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Abstract

In this paper we investigate some geometric functionals for band-limited Gaussian
and isotropic spherical random fields in dimension 2. In particular, we focus on the
area of excursion sets, providing its behavior in the high energy limit. Our results
are based on Wiener chaos expansion for non linear transform of Gaussian fields and
on an explicit derivation on the high-frequency limit of the covariance function of
the field. As a simple corollary we establish also the Central Limit Theorem for the
excursion area.
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1 Introduction and background

Let {T`(x), x ∈ S2} denote the spherical harmonics, which are solutions of the
Helmholtz equation:

∆S2T`(x) + `(`+ 1)T`(x) = 0, ` = 1, 2, . . . ;

where ∆S2 is the spherical Laplacian. We can put on these eigenfunctions a random
structure such that {T`(x), x ∈ S2} are isotropic, centred Gaussian, with covariance
function given by

E[T`(x)T`(y)] =
2`+ 1

4π
P`(cos d(x, y)),

where P` is the Legendre polynomial and d(x, y) is the spherical geodesic distance
between x and y, d(x, y) = arccos(〈x, y〉). After choosing a standard basis {Y`m(x)} of
L2(S2), the random fields {T`(x)} can be expressed by

T`(x) =
∑̀
m=−`

a`mY`m(x), (1.1)
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Excursion area of band-limited spherical random Fields

where {a`m} is the array of random spherical harmonic coefficients, which are indepen-
dent, safe for the condition ā`m = (−1)ma`,−m; for m 6= 0 they are standard complex-
valued Gaussian variables, while a`0 is a standard real-valued Gaussian variable. They
satisfy

E[a`mā`′m′ ] = δ`
′

` δ
m′

m .

The excursion set of T` is defined as

Au(T`) := {x ∈ S2 : T`(x) ≥ u},

where u ∈ R. The geometry of the excursion sets of random eigenfunctions can be
described by the so called Lipschitz Killing Curvatures (LKCs), which in two dimensions
are the excursion area, half of the boundary length and the Euler-Poincaré characteristic.
These functionals have been studied in many different papers, among them [9], [10], [11]
focused on the area; [20], [8], [21] on the nodal length (boundary length at level u = 0);
[4], [3] on the Euler-Poincaré characteristic. In these works the authors established
asymptotic variances and limiting distributions (in the high frequency domain) of these
geometric functionals. Moreover, the local behavior of the excursion area and of the nodal
length has been investigated in [18], [19] respectively. Indeed random eigenfunctions
restricted to subdomains of S2 are studied and differences and analogies with the case of
the whole sphere have been highlighted. We also refer to [7] and [15] for results in the
d-dimensional sphere Sd. In this framework we aim to extend these results to the case of
band-limited functions. They have recently received attention for example in [2], [13],
where their nodal domains have been studied; in [12], which considers the connected
components of zero sets Gaussian random fields and in [16], where the topology of nodal
sets is analyzed.

Our model is described here below.
Let us consider the sequence αn,β given by

αn,β :=

√
1− 1

nβ

with 0 ≤ β ≤ 1, β ∈ R, n ∈ N and {T`} defined as in (1.1). The band-limited functions
here are random fields {T̄αn,β (x), x ∈ S2} defined by

T̄αn,β (x) =
√
Cn,β

n∑
`=αn,βn

T`(x), (1.2)

where

Cn,β :=
4π

n2(1− α2
n,β) + 2n+ 1

=
4π

n2−β + 2n+ 1
.

{T̄αn,β (x)} are centred Gaussian with E[T̄αn,β (x)2] = 1 and covariance function given by

Γ̄αn,β (x, y) = Cn,β

 n∑
`=αn,βn

E[T`(x)T`(y)]

 = Cn,β

n∑
`=αn,βn

2`+ 1

4π
P`(cos d(x, y)). (1.3)

We consider the excursion sets

Au(T̄αn,β ) := {x ∈ S2 : T̄αn,β (x) ≥ u},

with u ∈ R, u 6= 0; in this paper we focus on the area of these regions, which we denote
by Sαn,β (u), when β ∈ (0, 1). Along the lines of [10], we can see that Sαn,β (u) can be
written as a function of the random field itself in the following way

Sαn,β (u) =

∫
S2

1{T̄αn,β (x)>u} dx,

ECP 27 (2022), paper 45.
Page 2/12

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP488
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Excursion area of band-limited spherical random Fields

where 1(·) is, as usual, the characteristic function which takes value one if the condition
in the argument is satisfied, zero otherwise. This expression allows to project the
area into the orthonormal system generated by Hermite polynomials (Wiener chaoses
projection) Hk(u), k ∈ N, that is

H0(u) = 1, H1(u) = u,H2(u) = u2 − 1, . . . ,Hk(t) = tHk−1(t)−H ′k−1(t), k ≥ 1.

Indeed, since 1(·) ∈ L2(S2), it can be expanded as

1{T̄αn,β (x)>u} =

∞∑
q=0

Jq(u)

q!
Hq(T̄αn,β (x)),

in L2(Ω). The coefficients {Jq(·)} have the analytic expressions J0(u) = Φ(u), J1(u) =

−φ(u), J2(u) = −uφ(u), J3(u) = (1− u2)φ(u) and in general

Jq(u) = −Hq−1(u)φ(u),

(see [10] and [14]) where φ(·) and Φ(·) are the density function and the distribution
function of a standard Gaussian variable. It follows that

Sαn,β (u) =

∞∑
q=0

Jq(u)

q!

∫
S2
Hq(T̄αn,β (x)) dx. (1.4)

Note that if we take β = 1, the random field in (1.2) is the eigenfunction T` and
the behavior of the LKCs in this case has already been investigated. Indeed in [10]
the authors have been proved that the projection on the first component vanishes
identically and the correspondent series in (1.4) is dominated simply by the second
chaotic component. More explicitly, the variance of this single term is asymptotically
equivalent to the variance of the full series, and its asymptotic distribution (Gaussian)
gives also the limiting behavior of the excursion area. On the contrary, when β = 0,
the expansion in (1.4) does not have any leading component, namely, each chaotic
component has the same asymptotic behavior (as it happens for the defect case, defined
as the difference between positive and negative regions, when only one eigenfunction is
considered, see [11] and [15]). It could then be suspected that the limiting behavior may
depend on the value of β, but this turns out not to be the case. Indeed, we will prove that
for any 0 < β < 1 the second chaotic component is still the leading term of the series
expansion in (1.4) and so no phase transition with respect to β arises.

2 Main result

Let us consider the expansion of the excursion area given in (1.4), we can write

Sαn,β (u) = (1− Φ(u))

∫
S2
dx+ φ(u)

∫
S2
H1(T̄αn,β (x)) dx

+ uφ(u)
1

2

∫
S2
H2(T̄αn,β (x)) dx+

∞∑
q=3

Jq(u)

q!

∫
S2
Hq(T̄αn,β (x)) dx, (2.1)

in the L2(Ω)-convergence sense. Denoting

hβ;q :=

∫
S2
Hq(T̄αn,β (x)) dx q = 1, 2, . . . ,

we have that

Sαn,β (u) =

∞∑
q=0

Jq(u)

q!
hβ;q.
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Remark 2.1. Note that
∫
S2
H1(T̄αn,β (x)) dx = 0, indeed∫

S2
H1(T̄αn,β (x)) dx =

∫
S2
T̄αn,β (x) dx =

√
Cn,β

n∑
`=αn,βn

∫
S2
T`(x) dx = 0

thanks to the orthogonal property of Spherical Harmonics (see [6], page 66).

Remark 2.2. The choice of Cn,β in (1.3) is such that Var[T̄αn,β (x)] = 1. Indeed,

Var[T̄αn,β (x)] =
4π

n2(1− α2
n,β) + 2n+ 1

n∑
`=αn,βn

[VarT`(x)]

=
4π

n2(1− α2
n,β) + 2n+ 1

n∑
`=αn,βn

2`+ 1

4π
= 1.

The main result of this paper gives the high energy behavior of the variances of hβ;q

to the vary of q ≥ 2.

Theorem 2.3. For 0 < β < 1, as n→∞,

Var(hβ;2) =
32π2

n2−β +O

(
1

n3−2β

)
for q = 2,

Var(hβ;4) = O

(
log n

n2

)
for q = 4,

Var(hβ;q) = O

(
1

n2

)
for q = 3 and q ≥ 5.

Remark 2.4. From Theorem 2.3 it follows that the second chaos is the leading term
for all β ∈ (0, 1). The same holds when only one eigenfunction is considered (namely
if β = 1). Indeed in that case it has been proved, in [10], that the variance of h1;2 is
32π2 2

2`+1 for all `.

For the continuity of the norm and the orthogonality of the Hermite polynomials, the
following expansion holds in the L2(Ω) sense:

Var[Sαn,β (u)] = 0 + 0 +
u2φ(u)2

4
Var

[ ∫
S2
H2(T̄αn,β (x)) dx

]
+

∞∑
q=3

Jq(u)2

q!2
Var

[∫
S2
Hq(T̄αn,β (x)) dx

]
.

Then, as a corollary, we get

Corollary 2.5. For 0 < β < 1, as n→∞,

Var(Sαn,β (u)) =
u2φ(u)2

4
Var(hβ;2) + o (Var(hβ;2)) = 32π2u

2φ(u)2

4

1

n2−β + o

(
1

n2−β

)
.

The key role in the proof of Theorem 2.3 is played by the derivation of the asymp-
totic behavior of the covariance function defined in (1.3) and it is given here below in
Lemma 2.6.

Denoting by N the North Pole, we fix x = N and, in view of the isotropy, we can
write Γ̄αn,β (x, y) = Γ̄αn,β (cos θ) with θ ∈ [0, π). Changing variable θ = ψ

αn,βn
, the following

lemma gives the asymptotic behavior in the high frequency limit of the covariance
function for 1 < ψ ≤ αn,βn(π − ε), for any ε > 0.
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Lemma 2.6. Given Γ̄αn,β (x, y) as in (1.3), for 0 < β < 1, β ∈ R, we have that, for
1 < ψ < αn,βnπ, as n→∞,

Γ̄αn,β

(
cos

ψ

αn,βn

)
=
Cn,β
4π

(
sin

ψ

2αn,βn

)−1(
ψ/(nαn,β)

sin(ψ/(αn,βn))

)1/2
αn,βn√

ψ

×
[√

2

π
(−2) sin

(
ψ

2
− 3π

4
+

(n+ 1)

2αn,βn
ψ

)
sin

(
n+ 1

nαn,β
ψ − ψ

)
+O

(
1

ψ

)]
. (2.2)

Remark 2.7. Note that, writing (n+1)ψ
αn,β

= ψ + ψ
2nβ

+ O(ψn ) + O( ψ
n2β ) and calling ζ =

ψ
2nβ

+O( ψ
n2β ) +O(ψn ),

sin

(
ψ

2
− 3π

4
+

(n+ 1)

2αn,βn
ψ

)
sin

(
n+ 1

nαn,β
ψ − ψ

)
=

(
sin

(
ψ − 3π

4

)
cos ζ+cos

(
ψ − 3

4
π

)
sin ζ

)
sin ζ

and then (2.2) becomes

Γ̄αn,β

(
cos

ψ

αn,βn

)
=
Cn,β
4π

(
sin

(
ψ

2αn,βn

))−1(
ψ/αn,βn

sin(ψ/αn,βn)

)1/2
(αn,βn)√

ψ

×
√

2

π
(−2) sin ζ

(
− sin

(
ψ − 3π

4

)
cos ζ + cos

(
ψ − 3π

4

)
sin ζ +O

(
1

ψζ

))
. (2.3)

Finally, we observe that, for Parseval’s identity,∫
S2
H2(T̄αn,β (x)) dx =

∫
S2

(T̄αn,β (x)2 − 1) dx = Cn,β
∑
`

∑
`′

∫
S2
T`(x)T`′(x) dx− 4π

= Cn,β

n∑
`=αn,βn

∑̀
m=−`

|a`m|2 − 4π, (2.4)

which are sums of independent Gaussian random variables. The mean of (2.4) is zero and
then, from Theorem 2.3, the Central Limit Theorem follows for hβ;2. As a consequence,
along the same lines as in [7], we can establish the validity of the Central Limit Theorem
for Sαn,β . Note that from (2.1) it is easy to see that E[Sαn,β (u)] = (1− Φ(u))4π.

Corollary 2.8. For all 0 < β < 1, as n→∞,

Sαn,β (u)− E[Sαn,β (u)]√
Var[Sαn,β (u)]

→d Z,

where Z ∼ N(0, 1) and→d denotes convergence in distribution.

Remark 2.9. When β = 0 all the chaotic components have the same asymptotic behavior.
We are not going to discuss in details this case but the idea is that the covariance function
behaves like

Γ̄αn,0

(
cos

ψ

n

)
∼ Cn,0

1

sin(ψ/n)

(
ψ/n

sin(ψ/n)

)1/2

(n+1)

√
2

(n+ 1)(ψ/n)
cos

(
ψ − 3π

4

)
(2.5)

and then for all q

Var(h0,q) ∼
1

n2

∫ πn

1

1

ψ
3
2 q−1

cos

(
ψ − 3π

4

)q
dψ ∼ 1

n2

since the integral converges.
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3 Proof of the main result (Theorem 2.3)

Proof of Theorem 2.3 assuming Lemma 2.6. First of all we remind the following prop-
erty (see for instance [6], page 98): let Z1, Z2 be jointly Gaussian; then, for all q1, q2 ≥ 0

E[Hq1(Z1)Hq2(Z2)] = q1!δq2q1E[Z1Z2]. (3.1)

Now we start computing the variance of hβ;2; hence,

Var(hβ;2) = Var

[ ∫
S2
H2(T̄αn,β (x)) dx

]
= E

[ ∫
S2
H2(T̄αn,β (x)) dx

]2

= E

[ ∫
S2×S2

H2(T̄αn,β (x))H2(T̄αn,β (y)) dxdy

]
=

∫
S2×S2

E[H2(T̄αn,β (x))H2(T̄αn,β (y))] dxdy,

(3.2)

which is, in view of (3.1), equal to

2

∫
S2×S2

Γ̄αn,β (x, y)2 dxdy.

Using (1.3) we get

Var(hβ;2) = 2C2
n,β

∫
S2×S2

n∑
`=αn,βn

n∑
`′=αn,βn

2`+ 1

4π
P`(〈x, y〉)

2`′ + 1

4π
P`′(〈x, y〉) dxdy (3.3)

and exchaging integrals and sums, and applying the duplication property (see [6], Ch.
3), that is, ∫

S2

2`+ 1

4π
P`(〈x, y〉)

2`′ + 1

4π
P`′(〈y, z〉) dy =

2`+ 1

4π
P`(〈x, z〉)δ`

′

` ,

(3.3) is equal to

2C2
n,β

∑
`

2`+ 1

4π

∫
S2
P`(〈x, x〉) dx.

Since P`(0) = 1 ∀`, we conclude that

Var(hβ;2) = 2C2
n,β

n∑
`=αn,βn

2`+ 1

4π

∫
S2
dx = 2C2

n,β

n∑
`=αn,βn

2`+ 1

4π
4π

= 2C2
n,β [(n(n+ 1)− αn,βn(αn,βn− 1)) + n+ 1− αn,βn]

= 2C2
n,β(n2(1− α2

n,β) + 2n+ 1) =
2(4π)2

n2(1− α2
n) + 2n+ 1

=
2(4π)2

n2−β + 2n+ 1
.

Finally, we observe that

Var(hβ;2) =
32π2

n2−β

(
1− 2

n1−β + o

(
1

n1−β

))
=

32π2

n2−β −
64π2

n3−2β
+ o

(
1

n3−2β

)
. (3.4)

Let us focus now on the variance of the chaotic component hβ;q, for each q > 2. Hence,
same computations as in (3.2) lead to

Var(hβ;q) = Var

(∫
S2
Hq(T̄αn,β (x)) dx

)
= q!

∫
S2×S2

Γ̄αn,β (x, y)q dxdy

and because of isotropy it is

= 2π|S2|q!
∫ π

0

Γ̄αn,β (cos θ)q sin θdθ. (3.5)
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Note that, as it happens for example in [9], for symmetry properties of the Legendre
polynomials, we can write∫ π

0

Γ̄αn,β (cos θ)q sin θdθ = 2

∫ π/2

0

Γ̄αn,β (cos θ)q sin θdθ. (3.6)

This can be seen recalling definition (1.3) and using the fact that P`(·) is an odd function
if ` is odd while it is even if ` is even. Then the only case where (3.6) does not hold is
when the integral in (3.5) is equal to zero. Then we have

Var(hβ;q) = 2π|S2|q!2
∫ π/2

0

Γ̄αn,β (cos θ)q sin θdθ = 4π|S2|q!
∫ 1/(αn,βn)

0

Γ̄αn,β (cos θ)q sin θdθ

+ 4π|S2|q!
∫ π/2

1/(αn,βn)

Γ̄αn,β (cos θ)q sin θdθ. (3.7)

Note that for θ ∈ [0, 1/(αn,βn)), since |Γ̄αn,β (x, y)| ≤ 1, changing variable θ =
ψ

αn,βn
, we

have that∫ 1/(αn,βn)

0

Γ̄αn,β (cos θ)q sin θ dθ = O

(∫ 1/(αn,βn)

0

| sin θ| dθ

)

= O

(
1

(αn,βn)

∫ 1

0

ψ

(αn,βn)
dψ

)
= O

(
1

n2

)
. (3.8)

For the second integral in (3.7), changing the variable θ = ψ
αn,βn

, we obtain

∫ π/2

1/(αn,βn)

Γ̄αn,β (cos θ)q sin θdθ =
1

αn,βn

∫ παn,βn/2

1

Γ̄αn,β

(
cos

ψ

αn,βn

)q
sin

(
ψ

αn,βn

)
dψ

=
1

αn,βn

∫ nβ

1

Γ̄αn,β

(
cos

ψ

αn,βn

)q
sin

(
ψ

αn,βn

)
dψ

+
1

αn,βn

∫ παn,βn/2

nβ
Γ̄αn,β

(
cos

ψ

αn,βn

)q
sin

(
ψ

αn,βn

)
dψ.

We denote

I1,q :=
1

αn,βn

∫ nβ

1

Γ̄αn,β

(
cos

ψ

αn,βn

)q
sin

(
ψ

αn,βn

)
dψ

and

I2,q :=
1

αn,βn

∫ παn,βn/2

nβ
Γ̄αn,β

(
cos

ψ

αn,βn

)q
sin

(
ψ

αn,βn

)
dψ.

Let us focus on I2,q. From Lemma 2.6, taking the q-power, we get that

Γ̄αn,β

(
cos

ψ

αn,βn

)q
=

{
Cn,β
4π

(
sin

ψ

2αn,βn

)−1(
ψ/(nαn,β)

sin(ψ/(αn,βn))

)1/2
αn,βn√

ψ

×
[√

2

π
(−2) sin

(
ψ

2
− 3π

4
+

(n+ 1)

2αn,βn
ψ

)
sin

(
n+ 1

nαn,β
ψ − ψ

)
+O

(
1

ψ

)]}q
. (3.9)

Exploiting that

sin(ψ/(αn,βn)) = O

(
ψ

nαn,β

)
(3.10)
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and bounding by a constant the term in the square brackets in (3.9), we can say

I2,q = O

(
(αn,βn)q−1Cqn,β

∫ nαn,βπ/2

nβ

1

ψq/2

(
ψ

αn,βn

)1−q

dψ

)
= O

(
(αn,βn)2q−2Cqn,β

∫ nαn,βπ/2

nβ

1

ψ3q/2−1
dψ

)
.

We consider now (αn,βn)2q−2Cqn,β = (αn,βn)2q−2 1
(n2−β+2n+1)q

. We can write it as

n2q−2

(n2−β)q
1(

1 + 2n+1
n2−β

)q (1− 1

nβ

)q−1

=
n−2

n−βq

(
1 +O

(
2n+ 1

n2−β

))(
1 +O

(
1

nβ

))
=

n−2

n−βq

(
1 +O

(
1

nβ

)
+O

(
1

n1−β

))
. (3.11)

Hence for all q ≥ 4, we have that

I2,q = O

(
nqβ

n2

(
1

(αn,βn)3/2q−2
− 1

nβ(3q/2−2)

))
= O

(
1

n2

)
. (3.12)

For q = 3, from (3.9), we get

I2,q=3 ∼ (K3)3n
3β

n2

∫ αn,βnπ/2

nβ

1

ψ9/2−1
× sin

(
ψ − 3π

4
+

(n+ 1)

2αn,βn
ψ

)3

sin

(
n+ 1

2αn,βn
ψ − ψ

)3

dψ,

where K3 = 1
4π

√
2
π (−2). In view of the following formula

(sin(a))3(sin(b))3 =
1

32

[
− 3 cos(a− 3b) + cos(3a− 3b) + 9 cos(a− b)− 3 cos(3a− b)

− 9 cos(a+ b) + 3 cos(3a+ b) + 3 cos(a+ 3b)− cos(3a+ 3b)

]
,

integration by parts applied to each summands gives

I2,q=3 = O

(
1

n2

)
. (3.13)

To be clear, let us study for example the first term, it is equal to

(K3)3−3

32

n3β

n2

∫ αn,βnπ/2

nβ

cos(4ψ − 3π
4 −

n+1
nαn,β

ψ)

ψ9/2−1
dψ =

−3(K3)3

32(4− n+1
nαn,β

)

n3β

n2

×
[ sin(4ψ − 3π

4 −
n+1
nαn,β

ψ)

ψ7/2

∣∣∣∣αn,βnπ/2
nβ

+
7

2

∫ αn,βnπ/2

nβ

sin(4ψ − 3π
4 −

n+1
nαn,β

ψ)

ψ9/2
dψ

]
= O

(
1

n2+β/2

)
.

The other integrals can be done in the same way.
As far as I1,q is concerned, taking the q-power of (2.3) and exploting again (3.10) for

sinψ/(αn,βn) and sin ζ, we get

I1,q =
1

αn,βn

∫ nβ

1

[
Cn,β
4π

(
sin

ψ

2αn,βn

)−1(
ψ/αn,βn

sin(ψ/αn,βn)

)1/2
(αn,βn)√

ψ

×
√

2

π
(−2) sin ζ

(
− sin

(
ψ − 3π

4

)
cos ζ + cos

(
ψ − 3π

4

)
sin ζ +O

(
1

ψ

))]q
sin

ψ

αn,β
dψ

= O

(
(Cn,β)q(αn,β)2q−2

∫ nβ

1

ψ1−q/2 1

ψq
ζq dψ

)
= O

(
(Cn,β)q(αn,β)2q−2

nβq

∫ nβ

1

ψ1−q/2 dψ

)
.

(3.14)
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For q > 4 the integral in (3.14) converges and in view of (3.11) we conclude that

I1,q =


O

(
1

n2

)
if q > 4

O

(
log n

n2

)
if q = 4.

(3.15)

It remains to study I1,q=3. Developing the third power in (3.14), we obtain

I1,q=3 ∼
C3
n,β(αn,βn)2

(4π)3

∫ nβ

1

1

sin(ψ/2αn,β)3

(
ψ/(αn,β)

sin(ψ/αn,β)

)3/2
1

ψ3/2
sin3 ζ

×
(

sin

(
ψ − 3π

4

)3

cos3 ζ + cos3

(
ψ − 3π

4

)
sin3 ζ − 3 sin

(
ψ − 3π

4

)
cos ζ

× cos2

(
ψ − 3π

4

)
sin2 ζ + 3 sin2

(
ψ − 3π

4

)
cos2 ζ cos

(
ψ − 3π

4

)
sin ζ

)
sin(ψ/αn,β) dψ.

Replacing once again sin(ψ/(αn,βn)) ∼ ψ/(αn,βn), cos ζ ∼ 1 and sin ζ ∼ ζ we get

I1,q=3 ∼
C3
n,β(αn,βn)2

(4π)3
23

∫ nβ

1

(αn,β)2

ψ2

1

ψ3/2

ψ3

n3β

×
(

sin

(
ψ − 3π

4

)3

+ cos3

(
ψ − 3π

4

)
ψ3

n3β
− 3 sin

(
ψ − 3π

4

)
cos2

(
ψ − 3π

4

)
ψ2

n2β

+ 3 sin2

(
ψ − 3π

4

)
cos

(
ψ − 3π

4

)
ψ

nβ

)
dψ

and in view of (3.11) we have

I1,q=3∼
n3β

n2(4π)3n3β
4

∫ nβ

1

ψ−1/2

(
sin

(
ψ − 3π

4

)3

+ cos3

(
ψ − 3π

4

)
ψ3

n3β

−3 sin

(
ψ − 3π

4

)
cos2

(
ψ − 3π

4

)
ψ2

n2β
+3 sin2

(
ψ − 3π

4

)
cos

(
ψ − 3π

4

)
ψ

nβ

)
dψ.

Integrating by parts it can be seen that the integral converges and then that

I1,q=3 = O

(
1

n2

)
. (3.16)

Indeed, let us consider, for instance, the first summand, we have that∫ nβ

1

sin
(
ψ − 3π

4

)3
ψ1/2

dψ =

∫ nβ

1

sin
(
ψ − 3π

4

)
ψ1/2

−
cos
(
ψ − 3π

4

)2
sin
(
ψ − 3π

4

)
ψ1/2

dψ

= −
[

cos
(
ψ − 3π

4

)
ψ1/2

∣∣∣∣nβ
1

+
1

2

∫ πnβ

1

cos
(
ψ − 3π

4

)
ψ3/2

dψ

]
+

1

3

[
cos
(
ψ − 3π

4

)3
ψ1/2

∣∣∣∣nβ
1

−
∫ πnβ

1

cos
(
ψ − 3π

4

)3
ψ3/2

dψ

]
<∞.

Putting together (3.15), (3.16), (3.12), (3.13) and (3.8) in (3.7), and remembering the
result in (3.4) the thesis of Theorem 2.3 follows.

4 Proof of Lemma 2.6

Before proving Lemma 2.6, using the same notation as in [5], we recall the Hilb’s
asymptotic formula (see [17], Theorem 8.21.12):

P (1,0)
n (cos θ) =

(
sin

θ

2

)−1{(
θ

sin θ

)1/2

J1((n+ 1)θ) +R1,n(θ)

}
, (4.1)
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where P (1,0)
n (·) is a Jacobi Polynomial, which in general is defined by

P (α,β)
n (x) =

n∑
s=0

(
n+ α

s

)(
n+ β

n− s

)(
x− 1

2

)n−s(
x+ 1

2

)s
,

R1,n(θ) =

{
θ3O(n), 0 ≤ θ ≤ c/n
θ1/2O(n−3/2), c/n ≤ θ ≤ π − ε

(4.2)

and J1 is the Bessel function of order 1.

Proof of Lemma 2.6. Looking at the covariance function in (1.3) we can write Γ̄αn,β (x, y)

as

Γ̄αn,β (x, y) = Cn,β

( n∑
`=0

2`+ 1

4π
P`(〈x, y〉)−

nαn,β−1∑
`=0

2`+ 1

4π
P`(〈x, y〉)

)
.

Thanks to the following formula ([5], page 6), derived by the Christoffel-Darboux formula
(see [1]),

n∑
`=0

∑̀
m=−`

Y`,m(x)Y`,m(y) =
n+ 1

4π
P (0,1)
n (cos θ(x, y)),

and to the addition formula ([6] page 66):

∑̀
m=−`

Y`,m(x)Y`,m(y) =
2`+ 1

4π
P`(cos θ(x, y)),

we obtain that

Γ̄αn,β (cos θ) = Cn,β

[
n+ 1

4π
P (1,0)
n (cos θ(x, y))− nαn,β

4π
P

(1,0)
nαn,β−1(cos θ(x, y))

]
.

Applying the Hilb’s asymptotics formula given in (4.1) we get

Γ̄αn,β (cos θ) =
Cn,β
4π

(
sin

θ

2

)−1[
(n+ 1)

(
θ

sin θ

)1/2

J1((n+ 1)θ) + (n+ 1)R1,n(θ)+

− nαn,β
(

θ

sin θ

)1/2

J1(nαn,βθ)− nαn,βR1,nαn,β (θ)

]
.

In view of (4.2) the error term (n+ 1)R1,n(θ)− nαn,βR1,nαn,β (θ), for
c

nαn,β
≤ θ ≤ π − ε,

is equal to

θ
1
2O
(
n−

3
2

)
(n+ 1) + nαn,βθ

1
2O
(
n−

3
2α
− 3

2

n,β

)
= θ

1
2O
(
n−

1
2 + n−

1
2α
− 1

2

n,β

)
= O

(
1√
n

)
.

Now, changing variable θ = ψ
αn,βn

and exploiting the expansion of the Bessel functions
(see [17], page 15-16):

J1(x) =

(
2

πx

)1/2

cos

(
x− 3π

4

)
− 3

4
√

2πx3/2
sin

(
x− 3π

4

)
+O(x−5/2), as x→∞,

we find

Γ̄αn,β

(
cos

ψ

αn,βn

)
=
Cn,β
4π

(
sin

(
ψ

2αn,βn

))−1{(
ψ/(nαn,β)

sin(ψ/(αn,βn))

)1/2

×
[
(n+ 1)

((
2αn,βn

π(n+ 1)ψ

)1/2

× cos

(
ψ(n+ 1)

αn,βn
−3π

4

)
− 3

4
√

2π

(
1

ψ

)3/2(
αn,βn

n+ 1

)3/2
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× sin

(
n+ 1

αn,βn
ψ − 3π

4

)
+O

((
αn,βn

(n+ 1)ψ

)5/2
)
− nαn,β

(√
2

πψ
cos

(
ψ − 3π

4

)
− 3

4
√

2π

(
1

ψ3/2

)
× sin

(
ψ − 3π

4

)
+O

(
1

ψ5/2

))]
+O

(
1√
n

)}
which leads to

Γ̄αn,β

(
cos

ψ

αn,βn

)
=
Cn,β
4π

(
sin

ψ

2αn,βn

)−1{(
ψ/(nαn,β)

sin(ψ/(αn,βn))

)1/2

αn,βn

×
[√

2

πψ

((
n+ 1

αn,βn

)1/2

× cos

(
(n+ 1)

ψ

αn,βn
− 3π

4

)
− cos

(
ψ − 3π

4

))
+

3

4
√

2π

(
1

ψ

)3/2
(

sin

(
ψ − 3π

4

)
−
(
αn,βn

n+ 1

)1/2

sin

(
n+ 1

αn,βn
ψ − 3π

4

))
+O

(
1

ψ5/2nβ

)]}
.

Using the Taylor expansion (1 + x)γ = 1 + γx+ γ(γ−1)
2 x2 + o(x2) (x→ 0) applied to(

n+ 1

αn,βn

)1/2

=

(
1 +

1

n

)1/2(
1− 1

nβ

)−1/4

= 1 +
1

4nβ
+

5

32n2β
+

1

2n
+ o

(
1

n2β

)
+ o

(
1

n

)
and(

αn,βn

n+ 1

)1/2

=

(
1 +

1

n

)−1/2(
1− 1

nβ

)1/4

= 1− 1

4nβ
− 3

32n2β
− 1

2n
+ o

(
1

n2β

)
+ o

(
1

n

)
,

we obtain

Γ̄αn,β

(
cos

ψ

αn,βn

)
=
Cn,β
4π

(
sin

ψ

2αn,βn

)−1{(
ψ/(nαn,β)

sin(ψ/(αn,βn))

)1/2

αn,βn

[√
2

πψ

×
(

cos

(
ψ(n+ 1)

αn,βn
− 3π

4

)
− cos

(
ψ − 3π

4

))
+

√
2

πψ

1

4nβ
cos

(
(n+ 1)

ψ

αn,βn
− 3π

4

)
+

3

4
√

2π

(
1

ψ

)3/2(
sin

(
ψ − 3π

4

)
− sin

(
n+ 1

αn,βn
ψ − 3π

4

))
+

3

4
√

2π

(
1

ψ

)3/2
1

4nβ
sin

(
ψ
n+ 1

nαn,β
− 3π

4

)
+O

(
1√
ψn2β

+
1

ψ3/2n2β
+

1

ψ5/2nβ

)]}
.

Exploiting the addition formulas of sine and cosine

cos

(
ψ(n+ 1)

αn,βn
− 3π

4

)
− cos

(
ψ − 3π

4

)
=−2 sin

(
ψ

2
− 3π

4
+

(n+ 1)

2αn,βn
ψ

)
sin

(
n+ 1

nαn,β
ψ − ψ

)
,

sin

(
ψ − 3π

4

)
− sin

(
ψ(n+ 1)

αn,βn
− 3π

4

)
= 2 cos

(
ψ

2
− 3π

4
+

(n+ 1)

2αn,βn
ψ

)
sin

(
ψ

2
− n+ 1

2nαn,β
ψ

)
,

we conclude that

Γ̄αn,β

(
cos

ψ

αn,βn

)
=
Cn,β
4π

(
sin

ψ

2αn,βn

)−1(
ψ/(nαn,β)

sin(ψ/(αn,βn))

)1/2
αn,βn√

ψ

×
[√

2

π
(−2) sin

(
ψ

2
− 3π

4
+

(n+ 1)

2αn,βn
ψ

)
sin

(
n+ 1

nαn,β
ψ − ψ

)
+O

(
1

ψ

)]
.
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