’ll give a constant order lower bound). Thus,
take S ∈ P and assume that |S| ≤ |Sc|.

Using Lemma 4.3, we can find subsets S1 ⊆ S and S2 ⊆ Sc which are a disjoint union
of at most J ≤ |S|p−1/2−ε/2 2γ-APs of fixed lengths L1 and L2, with L1.

Now J ≤ |S|p−1/2−ε/2, and so L1 ≥ p1/2+ε/2/4. Similarly, JL2 ≥ Jb|Sc|/Jc ≥ p/8.
Then JL1L2 ≥ p3/2+ε/2/32, and so Proposition 3.6 shows that

e(S, Sc) ≥ e(S1, S2) ≥ c
|S||Sc|
p

for some positive constant c depending only on d and ε. This implies that

e(S, Sc)

min(|S|, |Sc|)
≥ c |S

c|
p
≥ c

2
.

Since the estimate is uniform over S ∈ P, this completes the proof.

4.2 Proof of Theorem 1.8

We now sketch the adjustments that have to be made to handle the case of f(x) = x2.
The main difficulty lies in the fact that the support of the stationary distribution suppπp
is not all of Fp. To adapt the argument from the bijective case, we take advantage of the
fact that when p = 3 (mod 4), at least one of α and −α lies in suppπ, and that π is close
to uniform on its support.

Consider now the random walk restricted to suppπ. Since the walk enters this
set after a single step, it suffices to bound the mixing time for the restricted walk.
Now although the walk is not a simple random walk on a regular graph, the transition
probabilities are of constant order in p and by Theorem 1.7 the stationary distribution is
essentially constant up to a factor of 4. Thus, (4.1) holds up to some constant factor, and
so we provide a lower bound for e(S, Sc)/min(|S|, |Sc|).

We now adapt the 2γ-AP decomposition to this setting. A set S ⊆ suppπ is symmetric
if it is of the form S̃ ∩ suppπ for a set S̃ ⊆ Fp with S̃ = −S̃. A symmetric 2γ-AP is a set
of the form (J ∪ −J) ∩ suppπ, where J is a 2γ-AP contained in {0, 1, . . . , (p − 1)/2}. A
2γ-AP decomposition of a symmetric set S ⊆ suppπ is a decomposition S =

⊔
Ik where

the Ik are of the form Ik = suppπ ∩ (Jk ∪ −Jk), and the Jk are 2γ-APs contained in
{0, 1, . . . , (p− 1)/2}, such that the number of Ik’s is minimal. It is clear that this exists
and is unique, and moreover the 2γ-APs Jk are uniquely determined as well.

The idea is to use this as a replacement for the 2γ-AP decomposition used in the proof
for f ∈ B(p, d).

Let P denote the set of subsets S ⊆ suppπ which are symmetric, and whose 2γ-AP
decomposition contains at most J ≤ |S|p−1/2−ε/2 2γ-APs.
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Lemma 4.4. We have for large enough p,

min
S

e(S, Sc)

min(|S|, |Sc|)
≥ max

(
p−1/2−ε/2,

1

16
min
S∈P

e(S, Sc)

min(|S|, |Sc|)

)
.

Proof. Assume that |S| ≤ |Sc|, which can be done since e(S, Sc) and e(Sc, S) differ by at
most a multiplicative constant, since π is essentially constant on suppπ up to a factor of
4. Note that if α ∈ S and −α ∈ Sc, then as both are connected to α2 ± γ, this contributes
2 edges from S to Sc. Thus, if there are more than |S|1/2−ε/2 such pairs, we have

e(S, Sc)

min(|S|, |Sc|)
≥ |S|−1/2−ε/2 ≥ p−1/2−ε/2.

Otherwise, replace S with the set S′ = S ∪ {α ∈ Sc| − α ∈ S}. Let n = |S′| − |S|, and
note that n ≤ |S|1/2−ε/2 and e(S, Sc) ≥ 2n. For large enough p, we have

min(|S|, |Sc|) = |S| ≤ 2min(|S′|, |(S′)c|), (4.2)

since either min(|S′|, |(S′)c|) = |S′| for which the statement obviously holds, or |S| ≥
| suppπ|/2− n = (p− 1)/4− n, in which case we have

|(S′)c| = |Sc| − n ≥ |S| − |S|1/2−ε/2,

and for large enough p this also implies (4.2).

The numerator increases by at most 6n, since each vertex has degree at most 6, and
so for large enough p

e(S′, (S′)c) ≤ e(S, Sc) + 6n ≤ 8e(S, Sc).

This implies that the minimum can be restricted to symmetric S, at the cost of the 1/16

factor.

As in the proof of Lemma 4.2, each right endpoint of a 2γ-AP appearing in the
decomposition of S contributes an edge from S to Sc. This is because if x is the right
endpoint of a 2γ-AP J appearing in the decomposition, one of x + γ and −x − γ is a
quadratic residue, and thus either x ∈ S and x+ 2γ ∈ Sc contributes an edge, or −x ∈ S
and −x− 2γ ∈ Sc contributes an edge.

With this replacement for Lemma 4.2, we can now prove Theorem 1.8.

Proof of Theorem 1.8. As in the proof of Theorem 1.2, it suffices to give a lower bound
for e(S, Sc)/|S| when S ∈ P and |S| ≤ |Sc|. A small extension of Lemma 4.3 then reduces
to sets S1 and S2 both of comparable size to S and Sc respectively, with S1 and S2 being
the disjoint union of symmetric 2γ-APs of lengths L1 and L2 respectively.

Note that if J is a 2γ-AP appearing in the decomposition of S1, then if x ∈ J , at least
one of x and −x belong to S1. If there is an edge from x ∈ J to S2, there is also an edge
from −x to S2, so if S1 =

⊔
(Jj ∪ −Jj) ∩ suppπ, then e(S1, S2) ≥ e(

⊔
Jj , S2). Further, if

S2 =
⊔
(Kj∪−Kj)∩suppπ, then any edge landing in Kj must also land in suppπ, because

suppπ contains all elements of the form α2 ± γ, and so e(
⊔
Jj , S2) ≥ e(

⊔
Jj ,
⊔
Kj).

Since the sets have been written as a disjoint union of 2γ-APs, we can now apply
Proposition 3.6 and proceed as before.
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4.3 A variant of the lazy chain

Here, we sketch the adjustments needed to deal with the original Markov chains
appearing in [5]. In the Markov chains considered there, the function f is always applied,
but εn = 0 with positive probability. Note that the arguments in [5] only work when f is
bijective, even though the Markov chain when f(x) = x2 still makes sense, so we restrict
to the setting where f ∈ B(p, d).
Theorem 4.5. Let p be a prime and d ∈ N. Let f ∈ B(p, d), and let γ ∈ Fp be non-zero.
Let εi denote independent random variables uniform on {−γ, 0, γ}. Consider the Markov
chain defined by

Xn+1 = f(Xn) + εn+1.

Then if π denotes the uniform distribution on Fp, for any ε, there is some constant
C = C(ε, d) such that

sup
X0∈Fp

‖P(Xn ∈ ·)− π‖TV ≤ e
−C n

p1+ε .

By the arguments of Section 2 in [5], it suffices to bound the second largest eigenvalue
of a symmetrization using Cheeger’s inequality, which reduces to showing that

e(S, Sc)

min(|S|, |Sc|)

is large in the graph determined by the random walk Pf−1P 2fP , where P is the transi-
tion matrix for taking a random step of either 0 or ±γ with equal probability, and f is
the permutation matrix corresponding to the bijection f . Actually to make an argument
later work, we instead work with PfP 2f−1P , which has the same (non-zero) spectrum.

Now certainly, it cannot hurt to throw away edges, and so we instead consider the
bijective function g(x) = f(f−1(x) + γ), and consider the graph with edges connecting x
to g(x)± γ (we are forcing a lazy first step from P , and after appling f−1 one lazy step
from P and then adding γ).

Now from the arguments in Section 4.1, if the set S has a 2γ-AP decomposition with
too many intervals, then e(S, Sc) will be large since every interval contributes an edge,
and otherwise we can apply the exponential sum bounds of Section 3, with an analogous
version of Lemma 3.2. We first need the following result to apply the Weil bound in this
situation.

Lemma 4.6. Let P,Q ∈ Fp[x] be coprime and of degree at most p/4, and suppose that
P (x)/Q(x) is not constant or linear. Then for all α, β, γ ∈ Fp with β, γ 6= 0, the function

αP (x+ γ)/Q(x+ γ) + βP (x)/Q(x)

is not a constant function.

Proof. Suppose that αP (x+ γ)/Q(x+ γ) + βP (x)/Q(x) = c away from the poles of Q(x)

and Q(x + γ). Then αP (x + γ)Q(x) + βP (x)Q(x + γ) = cQ(x)Q(x + γ) for more than
p/2 points, and so both sides must be equal as polynomials since they are polynomials
of degree at most p/2. Then as P and Q are coprime, Q(x) must divide Q(x + γ) and
Q(x+ γ) must divide Q(x), and by comparing the coefficient of the highest degree term
it’s clear that Q(x) = Q(x+ γ), so Q(x) is a constant. Then αP (x+ γ) + βP (x) = c, and
if P is not a constant, this implies α = −β by comparing the highest degree term. Then
the coefficient of the second highest degree term on the left is non-zero, so P must be a
linear function.

Now, we prove the analogue of Lemma 3.2.
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Lemma 4.7. Let f ∈ B(p, d) and let g(x) = f(f−1(x) + γ). Then for any interval I, and
any k ∈ F×p ,

p∑
n=1

∣∣∣∣∣∑
x∈I

ep(kg(x+ n))

∣∣∣∣∣
2

≤ Cp|I|,

where the constant C depends only on d.

Proof. Since the constant C can depend on d, if we take C to be at least 4d, then if
d ≥ p/4, the statement is trivially true as the left hand side is at most p|I|2 ≤ p2|I|. Thus,
we assume that d < p/4.

Proceeding as in the proof of Lemma 3.2, we have

p∑
n=1

∣∣∣∣∣∑
x∈I

ep(kg(x+ n))

∣∣∣∣∣
2

=
∑
x,y∈I

p∑
α=1

p∑
a,b=1

p−1ep(k(a− b))ep(α(g−1(a)− g−1(b)− x+ y))

=p−1
p∑

α=1

∣∣∣∣∣
p∑
a=1

ep(αf(a− γ) + kf(a))

∣∣∣∣∣
2 ∣∣∣∣∣∑
x∈I

ep(αx)

∣∣∣∣∣
2

,

where the substitution a 7→ f(a) is made. Then as αf(a− γ) + kf(a) is not constant in a
by Lemma 4.6, we can apply Lemma 3.1. The proof then proceeds as before.

The rest of the arguments in Section 3 are unchanged, leading to a version of
Proposition 3.6 for the function g, which completes the argument.
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