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Abstract

This paper studies the local structure of continuous random fields on R? taking values
in a complete separable linear metric space V. Extending seminal work of Falconer,
we show that the generalized (1 + k)-th order increment tangent fields are self-similar
and almost everywhere intrinsically stationary in the sense of Matheron. These results
motivate the further study of the structure of V-valued intrinsic random functions of
order k (IRFy, £k = 0,1,...). To this end, we focus on the special case where V is a
Hilbert space. Building on the work of Sasvari and Berschneider, we establish the
spectral characterization of all second order V-valued IRFy’s, extending the classical
Matheron theory. Using these results, we further characterize the class of Gaussian,
operator self-similar V-valued IRF}’s, generalizing results of Dobrushin and Didier,
Meerschaert and Pipiras, among others. These processes are the Hilbert-space-
valued versions of the general k-th order operator fractional Brownian fields and are
characterized by their self-similarity operator exponent as well as a finite trace class
operator valued spectral measure. We conclude with several examples motivating
future applications to probability and statistics.
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1 Introduction

The tangent process of a random field is the stochastic process obtained in the limit
of the suitably normalized increments of the random field at a fixed location. A pair of
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papers, Falconer (2002, 2003), discovered a remarkable property about the structure of
the tangent process. Briefly speaking, Falconer proved that the tangent processes must
be self-similar and have stationary increments (a.e.). The self-similarity of the tangent
field is not surprising, which is a consequence of scaling. It is akin to what is shown in
many limit theorems in the literature, such as those in the seminal work of Lamperti
(cf. Lamperti, 1962); see also Davydov and Paulauskas (2017) and a host of results on
(univariate and multivariate) regular variation in Gnedenko (1943); Meerschaert (1984);
Hult and Lindskog (2006). The property of stationary increments for the tangent process,
however, is less expected. The proof of this property in Falconer’s works involves a
remarkable Lebesgue-density argument and ideas from geometric measure theory (cf.
Falconer, 1986; Preiss, 1987).

The starting point of our paper is extending Falconer’s results in two directions.
Firstly, we consider generalized tangent processes obtained by taking local (1 + k)-th
order increments, £ > 0. This is necessary if one wants to study the local behavior of
many models arising in spatial statistics. Secondly, we consider random fields taking
values in a linear complete separable metric space V such as but not limited to a
separable Banach space. The resulting limit processes, will be referred to as k-th order
tangent processes. In Falconer (2002, 2003), £ = 0 and V = R. The self-similarity
property continues to hold for k-th order tangent processes, where self-similarity is in
the sense of a general class of scaling actions, including operator scaling (cf. Meerschaert
and Scheffler, 2001), that commensurate with the generality of the state space V. To
establish the generalized stationary-increment property, we introduce a new proof
strategy based on the Lusin and Egorov theorems as well as some core ideas in Falconer
(2002, 2003).

Interestingly, the stationarity of the higher-order increments of the k-th order tan-
gent processes is related to the notion of intrinsic random functions of order k (IRF})
introduced by Matheron (1973). In the special case of real-valued processes (V = R),
the classic results of Matheron as well as Gel’fand and Vilenkin (1964) lead to a concrete
formula for all possible covariance structures of the k-th order tangent fields. It involves
the local self-similarity exponent H € (0, k + 1] and the local spectral measure o. Such
results have been established by Dobrushin (1979) in the setting where the paths of the
stochastic processes are generalized functions, i.e., random elements in S’'(R%) - the
topological dual of the Schwartz space S(R?). Our study, motivated by applications to
spatial statistics and functional data analysis, considers random fields taking values in a
separable Hilbert space V. We follow the approach of Matheron rather than Dobrushin
and realize the notion of a higher-order increment by integrating the process against
signed measures with finite supports.

To this end, in Section 4, we develop an extension of Matheron’s theory to the case of
processes taking values in a separable Hilbert space V. Our theoretical development
for Hilbert-space-valued IRF}’s is of independent interest and builds on a large body of
existing although somewhat scattered work. With no intention to provide a complete
list, we refer to Bochner (1948) and Khintchine (1934) for Bochner’s theorem and Neeb
(1998) for extensions to general spaces; Cramér (1942) for the spectral representation
of stationary random fields; Matheron (1973), Sasvari (2009) for the existence of general
covariance of IRF;, and its integral representation; Berschneider (2012) for the integral
representation of IRF in an abstract space. A more comprehensive summary on this line
of literature can be found in Berschneider and Sasvari (2018). Our proofs in this regard
are contained in the extended version of this paper (Shen et al., 2020), which aims to be
self-contained and only uses arguments that are common in probability and statistics.

The developed theory is then utilized in Section 5 to characterize the covariance
structure of self-similar intrinsic random functions taking values in a separable Hilbert
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space. General linear operator scaling actions are considered as well as the classic
multiplication by a scalar. In particular, our results provide characterizations of Gaussian
operator self-similar IRF;’s, which can be viewed as infinite-dimensional versions of the
k-th order fractional Brownian fields. The 0-th order operator fractional Brownian fields
taking values in V = R™ have been the subject of active investigation and numerous
applications (see e.g. Mason and Xiao, 2001; Amblard and Coeurjolly, 2011; Kechagias
and Pipiras, 2015; Abry and Didier, 2018; Abry et al., 2019; Diker, 2020; Biermé
and Lacaux, 2020, and the references therein). Most if not all of the existing work,
however, focuses on random fields taking values in R™. In this paper, we provide a first
comprehensive treatment of Hilbert space valued operator fractional Brownian fields
and their higher order stationary increment counterparts — the Gaussian IRFy’s. This
leads to infinite-dimensional extensions of seminal results due to Didier and Pipiras
(2011); Didier et al. (2017); Perrin et al. (2001) among others.

This paper also contributes to statistical research in several ways. Matheron’s
work on R-valued IRF;’s has had a substantial impact on the field of spatial statistics
(see e.g. the monographs of Stein, 1999; Chiles and Delfiner, 2012). Our extension of
the Matheron theory to the case of Hilbert-space-valued random fields provides novel
tools and framework for spatially dependent functional data analysis — an active area
in statistics (see, e.g., the monographs Ramsay and Silverman, 2005; Horvath and
Kokoszka, 2012; Hsing and Eubank, 2015, and references therein). Unfortunately, the
details of Matheron’s theory have been elusive to the broader community. Our work
and its extended version Shen et al. (2020) will be a useful resource for those who are
interested in learning those details and their novel generalizations. The self-similar IRF},
is itself a flexible model for spatial statistics. The self-similarity exponent operator H
and spectral measure o, which now takes values in the space of positive trace-class
operators on V characterize the covariance structure. The pair (7, ) may be object of
further modeling and inference in the context of in-fill asymptotics (cf. Stein, 1999). The
tangent process connection also provides guidance for building flexible random field
models with desired local properties.

The paper is organized as follows. Section 2 introduces a suitable topology on the
path space and scaling actions needed to define and study higher-order tangent fields.
In Section 3, we establish the main results on the structure of higher-order tangent
fields, namely their self-similarity and almost everywhere intrinsic stationarity. Section 4
develops the spectral theory for second-order stationary and intrinsically stationary
random fields taking values in a separable Hilbert space V. This treatment unifies and
extends results of Bochner, Cramér, Gelfand-Vilenkin, Matheron, Neeb, Sasvari, and
Berschneider. The covariance structure of the self-similar V-valued IRF;, is characterized
in Section 5. General linear operator-scaling actions (Section 5.1) and the classic scalar
scaling actions (Section 5.3) are studied. Open problems, examples and connections to
the existing literature are presented in Section 5.2. Some technical proofs are relegated
to the Appendix. Further background and details are given in Shen et al. (2020).

2 Preliminaries

This section develops some tools that will be useful for the study of tangent fields.
We commence by defining some key spaces and operations.

For d = 1,2,..., let A denote the collection of complex-valued measures on R
supported on finitely many points, i.e.,

A(du) = Zciéti (du), (2.1)
i=1
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wheren =1,2,..., ¢; € C,t; € R? for all 4, and J, is the Dirac measure at a. Without loss
of generality, we always assume the ¢;’s in the representation (2.1) to be distinct. In this
paper we will be concerned with functions defined on A or a subspace of A and take
values in some vector space V. A special case of that is

g(\) == /gd/\ = Zcig(ti),

forany g : R? — V.

For any k € IN := {0,1,2,...}, a monomial of degree k on R? is any function of the
form u = (u1,...,uq) — u{l e uﬁf, where ji,...,jq are non-negative integer powers such
that j; + --- + jq = k. More generally, a polynomial of degree k is any complex linear
combination of monomials of degree less than or equal to k£ with at least one non-zero
degree k term.

Definition 2.1. Forany k = 0,1,2,..., let A; be the class of A\ € A such that fRd fd\ =
0 for polynomials f with degree deg(f) < k. Thus, measures in A, “annihilate” all
polynomials of degree up to k. We also let A_1 := A.

Next, we define two operations pertinent to the definition of tangent fields. As usual,
foranyset BC RY, cc Rands € R letc-B={ct :tc Blands+B=B+s={s+t:
t € B}. Also, define the scaling and translation operations on A:

P A= Ar"1), r#0, and s+ A:=A(-—s), s€R™L (2.2)

Clearly, A is closed with respect to both of these operations.

Assume that the random elements considered in the paper take values in a complete
and separable metric linear space (V,dy) over C. Recall that (V,dy) is said to be
a metric linear space (cf. Rolewicz, 1985) if scalar multiplication and addition are
continuous with respect to dy. Namely, for all x,,,y,,x,y € V and ¢,,c € C, such that
len, — ¢ + dv (zn, ) + dy(yn, y) — 0, we have

dy(cpxn,cx) =0 and dy(x, + yn,x +y) — 0.

By the Birkhoff-Kakutani Theorem (cf. Theorem 1.1.1 of Rolewicz, 1985), without loss of
generality, we can and do assume that the metric dy is translation invariant, that is,

dy(z,y) =dy(z — y,0) for any z,y € V. (2.3)

A typical example of V in our applications is a separable Banach or even Hilbert space.
However, we do not restrict to only Banach spaces for now. We also assume throughout
that the following continuity condition holds: For any K > 0,

lim sup dy(cz,0) — 0. (2.4)
0=0 |¢|< K, dy (x,0)<6

Note that (2.4) readily holds if V is a normed space and dy is induced by the norm.

2.1 The spaces S(Ay, V) and S(Ay, V)

A function f from A to V is linear if f(cl/\l + CQ)\Q) = le()\l) + CQf()\Q),Cl,CQ S
C, A1, A2 € A. Denote by S(Ak, V) the set of all linear functions from Ay to V. In this
section, we focus on obtaining a representation of functions in S(Ag, V) in terms of
functions from R? to V as well as a topological structure for a subspace of S (Ag, V).

Next we discuss the important notion of representation introduced by Matheron
(1973). A function f : R+ V is said to be a representation of f € S(A, V) if

) :/fdA, A e Ay (2.5)
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Consider the following construction of a representation. Denote by m;, i =1,..., My :=
(kzd) all the monomials of degree less than or equal to k£ on R?, where the ordering is

arbitrary. Define the RM* —valued function
b(t) := (my(t),...,mu, (1)), teR% (2.6)

Pick the points t; € R%,i = 1,..., My, such that the M} x M, matrix B := (b(t),...,
b(tyr,)) has full rank. Such points always exist. For instance, if d = 1 then B has full
rank for arbitrary distinct ¢;’s. However, for d > 1 some care is needed in selecting the ¢;
to ensure that B has full rank. For ¢t € R?, define the measure

At =6 = (81,5, 0t,, )BT1B(D), (2.7)

where, for any ¢ = (¢, ..., car, )" € CY*, (6, ..., 8, ) denotes the measure Z?ﬁ“l by,
Below, for convenience, we adopt such matrix notation when there is no ambiguity. It
follows from (2.6) and (2.7) that

</m1d)\t,...,/kad/\t>T = (I — BB Hb(t) =0,

and so \; € Ay, for all t. For any f € S(Ag, V), consider

v

F@) = f( M) (2.8)

Note that A\, = 0, the null measure, for all ;. Thus,

(f(tl),...,f(th)) —o0. (2.9)

Moreover, for A € Ay, by linearity,
/fd)\ _ 7 ()\ - (5“,...,5%)3—11)@)) = V), (2.10)

since b(\) = 0, and therefore (2.5) holds showing that f is a representation of f.

Clearly, the function f defined by (2.8) is not the only possible representation of f.
However, any two representations gi, go of f differ by a polynomial of degree k, since,
for all ¢,

0= / (91 — g2)dAe = 1 (1) — g(t) — (1(t1) — ga(tr), - -, g1 (tass) — g (tar, ) B~ b(2).
(2.11)

The difference will not affect any of the results in this paper. Thus, from now on, we will
adhere to the representation f defined by (2.8).

It follows from (2.9) and (2.10) that there is a one-to-one correspondence between
S(Ag, V) and S(Ax, V), where S(Ay, V) denotes the set of functions from R¢ to V that
are equal to zero at each t;,7 = 1, ..., M}, where the isomorphism is determined by the
bijection

(TH(E) = Fn), fe S V),

T H) = / Far, f e S(ALV). 2.12)

A linear function f € S(A, V) is said to be continuous if its representation f is a
continuous function from R? to V. By (2.11), this property is “intrinsic” to f and does
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not depend on the representation. Let S.(Ag, V) denote the subset of continuous linear
functions from A, to V, and S”C(Ak, V) the corresponding set of representations. The
mapping J in (2.12) continues to be an isomorphism between S.(Ax, V) and S’C(Ak, V).

We now proceed to define a topology on S.(Ax, V) and S*C(Ak, V). A convenient metric
on S,(Ag, V) is

p(f) = 2 (1-exn{ = sw dv(F(1).5())}), (2.13)

where, as before, || - || denotes the Euclidean norm on R? and dy denotes the metric on
V. Clearly, p metrizes the local uniform convergence topology, i.e., uniform convergence
on compact sets. We also have the following simple but important fact, proved in Section
A.1 in Appendix.

v

Lemma 2.2. The metric space (S.(Ax, V), p) is complete and separable.

Using the canonical bijection 7, we define the corresponding metric on S.(Ag, V)
as p(f,g) := p(JTf,Tg), for f,g € Sc(Ax, V), where the same symbol p is adopted for
convenience. Again, by (2.3), (2.4) and (2.11), the topology so defined does not depend

v

on the particular representation used to define (S.(Ag, V), p). It follows that J is an
isometry and both (S.(Ax, V), p) and (S.(Ax, V), p) are separable and complete. Thus,
weak convergence of probability measures on these spaces can be defined in the usual
manner (see, e.g., Billingsley, 1999). Specifically, by Prokhorov’s theorem, convergence
in distribution in (S, (A, V), p) or equivalently (S.(A, V), p) is equivalent to the conver-
gence of the finite-dimensional distributions and tightness. The following result provides

a general criterion (see also Proposition 2.1 in Falconer, 2002).

Proposition 2.3. Let X,,, X be random elements in (S.(Ay, V), p) and let X,, = J(X,,)
and X = J(X). Then X,, 4 X in (Se(Ag, V), p), or equivalently X, 4 X in (Se(Ag, V), p),
if and only if the following two conditions hold:

(i) Forallm >0 and s1,...,sn € R?,
(X (51), -0y Xn(5m)) 5 (X(51),- .., X(5m))- (2.14)

(ii) For every compact set K C R, X, is strongly stochastically equicontinuous on K,
namely, for all n,e > 0, there exists 6 > 0 such that

lim sup IP ( sup dy (Xn(s), Xn(t)) > 77) <e.

n—00 |s—t]|<8d, s,teK

v

Proof. Since (S.(Ag, V), p) is separable and complete, the result is a direct consequence
of Theorem 14.5 and Proposition 14.6 in Kallenberg (1997). O

The convergence of the finite-dimensional distributions (2.14) is often easier to
establish, while the challenge is to prove tightness. The following result provides a
simple sufficient condition, which also implies the Holder continuity of the limit. It is a
restatement of Corollary 14.9 in Kallenberg (1997).

Proposition 2.4. Suppose that X,,,n € IN take values in (§C(Ak7V),p) and let the
sequence of random variables {X,,(so), n € N} be tight, for some s, € R<.

(i) If for some p > 0 and o > 0, and all M > 0, there exist C); < oo, such that

sup Eldy (X, (s), Xn(t))P] < Carlls — t)|97*, forall ||s||,||t] < M, s,t € RY,
nelN

then the laws of the processes {X,,,n € N} are tight in (S.(Ag, V), p).
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(i) If moreover, X,, - X, in (S.(Ag, V), p), then with probability one, X has v-Hélder
continuous paths, for all v € (0, «/p). That is, there is an event Q*, with P(Q*) =1
such that for all M > 0, we have

9 Y]

dy(X(s,w), X(t,w)) < Cpr(w)||s —t||7, forall ||s|,||t]]| < M, we QF,
with some C)r(w) < 0.

Remark 2.5. By taking X, = X in Proposition 2.4, we recover an extension of the
well-known Kolmogorov-Chentsov path-regularity criterion. See also Theorem 2.23 in
Kallenberg (1997).

Remark 2.6. If £ > 0, recall that by (2.9), we have X'n(tl) =0,4=1,---, M. Thus,
in Proposition 2.4, one can trivially take sy = ¢; and the required tightness of the
random variables {X,,(so), n € IN} is immediate. This condition is non-trivial only when
k = —1 (the case of stationary processes) where by convention J is the identity and

v

SC(A_17W) = SC(A_l,V).

The above moment-based criterion is used in Section 5.2 to furnish examples of
tangent processes.

2.2 Scaling actions

When considering limit theorems for V-valued processes, one may need to rescale
the process using an operator different from the usual scalar multiplication. This is
particularly relevant for the case where V is an infinite dimensional space of functions.
The next definition introduces the natural conditions that such rescaling operators in a
general metric space (X, dx) should possess. It is similar to the one considered in Hult
and Lindskog (2006) in their abstract treatment of regular variation. We will later focus
on the cases X = V and S.(Ag, V).

Definition 2.7. Let (X, dx) be a general metric space. A family of (possibly non-linear)
operators T, : X — X, indexed by the multiplicative group R, := (0,00) is said to be a
scaling action on X if the following conditions hold:

(i) foralla; > 0 and ay > 0, we have T,, o Ty, = T4 a,,
(ii) T} is the identity, and T,(0) = 0 for all a > 0,
(iii) {T,} is continuous, i.e., dx(T,,(zn),To(z)) — 0, whenever a, — a > 0 and
dx (xpn,x) — 0,
(iv) {T,} is radially monotone, i.e., dx(T,,(x),0) < dx(Tu,(x),0), for all 0 # = € X and
0 < a1 < as, and
(v) dx(Ty(z),0) = 0asal 0, forallz € X.

The above definition readily implies that 7,,,a > 0 are bijections and in particular
T.(z) # 0 for all = # 0.

Remark 2.8. Property (v) in Definition 2.7 can be replaced by the equivalent condition
of

J 7.(B:) =X forallr € Ry, (2.15)
n=1

where B, := {z € X : dx(z,0) < r} is the open ball centered at the origin with radius
r. To see the equivalence, first assume that (2.15) holds and, by (iv), verifying (v) then
amounts to showing that dx (7}, (z),0) — 0 for all z € X. For every r := ¢ > 0, however,
(2.15) entails that x € T,,(B.) for all sufficiently large n. By (i) and (ii), this implies that
Ty/n(x) € Be, or dx(T1/n(x),0) < ¢, for all sufficiently large n. The converse argument
showing (v) implies (2.15) is similar.
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Many common examples of scaling operations readily satisfy the above conditions. For
instance, if X is a linear normed space, a natural scaling action is scalar multiplication
itself:

T.(z) :=a-x. (2.16)

More generally, the scalar multiplication is a scaling action if the underlying metric is
homogeneous, e.g., dx(a - z,a-y) = aVdx(z,y), v > 0.

Observe that since 77 = I by property (ii), where I stands for the identity operator,
we have T, ' =T} /as @ > 0 by property (i). Hence the mappings 7, are homeomorphisms
and map open (closed) sets to open (closed) sets. The radial monotonicity property (iv)
implies that 7),.' (B,) C T,,.*(B,), for all 0 < ay < a. This, since T, ! = T} ,, entails

T, (B,) C Toy(B,), forall0< aj < as. (2.17)

Note that the metric dx and the action need not be “compatible”, that is, dx(7,(x),0)
is in general not equal to a - dx(x,0) and therefore, T,,(B,) is in general not B, .

Remark 2.9. In the case where X is a Hilbert space and H : X — X is a fixed bounded
linear operator, one can consider the action 7.(z) := cHz, ¢ € X for ¢ > 0, where
M = elos(9M (see (5.1)). Lemma A.1 shows that ¢* is a scaling action in the sense of
Definition 2.7, under certain natural conditions on the operator H.

Limit theorems under linear operator scaling on X := R” have been studied exten-
sively in the literature (see e.g. Meerschaert and Scheffler, 2001, and the references
therein and thereof). Such actions for a general separable Hilbert space X will be
considered in Section 5.1.

Given a scaling action {7, a € R} on the metric linear space (V,dy), it is natural
to consider its coordinate-wise extension on the space of V-valued functions S(Ag, V).
Namely, the action fa 0 Se(Ag, V) = S.(Ag, V) is defined such that for all f € S.(Ag, V),
and any \ € Ag

To(f)A) = Ta(f(A))- (2.18)

The following result shows that the coordinate-wise action is in fact a scaling action
on S.(Ag, V). Its proof is given in Section A.1, below.

Lemma 2.10. For any scaling action {T;,, a € Ry} on (V,dy), the coordinate-wise action
{T,, a € R} in (2.18) is a scaling action on the linear space S.(Ay, V) equipped with
the metric p in (2.13).

In view of Lemma 2.10, from now on we will use the same notation {7,} for the
scaling action on V and its coordinate-wise extensions on S.(Aj, V).

3 Tangent fields and their properties

Throughout this section, suppose that X = {X()\), A € Ax} is a random element
in (S¢(Ag, V), p). That is, for some probability space (2, F,P), we have that X : O —
S¢(Ag, V) is an F|B(s,(a,,v),r)-measurable map, where B(s,(a,v),) stands for the Borel
o-field on S.(Ay). For s € R%, A\ € A, and r > 0, define

X(s,r-A)=X(s+7r-N), (3.1)
where s+ 7 - ) is as defined in (2.2). An example of X ()) is X()) := [, X (u)A(du) for

some random field X = {X(s), s € R%} with continuous sample paths. (Note that in fact
every X taking values in S.(Ay, V) can be written as X (\) := [p, X (u)\(du), where X (u)
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is the representation of X as defined in Section 2.1. The integrand is unique up to an
additive polynomial of degree no greater than k.)

One can interpret X(s,r - \) as a generalized (1 + k)-th order increment of X at
location s and scale r > 0, relative to A. Indeed, consider for example the case d = 1 and

let A(du) = 355 (*51)(=1)76,;(du). Then, for s € R and r >0,

k+1
XGsren) =3 () x4 i) = 2R,

Jj=0

where A, X(s) := X(s+7) — X(s) and A1 X (s) := A(A*X())(s), K =0,1,... is the
usual (1 + k)-th order regular difference operator.

Thus, considering the process X as a function of (s + r - A), for all (any) signed
measures A € Ay effectively amounts to zooming in on its (1 + k)th order increments at
location s and scale r > 0. By letting r | 0, one can examine the local behavior of X and
arrive at (generalized) tangent fields as detailed next. This indeed extends the setting
of Falconer (2002) who focused on V = R, k£ = 0, and studied the increment process
X(s+rt)— X(s)=X(s+7r-tN), t € R.

One of the goals of the paper is to study the asymptotic behavior of the generalized
increments X (s,7-)) as r | 0 for fixed s € RY, where -\ is as in (2.2). The normalization
of the asymptotics will be facilitated by scaling actions T = {T ., a > 0} as described by
the next definition. In this context, we use that the process {Ts,c(s,r)(X(sv r-A), A€ Ak}
is a random element in S.(Ag, V) for all s,r, which is easy to verify by (3.1) and the
continuity of the scaling action. This remark applies to similar situations below and will
not be repeated.

Definition 3.1. Let s € RY. A random process Y, = {Ys()\), A € Ay} € S.(Ax,V) is said
to be a k-th order tangent field (or tangent process) to X at s based on the scaling action
Ts = {Ts,q,a > 0}, if it is non-zero and for some normalizing function c(s,r) > 0, we have

{Toe(ory(X(s,7-N), A€ Ay} -5 {Yi(\), A€ A}, asr L0, (3.2)

where the convergence in distribution takes place in (S.(Ax, V), p).

The role of the function ¢(s,r) is to provide flexibility in the choice of normalization
without having to change the scaling action. For example, in the special setting V =
R, k = 0 with the simple scalar scaling action 7T ,(z) = T,(z) = a - , and X replaced by
)\t(dl‘) = 5{t}(d$> — (5{0} (dl‘), Relation (3.2) implies

{c(s,")(X (s +rt) — X(9)), t € R} LN {Ys(\t), te R}, asrlO.

This recovers the classic setting, of tangent processes, where c(s,r) plays the role of a
normalizing constant. In this case, Falconer (2002) showed that tangent fields must be
self-similar and have stationary increments. In the following two subsections, we extend
Falconer’s results to the general setting of this paper.

3.1 Tangent fields are self-similar

Self-similarity is a distributional invariance phenomenon, which is ubiquitous in the
study of stochastic process limit theory. Recall that a real-valued stochastic process
¢ = {&(t), t € RY} is said to be self-similar with self-similarity exponent H > 0, if for
all 7 > 0, we have {€(rt), t € R?} "2 {rH¢(t), t € R?}, where 2 means equality of all
finite-dimensional distributions. For V-valued processes, we have the following natural
extension of the notion of self-similarity.
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Definition 3.2. An V-valued stochastic process ¢ = {£(\),\ € Ax} is said to be self-
similar relative to the scaling action {T,} if for some « € R, we have

(€M), e At 2 (T (6(N), A€ Ay}, forallr > 0. (3.3)

Remark 3.3. The above definition views ¢ in the wide sense as a measurable map
£ : Q — VA, where V** is equipped with the product o-field Bya, generated by
the class C all finite-dimensional cylinder sets C := {z € VM : x()\;) € B;, i =
L,---,m}, Bi € Brv,gy), Ai € Ag,i=1,---,m, m € N. When the paths of { are contin-

uous, i.e., ¢ is a random element in (S.(Ag, V), p), it can be shown that the equality of

. . . T dd,, . . . e e .
the finite-dimensional distributions «fdd, in (3.3) is equivalent to equality in distribution

“L” between Sc(Ag, V)-valued random elements. Indeed, firstly, all finite-dimensional
projections mx, ... x,, : Sc(Ag, V) = V™ m € N for \; € Ay, i = 1,--- ,m are continu-
ous and hence B(s, (s, v),,)-measurable. Since By, is the minimal o-filed making all
such projections measurable, we obtain that S.(Ax, V) N Bya, C Bs,(a,,v),p), Where

Se(Ag, V)N Bya, = {Se(Ax, V)N B : B € Bya, }. This shows that “L» implies 4 on
the other hand, the fact that (S.(Ax, V), p) is second-countable, entails that Bg,(a,,v),p)
is generated by the class of all closed balls, for example. Since each such ball is a
countable intersection of cylinder sets (e.g., as in the proof of Proposition 12.2.2 in
Dudley, 2002) it follows that the Borel o-field B(s_(a, v),p) is determined by the 7-system

C of all finite-dimensional cylinder sets (restricted to S.(Ax, V)). Thus, appealing to the

«fdd,, . . wd
w-A Theorem, we see that 14 implies also “=".

The seminal work of Lamperti (1962) shows that all non-trivial large-scale limits of
stochastically continuous processes are self-similar. From this perspective, it is expected
that tangent fields (as small-scale limits) be self-similar. Falconer (2002, 2003) has shown
that this is indeed the case for k£ = 0. The next result addresses the general case of k-th
order tangent fields of V-valued processes.

Theorem 3.4. Assume that, for some location s € R?, {Y,()\),\ € A} is a k-th order
tangent field to X at s with respect to the scaling action Ts. That is, Relation (3.2) holds
for some c(s, ).

(i) Then, for allr > 0, we have
(Ya(r- M)A € A} £ (T Yo (M), A € Ay, (3.4)
where a(s) > 0 is some positive constant. We have, moreover, that
c(s,r) =~ (r), (3.5)

where (s(r) is a slowly varying function at0, i.e., for every fixed h > 0, {s(hr)/ls(r) —
1, 0.

(ii) The tangent process is unique up to rescaling. That is, if (3.2) also holds with c(s,r)
and Y, = {Y,(\)} replaced by &(s,r) and Y, = {Y,()\)}, respectively, then we have

i cls,r) —ae(0,00) and Y, £
0 ¢(s,r)

Ts,a(Ys). (3.6)

Remark 3.5. Relations (3.4) and (3.5) show that the normalization used to define a
tangent field may differ from the scaling action that characterizes the self-similarity of
the tangent field by a slowly varying factor, which cannot be dropped in general. This
is akin to the fundamental role of slowly varying functions in the normalization of the
partial sums in the non-Gaussian Central Limit Theorem.
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Proof of Theorem 3.4: Proof of part (i). For all fixed h > 0, by (3.2), as r | 0, we have
& 1= {Tao(amy (X (s, (1) - 0), A € Ay} =5 €= {V(h- N), A € Ay}
On the other hand, as r | 0,
& 1= {Tugunn) (X (s, (hr) - N), A € A} =5 €= {Ya(M), A € Ay}
By assumption both ¢ and E are non-zero. Observe that

TS,C(S’T,) (X(S, (h?") . )\)) = Ts c(s,r) O Ts,c(s,hr) (X(S, (hT‘) . )\))

(s, hr)

and hence

T, eon (&) =6 S €

Zr¢(s,hr)

Applying Lemma A.6 (with X := S.(Ax, V) - recall Lemma 2.10) gives

c(s,r)
(s, hr)

—a(s,h), asrl]0, 3.7)

for some positive a(s, h) > 0. We have, moreover, Ei T a(s,n)(£), which reads
{Ya(h -2, x € Ak} £ {T, (o (Ya(N), A € Ay} (3.8)

We will next show that a(s, h) = ho(s) | for some a(s) > 0. First, Relation (3.8) readily
implies that for all A; > 0 and hy > 0

a(s,h1ha) = a(s, hi)a(s, ha). (3.9

Indeed, by (3.8),

{Tuatsana) (YaO0)} = {Ya((hrha) - NV} £ {Ts agany) (Ya(ha - A))}
i {Ts,a(s,hl) o Ts7a(s,h2)(Y9()\))} = {Ts,a(s7h1)a(s7h2)()/S(A))}'

Since Y is nonzero, the last relation implies (3.9) by (i) of Lemma A.6.

The function a(s, h) is also continuous in & € (0, c0). Indeed, for any sequence h,, — h,
hn,h € (0,00), by Lemma A.7 (applied with X,, := Y5, v, := 0, and r, := h,), we have
{Yi(hy - N} 5 {Ys(h - \)}. Therefore, by (3.8),

d d d
{Ts a(s,n) (Ys (M)} = {Ys(hn - )} — {Ys(h - M)} = {Ts a(s,n) (Ys () }- (3.10)
Since Y is nonzero, applying (ii) of Lemma A.6, we obtain
a(s, hy) — a(s, h), (3.11)

which shows the desired continuity.

Combining (3.9), (3.11), the continuity of a(s, ) and the fact that, trivially, a(s,1) =1,
it is straightforward to conclude that a(s,h) = h®(*), h > 0, for some a(s) € (—o00,00),
which is a special example of Cauchy’s functional equation (cf. Theorem 5.2.1 of Kuczma,
2009).

We will show next that a(s, h,) — 0 as hy, | 0, which necessarily implies «(s) > 0.
Indeed, with h = 0, (3.10) implies that {7} q(.s,)(Ys(\)} % 0 = {Y;(0- A}, as n — oo.
This, by (iii) of Lemma A.6, yields a(s, h,) — 0.

EJP 27 (2022), paper 34. https://www.imstat.org/ejp
Page 11/56


https://doi.org/10.1214/22-EJP754
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Tangent fields, intrinsic stationarity, and self similarity

To conclude the proof of part (i), letting c(s, ) =: r~*(9)¢,(r), we see from Equation
(3.7) that, for all h > 0, ¢5(r)/¢s(hr) — 1, as r | 0, which shows ¢, is a slowly varying
function at 0.

Proof of part (ii). Assume now that in addition to (3.2), we have

ﬁr’ = {Ts,'c'(s,r)(X(svr ' )‘))7 A€ Ak} i> ?S = {?S(A>7 AE Ak}v

as r | 0. By the properties of the scaling action, with 0, := {T} ¢(s (X (5,7 - X)), A € Ag},
we have
ﬁr = TS a(s,r) (T]T) i) YS, asr J, 0.
s e(s,m)

On the other hand, Relation (3.2) reads 7, a4 Y;, as r | 0. Since both limits 575 and Y, are
non-zero, Lemma A.6 entails ¢(s,7)/c(s,r) = a > 0 and T ,(Ys) £'y,, which proves (3.6),
i.e., the essential uniqueness of the tangent process.

a

3.2 Tangent fields are intrinsically stationary

One of the key results in Falconer (2002) is that (almost all) tangent fields have
stationary increments (cf. Theorem 3.6 therein). The proof of that is based on a delicate
measure-theoretic argument. Below, we show that this phenomenon extends to higher
order tangent fields to processes taking values in a linear separable metric space V.

Let (3.2) hold and let

Fy(s) := Law of{Tsﬁc(s,l/n)X (s,(1/n) - A), A € Ak} (3.12)

be the probability distribution of the rescaled version of { X (s, A\), A € Ax}in (S.(Ag, V), p).
Similarly, let

G(s) := Law of {Ys(\), A € Ax}. (3.13)
In this notation, the convergence in (3.2) (with r := 1/n) is simply

Fo(s) % G(s), n— oo, (3.14)

where ‘5’ denotes the weak convergence of probability measures. An important result
that will be utilized below is Proposition 3.9 in the Appendix. In that regard, we first
equip the space P(S.(Ax, V), p) of probability measures on (S.(Ax, V), p) with a separable
metric that metrizes the weak convergence (3.14). Since (S.(Ax, V), p) is complete and
separable, a suitable metric is dpp, the Lévy-Prokhorov distance (cf. Theorem 6.8 of
Billingsley, 1999). Thus, (3.14) can be re-expressed as

F,(s) = G(s) in (P(Ss(Ar, V), p),drp), (3.15)

namely, dip(F,(s),G(s)) — 0.

Definition 3.6. A processY = {Y()\), A € Ay} is said to be strictly intrinsically stationary
if

(Y(w+N), xe A} 2 {y(\), e Ay}, forallwe R

Note that this is different from the usual notion of weak or second-order intrinsic
stationarity in the literature (cf. Sasvari, 2009). The latter is the topic of Section 4.
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Remark 3.7. Observe that the notion of strict intrinsic stationarity like that of self-
similarity in (3.3) is stated in greater generality using equality in the sense of finite-
dimensional distributions. As discussed in Remark 3.3, when the processes therein take
values in the path space S.(R%, V), the equality of the finite-dimensional distributions is
equivalent to that of the probability distributions of the processes. In the next result, the
processes are understood as random elements in S, (R%, V).

Theorem 3.8. Let B be a Borel set of R%. Assume that X = {X()\), A\ € A} is a random
element in S.(R%, V) and it has a k-th order tangent field Y, = {Y,()\), A € A;,} at every
s € B in the sense of Definition 3.1. Also assume that for any r, the normalization c(s,r)
is Borel measurable in s, and for any s and any sequence w,, — w € R,

TSmC(Sml/”) © T’s:cl(s,l/n) — 1, (3.16)
where 1 is the identity operator and s,, :== s +n~'w,,. Then, there exists a set U with zero
Lebesgue measure such that for all s € B\ U, the tangent field Y; is strictly intrinsically
stationary. That is, at almost all locations s, tangent fields are strictly intrinsically
stationary.

The proof of this result uses the following proposition established in Section A.2
below.

Proposition 3.9. Let B C R? be a Borel set with finite Lebesgue measure Leb(B) < oo.
Suppose that F,, : B — FE is a sequence of Borel measurable functions into the separable
metric space (F, pg) such that

F,(s) — G(s), for almost all s € B.
n—oo
Then, for every ¢ > 0, there exists a compact set K. C B, such that Leb(B \ K,) <,
the function G being continuous on K., and

F,(s,) = G(s), whenevers,, — s, for s,,s € K.. (3.17)

Proof of Theorem 3.8: By the o-additivity of the Lebesgue measure on R¢, it suffices
to establish the result for the case Leb(B) < cc.

The assumption implies that (3.15) holds for all s € B. The continuity of X and
the Borel-measurability of s — c¢(s,1/n) entail that s — F,(s) is a sequence of Borel
measurable functions in (E, pg) := (P(S.(Ak, V), p),drp). Therefore, the assumptions
of Proposition 3.9 are fulfilled and for any ¢ > 0, there is a compact set K. C B with
Leb(B\ K.) < e such that F,,(s,) — G(s) so long as s,,s € K. and s, — s.

It follows from Lebesgue’s density theorem that there is a subset K of K. on which
the Lebesgue density is equal to 1 and Leb(K, \ K!) = 0. By Lemma 3.5 of Falconer
(2002), for any s € K! and w € R?, there exists a sequence w,, such that w,, — w and
$p =8 +wy/n € K. Thus, for any s € K., F,,(s,) — G(s) as n — oo or, equivalently,

En = { Ty contymy(X (505 (1/0) - A)), A € A} = €= {Y4(A), A € Ay}, (3.18)

On the other hand, we have

&n = {Ts, c(sn1/m) (X (50, (1/0) - X), X € Ay}
= {Tsn,c(s”,un) 0T, a1 jmy © Tee(s1/my (X (sn, (1/1) - A)), X € Ak} (3.19)
= {TSW»C(Sml/n) °© Tstcl(s,l/n) 0 T e(s,1/m) (X (s, (1/n) - (wn + N))), A € Ak} .
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Since by (3.16), we have T (s, 1/n) © Ts_cl(s.l/n) — I, Lemma A.7 implies
0 —5 €= {Yo(w+N), A € Ay}, (3.20)

which implies that ¢ 4 5
Finally, we take U := N;2, (B \ K] ,,), which is a set with measure 0. This concludes
the proof. O

We make next an important observation that Condition (3.16) holds automatically
in the case when the scaling actions T, . can be expressed through a single scaling
action independent of the location s. This is the case in particular for the usual scalar
multiplication actions (2.16) considered for example in (cf. Falconer, 2002).

Corollary 3.10. Assume the conditions of Theorem 3.8. If the scaling action does not
depend on location, i.e., T; o(sr) = Te(s,r), ¢ > 0, then Condition (3.16) always holds.

The proof is given in Section A.3. We conclude this section with several remarks.

Remark 3.11. The null set U in Theorem 3.8 cannot be dropped in general. While all
tangent fields are self-similar, not all of them are intrinsically stationary. Indeed, one can
consider the simple example X (¢) = [[t||[ Z, t € R¢, where Z is a fixed random variable
and H > 0. Consider the usual scalar multiplication action and observe that with s := 0,
and A =), ¢;0;, € Ay, for all » > 0, we have

X(s+r-A) =) aX(rt)=rT) eX(t:)=rTX(s+N).

That is, X is its own tangent field at s = 0 for all £ > 0. Note that X is not intrinsically
stationary if H ¢ IN.

Remark 3.12. Notice that Ay, C Ay, for all 0 < ky < ko. Therefore, all kq-order tangent
fields are also ks-order tangent fields. Specifically, if (3.2) holds with k£ = k4, then it also
holds with k,.

Remark 3.13. As in Falconer (2002), we focus here on random fields with continuous
paths. One can study the structure of generalized tangent fields for processes with
discontinuous paths and potentially extend the results in Falconer (2003) which focus
on the space of cadldag functions equipped with the Skorokhod .J;-topology. The key
challenge is coming up with a suitable topology on the path-space in question which
is separable and complete. Provided that this is the case, we believe that versions of
Theorems 3.4 and 3.8 will continue to hold.

Remark 3.14. In principle, in the definition of the tangent field (3.2) one could apply a
general scaling action on both the domain R¢ of the stochastic process as well as on its
range V. In this case, we anticipate that an analog of Theorem 3.4 will hold, where the
limits are scale-invariant processes similar to the ones studied in Biermé et al. (2007);
Didier et al. (2017). Here, for simplicity, we chose to apply a general scaling action only
on the range of the process and retain the usual rescaling by scalars in the domain R?.

4 Spectral theory for Hilbert space valued IRF,’s

In this section, we develop the general correlation theory for stationary and intrinsi-
cally stationary processes taking values in a separable Hilbert space V over C equipped
with the inner product (-, -). In the following section, we present a generalization of the
celebrated Bochner Theorem and then in Section 4.2, we extend the Matheron spectral
characterization to the class of V-valued intrinsic random functions. The applications of
these results to the characterization of Gaussian V-valued stationary and intrinsically
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stationary processes requires us to carefully consider both real and complex Hilbert
spaces (discussed in Section 4.3).

Throughout this paper, a random element X in V is said to have mean zero and finite
variance, together referred to as second order, if E[X] = 0 and E[|| X %] < oo, where, for
definiteness, all expectations here are defined in the Bochner sense (see Section S.2.1 in
Shen et al., 2020). A process is said to be second order if each element is second order.

Denote by T the collection of trace-class operators on V. That is, linear operators
T :V — V, with finite trace norm:

(oo}

1Tl = D (T T) 2es,¢5),

Jj=1

where {ej} is an arbitrary complete orthonormal system (CONS) on V, and where 7*
denotes the adjoint operator of 7. One can show that the trace norm does not depend
on the choice of the CONS and the space T equipped with the trace norm is a Banach
space (cf. Simon, 2015).

Recall that 7 is self-adjoint if 7 = 7*. Also T is positive definite (or just positive),
denoted 7 > 0, if T is self-adjoint and (f, 7 f) > 0, for all f € V. The class of positive
and trace-class operators will be denoted by T..

4.1 The Bochner Theorem

The aim of this subsection is to review the basic properties of second order covariance-
stationary processes on R¢ taking values in the separable Hilbert space V over C. We
start with the important notion of positive definiteness.

Definition 4.1. A collection of operators {K(t),t € R%} on the complex Hilbert space V

is said to be positive definite in the weak sense if forallc; € C, t; € RY, j=1,---,n, we
have
n n
Z Z ¢;¢; K(t; —tj) > 0 (operator positivity). (4.1)
Jj=1j'=1

The classical Bochner’s Theorem (cf. Bochner, 1948; Khintchine, 1934) which con-
nects the space of positive-definite functions with range in C and finite positive measures
has provided a fundamental tool for constructing useful models for stationary random
fields. Below we state an extension of that for the infinite-dimensional setting. To do so
we need the notion of integration with respect to a T -valued measure.

We say that p : B(R?) — T is a T -valued measure if ;1 is o-additive, where B(R¢)
denotes the o-field of Borel sets in R¢. Note that a fortiori ;() = 0 and 4 is finite in the
sense that 0 < u(B) < u(R%) € T, B € B(R?) as positive operators. Integration of a
C-valued measurable function with respect to such u can be defined along the line of
Lebesgue integration; see Section A.4.

Theorem 4.2. Let {K(t),t € R?} C T be a positive-definite set of trace-class operators in
the sense of Definition 4.1. If K is continuous at 0 in the trace norm, i.e., ||KC(t)—/K(0)|/ —
0, ast — 0, then there exists a unique finite T -valued measure yu such that

;c(t):/ " *u(dx), forallt € RY. 4.2)
R4

Conversely, for every finite T -valued measure p, Relation (4.2) yields a positive-definite
set of trace class operators.

We note that Theorem 4.2 or variations of it have been mentioned in the literature.
See, for instance, Kallianpur and Mandrekar (1971), Holmes (1979), Neeb (1998),
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Durand and Roueff (2020) and van Delft and Eichler (2020). In Section S.4.1 of Shen
et al. (2020), we provide a detailed proof that uses standard arguments familiar to the
readers in the statistics and probability community.

Both Neeb (1998) and van Delft and Eichler (2020) present Bochner’s Theorem in
terms of the following natural but stronger version of positivity.

Definition 4.3. A collection of operators {K(t),t € R?} on V is said to be completely
positive definite, or just positive definite, if

Z Z(fj,IC(tj —ty)fjr) >0, (4.3)
j=1j'=1

forall fj e V,t; e RY, j=1,--- ,nandn € N.

Definition 4.3 simply means that the matrices (}C(¢; — t;/))nx» With operator T-valued
entries are self-adjoint positive definite operators on the product Hilbert space V™.
For more mathematical insight into this condition, see abstract literature on Hilbert
C*-modules, e.g., Murphy (1997) and Pellonpaa and Ylinen (2011). Clearly (4.3) implies
(4.1). However, observe that for every finite T -valued measure p, Relation (4.2) defines
a completely positive definite kernel K(-). This entails the following curious result,
already noted in Durand and Roueff (2020).

Corollary 4.4. Let K : R? — T be continuous at 0 in || - ||.. The collection of operators
{K(t), t € R?} is positive definite in the sense of Definition 4.1 if and only if it is
completely positive definite in the sense of Definition 4.3.

Let now {X(t),t € R’} be a V-valued, second order random field. The cross covari-
ance operator for X is then well-defined as

Cx(s,t) := E[X(s) ® X(t)], s,t€RY,

and takes values in the space of trace-class operators T equipped with the trace norm
(see e.g., Lemma S.2.2 in Shen et al., 2020). The latter expectation is understood to be
defined in the sense of Bochner integral in the separable Banach space (T, || - ||s;), and
for f,g € V, the outer product operator is by definition (f ® g)h := (h, g) f. Observe that
Cx (t,t) is positive definite, and

Cx(s,t) = C%(t,s), forall s,t € R%.
The process X is said to be mean-square or L?-continuous if
E|X(s) — X(t)|> =+ 0as s —t, forall t € R%. (4.4)
It is easy to see (e.g., Section S.2.2 or Proposition S.2.3 in Shen et al., 2020) that X is

mean-square continuous if and only if ||Cx (s, 1) — Cx (¢,t)|lr — 0 as (s',¢') — (¢, 1).

Definition 4.5. A process X is said to be weakly or covariance-stationary if it is second
order and its cross covariance is shift invariant, i.e.,

Kx(h) :=Cx(s,s+h), forallheR?,

does not depend on s € RY. The function Kx(h), h € R¢, will be referred to as the
Stationary covariance function of X.

Observe that every stationary covariance function Kx is positive definite in the sense
of (4.3) (and hence (4.1)). Also, the L?-continuity of a stationary process is equivalent to
the continuity of its stationary covariance function at 0. Thus, the characterization in
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Theorem 4.2 readily holds for the stationary covariance of a stationary process that is
L2-continuous.

We conclude this section with a version of the classical Cramér stochastic repre-
sentation of stationary Hilbert-space-valued random fields. Recall that, for V = C, the
well-known integral representation (cf. Cramér, 1942) of a covariance stationary random
process X on R¢ states that

X(t) :/ e“Tl’g(dx), almost surely, ¢ e RY, (4.5)
Rd

where ¢ is a second-order random measure with orthogonal increments. To extend
this result to a general V, we first have to define integration with respect to a random
measure with orthogonal increments in that setting. This is done in Section A.4 of
Appendix. Here, we only give the main ideas.

Let I.2(Q2) be the L? space of all V-valued random elements 7 on the probability space
(Q, F,P) with E[||n]?] < oo, equipped with the inner product

(1, m2)a = E(n1, m2).

Definition 4.6. Let ;. be a T, -valued measure on B(RY). A second-order stochastic
process £ = {£(A), A € B(RY)} C 1.2(9) indexed by the Borel sets is said to be a V-valued
orthogonal random measure on R? with control measure y if the following conditions
hold:

(1) E[[[€(An)[IP] — 0 if p(An) = 0,

(i) n(AN B) = E[¢(A) ® €(B)), for all A, B € B(R?), where the expectation is in the
sense of Bochner on (T, || - |t)-

It is straightforward to see that (ii) implies for disjoint A and B, that {(AU B) =
&(A) + £(B), almost surely, so that ¢ is in fact an additive set-function. This, combined
with the continuity property (i), yields the o-additivity of £ (for more details, see Section
A4).

For a simple function f(t) = Y"1, ¢;I4,(t), with ¢; € C and pairwise disjoint 4;’s, we
naturally define Ze (f) = [pa J(&(dt) := 321", ¢,6(A,). Letting ]l (4) == [[1(A)]|ex be
the trace measure of i, we see that

E[|Ze(f Zlcz\ E|l€(4:)|* = /I(t)\zllulltr(dt)-

That is, the linear operator Z, is an isometry from the space of simple functions in
L?( ) into the Hilbert space I.?(€2). Thus, one can extend the definition of Z¢(f),
by continuity, to all f € L2(R, ||u|ls:). We have moreover that, for all f,g € L2(R%, ||u//¢:),

BIL(f) @ Tela)) = [ | F0ann)

where the latter integral is in the sense of Bochner (cf. Section A.4 of Appendix).
Theorem 4.7. Let X = {X(t), t € R%} be an L?-continuous, weakly stationary process
taking values in the separable Hilbert space V and having stationary covariance function
K. Then, (4.2) holds and there exists an a.s. unique orthogonal V-valued random measure
& with control measure p, such that (4.5) holds.

The proof of this result can be found in Section S.4.3 of Shen et al. (2020).
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4.2 Spectral theory for general IRF;

Gel’fand and Vilenkin (1964) provide an illuminating treatment of the spectral theory
of generalized stochastic processes, i.e., processes with paths in the space of generalized
functions. In this setting, the paths of the stochastic process have derivatives of all
orders and one can naturally study processes with stationary (1 + k)-th order derivatives.
One drawback of this treatment is that it is difficult to use generalized process models
in practice. Motivated by fundamental problems in spatial statistics, Matheron (1973)
developed the framework of intrinsic stationary functions, which allows one to study
classical random field models with stationary increments.

In a series of works, Matheron developed the theory of intrinsic random functions,
which has become the lingua franca of spatial statistics (see e.g. Chilés and Delfiner,
2012). Our goal here is to extend the Matheron theory to the functional setting, where
the underlying stochastic processes take values in a separable Hilbert space V. This is
not straightforward and new covariance asymmetry phenomena arise that reflect the
potential irreversibility of multivariate IRF’s (see Remark 5.21).

Following Matheron (1973), in this section we will focus on second order linear
processes Y = {Y(A), A € A}, viewed in the weak sense as stochastic processes indexed
by Aj. That is, YV is a random element in S(Ax, V) equipped with the product o-field
By, generated by all finite-dimensional cylinder sets. We emphasize that, in contrast to
Section 3, here we no longer require that Y has continuous paths. The (cross) covariance
operator of Y is defined as

CY()VM) = E[Y(/\) ® Y(M)L )‘nu € Ak

Denote by Y = {Y(t),t € R%} the representation of Y (cf. Section 2.1) in S(A;, V), i.e.,
Y (t) =Y (\:), so that

Y(N) = /Y/(t)A(dt), A€ Ay (4.6)

We say that Y is mean-square continuous if Y is mean-square continuous in the sense of
(4.4).

Definition 4.8. A second order process {Y(\),A € A} € S(Ag,V) is said to be an
intrinsic random function of order k (IRF;), k = —1,0,1,..., if
Cy(\p)=Cy(w+ \w+p), weRI N pue . (4.7)
Note that (4.7) is equivalent to

Cy(MA) =Cy (w4 \w+ ), weRLNE A, (4.8)

by Lemma A.10, and, in turn, to the weak stationarity of {Y (¢ + \),t € R} in ¢ for all
A € Aj. Indeed, if Y(¢ + A) is stationary in ¢ for all A then (4.8) holds, and if (4.7) holds
then Y (t + \) is stationary in ¢ for all .

Definition 4.9. A collection of trace-class operators {K(h),h € R} C T is said to be
conditionally positive definite of degree k, k = —1,0,1,..., ifforalln > 1,

Z Z ¢;¢; K(t; —tj/) > 0 (operator positivity) (4.9)

j=14/=1

forall ¢; € C,t; € R%,1 <i <, such that A(du) = 3= ¢;0¢, (du) € Ay.
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Relation (4.9) can be succinctly written as /C(\ * X) > 0, where

Mdu) == X(—du) = sza,tj (du),

and A % u denotes the usual convolution. More generally, with A = ) j cjo¢; and p =
Zj’ dj’(;sj/ S Ak;

IC()\ * ﬁ) = Z Z Cjale:(tj — Sj/). (4.10)
j/

J

Interestingly, since (w + ) * (w + p) = A * fi, for all w € R?, the map (\, p) — K(\ * i) is
automatically shift invariant. This motivates the following definition.

Definition 4.10. A collection of operators K : R — T is said to be a generalized
covariance of Y with degree k if

Cy(M\p)=K(\xp), forall\ ue Ag. (4.11)
Again, by Lemma A.10, (4.11) is equivalent to
Cy(MA) =K(AxX), forall A€ Ay

The following result describes the connections between the notions in Definitions 4.8-
4.10, and gives a spectral representation of a conditionally positive definite K. As a
terminology, a polynomial in T refers to a linear combination of d-dimensional monomials
with coefficients in T, where the degree is equal to the highest degree of the monomials
in the linear combination.

Theorem 4.11. Let k > —1 and the process Y = {Y(\),\ € Ay} € S(Ax, V) be second
order.

(i) If Y has a generalized covariance K of degree k, then Y is IRF;, and K must
be conditionally positive definite of degree k. Conversely, if Y is a mean-square
continuous IRFy, then it has a continuous generalized covariance of degree k.

(ii) A continuous function K : R — T is conditionally positive definite of degree k if
and only if it can be represented as

K(h :/ e — Ip(u)P(u"h)
re LA [ul[?2

x(du) + Q(h), (4.12)

where P(z) = Z?igl(ﬁx)j /3!, B is some arbitrary bounded neighborhood of 0, Q(h)
is a conditionally positive definite polynomial with degree no more than 2k + 2 and
X is a finite T -valued measure with no point mass at 0. The measure x in (4.12) is
unique and does not depend on the choice of the set B. The polynomial Q therein

is unique modulo an additive polynomial of degree 2k + 1.

The detailed proof of this result can be found in Section S.4.2 of Shen et al. (2020).
Note that the proof follows closely the general and elegant treatment of Sasvari (2009).

Remark 4.12. In the notation of Sasvari (2009), our situation corresponds to having a
single multiplicative function (character) v; = 1 and y; := 0 and k; := k£ + 1 and their
measure o is our (1 A ||ul|?**2)~1x(du). Observe also that Relation (4.3) in Theorem 4.2
of Sasvari (2009) appears to be missing the non-ignorable degree 2k + 2 polynomial
component in Q of (4.12). This omission can be attributed to the fact that the spectral
measure of a stationary process in the Bochner theorem could have an atom at {0}, while
o and x do not. See Section S.4.2 of Shen et al. (2020) for more details.
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The measure x and polynomial Q in (4.12) will be referred to as the spectral charac-
teristics of an IRF; with generalized covariance K. Note that the spectral characteristics
pair (x, Q) is unique modulo an additive polynomial of degree 2k + 1 in the component
Q. That is, the generalized covariance in (4.12) is unique up to an additive polynomial
of order 2k + 1. This implies that /C(\ 1) is uniquely determined for A\, u € Ay, where
K(v) := [K(h)v(dh), v € A. Notice that A« i € Agi11, for A\, u € Ay. Thus, in view of
(4.11), the covariance structure of an IRF; process is completely determined by the
linear measure-indexed T-valued function K(v), v € Agg41. By integrating (4.12) with
respect to v € Ag41, we obtain

v(u)
K(v) = /Rd Wx(dw +Q(v), v € Mgy, (4.13)

where V(u) = feﬂ“T””V(dx) is the Fourier transform of v. Since m = i, the cross
covariance operator Cy (A, ) of Y can be uniquely expressed as

- A(u)7i(u)
Cy (A pn) =K(A = —_——
VO = K0 = [ S
Now, consider the following counterpart to Definition 4.3.

Definition 4.13. A collection of trace-class operators {K(h),h € R%} C T is said to be
conditionally complete positive definite of degree k, k = —1,0,1, ..., if

x(du) + Q(A = ). (4.14)

SO 5 Ky * i) £30) = 0, (4.15)
j=1j'=1

forall f; e V,u; € Ay, j=1,--- ,nandn c IN.

Since (4.9) is the special case of (4.15) with n = 1, conditional complete positive
definiteness implies conditional positive definiteness. However, as seen from (4.14),
K(Axpm), A, u € Ay is a valid cross-covariance, and hence the operator function X in (4.12)
is conditionally complete positive definite. Thus, Theorem 4.11 implies the following
parallel of Corollary 4.4.

Corollary 4.14. If K : R* — T is continuous, then Definitions 4.9 and 4.13 are equiva-
lent.

We end this section with a stochastic representation result for continuous IRF;, which
parallels the Cramér representation in Theorem 4.7. The proof is given in Section S.4.4
in Shen et al. (2020)

Theorem 4.15. Let k > —1 and the process Y = {Y(\),A € A} in S(Ag, V) be mean-
square continuous. Then Y is IRF}, if and only if it can be uniquely represented as
OFFIN w)
Y(/\) = ’ Z)GJ W(O) . Zjl"'jd + /]Rd Wf(du) a.s. (416)
J1see50d

for all A € A, where

i J={1,---,Ja) : j1,---,ja=>0and j1 +--- + ja =k + 1},
(ii) ¢ is an a.s. unique random orthogonal measure ¢ on (RY, B(R?)) with control
measure x, where x is a finite T -valued measure with no point mass at 0, and
(iii) the Zj,...;, are uncorrelated random variables with values in V and are uncorrelated
with €.

Remark 4.16. Berschneider (2012) also obtains the stochastic representation of IRF
with the more abstract setting of locally compact Abelian domains. Our result here can
be considered as an extension to the case of V-valued processes connecting £(dz) with
the covariance operator functions in Theorem 4.11 explicitly.
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4.3 Real and complex IRF;’s: Covariance (ir)reversibility

The general treatment in the previous two subsections involves an abstract separable
Hilbert space V over the field of complex numbers C. In practice, however, one often
deals with Hilbert spaces of real-valued functions and it is useful to know how our results
specialize to this setting. Furthermore, the distribution of a zero-mean Gaussian process
taking values in a complex Hilbert space V cannot be directly characterized using their
covariance structure, alone. To this end one needs to consider both real and complex
Hilbert spaces.

Real and imaginary parts in a complex Hilbert space. In an abstract complex Hilbert
space V the notions of a real and imaginary part of an element z(€ V) are not well
defined unless one fixes a basis. Let £ := {¢;, j € IN} be a fixed CONS of V. Then one
can postulate that the CONS & is real and for each z =}, zje; € V, with coordinates
zj := (2, e;), we can define

R(z) = Re(z) := Z R(z;)e; and (z) = Se(z) == Z%(zj)ej, (4.17)
J J
as the real and imaginary parts of z, relative to the CONS £. (Should one change the
basis £ the notions of real and imaginary part may change.) Notice that Vg :={z € V :
3(z) = 0} is invariant to addition and multiplication by real scalars and it becomes a real
Hilbert space, with the inner product inherited from V. All elements of V that belong to
Vg will be referred to as real.

For z € V, we shall write z = £(z) +13(#) and naturally define the complex conjugate
z := R(z) — 1S8(z). The complex conjugate operation as well as the real and imaginary
part operators extend to V-valued random elements in a straightforward manner and we
shall say that x € V is real if x € Vg, i.e., if its imaginary part is zero.

The complex conjugate of a linear operator A : V — V is defined as: A(z) :=
A(z), = € V. This implies that A(z) = A(Z), the operator A is also linear and one
can define the real and imaginary parts of A in as: R(A) := (A + A)/2 and S(A) =
(A— A)/2i. Thus, A = R(A) + iS(A) and the usual operations with complex numbers
and vectors extend to the operator Banach algebra over the complex Hilbert space V.
Note that the real and imaginary parts of .4 can be equivalently defined in terms of the
real and imaginary parts of the coordinates of A4 in the fixed CONS £. We shall say that
an operator A is real if 4 = R(A).

Real IRF}’s. The above discussion shows how one can specialize and interpret the
results in Sections 4.1 and 4.2 for the case of real Hilbert spaces V. Indeed, let Ax(R)
be the set of all real A € Ay. It is easy to see that Ay = Ax(R) + 1Ak (R).

Suppose now that Y is a Vr-valued IRF;. That is, Definition 4.8 holds with Ay
replaced by Ax(R). Then, by linearity, Y extends uniquely to a V-valued IRF}, as follows

Y(A) == Y (RO)) + 1Y (S(N), A € Ay, (4.18)

where in fact Y/(R(\)) and Y (3(A)) are real (belong to V). This leads us to the following
Definition 4.17. A V-valued IRF; Y is said to be real if Y (\) is real for all A € Ax(R).

Thus, there is a one-to-one correspondence between the real IRF;’s in V and the
Vg-valued IRF}’s as processes indexed by Ax(R).

Proposition 4.18. Let Y be a mean-square continuous IRF; taking values in V and
having spectral characteristics (x, Q).

(i) Y is real if and only if in Relation (4.16) the vectors (1'1)’“+1Zj1...jd are real and
the orthogonal measure { is Hermitian, i.e., {(—A) = {(A), almost surely, for all
Ae B(IRd \ {0}).
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(ii) IfY is real, then Q has real (operator) coefficients (modulo polynomials of degree
up to 2k + 1) and the spectral measure y is Hermitian, i.e., x(—A) = x(A), for all
A€ B(R4\ {0}).

(iii) Conversely, if x is Hermitian and Q real, then there is a real IRFy Y with spectral
characteristics (x, Q). Let nowY and Y’ be two real IRF;, with the same spectral
characteristics (x, Q) and such that E[Y (\) @ Y'(u)] = E[Y'(N) @ Y (u)], A, 1 € Ag.
Then, for any a,b € R, with a® + b2 = 1, the IRF}, defined as Y (\) = aY (A) + ibY”()\)
has the same spectral characteristics asY and Y’

The proof is given in Section A.4 of the Appendix.

Covariance (ir)reversibility. Next, we comment on an important covariance irre-
versibility phenomenon, which arises in the case of vector valued processes. It extends
the notion of time reversibility for vector time series.

Definition 4.19. We shall say that an IRF;, Y with generalized operator covariance K(-)
is covariance-symmetric or -reversible if

K@) =K((-1)-v), forallve Agjy1. (4.19)

Observe that the symmetry of the generalized covariance is equivalent to the fact
that the IRF;, processes {Y((—1) - A)} and {Y(\)} have the same covariance structure.
Indeed, recall that

E[Y(N) @ Y ()] = Cy (A1) = KA+ i), Ap € Ay
and observe that (—1) - A% i = ((=1) - A) * ((—=1) - u). Thus, the IRF), process Y () :=
Y ((—1) - A) has covariance £((—1) - v).

In the simple case, where Y takes real scalar values, all IRF;’s are automatically
covariance-symmetric. This is perhaps why symmetry is often taken for granted. In
the multivariate and especially function-valued case, however, covariance-symmetry is
an exception rather than a rule. Naturally, in view of (4.13) and the uniqueness of the
spectral measure, (4.19) holds if and only if y(—A) = x(A), for all A € B(R?\ {0}). This
simple observation and Proposition 4.18 yield the following fact (see also Theorem 5.1 in
Didier and Pipiras, 2011).

Proposition 4.20. A real mean-square continuous IRF} Y is covariance symmetric, if
and only if its spectral measure Y is real.

We end this section with a comment on the use of the results from Sections 4.1 and
4.2 in the context of Gaussian processes. Recall that a V-valued random element Y
is said to be Gaussian, if (Y, f) is a complex Gaussian variable, for each f € V. This
means that the joint distribution of (R((Y, f)), S((Y, f))) is bivariate normal, for all f € V.

Equivalently, Y is Gaussian in V if and only if Y := (R(Y"), $(Y)) is a Gaussian element
in the real Hilbert space V% := Vi x Vg.

Remark 4.21 (Characterization of Gaussian IRFy’s). Part (iii) of Proposition 4.18 is
a manifestation of the fact that the covariance structure alone does not determine
the distribution of zero-mean Gaussian processes taking values in complex Hilbert
spaces (see also Example S.5.1 in Shen et al., 2020). To determine the distribution of
a zero-mean Gaussian IRF; Y = {Y(A), A € A;}, one needs to know both the cross-
covariance and pseudo cross-covariance operators: Cy (A, u) = E[Y(\) ® Y(u)] and
Cyv(\, p) = E[Y (X)) ® Y(u)] (see e.g., Section S.5.1 and Corollary S.5.3 in Shen et al.,
2020).

Equivalently, the distribution of a V-valued Gaussian IRF; is completely determined
by the real IRF;, Y () := (R(Y)(-),S(Y)(-)) in the product space V2. Since the law of the
real Gaussian IRFy Y is determined by its cross-covariance, the results of Sections 4.1
and 4.2 provide a complete characterization of the V-valued Gaussian IRF’s.

EJP 27 (2022), paper 34. https://www.imstat.org/ejp
Page 22/56


https://doi.org/10.1214/22-EJP754
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Tangent fields, intrinsic stationarity, and self similarity

5 Second-order covariance self-similar IRF,’s

In view of Theorems 3.4 and 3.8, essentially all tangent fields are self-similar IRFy.
This motivates a more in-depth study of self-similar IRF’s. In this section, we focus
on second order covariance self-similar IRF;’s with respect to linear operator-scaling
actions. We establish their covariance structure and spectral representation. Section
5.1 addresses the general case, Section 5.2 discusses examples and related work, while
Section 5.3 deals with the scalar scaling action, where the generalized covariance can
be written in closed form.

5.1 Linear operator scaling

Let H :V — V be a bounded linear operator on the Hilbert space V. Consider the

operator scaling actions 7, := c¢’*, ¢ > 0, where ¢’ is interpreted as exp{log(c)H} and as
usual,
oo
Hﬂ
H . 7
M=) - (5.1)
n=0

The latter series converges in operator norm and ||e*||,, < elllor. We have moreover
that if the bounded operators #; and H» commute, i.e., H1Hs = HaoH1, then 1?2 =
etttz = ¢H2¢M1 This readily implies that ¢’ has a bounded inverse (e?)™1 = e~ 7.
Consequently, ¢’*, ¢ > 0 is a strongly (operator) continuous and invertible group action
onV,ie., citelt = (c1e2)™, c1,¢2 > 0. In fact, using the power-series representation (5.1),

one can readily show that ¢ — ¢t is continuously Fréchet differentiable with derivative
M1, e,
1
HE((c+h)H —My My S0, ash o, (5.2)
op

where here and below H — a, a € R is interpreted as H — al, so that ¢~ = ¢~ 1¢*.

As in Definition 3.2, we consider the following notion of covariance operator self-
similarity.
Definition 5.1. Fix an arbitrary bounded linear operator H on V. A second order IRFj,
Y is said to be covariance H-self-similar, if {Y (c- \), A € A;} and {c"Y (\), A € A} have
the same operator cross-covariance function for all ¢ > 0.

Remark 5.2. If the IRFj, process Y is real and Gaussian, then Y is covariance H-self-
similar if and only if it is H-self-similar in the following stronger sense:
fdd  y
{Y(c-A), xe Ap} = {'Y(N), A€ A}, forallc> 0. (5.3)
We emphasize that H in Definition 5.1 and (5.3) is an arbitrary bounded linear
operator and we do not require that ¢ — ¢’ be a scaling action on V in the sense of

Definition 2.7 (see also Remark 2.9). If 7. := ¢ is a scaling action, however, then (5.3)
recovers the notion of self-similarity in Definition 3.2.

Let now Y be a second order, mean-square continuous IRF; with operator auto-
covariance K and spectral characteristics (x, Q). By Theorem 4.15, we have the decom-
position

Y (A) = Y0,0)(A) + Y(y,00(A), almost surely, (5.4)

for all A € Ay, where {Y(g,0)(\)} and {Y(,,0)(A)} are orthogonal mean-square continuous
IRF;’s with spectral characteristics (0, Q) and (x, 0), respectively. This decomposition is
second order unique. Therefore, it follows that Y is covariance H-self-similar if and only
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if both the components Y o) and Y{, o) are covariance H-self-similar. More precisely,
we have the following general characterization of covariance H-self-similar IRF;’s. For
convenience, write
X (dz)
dr) = ———r—. 5.5

Xk (dx) LA [[z]]2*+2 (5.5)
Theorem 5.3. Let Y be an L?-continuous IRF;, with spectral characteristics (x, Q). Let
also ‘H be a bounded linear operator.

(i) We have thatY is covariance H-self-similar if and only if for all ¢ > 0 and A\, u € Ay,
u(dz) = ¢ Mxp(de/c)e™™  and QA i) = FTUHOA )T (5.6)

where x;, is as in (5.5).

Suppose henceforth that (5.6) holds and consider the polar coordinates (r,0) :=
(]l 2/l in RY\ {0},

(ii) There exists a finite T -valued measure ¢ on the unit sphere $ = {||z|| = 1} such
that

k(D) :/OOO r_H(/Slp(r(‘))U(dH))r_H*%, (5.7)

for all Borel sets D € B(R®\ {0}) that are bounded away from 0. If (5.7) holds, we
simply write

e dr

xk(drdd) = r~"a(d)r™ (5.8)

r

and refer to (5.8) as a disintegration formula for ;.

(iii) The measure o in (5.8) is uniquely determined by the measure ;. and it does not
depend on the possibly non-unique operator H in (5.6).

(iv) The component Y(, oy of Y admits the Cramér-type stochastic integral representa-
tion

Yiy,0)(A) :/0 /SX(TG)W(dr, df), almost surely, (5.9)

A € Ay, where W (dr, df) is an orthogonal V-valued random measure on (0,c0) x S,
such that

E[W (dr, df) @ W (dr,d)] = r~ /2 g (de)r—H +1/2) gy, (5.10)

The proof of this result is deferred to Section A.5, below.

Remark 5.4 (The support of an H-self-similar IRFj is H-invariant). The self-similarity
exponent operator H can in principle be arbitrary outside the support of the IRF; process
Y. The support of Y, denoted supp(Y), is the smallest closed linear subspace of V, which
contains all Y(\)’s almost surely. One can show that H(supp(Y)) is a dense subset of
supp(Y’). This allows one to essentially restrict the operator H to supp(Y’) (see Section
S.6 in Shen et al., 2020, for more details).

Remark 5.5. If Y is H-self-similar, so are its components Y(X,o) and Y(07Q) in (5.4). While
this decomposition is unique in law, the operator H need not be unique. See for example
Didier et al. (2017) and Remark 5.14 below. For example, the polynomial component
Y(0,0) is always (k + 1) - I-self-similar. In general, however, we cannot conclude that
H = (k+ 1) -1, where I is the identity. The non-uniqueness of the operator self-similarity
exponent in the general setting of V-valued IRFj’s is an interesting problem of future
research.
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For simplicity, in the rest of this section we suppose that Y 4 Y(y,0) has a trivial
polynomial component Yy o) = 0. We will examine two classes of operators # which can
serve as self-similarity exponents of Y. We begin with a simple criterion.

Corollary 5.6. A finite T, -valued measure Y is the spectral measure of an L?-continuous,
covariance H-self-similar IRF}, if and only if for some finite T, -valued measure o on S,
we have

1 x
Xk(dz) = ——— = x(dz) = r~Ho(df)r= " rtdr (5.11)
LA ]|
and
o0 *
/ =1 A r?*72) trace (T_HO’(S)T_H ) dr < oo, (5.12)
0

where (r,0) := (||z||,x/||z||) are the polar coordinates in R? \ {0}.

Proof. ‘only if’: Let Y be a continuous covariance #-self-similar IRF;. Then, by Theorem
5.3, xi satisfies the disintegration formula in (5.11). We have moreover that

x(RY) = /0 rTH A PR ($)r M dr € T,

Since x(RY) is self-adjoint and positive definite,
proves (5.12).

‘if’: Conversely, suppose that o is a finite T, -valued measure on $ such that (5.12)
holds. Then, the fact that for all B € B($) and r > 0, r Ho(B)r—"* <r "o (S)r~"" as
positive operators in T, implies that

X(RY) [l = trace (x(R?)) < oo, which

x(D) = / A 2R / 1p(r@)o(do)r= dr, D e B(R?\ {0})
0 $

is well-defined in the sense of Bochner. The so-defined x is a finite T -valued Borel

measure on R\ {0}, which can be taken as the spectral measure of an IRF; process

Y = Y(,,0) with trivial polynomial component. Clearly, x defined as in (5.11) satisfies

the scaling property (5.6), which entails the covariance H-self-similarity of Y. O

e Normal diagonalizable exponents. Corollary 5.6 allows us to provide a complete
characterization of the valid pairs (#, o) of operator exponents and spectral measures in
the important case where H is normal and diagonalizable operator. Namely, suppose H
is a normal operator with

oo
H=> Ne;j@ej, (5.13)
j=1
where \; € C and where {e;} is a CONS of Range(#) = Range(#*). The convergence of
the last series is understood in the weak operator topology.

Theorem 5.7. Let H be a normal diagonalizable operator as in (5.13) and let ¢ be a
finite T —valued measure on S. The measure x(drdf) = (1 A r?*+2)r=Hg(dO)r—H r—1dr
is the spectral measure of an H-self-similar IRF},, if and only if

0 <(A;) <k+1, whenever (c(S)ej,e;) >0 (5.14)
and
> ! - (5(8)e;, e;) < 0. (5.15)
~\k+1-R0;) RO, A
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Proof. First, we prove the ‘if’ part. Let o0 € T, satisfy (5.14) and define (in polar
coordinates) x(drdf) = (1 A r2*+2)r—Hg(df)r—" r—1dr. By the simple fact

trace (T_HU(S)T_H*) = ZT_Q%(/\j)<U(S)€j7 €j),
J
we obtain

/ (1 A 7r?FF2) trace (TJHU(S)TfH*) dr
0

-4

<U(S)ej,ej>/o (1/\7"2k+2)7“_2m()‘-7’)_1dr (5.16)

1 1 1
zj: (k TR0y m(xj)> (o(8)ej, e5) < 00

where the integration is justified by (5.14) and (5.15). By Corollary 5.6, x is the spectral
measure of a covariance H-self-similar IRFy.

Conversely, suppose Y is the spectral measure of a covariance H-self-similar IRFy.
In order for the integral in (5.12) to be finite, the calculations in (5.16) show that both
(5.14) and (5.15) must hold. O

|

e General bounded operator exponents. Suppose now that H is a general bounded
operator, which need not be normal nor diagonalizable. In this case, we cannot provide
a complete characterization of the covariance H-self-similar IRF}’s, but still furnish a
general sufficient condition using Riesz functional calculus (see e.g., Ch. VII.4 in Conway,
2007). Recall that the spectrum sp(#) of a bounded operator consists of all z € C such
that (H — z - I) has no bounded inverse. The spectrum sp(#) is always a non-empty
compact subset of C and sp(H*) = {Z : z € sp(H)} consists of the complex conjugates
of the elements in the spectrum of K. If I is a rectifiable curve containing sp(#) in its
interior then for every holomorphic function f on an open set containing the curve I'
along with its interior, we define

R IC)

T omi Jp - H

f(H): dz, (5.17)

where the latter integral over I' is considered in the positive direction and 1/(z — H) :=
(z-1—H)~! is a bounded operator since z € I' C C \ sp(H). Since f(z) = exp{—log(r)z}
is analytic for all » > 0, we can use the above Riesz functional calculus tool to study the
operator r—*.

Proposition 5.8. Let H be a bounded operator and let R(sp(*)) denote the set of real
parts of its spectrum. If

R(sp(H)) C (0,k+ 1), (5.18)
for some k > 0, k € Z, then for all finite T, -valued measures ¢ on 5, we have that
x(drdd) := (1 A r?*2)r=Ho(do)r= rdr,
is the spectral measure of a covariance H-self-similar IRF},.

Proof. We will show first that, for some ¢ > 0 and Cy > 0,

I lap < Cre - (1= 40001 (r) + 7 L1 ) (1) (5.19)
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Recall that sp(H) is a compact subset of C. This fact and the assumption (5.18) on
the spectrum of A implies that R(sp(H)) C (e,k + 1 — ¢), for some € > 0. Since sp(H)
is compact, one can take a closed curve I' containing sp(#) in its interior, such that
€ <R(z) <k+1—eforall z € I'. Note that z — [|(z- I — H) ! is a continuous function
of zforall z €T C C\ sp(H). Thus, since I' is a compact set, we have that

max [(z - T=H) Hlop = Cn(T') < o0.
Now, by applying (5.17) to f(z) := r~ % = e~ 1°8("* for all 7 > 0, we obtain

Ir ”muq /|”% Y1z 1= H) " opld

() (5.20)
< S ten(D)plem 0,
where Len(T) = [} |dz| is the length of T
Observe now that |e~1°8("#| = »=R(2) and recall that ¢ < R(z) < k+1—¢, forall z € T.

This implies that
e 1082 < DRy (1) + 1 o (),

which in view of (5.20) yields (5.19).

Now, by Corollary 5.6, the measure yx in (5.11) is the spectral measure of a covariance
‘H-self-similar IRF, provided (5.12) holds. This, however, readily follows from (5.19).
Indeed, by (A.19), the integral in (5.12) is bounded above by

1 oo
ndwmér%ﬂWM&fwwwdemz 12, (5.21)

where we used the fact that ||r=%||,, = ||r=" ||op. By (5.19), the integrals in (5.21) are
finite and the proof is complete. O

Remark 5.9. The sufficient condition in (5.18) may appear restrictive. In particular, it
implies that # has a bounded inverse (since 0 ¢ sp(#)). This condition is not all that
restrictive when the Hilbert space V is finite-dimensional and our sufficient conditions
are precisely the same as the existing literature in the special case k = 0 (see e.g., Didier
and Pipiras, 2011; Didier et al., 2018).

5.2 Related work and examples

Here, we first specialize the results from the previous section and discuss existing
related work when V is finite-dimensional. Then, we consider a class of stationary
infinite-dimensional processes, which admit higher-order tangent fields under operator
scaling.

Example 5.10 (IRF, or operator fractional Brownian motions). When k£ = 0,d = 1, and
V = R™, the IRF; processes can be identified with the well-studied class of vector-
valued stationary increment processes. The seminal paper of the Didier and Pipiras
(2011) established the spectral representation and stochastic integral representations
for essentially all Gaussian operator self-similar processes with stationary increments
taking values in R™. We demonstrate next how these processes, known as operator
fractional Brownian motions (OFBM), can be recovered from our Theorem 5.3. In this

setting the operator # is a real m x m matrix with eigenvalues \; € C, ¢ =1,--- ,m such
that

0<RON) <1, (5.22)
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(see e.g., (1.4) in Didier and Pipiras, 2011). Observe that the last condition coincides
with (5.18) of Proposition 5.8 for k£ = 0.
Let {Y(A\)} be a zero-mean Gaussian #-self-similar IRFy. Then, if one considers

Ae(du) = 6,(du) — 8o(du), t € R,

the process B(t) := Y ()\¢), t € R has stationary increments. The #-self-similarity of
{B(t)} follows readily from the self-similarity of {Y'(A)} and the fact that c¢- Ay = A\, ¢ >
0, t € R. Conversely, every #-self-similar stationary increment process {B(t), t € R}
can be taken as a representer of an H-self-similar IRF, process.

Since Ay(z) = ¢! — 1 and § = {—1,1}, Relation (5.9) yields

Bt)=Y(\) = /OOO /{_1 1}(61"”9 — )W (dr,db)
_ /Oo(eizt )W (dx, {1}) + /Oo(e*m C)W(dz, {-1}).  (5.23)
0 0

Now, follovzing the notatign in Theorem 3.1 of Didier and Pipiras (2011), let E(dm) =
Bi(dr) + iBy(dx), where B;, i = 1,2 are independent zero-mean Gaussian R"-valued
measures such that By (dx) = By(—dx), Ba(dx) = —Bs(—dz), and

E[B(dx)B(dz) | = E{E(dm)é(dw)w = Indz. (5.24)
Observe that, by (5.10),
{W(da:, {£1}), dz € (O,oo)} 4 {a:f(HH/Z)AﬂE(:I:da:), dzr € (O,oo)},

where Ay A%, = o({£1}). Therefore, Relation (5.23) yields

oy £ [ a0 ) B |

oo iz

This is precisely the representation established in Theorem 3.1 of Didier and Pipiras
(2011), wherein A_; = A4, is the complex conjugate of A; since they consider real-valued
processes. Indeed, the last stochastic integral is real-valued if and only if the integrand
fi(x) is a Hermitian function of z, i.e., fi(—z) = f;(z). This is the case, if and only if
A1 = Z71 .

Remark 5.11. Note that the condition (5.22) on the eigenvalues of the matrix H does
not imply in general that 7, := c¢*, ¢ > 0 are scaling actions in the Euclidean norm of
V = R™. This is because the monotonicity of the function ¢ — ||c*|| may be violated
except when the matrix H is normal (i.e., diagonalizable in an orthonormal basis). In
particular, Lemma A.1 is not applicable. Nevertheless, as shown in (Lemma 6.1.5 in
Meerschaert and Scheffler, 2001), there is a suitable norm in V, with respect to which
the latter are monotone increasing and in this new (equivalent norm) {cH, ¢>0}isa
scaling action in the sense of Definition 2.7. See also Jurek (1984) for the case where V
is a Banach space.

Remark 5.12. By Proposition 5.8 (with £ = 0), Condition (5.22) implies that the stochas-
tic integrals in (5.23) are well-defined.

Example 5.13 (Operator fractional Brownian fields). Stationary increment vector-valued
random fields (IRF; with k£ = 0) where d > 2 have been actively studied by many authors
(see e.g., Biermé et al., 2007; Li and Xiao, 2011; Baek et al., 2014; Didier et al., 2018,
among others.) In the latter references, self-similarity is considered under operator
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rescaling of both the range and the domain of the process. Here, we consider only scalar
rescaling of the domain. In this setting, in the special case of processes taking values in
R™ and k£ = 0, Theorem 5.3 recovers Proposition 3.1 of Didier et al. (2018).

Interestingly, using Fréchet differentiability in Theorem 5.3, we extend the disin-
tegration formula in Relation (3.10) of Didier et al. (2018) to the case of processes
taking values in a separable Hilbert space as well as to the general case of intrinsic
random functions of order k. We anticipate that a version of our Theorem 5.3 holds
under operator scaling of both the range and the domain of Y.

Remark 5.14 (The non-uniqueness of the operator exponent H). Suppose that Y is an
operator H-self-similar zero-mean Gaussian continuous IRF; taking values in the real
Hilbert space Vi (recall Section 4.3). Then, the distribution of Y is determined by its
covariance structure, i.e., by the unique pair of its spectral characteristics (x, Q) or
equivalently (o, Q). The operator exponent H, however, is not necessarily unique even
when H is restricted to the support of the process Y. For the notion of a support of
Y and its relation to the operator exponent #, see Section S.6 in Shen et al. (2020).
To gain some intuition, suppose that for an operator A on V := supp(Y'), we have that

{cAY (AN} £ {Y()\)}, for all ¢ > 0. If H and A commute, then ¢H T4 = ¢*eA| ¢ > 0 and
hence Y is also (# + A)-self-similar.

As shown in Didier et al. (2017) such non-uniqueness can arise even in the finite-
dimensional case with £ = 0, where a wealth of interesting phenomena emerge. Specif-
ically, Theorem 2.4 therein characterizes all possible operator exponents and shows
that one can always choose a commuting exponent Hy such that HyA = AH,. In their
terminology, the operator A belongs to the tangent space of the group of symmetries
of the process. Notice that A can indeed be viewed as a tangent since it is the Fréchet
derivative of f(c) = ¢* at ¢ = 1.

Understanding the non-uniqueness of the operator self-similarity exponent in the
general infinite-dimensional case is a challenging problem. We anticipate that the
extension of the important characterization results of Didier et al. (2017) to the infinite-
dimensional case is possible but considerably beyond the scope of this paper.

We end this section with an example of stationary Gaussian V-valued processes,
which admit a large class of tangent fields.

Example 5.15 (Higher-order tangent fields in infinite dimensions). In this example, we
shall assume that Vp is a real Hilbert space and through the method of complexification
define V = VR + 1VR, with the natural inclusion Vg C V.

Consider polar coordinates in R?\ {0}, where u = ||z||, 6 := 2/||z|, are the radial and
angular components of z € R%\ {0} and let x(df) be a finite, real, T -valued measure on
the unit sphere $ = {# € R? : ||0|| = 1}. Define the real, o-finite T -valued measure

v(dx) = v(du,df) = dup(df), (u,0) € (0,00) x S.

Let Wr = {Wr(A), A € B(Rd \ {0})} and Wy = {Wr(A), A € B(R?\ {0})} be two
independent, real (i.e., Vr-valued) orthogonal Gaussian measures with the same control
measure 2~ v (in the sense of Definition 4.6). Construct

W(A) = Wr(A) + iWy(A). (5.25)

It is straightforward to see that W = {W(A)} is an orthogonal Gaussian V-valued
random measure with control measure v, i.e., for all bounded Borel A, B € B(R¢\ {0}),
the random vectors W (A) and W (B) are such that

EW(A) @ W(B) =v(ANB) = /OOC /S 1anp (ud)dup(do). (5.26)
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Note, moreover, that W is also independently scattered, i.e., W(A4;), i = 1,--+ ,n are
independent for all disjoint bounded Borel sets A; C R?\ {0}, i = 1,--- ,n, which is not
necessarily true for all orthogonal Gaussian random measures taking values in a complex
Hilbert space.

By analogy with the scalar C-valued case the Gaussian random measure W in (5.25)
will be referred to as standard. Since its real and imaginary components are iid, the
distribution of the process W = {W(A)} is completely determined by its cross-covariance
operators in (5.26). Moreover, W has circular symmetry and self-similarity properties:

(W (du, d0)} "L (W (du,d0)} and {r'/2W(du,dd)} "2 {W(d(r - u),do)},  (5.27)
forall p € R and r > 0.
Let H be a bounded linear operator on V such that

R(sp(H)) C (0,k + 1), (5.28)

for some k > 0, k € Z. Suppose also that A(#), 6 € §$ is a collection of bounded linear
operators such that 6 — A(#) is Borel measurable in § and such that

/S A2, | 1lx (d6) < oo, (5.29)

where ||u]|t» denoted the (finite) trace measure ||u||t:(A) := ||u(A)]]tr-
Proposition 5.16. Suppose that (5.28) and (5.29) hold for some k > 0, k € Z.

(i) For all s € RY, the stochastic integral

X(s):= / / Fo(u, )W (du, df), where f(u,0) = ™™ (1 A w)F+lu=(HH1/2) 4(9)
0 3
(5.30)

exists and defines a stationary V—valued Gaussian random field.

(ii) The process X = {X(s), s € R?} has a version with y-Hélder continuous paths for
ally € (0,1 A€) and € > 0 such that R(sp(H)) C (e, k + 1) (recall (5.28)).

(iii) The continuous-path version of the process { X (s)} has a k-th order tangent field at
each (any) sg. More precisely,

{T*HX(SO FroA), Ae Ak} LY ={Y(\), A€ A}, asrlo, (5.31)
where the tangent process is an H-self-similar IRF;, given by

YA = [ Aub)yu " 2 A0)W (du, db).
Rd

The proof of this result is given in Section A.6, below.

Remark 5.17. Notice that when V is infinite-dimensional in (5.30) one cannot consider
Gaussian measures W with the control measure equal to the Lebesgue measure times
the identity operator I,,, as in (5.24). Indeed, for W(A) to be a bona fide random element
in V the control measure of W must take values in T . This is the key reason why we
consider control measures of the type duu(df). In the finite-dimensional case, one can
obtain more familiar, but ultimately equivalent stochastic integral representations, in
terms of Gaussian C™-valued Gaussian random measures with the Lebesgue control
measure times the identity by considering E[Wy, (dr, d8) @ Wiey (dr, df)] = vgr®=1do x 1,,,,
where vy := 7%2/T(1 4 d/2) is the volume of the unit sphere in R%. In this case, the
stochastic integral in (5.30) can be equivalently written in Cartesian coordinates as
follows:

_ ST _
X =g [ A el ol O Al ol Wi (da). s € B
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5.3 Scalar actions

In this section, we characterize the spectral measure of covariance self-similar IRF}’s
with respect to the usual scalar scaling action. In this special but important case we
obtain a more complete picture of the H-self-similar IRF}’s, where now H is a scalar
exponent.

Proposition 5.18. Let Y be a non-constant continuous IRFy, k > 0 with operator auto-
covariance function K and spectral characteristics (x, Q). IfY is covariance self-similar
with exponent H, then H € (0, % + 1] and we have the following dichotomy:

(i) If H=k+1, then x =0 and if0 < H < k+ 1, then Q is trivial, i.e., Q(v) = 0, for all
Ve A2k+1.

(ii) In the case 0 < H < k + 1, the measure xy, in (5.5) satisfies the scaling property in
(5.6) and consequently, the disintegration formula in (5.8) reads:

xk(drdd) = r 2" Ydra(dl), (r,0) € (0,00) x S, (5.32)

for some finite T -valued measure o on S.

(iii) Conversely, for every 0 < H < k+ 1 and any finite T, -valued measure o on 3, there
exists a covariance H-self-similar IRF), with spectral measure x such that (5.32)
holds, which can be written as in (5.9).

The proof is given in Section A.7, below.
In view of (4.13) and (5.32), one can obtain explicit formulae for the generalized
covariance K of all covariance H-self-similar IRF;’s. This is done next.

Theorem 5.19. Let K(-) be the generalized covariance of a covariance self-similar
IRFy, k > 0 with exponent H € (0,k + 1). Then, with ¢ as in (5.32), we have:

(i) If2H ¢ {1,...,k} is non-integer, then for all v € Aok,
Kw)=I(H) [ [(6.)P" (0)o(d8) + 1] (H) / (6,97 ()o(dh),  (5.33)
§d—1 gd—1

where (0,t) = 0Tt denotes the Euclidean inner product, v<#> := sign(z)|z|¥, and
f()(v) == [ f(t)v(dt). Here the real functions I(H) and J(H) are such that

o, 2 (ir)7\ dr
[(H) +iJ(H) ;:/0 G | )rﬂm. (5.34)
§=0
(ii)) If2H € {1,...,k} is integer, then for 2H even:
-1 H+1 ) )
k)= [, 1002 (S toxl6. ] + 1 (Esign(s. 1) | () (ab)
and for 2H odd:
(_1)H+1/2

k)= [ [0 (1) + s g gsien0. ) og (0.9)]) | ) (ao).

The proof of this result is given in Section A.7, below.

Remark 5.20. Gel’fand and Vilenkin (1964) provide spectral theory for generalized
random fields taking values in the dual of the Schwartz space on R? with homogeneous
(1 + k)th-order increments (denoted as G-IRF; here). Dobrushin (1979) then studied
the self-similar G-IRF; and obtained results similar to Proposition 5.18 where the self-
similarity parameter H can take any value in (—oco, k + 1]. The G-IRF}, class of processes
is more general than the IRF}’s studied by Matheron (1973) and they do not always have
a representation on R?. Specifically, it can be shown that a Gaussian self-similar G-IRF},
has a representation as in (4.6) on R only if H > 0 (see Shen, 2019).
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Remark 5.21 (On symmetry and covariance (ir)reversibility). Observe that for ¢ in
(5.33), one can write 0 = o5 + 0,, where o4(A) := (0(A) + 0(—A))/2 and 0,(A) :=
(c(A) —o(—A))/2, are the symmetric and anti-symmetric components of o. Thus,

/ (0,25 ()0 (dt) = / (6, )2 (v)au(db) = 0,
Sdfl

gd—1
and (5.33) can be equivalently written as:

Kw) = 1) [ 100,27 (v)os(d6) + 1T (H) / 0,)<27> (W)ou(df).  (5.35)
gd—1 gd—1

This shows that unless o, = 0, we have that K(v) # K(—v), for some v € Ayi11. Recall

that by —v we understand ((—1) - v)(dz) := v(—dz).

Recall Definition 4.19; Y is covariance reversible, i.e., {Y(—\)} and {Y(\)} have the
same covariance structure, if and only if K(v) = K(—v),Vv € Agi4+1 or equivalently if
and only if o, = 0 (see also Proposition 4.20 above as well as Theorem 5.1 in Didier and
Pipiras, 2011, for a related result).

Remark 5.22 (Real H-self-similar IRF;’s). Recall that V = VR + 1VR (cf Section 4.3).
Thus for an H-self-similar IRF, Y, we have

Y(A) = RY (A) +iSY(N),

where the real and imaginary parts RY and SY are real, i.e., Vr-valued. Thus, in view
of (5.35), one can see that Y is real-valued (i.e., Y = 0) if and only if o, is real and o,
imaginary, i.e., if o is Hermitian, ¢(A) = (—A) for all A € B($). Observe that Y need
not be covariance-reversible for it to be real (see Section 4.3.)

Since the covariance structure characterizes completely the zero-mean Gaussian
processes taking values in real Hilbert spaces, Theorem 5.19 with Hermitian o provides
a complete characterization of all H-self-similar V-valued IRF}’s.

Remark 5.23 (n-th order fractional Brownian motion). Perrin et al. (2001) have studied
the so-called n-th order fractional Brownian motion defined (in Remark 2 therein) as

-1

Wy L [T 1 i N (itw)”
B =g | (e P L]

withn — 1 < H <n, n € N, where W (dw) is a zero mean complex Gaussian measure on
R with the Lebesgue control measure and such that W(—dw) = W (dw). Notice, however,
that the above integral representation is well defined only if H € (n — 1,n). While one
can always put n := [H ]|, the integer values of H have to be dealt with separately. Using
our abstract approach, we can handle all values of H € (0,k + 1), k:=n — 1, in a unified
manner.
Indeed, observe that with k = n — 1, for any A € A, we have

1 o0
% —0o0

2i / /X(uﬁ)u_(H“/Q)e_w%(HH/Z)W(duv de) (5.36)
vy 0 S

1 [ [~ —~
s / / A ub)u~HFY2DW (du, db),
271' 0 g

where we used the change to polar coordinates (u, ) := (|w|,sign(w)), with § = {£1}
and the fact that A annihilates all polynomials of degree up to k. This latter integral is
defined for all 0 < H < k + 1. Notice that W (du, df) := e~ %3 (H+1/21/ (du, df) is equal in
law to W (du, df) and (5.36) is a particular case of the stochastic representation of the
self-similar IRF}’s characterized in Proposition 5.18.

B = Mew) (iw) = F DWW (duw)
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We end with an example outlining the general form of the R-valued H-self-similar
Gaussian IRF;’s in R?, which may be viewed as generalized fractional Brownian fields
with (1 4 k)-th order stationary increments.

Example 5.24 (Real n-th order fractional Brownian fields). Fix an integer k :=n —1 > 0,
and let \; be as in (2.7). Let also o(df) be a finite symmetric measure on the unit sphere
$ C R%. Forall H € (0,k+1), it can be shown that f;(x,0) := ({-,0) —x)ffl/Q(/\t) belongs
to £2(dx,o(df)), where dz is the Lebesgue measure on R. Thus, one can define the
R-valued Gaussian random field

o H-1/2 p
Y(t) = / / (<.,9> - x) (\)W (dz,df), te R,
—00 JS8 +
where W (dz, df) is a zero-mean Gaussian real-valued random measure on R x $ with
control measure dxo(df). Then, it is easy to see with a simple change of variables that
Y(A) = f Yd\, A € Ay is an H-self-similar IRF; with real and symmetric generalized
covariance K. In this case Theorem 5.19 yields:
(71)H+1

K(w) = Cn [ (100" (1001) + 5 (1) o 0] ) | ()0,

For more examples and further insights, see the PhD thesis of Shen (2019).

A Proofs and auxiliary results

A.1 Proofs and tools for Section 2

Proof of Lemma 2.2: Notice that Sc(Ak7V) is a closed set in the metric space
(C(R4,V), p) of continuous V-valued functions on R¢, equipped with the metric p in
(2.13). Thus, it is enough to show that (C(R%, V), p) is a complete separable metric space
(cf. Theorems 1 and 2 in Chapter XIV.2 in Kuratowski, 1977).

It is known that the metric p generates the compact-open topology (see, e.g., Theorem
46.8 in Munkres, 2000). Therefore, to prove separability it is enough to demonstrate
that this topology has a countable base. Recall that the compact-open topology on
C(R%,V) has a sub-base comprising all sets V(K,U) = {f € C(R%,V) : f(K) C U},
where K C R¢ is compact and U C V is open. Since (V, dy) is separable and R is locally
compact, the compact-open topology on C(Rd, V) is second countable (cf. Theorem 5.2,
page 265 in Dugundji, 1966). This entails the separability of (C'(R?, V), p).

Completeness is established in a standard manner. Let {f,,} be a Cauchy sequence
in (C(R%,V), p). In view of (2.13), for each t € R, {f,(¢)} is a Cauchy sequence in the
complete metric space (V,dy). Thus, f,(t) — f(t) € V. It remains to show that f is
continuous and p(f,, f) — 0. Fix an arbitrary compact K C R? and ¢ > 0. Since {f,} is
Cauchy in p, there exists an N, such that

sup dv (fn(7), fm(7)) < €/3, forallm,n > N..
TEK

On the other hand, for every fixed ¢ € K, we have
dv(fu(t), f(t)) = n}gnoo dy (fa(t), fm(t)) < €/3, n > Ne.

Since the latter bound is uniform in ¢, we also obtain sup,¢ i dv (fn (%), f(t)) < €/3, n > N..
That is, f,, converge to f uniformly on all compact K. It remains to establish that f is
continuous. For all s,t € K, we have by the triangle inequality that

dy (f(t), f(s)) <2 Sggdv(fn(T),f(T)) + dv (fu(t), f(s)) < e,
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provided that ||t — s|| < 0 for some sufficiently small § > 0. Here, we used the uniform
continuity of f,, on K. Since € > 0 was arbitrary, this completes the proof of the (uniform)
continuity of f on K. O

Proof of Lemma 2.10: Properties (i) and (ii) in Definition 2.7 are immediate. We
now verify (iii). Consider the coordinate-wise action on 3. (Ak, V), also denoted as
{T., a € R.} for convenience. One can easily verify that J(7.(f)) = To(T(f)). Let
fo— fin S.(Ay, V) and a, — a > 0. To show that p(T,, (f), Tu(f)) — 0, it is enough to
verify that for every K > 0, we have

sup dy (Ta, (fn)(®), Ta(f)(t) = 0, asn — oo,

it <K
where f, = J(fx) and f = J (f). .

In view of Lemma A.2, below, it is enough to show that T, (fn)(tn) — T.(f) (@),
whenever t,, — t in By = {t : wn (fo)(tn) =
T, (yn) and T.(H)(t) = Tu(y), where y Yp = fn( n) and Y= f( ). By applymg Lemma A.2
again, but now to the locally converging functions fn and f we have that y,, = fn( n) —
y= f (t) in V, whenever ¢, — t in B. Hence, the continuity of the scaling action {7},
yields T,, (yn) — To(y) in V, which completes the proof of property (iii).

Let now 0 # f € S.(Ag, V). Proving property (iv) of Definition 2.7 amounts to showing
that p(T,, (f),0) < p(Ta,(f),0), forall 0 < a; < ay. Observe that by property (iv) for {7},
we have

dv (Ta, (f)(#),0) = dv(Tu, (f()),0) < dy(To, (f(2)),0) = dv (T, (H)(1), 0).

This implies that p(Ty, (f),0) < p(Ta,(f),0). We next argue that the inequality is strict.
Since f # 0, we have 0 # f(t) €V for some t € R%. Lett € B, for some large enough j,
where B; is as defined in (2.15). Since the suprema therein are attained, it is enough to
show that

dv (Tu, (f(11)),0) := maxdy (Tu, (f(£)), 0)

teB;

< max dy (Tu, (f(t)),0) =t dy (Tu, (f(t2)),0).

teB;

(A.1)

Observe that, 0 < dy (T, (f(t),0) < dy(Ty, (f(t1)),0) and hence f(t,) # 0. Thus, by the
radial monotonicity of the action {7,}, we have

dy (Tu, (f(11)),0) < dv(Tu, (f(11)),0) < dv(Tay (f(22)),0),

which yields (A.1) and completes the proof of (iv).

We now verify property (v). In view of Remark 2.8, it is equivalent to show that for all
f € Sc(Ag, V), we have Tl/n(f) — 01in S.(Ag, V). Suppose that this is not the case. Then,
for some compact K C R?, some ¢, > 0 and a sequence t,, € K, we have

dv(Tl/n(f(tn)), 0) > €9 > 0.

Since K is compact, for some n’ — oo, we have t,,, — some t, € K, and by the continuity
of f, we have f(¢,) — f(t.) in V. For all § > 0, fixed, the radial monotonicity implies that

0 < €0 < Timsupdy (Ty/w (f(t)),0) < Tim_dv(To(f(tn), 0) = dv(T5(f(t.)), 0).

n’—o0
Property (v), for the scaling action {7}, however, entails that T5(f(t,)) — 0in V, as
6 | 0, which yields a contradiction with the above inequality and completes the proof. [J

The following result shows that the linear operator actions considered in Remark 2.9
are in fact actions under mild natural conditions on the operator exponent .
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Lemma A.1. Let V be a Hilbert space and H : V — V a bounded linear operator such
that

R(sp(H)) € (0,00) and 2R(Hz,z)v = {(H + H*)z,z)y > 0, (A.2)

for all x # 0. Then, T, := c*, ¢ > 0 is a scaling action in the sense of Definition 2.7. Here
R(sp(H)) denotes the set of real parts of the elements in the spectrum of H.

Proof. Properties (i)—(iii) of Definition 2.7 are immediate. Indeed, we have (c;cp)” =
citelt, c1,co > 0 and 17 = 1, while Property (iii) follows from the strong continuity (in
operator norm) of ¢ — ¢M. To establish the radial monotonicity (Property (iv) in Definition
2.7), it is enough to show that for all = # 0, the function ¢(c) := (¢, cMz)y is strictly
increasing in ¢ > 0. To this end, we will show that ¢’(¢) > 0 for all ¢ > 0 and « # 0. By

(5.2), h"Y((c+ h)" — M) — HcH L, in operator norm, as h — 0. Thus, for ¢ > 0,

#(0) = Tim 5 ({(e + ), (e 4 W¥ahy — (o, (e + W) a)y

+(cx, (c+ h)Ma)y — (cH:v,cHx)V)
= (H Yo, cHa)y + (7 1M )y = 27 R(H Tz, M)y,

which is strictly positive, by assumption. Finally, property (v) follows from the first
condition in (A.2) as in the proof of Relation (5.19). O

A.2 Proof of Proposition 3.9

Proposition 3.9 is the key to establishing the a.e. intrinsic stationarity of the tangent
fields in Theorem 3.8. This section outlines its proof, which is based on the following
lemma and the Egorov and Lusin Theorems.

Lemma A.2. Let (K, pk) be a compact metric space and (E,pgr) be a metric space.
Suppose that f, and f : K — E are Borel measurable functions.
If the function f is continuous, then

sup pg(fn(z), f(z)) = 0, asn — oo, (A.3)
zeK
if and only if
pE(fulxn), f(x)) = 0, whenever pg(x,,z) — 0. (A.4)

Proof. (‘if’) Suppose that (A.4) holds and assume that (A.3) fails. Then, for some ¢; > 0,
there exist an infinite sequence n;, € IN and z,, € K, such that pg(fa, (Tn,), f(@n,)) >
€0 > 0. It is easy to see that {z,, } is also an infinite sequence, since for every ky € IV,
by (A.4), we have f,, (vy, ) = f(¥n,, ), @ ny — oo. Indeed, had {z,,} been a finite
set, for some infinite subsequence {n; } C {n;}, we would have z,,, = z,, and hence
PE(fuy (@0 ), [(@nr)) = pE(fur (Tny, ), f(2n,,)) — 0, contradicting the construction of the
Tp,'S.

The infinite sequence {z,, } is included in the compact K, and hence it has a converg-
ing subsequence z,,, () — 2. This, in view of (A.4), implies that f,, (m)(Zn,(m)) — f(x) in
V. Since f is continuous at x, however, f(z,, m)) — f(z). This, by the triangle inequality,
implies

pE(fnk(m) (xnk(m))v f(xnk(m)))
< PE(fr(m) (@), (@) + pe(f(2), f(2n,(m))) — 0, as ng(m) — oo.

This contradicts the assumption that p(fn, (m)(Tn,(m)), f (T, (m))) > €o-
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(‘only if’) Let x,, — x. By the triangle inequality, we have that

pE(fu(Tn), f(2) < pr(fal®n), f(z0)) + pe(f(20), f(2))

sup. pE(fu(@'), f(2") + pe(f(za), f(2)),

<
<

which converges to zero by (A.3) and the continuity of f. O

The next result is a restatement of Theorem 7.5.1 in Dudley (2002).

Theorem A.3 (Egorov). Let (B, B, 1) be a finite measure space and (Y, py ) be a separable
metric space. Suppose that f,, : B— Y, n=1,--- are measurable functions such that,
for p-almost all x € B,

fu(x) = f(x), asn — oo.
Then, for all e > 0, there exists a measurable set B, C B, such that

w(B\ Be) <e and sup py(fu(x), f(z)) =0, asn — oc.
zE€ B,

We present next a relatively general form of the classic Lusin’s theorem stating that
every Borel function is nearly continuous. The proof follows the elegant 3-line argument
given in Theorem 1 on page 56 in Loeb and Talvila (2004). We provide a bit more detail
and tailor the result to the case of metric spaces.

Theorem A.4 (Lusin). Let (X, px) be a metric space and (Y, py) be a separable metric
space. Let also f : X — Y be a Borel measurable function and ;. be a finite Borel
measure pon X.

For every e > 0, there exists a closed set ' C X, such that y(X\F) <eand f: F - Y
is continuous. If (X, px) is separable and complete, then the set F' can be taken to be
compact.

Proof. We will essentially unpack the argument on page 56 of Loeb and Talvila (2004)
with small modifications.

By Theorem 7.1.3 on page 175 in Dudley (2002) every finite Borel measure p on
(X, px) is closed regular, that is, for every Borel set A in X, we have

w(A) =sup{u(F) : F C A, Fisclosed}. (A.5)

Recall that p is called regular if the sets F' above can be taken to be compact. Ulam'’s
Theorem implies that if (X, px) is separable and complete, then y is regular (cf. Theorem
7.1.4 in Dudley, 2002).

We now fix an ¢ > 0 and construct the closed set F. Since (Y, py) is separable, it
is second countable, i.e., its topology has a countable base. Namely, there exists a
countable collection of open sets {V,,, n € IN} in Y such that every open set V C Y can
be represented as a union of V,,’s, i.e.,, V. =U{V,, : V,, CV, n € N}.

Following Loeb and Talvila (2004), by (A.5) since p is finite, we can find closed sets
F,C f~Y(V,)and F!, c X\ f~%(V,) in X (compact if ;1 is regular), such that

P VN F) < ggr - and p((X\ F VNN < g

Observe that

PO\ (Fy UFR) = p(f 7 (Vi) \ Fa) #+ p(1X\ F LV ) < o
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Define F := Nuen(F, U F)) and notice that F is closed and in fact compact if (X, px) is
separable and complete. The above relation implies moreover that

WX\ F) < ZH(X\(FnUFr/L>)<ZQ%

nelN nelN

= €.

To complete the proof, it remains to show that f : ' — Y is continuous. To this end, it
is enough to show that for every = € F and every V,, such that f(z) € V,,, there is an
open set U > z such that f(UNF) C f(V,,). Suppose f(z) € V,, and consider the open
set U := X \ F/. Since F C F,,NF}, and U N F} = (), we have

UNFCUNF,cCf V),

which implies f(U N F') C V,,. We have thus established the desired continuity of f on
F. O

Remark A.5. Loeb and Talvila’s proof of Lusin’s Theorem A.4 is not constructive and it
does not use approximation arguments based on the Tietze-Uryson Lemma and Egorov’s
theorem as many other proofs in the literature (see, e.g., Theorem 7.5.2 in Dudley,
2002). This makes it possible to extend Lusin’s theorem to functions taking values in an
arbitrary separable metric space.

We conclude this section with the proof of Proposition 3.9.

Proof of Proposition 3.9: By Egorov’s Theorem (see Theorem A.3, above), there is a
Borel set B, C B such that u(B\ B,) < ¢/2 and

sulg) pe(Fn(s),G(s)) — 0, (A.6)
s€EBe

as n — oo. Observe that since the Lebesgue measure is closed regular (recall (A.5)),
one can choose the set B, to be closed. Therefore, B, with the usual metric in R¢ is
a complete and separable metric space. Hence, we can apply Lusin’s Theorem A.4 to
X := B. c RYand Y := F to conclude that there is a further compact set K. C B,, such
that p(B. \ K.) < €¢/2 and the function G : K. — E is continuous.

Observe that

B\ K) = pu(B\ Be) + (B \ K¢) < e.

By Lemma A.2, the continuity of G on K, and the uniform convergence (A.6) imply (3.17).
O

A.3 Supplementary results and proofs for Section 3
The following convergence to types lemma is rather useful.

Lemma A.6. Let {T,, a > 0} be a scaling action on some metric space (X, dx). Let also
&, € and &, be random elements taking values in X. Then the following hold.

(i) If¢ is non-zero, then T,/ (&) LTy (&) implies o' = a”.

(ii) Suppose that &, A ¢ and En = Tq, (&n) A E for some sequence a,, > 0, where both
¢ and gare non-zero. Then a,, — a for some a > 0 and Ei T,.(8).

(iii) If ¢ is non-zero and T, (&) %4 0, then a, — 0.
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Proof. Part (i). Suppose that ¢’ < a”. Then,
d e
EET, o Tw(€) = Torjan(€),

which implies & 4 T, (&), for all n € IN, where ¢, = (a’/a”)™ | 0. As in Remark 2.8, let B,
be the open ball centered at the origin with radius r. It follows that, for every B,.,

P(¢ € B,) =P(T.,(§) € B,) =P(§ € Ty, (By))-

Since 1/c¢, — oo, applying (2.15) and (2.17), we see that P(§¢ € B,) = 1, for all r > 0,
which contradicts the assumption that £ is non-zero.

Part (ii). We will first show that {a,} is bounded away from 0 and oc. Indeed, suppose
that a,, — oo for some n’ — oo. Observe that all but countably many B,’s are continuity
sets for the distribution of ¢£. Indeed, the sets 9B, := B, \ B,, r > 0 are pairwise
disjoint in r and for each ¢ > 0, there are at most 1/e distinct values for r, such that
P& € 0B,) > e.

For every r > 0 such that P(¢ € 9B,.) = 0, since &,/ < ¢, we have

IP(S € BT) = nli_r}loolp(gn’ € Br) = nli_r)nooIP(Tan/ (gn’) € Tanf (BT))

. ~ (A.7)
> hmsupP(gn’ € Tm(Br))a
n’—oco
where §n, :=T,,,(&) and m is an arbitrary fixed integer. Here, we used the fact that

T (B,) C T,,,(B,), for all large enough 7/, by (2.15) and (2.17).

Now, since T, is a homeomorphism, we have 97,,,(B,) = T,,,(0B,) are disjoint in > 0,
and by the above argument, for all but countably many r’s, we have P(¢ € 97,,(B,)) =0
and hence P (&, € T,,(B,)) = P(£ € T, (B,)), as n’ — co. Therefore, in view of (A.7), we
obtain

P(¢ € B,) > P(€ € T,,(B,)), forall m and all but countably many r > 0.
Relation (2.15), however, implies that 7,,,(B,) 1T E as m — oo, which implies

IP(& € Br) =1= W}E;HDOIP(EG Tm(BT)))

for all but countably many r. This implies that P(¢ = 0) = 1, which is a contradiction.
We have thus shown that the sequence {a,} is bounded above. One can similarly
show that {a,} is bounded away from 0. Indeed, by defining a,, := 1/a,, we see that

&n =15, (é}) % &. Therefore, repeating the above argument with a,, &, and £ replaced
by ay,, &, and &, respectively, we see that {a, = 1/a,} is bounded.

We have thus shown that {a,,} can only have positive cluster points. Suppose that
a, — a > 0and a,» — a’ > 0, for some sub-sequences n’,n” — oco. Since the space
(X, dx) is separable, by the Skorokhod-Dudley representation (cf. Theorem 3.30 of
Kallenberg, 1997), on a suitable probability space we can define {* and ¢ such that
& 4 n, & 4 , and & — &, almost surely.

n

Thus, the continuity property (iii) in Definition 2.7, implies that
To,, (&) = T (&) and Ty, (&) = T (§7),

almost surely. Since also T, (&) 4 To, (&n) A € and ¢ £ £*, we obtain

dz4

,a
§=Tar(8). (A.8)

To (g)
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By part (i), this is only possible if ¢’ = a”’. We have thus shown that the sequence {a,}

has a unique cluster point a = a’ = ¢” > 0 and in view of (A.8), that 7, (&) 4 E
Part (iii). Suppose that limsup,,_, a, > 0, i.e., for some subsequence n’ — oo, we
have a, > ¢g > 0, for all n’. Then, in view of (2.17), for all » > 0, we have

P(Te, (&) € By) < P(Ta,,(8) € By).

Since T, , (£) 40, the right-hand side vanishes, as n’ — co. On the other hand, since ¢ is
nonzero, so is T, (£) and the left-hand side is positive for sufficiently small » > 0. This
contradiction yields limsup,, , ., an = 0. O

The next result is used in the proof of Corollary 3.10, given below.
Lemma A.7. Let X := {X(\), A € A} and X, := {X,,(A\), A € A} be random fields in
S.(Ag, V) such that X, 4 X. Then for any sequences v, — 0 and r,, — 1, we have

(X0 (Un + 7 - Ay A€ AR} -5 {X(N), X € Al

Proof. Let Y,(\) = X,,(vp, + 7 - A) and Y, = Y,.(\t). By Proposition 2.3, conditions (i)
and (ii) hold for Xn. We need to show that they also hold for }v/n. The proof for (i) is an
easy application of the Skorokhod-Dudley representation Theorem 3.30 on page 56 in
Kallenberg (1997). We focus on proving (ii).

First consider the relationship between )v(n and an. It follows that

Vo (t) = Xn(Un + 7 - M) = / X (Un 4 ru) A (dur),

where one can write

Mi+1
At(du) = Z ci(t)0s, () (du),
i=1
for some continuous functions c;(t) € C and s;(t) € R, i = 1,..., M, + 1 (recall (2.7)).
Since X,,(¢t) = X,,(\;), for any K and n large enough,
Mp+1
sup dy(Vu(t), Xo(t)) < sup > dy (cl-(t)Xn(vn +rnsi(t)), cl-(t)Xn(si(t)))
H“'?SK ”tHZSK i=1
. . (A.9)
< (Mi+1) sup dy(cXn(8),cX, (1)),
lIsll; NIt <2k

|CISCK7”57t”S6n

where §,, := |r, — 1|Sk + |vn| — 0 with

Sk:= sup |si(t)|| and Cx:= sup |e(t)|
<K RS
i=1,...,Mp+1 i=1,...,Mp+1

Therefore, for any n,e > 0, by (ii) in Proposition 2.3 there exists n large enough such
that, P(A4,, <n) > 1—¢, where

A, = sup  dy(X,(s), Xu(t)).
[Isll,lItl|<2K
st <6n

Then according to (2.3), (2.4) and (A.9), we have on the event {4, < n}, that

Hts|}1<pK dw(ffn(t),)u(n(t)) < (M + 1) for (),
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where for any Cx > 0, fo, (1) = SUD gy (4.4)<n.|c|<cx @V (cT,cy) — 0 asn — 0. Thus, on
{4,, < n}, we have

9} Y]

sup dy(Ya(s), Ya(t) <2 sup dy(Ya(t), Xu(t)) +  sup  dv(Xa(s), Xa(t)

sl <K ItI<K sl ItlI<K
ls—t[|<dn ls—t[|<dn
< 2(My, + 1) for (n) + 1.
Thus, the second condition of Proposition 2.3 for Y/n follows. O

Proof of Corollary 3.10: Consider the context of the proof of Theorem 3.8. When
T =1, ¢ >0, for a fixed scaling action T,. Relation (3.19) becomes

€0 = {Tcn(sn) 0T, 0 T X (5, (1/n) - (wn + V), A€ Ak}

cn(s

~ (A.10)
=: cn(s")/cn(s)§n~
where ¢, (s) := ¢(s,1/n), and we used the fact that T;l(s) =T/, (s)-
Relation (3.18) implies that
En -5 €= {Yi(N), A € Ag).
On the other hand, by Lemma A.7, we have
~ 4~
En =10, (X (5, (1/n) - (wn +A)), A€ A} — &= {Ys(w+ ), A€ Ag}.
Thus, in view (A.10), we have En =T¢,(s)/en(sn)n A gand since both ¢ and gare non-zero,
Lemma A.6 implies that
cn(s) cn(s)
= — Qg nt) > 0.
cn(sn)  cn(s+wy/n) as({wn})
One can verify that the limit a,({w,}) is independent of the choice of the sequence {w,, }.
Indeed, if there exists another w], — w and s + w),/n € K. then we will have

d d
{Yo(w+A), A€ Ar} = A{Tu, (fw, ) (Ys(N)s A € Aw} = A{To, (fuy, p (Ys (X)), A € Ag},

which shows as({w,}) = as({w),}) by (i) of Lemma A.6. Thus, we can just use the notation
as(w) and we have

(Ya(w +X), A € Mg} 2 {To () Ya(N), A € Ag). (A.11)

To prove that (3.16) holds, or equivalently 7. (s)/c,(s,) — 11 = I, we only need to
verify as(w) = 1, which we do next. By (A.11), it is easy to see that a,(0) = 1 and
as(w + u) = as(w)as(u). By Theorem 3.4, there is a positive scalar o = a(s) > 0, such
that

{Ya(r- M), A€ Ap} £ {T)a (Yo(N), A€ Ay}, forallr > 0. (A.12)
Consider Y;(r - (w + A)) with » € IN. On one hand, (A.11) and (A.12) imply that

{Ys(r ’ (IU + A))7 A€ Ak} = {TT“(K(U) + )‘))7 A€ Ak} < {Traas(w)()/s(/\))v A€ Ak}
(A.13)

On the other hand, since as(rw) = af(w), for all r € N, viewing Y;(r - (w + X)) as
Y,(rw+r-\), by (A.11), we have

(Yo(r - (w+A)y A€ A} L {Tu () (Yo (- N)y A € A} L {Tor(uyre (Ya(N)), A € Ag).

(A.14)
Thus, by Lemma A.6 applied to (A.13) and (A.14), we obtain a4(w) = a7 (w) for all r € N,
which, since as(w) > 0, implies a,(w) = 1. O
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A.4 Supplemental background and some proofs for Section 4

In Bochner’s Theorem, we need the notion of integration of a C-valued function on
R< with respect to a finite T -valued measure. A finite T -valued measure is a mapping
p 2 B(RY) — T, from the class of Borel sets in R¢ to T, that is countably additive.
Notice that this readily implies that u()) = 0; that u is monotone, i.e., u(A4) < u(B) as
positive operators for A C B; and that y is finite since u(R?) € T... This notion can be
developed along the line of ordinary Lebesgue integral, making use of the completeness
of T. We will provide a brief outline below and leave the details to Section S.3 in Shen
et al. (2020). (The construction naturally extends to the case of o-finite T -valued
measures.)

Let ¢ be a finite T, -valued measure. We follow the development of ordinary Lebesgue
integration:

(i) For any real nonnegative simple function f = ZleciIAi, define [ fdu =

Zle Ciﬂ(Az')-

(ii) For nonnegative measurable functions f, let

/fd,u = lim /fnd,u (A.15)
n—oo
in (T, |-, ||+») where {f,} is any sequence of simple functions such that

(a) fn S fn+1:
(b) fn(x) 1 f(x) for all z,
(c) [ fndu < Bfor all n and some fixed B € T.

The existence of { f,,} satisfying (a) and (b) for any given nonnonegative measurable
f follows from standard measure theory. However, we need the extra condition (c)
(along with the completeness of T ) to ensure that the limit on rhs of (A.15) exists
and does not depend on the choice of {f,,}. Clearly, (c) is automatically fulfilled if f
is bounded.

(iii) For a general real measurable f, let

[ in= [ redu [ s

provided both terms on the right is finite. For a general complex f, let

[ tdn= [ g+ [ fnd

where f;., fim be the real and imaginary parts, respectively.

It is immediate that |||« (A) := [|£(A)|l«:, A € B(R?) defines a finite Borel measure
referred to as to the trace measure of p. The following useful integrability criterion is
straightforward.

Proposition A.8. The integral [, fdu € T is well-defined, for all f € LY (R4, ||p||+r), and

[ @llti) = wace( [ p@ptan).

The integral can be readily extended to o-finite T-valued signed measures. One
can also naturally consider finite signed T-valued measures, namely yu = puy — p—
where p, pu— are both finite T, -valued measures, by [ fdu = [ fdpy — [ fdp—. In
this case, the trace measure of y is the (scalar) signed measure defined as ||yt () :=

[l e C) = Mo ()
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Next we turn to the stochastic integral in Cramér’s representation. Recall that I.%(£2)
is the L2-space of all V-valued random elements 7 on the probability space (02, F, P) with
E|/n|* < oo, equipped with the inner product

(1, m2)a = E(n1, n2).

We briefly discuss the properties of the orthogonal random measure £ = {£(A), A €
B(R%)} in Definition 4.6. Condition (ii) therein readily implies the orthogonality as well
as finite additivity of the measure £. Indeed,

E[¢(A) ® £(B)] = u(0) =0, for all disjoint A, B € B(R?), (A.16)

where 0 stands for the zero operator in T. This implies in particular that (£(A),£(B))q =0
(cf Remark A.9). We have, moreover, that for all (orthogonal) projection operators
IT1: V — V, the random measure 7(-) := II(-) is also an orthogonal measure with control
measure Ty ()T

Now, to show finite additivity, observe that for disjoint Borel sets A and B,

E|l¢(AU B) - £(4) - £(B)|1?
— Btrace((€(AU B) — £(4) — £(B)) ® (§(AU B) — £(4) - £(B)))
— trace (M(A UB) — u(A) — M(B)) -0,

by the fact that the IE and trace operators can be exchanged and the finite additivity of u.
This shows {(AU B) = £(A) + £(B), almost surely.

Finally, Condition (i) in Definition 4.6 along with the established finite additivity
implies the o-additivity of £, in the sense that for any sequence of pairwise disjoint
A, € B(RY), n=1,2,---, we have

f( G An) = f:é“(An), almost surely,
n=1 n=1

where the series on the rhs stands for the limit of 25:1 £(Ay,) as N — oo in L2(Q).
Remark A.9. Observe that for random vectors X,Y € I.2(Q2), we have that
EX®Y]=0 implies (X,Y)q=0,

but the converse implication is not always true. Thus, the orthogonality condition in
(A.16) is stronger than requiring simply ({(A),&(B))q = 0.

Introduce the finite Borel scalar measure
1tllex(A) = trace(u(A)) = (A0, A € B(R?).
It is easy to verify (cf. Lemma S.2.2 in Shen et al., 2020) that, for all A € B(R%),

IEANE = (Al = llzellex (A).-

Next, for an orthogonal random measure £ with control measure u, we sketch the
construction of the stochastic integral Z¢f := [;. f(t)¢(dt) defined for all functions
f € L2(RY, ||plls:), ie., all measurable f : R* — C with [, [f(#)]?[u]e:(dt) < oo. For
any simple function ¢ (z) = Z;’Zl c;la,(x), where A; € B(R?), A; N Aj =0 when j # j/,
define the integral

Te(y) = Y cié(4;).
j=1
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The integral Z¢ (1)) takes values in ]Lg(Q) defined as the closure of

n

span(§) := {Zcif(Aj),cj €C,A; € BRY,n=12,... }

j=1

in IL?(2). Property (ii) in Definition 4.6 entails

IZe ()16 = /}Rd (@)l lex (de).

Therefore, Z, is an isometric linear mapping between the class of simple functions in the
L?-space L*(R% ||u|sx) and the Hilbert space LZ(1).

As the class of simple functions is dense in L?(R?, ||ul|,) and the integrals Z¢(¢)
are dense in ]Lé(ﬂ), the linear operator Z. can be uniquely extended to an isometric
linear mapping between L2(R?, ||x|;,) and ]Lg(Q) This completes the construction of the
stochastic integral

f@)€(dz) =Te(f), feL*RY [luller)-

R4

Observe, moreover that for all f, g € L2(R?, ||u||¢.), we have

E[Ze(f) @ Ze(g)] = » f(@)g(x)p(dz),

where the last integral is well-defined in view of Proposition A.8.

Proof of Proposition 4.18: Part (i): If Y is a real IRF; then Y is also a real IRFy;
with trivial polynomial spectral characteristic. Indeed, since for all A € Ax;1, we have

3]’1“ ’jdX(O) = 0, Relation (4.16) becomes

_ Aw) _ Aw)
Y(A) = /}Rd Wf(du) = /]Rd Wn(du),

where n(du) := (1A|lu|/*T2)(1A[Jul/*+1)~1&(du). By taking A € Agy1(R), since Y()\) = Y())

~

and X(u) = A(—u), we obtain that

Y(\) = /}Rd 1/\)|\|(5|)k+277(—du), A€ A (R).

By (4.18), the last relation continues to hold for all complex A € A, ;. Hence, appealing
to the uniqueness of the representation (4.16) of Y viewed as an IRF;; (with k replaced
by k£ + 1 and £ by n), we obtain

n(du) = n(—du), almost surely,

or equivalently £(du) = &(—du), a.s., which shows that the orthogonal measure ¢ is
Hermitian.
The fact that £ is Hermitian and Y a real IRFy, imply that for all A € Ax(R),

u) 1 .
Y () - /}Rd Wf(du) = Z 5t N0)Z;,.... 5, isreal.
Jissda

By taking suitable real A’s for which 8;“1“ 7 jdX(O) vanish for all but each one term in the
sum, we obtain that all (i)**1Z;, ... ;, must be real.
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Conversely, if ¢ is Hermitian and the (i)**17;, ... ;,’s are real, it is immediate that Y ())
is real for all A € Aix(R). This completes the proof of part (i). Part (ii) is an immediate
consequence of (i).

Part (iii): One can define Y as in (4.18), where all (1'1)’““23-17...7”’3 are real and &
Hermitian. By part (i), this entails that Y is a real IRFj. Suppose now that Y ()\) =
aY (\) + 1bY”’(\) and observe that

Cy () = a®BIY (\) @ Y (1)] + PE[Y'(3) @ Y ()] + abi [EY'(0) @ Y (1) - BY (\) @ V(1)
=E[Y(\) @ Y(u)] =Cy (A, p),
since a? + b2 = 1 and the cross-covariance terms cancel. This shows that Y and Y have

the same covariance structure. O

Lemma A.10. Let T(x,y) be a bivariate mapping from D x D to I, where both D and

I’ are linear spaces over C. Assume that T is sesquilinear form with T'(cx,y) = ¢T'(z,y)

and T(z,cy) = ¢TI (z,y),x,y € D,c € C. Then, forz,y € D,

1—1
2

Proof. The proof is trivial by noticing the identities:

, .
T(a,y) = 5= (T(w,2) + T(y.9) + 5T(@ +y,2+y) = 5Tl +y,ia+y).

T(x+yz+y) =T(r,2)+T(y,y) +T(z,y) +T(y, z),
Tix+y,ix+y) =T(z,2) + T(y,y) + 1T (x,y) — 1T (y, ). O

A.5 Proofs for Section 5.1
We start with an auxiliary result needed for the proof of Theorem 5.3 below.

Lemma A.11. For any A € T and any bounded linear operator H, define f(c) :=
¢ " AcM" | ¢> 0. The function f : (0,00) — T is continuously Fréchet differentiable in
(T,] - ||¢r) with derivative

fl(e) = —c Y Hf(e) + f(OH) = —c e HA+ AR e > 0.
That is,
1f(c+h) = f(c) = f/()hllx = o(h), ash—0. (A.17)

Proof. Observe that (c+h)™" —c™" =35> (—=H)"[(log(c+ h))" — (log c)"]/n!. Applying

the mean value theorem to the terms (log(c + h))" — (logc)™, and using the triangle
inequality for || - ||op, one can show that for all ¢ > 0,

H(c+ Ry H " (—H)e T h

=o(h), ash —0. (A.18)
op
That is, ¢ — ¢~ * and similarly ¢ — ¢ " are Fréchet differentiable in the Hilbert space
V.
On the other hand, by Proposition IV.5.4 on page 62 of Gohberg et al. (2000), for any
two bounded operators B and C and a trace class operator A € T, we have that BAC € T
and moreover

IBAC|ltr < [[Bllop | Al [Cllop- (A.19)

This inequality can be used to show that the Fréchet differentiability of ¢ — ¢~ and
¢ — ¢ ™" in the operator norm induced by the Hilbert space norm in V entails the
Fréchet differentiability in trace-norm.
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Indeed, for all ¢ > 0 and A > —c¢, we have

fle+h)—fle)=(c+h)Alc+h) ™" —cHAcH
=((c+h) =M Alc+ )™ +cA(c+h)H — ).
Now, in view of (A.18) and using the inequality (A.19), we obtain
If(c+h) = f(e) = he M (=H)Alc+ h) ™" — h(c+ h) HA(=H )™ |y = o(h),
20

as h — 0. The continuity of ¢ — ¢~ and ¢ — ¢~ in the operator norm and another
application of (A.19) entails (A.17). O

Proof of Theorem 5.3: Fix ¢ > 0 and define the rescaled IRF; process i’()\) =
c MY (c-\), A € A,. Observe that Y is covariance H-self-similar if and only if Y and YV’
have the same covariance structure or, equivalently, the same spectral characteristics

(x, Q).
In view of (4.14), for all A\, u € Ay, we have

Cp () = BV (V) @ V(1)) = e #EY (- ) @ V(e - w))e™
= [ e M) e ATy )

= / X(x)ﬁ(x)cfﬂxk(dx/c)cfﬂ* +HERT2QNw )
Rd

where in the last relation we used that c/-\/\(u) = X(cu), the change of variables u := x/c,
and the fact that Q(c-v) = 2**2Q(v) for all v € Agyy1. B
Relation (A.20) shows that the spectral characteristics of Y are

(C_ka(dx/c)c_ﬁ* , Ck-i—l—HQ(.)ck-&-l—H* )

Hence, by the uniqueness of the spectral representation in (4.14), the IRF; process
Y and Y have the same covariance structure, if and only if Relation (5.6) holds. This
completes the proof of part (i).

Part (iv) is an immediate consequence of part (ii) and Theorem 4.15, where the
random measure &(dz)/(1 A |z|*+1) therein, is now written in polar coordinates as
W (drd®). Thus, in the remainder of the proof we focus on establishing the disintegration
formula (5.8) (part (ii)) and the uniqueness of the measure o (part (iii)).

Define the T-valued set-mapping

o(B) = Hxr((1,00) x B) + xx((1,00) x BYH*, B € B(%), (A.21)

where in short, we write x(A x B) for x,({(r,0) € A x B}), with A C (0,00) and B C $.
The fact that xj is a T, -valued measure readily implies o(}) = 0 and the countable
additivity of 0. Note also that o is finite, since for all B € B(3), by (A.19),

lo(B)ller < (IHllop + 177 [lop) [[xx (1, 00) X §)]|sr < 00

We will argue next that o(B) is positive and hence it defines a T, -valued measure on
$. We will also show that for all ¢ > 0 and B € B($), we have
_y du

Xk((c,00) x B) = /OO u_Ha(B)u (A.22)
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This fact and a standard m — A argument then entail that (5.7) holds. Indeed, the
right-hand side of (5.7) defines a o-finite T -valued measure, say X, on B(R? \ {0}).
By Relation (A.22), the measures yx; and Y agree on the semi-ring of rectangle sets
(c,00) x B. Since the latter generates the o-field B(R? \ {0}), by considering projections
on a fixed CONS, it can be seen that the two T -valued measures coincide.

We now prove that o is a finite T -valued measure and show (A.22). In view of
Lemma A.11 (above), it follows that the function

flu) = u""x((1,00) x Bju™"
is Fréchet continuously differentiable in (T, || - ||+,) with derivative:

7() = —uhu ™™ (He((1,00) x B) + xi((1,00) x BYH Ju™

= —uw'uMe(Bu™, u>0.

(A.23)

Observe that by the operator-scaling property for x; in (5.6), we have
f(u) = xi((u,00) x B), u>0.
The monotonicity of the T -valued measure xj then implies that
Xk((u,u+h] x B) = f(u) = flu+h) €Ty,

for all h > 0. This shows that —f’(u) € T, and by setting v = 1, we obtain —f'(1) =
o(B) € T4, which shows that ¢(B) € T4, completing the proof that the so-defined
set-mapping in (A.21) is a finite T, -valued measure.

Now, using (A.23) and a straightforward extension of the fundamental theorem of
calculus to Bochner integrals, we obtain

| utetmu - / F(w)du = f(c)
w((1,00) X Ble™

(Note that f(u) = xx((u,00) x B) | 0 as u 1 c0.) The latter, in view of the scaling property
of x, equals xx((¢,0) x B), completing the proof of (A.22) and part (ii).

Part (iii). We now show that ¢ is uniquely determined by x, alone. By definition, we
have

d
U(B):_i Xk((C,OO)XB), BEB(S)v
dcle=1
where the latter is interpreted as the Fréchet derivative in (T, | - ||) of the function

¢ — xk((c,00) x B), evaluated at ¢ = 1. This shows that ¢ is uniquely determined in
terms of the measure x; and it does not depend on the choice of the exponent operator
H, which need not be unique (see e.g., Remark 5.14). O

A.6 Proofs for Section 5.2

Proof of Proposition 5.16: Stationarity is immediate, provided that the stochastic
integral in (5.30) is well-defined. To this end, it suffices to show that

o0 o0 2
| itz ddu = [ [ @nwe furae)]] o)

< [1A@ ella(a9) [0 AP0 2,
(A.24)
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By the assumption (5.29), the first integral in (A.24) is finite. It remains to show that
the second one therein is also finite. This, however, readily follows from the inequality

(1A w2y M2 < O x (1(0,1)(u)u26_1 + 1[1’00)(u)u_2€_1), (A.25)

where in view of (5.28) and the compactness of R(sp(H)), e > 0 and 6 > 0 are such that
R(sp(H)) C (e, k + 1 —6). Relation (A.25) can be established exactly as in the proof of
(5.19) using (5.28) and Riesz functional calculus. This completes the proof of (A.25) and
part (i).

To prove part (ii), it suffices to establish that, for all s,¢ € B(0, M), M > 0,

EWH@—XﬁWﬂ<AWAWHM@—ﬁW®ﬁMMWHM@<C%—W%~ (A.26)

Indeed, consider the Gaussian V-valued variables &, = (X(s) — X(¢))/os,, where
o2, := E[||X(s) — X(t)||?], and where by convention &, := 0 if o,; = 0. By Corollary
S.5.4 in Shen et al. (2020) (with 6 := 1/4 therein) we have that

E[l|és.2]”] < epEexp{llés.e]?/4} < ¢pv2

for all p > 0 and some finite universal constant c¢,. The last bound and Relation (A.26)
can be equivalently written as

E[| X (s) = X()I”] < Cpv2l|s — t]|P<.

This, in view of Proposition 2.4, implies the existence of a y-Holder continuous version of
{X(s), s € B(0,M)} forall v € (0,¢ — d/p). Taking p large, we see that every v € (0,() is
a possible Holder exponent. We shall continue to denote this continuous-path version of
the process by {X(s)}.

Now, we turn to proving (A.26). We have

sa T s T _ _
1Fs (. 0) = folu,0)]13, < 2l 0 — e P AwETDuTAG) 2, I3, (A27)

By Relations (5.29) and (A.25), we have
sz/ AWM%%—ﬁW%%ﬁWMMW)
0

oo
< C/ Seug |eﬁ(s—t)Tu9 —1)? (u25—11[071] (u) + u—25—11[1700)(u))du.
0 o€

Thus, Lemma A.12 applied with A := (s — )76, 7 := 26 > 0 and € := 2¢, yields
Iy < Clls — t][*“" (1 + | log(||s — t]])|*Lery)-

This implies that (A.26) holds with any ( < 1 Ae.
Part (iii). Consider the measures in (2.7) and observe that

A =0 — Y ci(t)oy,, (A.28)
J

where the ¢;(t)’s are polynomials in ¢ of degrees up to k and the ¢;’s are some fixed
points in R¢. In view of Proposition 2.4, to prove (5.31) it is enough to work with

Xo(t) :=r "X (so+ 7 \e)

_ ,,,—7{/ /eﬁs;)ruG (eﬁT'sTuQ _ ch(s)eiwt;qw) (1 A u)k“u_H_l/QA(@)W(du,dH)
0 S -
J

— /OO/Xt(ruﬂ)(l/\u)kﬂ(m)_ﬂ_lﬂ“‘l(a)w(du’da)’
0 S
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where W (du, df) := et %71/2\ (du, d). We will show that since the V-valued Gaussian
random measure W is circularly symmetric and self-similar (recall (5.27)), we have

fdd

{W (du,d6)} "= {W(d(r - u),db)}. (A.29)

Indeed, since W is standard Gaussian, it is not only orthogonal but also an independently
scattered measure. This readily implies that W is also independently scattered. It
is straightforward that W has control measure rdup(df). It remains to show that w
is standard, i.e., its real and imaginary components are independent and identically
distributed. Indeed, for all bounded Borel A C R?\ {0}, in view of (5.25), we have

W(A) = / cos(py.0)rt*Wr(du, d§) — / sin(py, 0 )/ 2 Wi (du, d6)
A A

+ ﬁ(/ASin(@u,e)rl/QWR(du,dG) JrACOS(¢u,9)T1/2WH(du,d0))
= RV (A)) + iS(W(A)),

where @, ¢ 1= usg 1. Using the fact that W and Wy are mdependent and identically
distributed real orthogonal measures, we obtain that §R( (A)) and J(W(A)) are indepen-
dent and identically distributed. This, since W is independently scattered and Gaussian,
completes the proof of (A.29).

Therefore, by (A.29),

{er(t)7 te Rd} 4 {/OOO/SXt(Ue)G A (v/,r))k-&-lv—?-l—l/?A(Q)W(dud@), t e Rd} (A.30)

= {X,.(t), t € R},

where we made the change of variables v := ru.

This relation readily implies that the convergence in (5. 31) holds in the sense of finite-
dimensional distributions. Indeed, writing Y (t) := [ [ \:(v0)o="=/2A0)W (dv, dF),
with the same measure defining the X,.(¢)’s in (A 30) it is enough to show that

E|| X, (t) - Y (1))

/ /|)\t (WO - [(1A (v/r)*+t =12

as r — 0. It is easy to see that since A, € Ay, we have [X;(z)| < C(1 A |jz|)**!, = € R?
Therefore, in view of Relations (5.29) and (A.25), the fact that |(1A(v/r))¥1 —1| = 0, r —
0 and the Dominated Convergence Theorem imply (A.31), proving the convergence of
the finite-dimensional distributions. To complete the proof of (5.31), we will establish
the tightness of {X,.(-), r € (0,1)}. Since the X,’s are Gaussian, as argued above (recall
(A.26)), by Proposition 2.4 it is enough to show that for all M > 0, there exist C' > 0 and
¢ > 0 such that

(A.31)

2
oA e (d8)dw 0,
op

sup B[ X, (s) — X.(t)]|> < C||s — t||*, foralls,te B(0,M).
re(0,1)
This is because for k > 0, the tightness condition on {X,(so), r € (0,1)} is automatically
fulfilled if one takes sg = t; (recall (2.9) and Remark 2.6).
To this end, we begin with some key observations about the measures \;. Since the
¢;(t)’s in (A.28) are fixed polynomials, we have

~ ~ . T T
Ao (08) = e (0O)]? < [eP* "0 — e PR Y ey(s) — (8
j (A.32)
< CV?|ls =t + Curlls — t* < Car(LV 0?)||s — £,
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for all v > 0 and s,t € B(0, M), where the constant C; does not depend on v, s,t and
0eSs.

On the other hand, in view of (A.28), the Xt’s are uniformly bounded for ¢ EAB(O7 M)
and since \; € Ay they annihilate polynomials of degree up to k& and hence \;(v0) =
O(vk*1). This implies that

sup A (00) — A (v0) > < Car (1 A 2R, (A.33)
t,seB(0,M), 0€S

We are now ready to estimate the difference moments. For all s,t € B(0, M), we have

BIX () - %01 < [ [ Ruwh) = Moo 17240 Inlatat)ae

= [ N [ g0 Ol @0)a

Observe first that by (A.33) the bound in (A.25) applies and by (5.29), we have
/gs,t(v, 0) 1l (d60) < C (62 10,1y (0) + 072 1 o) (0)) (A.34)
S

where the latter function is integrable in v over (0, co).

The rest of the strategy is as follows. We will consider the integral of g, ; over three
regions (v,0) € (0,a] x 8§, (a,1/a) x $ and [1/a,00) x . We will choose a =1 A ||s — t||*
for some x > 0, such that each of the three integrals can be dominated by C'a”, for some
positive 1. Namely, let

e+ ho b= ([ o f s Yool
,a] X a,l/a)x a,00) X

In view of (A.34), we have
Ii(s,t) < C/ v dy < Ca??
0
and

I3(s,t) < C’/ v 2 dy < Ca®e.
1/«

Now, for the middle piece, using the bound in (A.32), we obtain
1/«
Ir(s,t) < C||s—t\|2/ (1VoH)dv < Clls — t|*a™3,
Setting [|s — t[|*a™ = a*("9), we see that a = 1 A ||s — t[|>/#+2(<A9) yields the desired
bound E|| X, (s) — X,.(t)|2 < S22, Ii(s, 1) < C||s — t||¢, uniformly in r € (0,1), where

C=2(end)/(B+2(eNd))>0. O
Lemma A.12. (i) There exists a constant C such that
o |AJ2 , ife>2
/ lef2 121 du < C ¢ |AP|log|A|| , ife=2
! |Al€ , if0<e<2.

(ii) Also, for any v > 0, there is a constant C,, > 0, such that fol et — 112y~ 1du <
C,|AP.

Proof. Noting that |e!A* — 1|2 = 2(1 — cos(Au)) = O(A?), as A — 0, the claim in part (ii)
is immediate. Part (i) follows by straightforward calculus by considering the change of
variables z := |Alu. O
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A.7 Proofs for Section 5.3

Proof of Proposition 5.18: Theorem 5.3 applied to H := H - I implies the scaling
property of x; and the disintegration formula (5.32) in part (ii). Part (iii) follows from
Proposition 5.8. We need only prove that 0 < H < k + 1 and the dichotomy claim (i).

Recall the decomposition in (5.4) and observe that both components Y, o) and Y(g,g)
are covariance H-self-similar. Notice, however, that Y o) is always either (k + 1)-self-
similar or zero. In particular, for all ¢ > 0,

d d
CHY(O-,Q)O‘) =Y{0,0)(c-A) = CkHY(o,g)()\), Ae A,

This, since H is scalar, implies H = k + 1 unless }/(O’Q) = 0 (recall Lemma A.6).
Thus, the polynomial spectral component Q is non-trivial only if H = k+1. To complete
the proof of (i), it remains to show that if Y(X,o) is non-zero, then its self-similarity

exponent is in the range 0 < H < k + 1. Firstly, note that Y{, o)(c- \) 4 Y0 (A) =0,
in probability, as ¢ | 0, by the continuity of Y. This implies that H > 0.
Now, observe that by the scaling property of xx, we have, for all » € (0,1),

P2 (1,00) X 8) = xa((r,00) X §) = / L X(du)

(r<lully 1A [lul

(du) + x({{[u] > 1})

‘2k+2x

1
= X
/{r<|u|s1} [l 242
T

—roee | (o)™ xta) + x(lull > 1),
{r<|lull<1}

[l

Since x is a finite T -valued measure, however, the last integral vanishes as r | 0, by
the Dominated Convergence Theorem. Thus, by multiplying the last expression by r2¥+2,
we obtain

r2EF1=H) 0 ((1,00) X 8) = 0,

as r — 0, which means that H < k + 1, since by the scaling property x((r,00) x $) # 0,
for any (all) » > 0. This completes the proof. O

Proof of Theorem 5.19: The proof of Part (i) is as follows. Since H < k + 1, the
polynomial @Q in the spectral characteristic of K is zero and y satisfies (5.32) in polar
coordinates. Let v € Ay;11. Using that o(rf) = [,. ei"aTtu(dt), Relation (4.13) in polar
coordinates becomes

K(v) = / / / eir? "ty (dt)r~ CH D dro(dh)
§d-1Jo JRd

0o [2H] ,. T\
- oo _ N~ ({0 87 —(2H+1)
_/Sdil/o /Rd (e JZZ:O 7 )V(dt) r dro(d) (A.35)
[2H]

= /Sdi1 /Rd /000 (ef”"QTt - Z W)T—QHHMT v(dt)o(do)

=0

where the second relation follows from the fact that v € Ag;; and therefore we could
add a polynomial in ¢ of degree |2H | < 2k + 1 without changing the integral. We will
justify next the interchange of the inner two integrals leading to (A.35) and compute the
inner integral, therein.
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For all integer m > 0, one can show that

- (i 2™+ 2™
Z j' {(7 } sER (A.36)

= m+1)!" m!

(see e.g., page 298 in Resnick, 1999). Thus, for 0 < [2H| < 2H + 1 < |2H] 4 1 (recall
2H is not integer), we obtain

- \2H] . ,
/ it Z (M’@.Tt)J ‘r*(ZHJrl)dr < oo,
|
0 =0 J:

This allows us to interchange the order of the two inner integrals in (A.35). Doing so
and making the change of variables , we obtain

- 2H] . 1o
irgTt (ir6 " t)’ —(2H+1)y
/0 (e Z — )r r

=

o0 [2H] . . j
— |9Tt|2H/ (eﬁz sign(07t) Z (]lZ Slgn.((g—rt))j )z_(2H+1)dz
0

|
i=0 J

o —1)iz2N\
A A CO D DI o Ea

0<2j<|2H], jEZ
+isign(0T4)|0T¢2H / (sin(z) - 3
0 1<2j+1<|2H], j€Z
= 0Tt I(H) + (07 ¢)<*"> J(H),

(12

T )Z7(2H+1)d2

where I(H) and J(H) are in (5.34). Note that this argument also demonstrates that I(H)
and J(H) are well-defined.
By substituting the last expression in the right-hand side of (A.35), we obtain

T412H
H) /S/Rw t2H y(dt)o (d6)

+1J(H) A L Rd(HTt)<2H>1/(dt)a(d6‘)

= 1) [ 0P Wit + 130 [ (0.5 @)t

d—1

This completes the proof of (5.33).
Part (ii): Suppose now that 2H € Z, where 1 < 2H < 2k + 1 and observe that 2H may
be either even or odd. Using the fact that v € A4 1, we get

~ 0Tt 2HY g T )i irf Tt)2H
v(ro) :/]Rd (e ot _ Z (ﬁt) —1[0,1}(7“)((2};))!)V(dt)

=0

f(rot, ryv(dt).
Rd

Relation (A.36) implies that |f(r0'¢t, )| = O(|r|>*!) as r — 0 and because of the
presence of the indicator function 1( 1)(r), we have |f(r6 "¢, r)| = O(|r|* 1) as r — o0.
Therefore,

/ \f(r@Tt, r)|r_(2H+1)d7" < 0,
0
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and by Fubini, we obtain

[e’s) (o)
/ o(re)r~CH Y g = / / f(roTt, r)yr~CHED dry(dt)
0 R4 JO

2H-1 .

o A R G S R A = B

Jj=0

(A.37)
. / L (t) v(dt)
Rd

where we made the change of variables z := 7|0 "t| and where x := sign(6"t).
We now consider two cases. Suppose fist that 2H is even. Upon separating the real
and imaginary parts the integral in the r.h.s. of (A.37) becomes:

0o -1 j22j -1 H22H B
Tu(t) = \aTtFH/ (cosz)= > ((2),)'1[0,1](2/|9Tt|)((2)H)')z (RHH) g,
0 0<2j<2H-1, J): ’
‘ez
o0 Vi s25+1
—|—1'1/€\9Tt|2H/ (sin(z) - Z (21,)721')27(2}[“)6&
0 1<2j+1<2H-1, jEZ (27 +1)!
= (07 Iy cos(t) +1(07T1)21> J(H). (A.38)

Observe that the integral in the imaginary part above equals J(H) in (5.34) and where
in the real part we dropped the absolute value around 6 "¢ since 2H is even.

Since (0 7t)* is a polynomial in ¢ of degree 2H < 2k+1, we have [,(67¢)*"v(dt) =0
Therefore,

/ (07 )2H I cos (t)v(dt) = / (072 (I cos(t) — Chcos)v(dt), (A.39)
R4 R

where

Coe= [ (eosta)- ¥

0<2j<2H—1, jEZ (2])'

(—1)72% —1)H 2H

— 10,1 (Z)W)Z*(QHJrl)dZ’

which is almost the same as the first integral in (A.38) except that the indicator function
1j0,1(2) no longer depends on ¢. Notice again that Cp cos is well-defined. We thus obtain

> (=1)H2H —(2H+1)
It cos(t) = CH,cos = (1[071](2) - 1[0,“9,@”(2)) ey dz
0 ' (A.40)
(_I)H /1 —1d (_1)H+1 1 g(thD
= z 2 = — O .
(2H)! 107 ¢] (2H)!
In view of (A.38), (A.39), and (A.40), we get
(v) = / / Iy (t)v(dt)o(do)
gd—1 JRd
H+1
= / / (07 t)*  1og |6 " t|v(dt)o(d6)
gd—1 JRd
+iJ(H) / / (OTH)<2>(dt)o (d6)
gd—1 JRd
(_1)H+1 2H . <2H>
Y TaT [(97 )7 log (6, )| | (v)o(df) + 1. J(H) (0,-) (v)o(db),
(QH)' Sd—l Sd—l
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which completes the expression in the case when 2H is an even integer.
Suppose now that 2H is odd. With a very similar argument, using the fact that
v € Agi41 annihilates polynomials of degree 2k + 1 > 2H, we obtain that the right-hand
side of (A.37) equals
(—1)7 2%t

0T ¢2H [(H)w(dt)+i / K| [2H / (sin(z)f s
/]Rd R¢ 0 1<2j+1<2H—1 (27 + 1!

_1\H-1/2,2H
- 1[0,1](2/‘0Tt|)( ) c >Z7(2H+1)dzy(dt)

(2H)!
2H [ T \2H (—pf-1zt

= HDIE.P @) [ [ [ OT0 100() = o) g —vtan)] i

(A.41)

where we used the fact that |0 ¢|?! = (07t)2H and the last relation is obtained

with the same strategy as in (A.39). More precisely, applying Fubini and using that
Jra(@T1)*"v(dt) = 0, allows us to eliminate the terms involving sin(z) and z%*!. At
the same time, we add the term (67¢)*?1 1;(z)z~!, which is a polynomial in ¢ also
annihilated by v.

Now, since the inner integrand in the r.h.s. of (A.41) is integrable with respect to z,
another application of Fubini shows that right-hand side of (A.37) equals

N2H(,, i(-nH-12 T oen] [ Ldaly
1)@ @)+ Mg [ @[ [ ae]vtan
]'1(_1>H+1/2

= LE)I) ) + =,

/ (0702 log (|07 1) (db).
Rd

This leads to the desired expression

_ 2 (=pfHe 2
k) = 101) [ (0P wyotan) + 5 gz [ (0.7 10810, @)o(a0),
completing the proof. O
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