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Abstract

When the value L of the directed landscape at a point (p;q) is sufficiently large, the
geodesic from p to q is rigid and its location fluctuates of order L−1/4 around its
expectation. We further show that at a midpoint of the geodesic, the location of the
geodesic and the value of the directed landscape after appropriate scaling converge
to two independent Gaussians.
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1 Introduction

Recently, there have been huge developments on the study of the Kardar-Parisi-Zhang
universality class [2, 17, 18, 9, 23, 24, 8, 22, 12, 19, 20]. Very recently, a four-parameter
random field, the directed landscape, was constructed from one specific model in the
class, the Brownian last passage percolation [12]. It is believed that the directed
landscape is the limiting law for all the models in the Kardar-Parisi-Zhang universality
class, and this has been confirmed for several classic models [14].

For the directed landscape, a lot of information is known, including the finite-
dimensional distributions [22, 19, 20]. On the other hand, less is known about the
geodesic. There are studies on the properties of the geodesic recently [6, 15, 16, 5,
4, 7, 10, 13, 11, 14]. However, the explicit one-point distribution of the point-to-point
geodesic was only obtained in [21].

The goal of this paper is to investigate one property of the geodesic in the directed
landscape using the formula obtained in [21]. We first introduce some notations and
properties about the directed landscape and its geodesic. Let L(x, s; y, t) be the directed
landscape. It satisfies the metric composition law

L(x, r; y, t) = max
z∈R

(L(x, r; z, s) + L(z, s; y, t)) (1.1)

for any fixed r < s < t and x, y ∈ R, and hence it has the reverse triangle inequality

L(x, r; y, t) ≥ L(x, r; z, s) + L(z, s; y, t). (1.2)

*The work was supported by the University of Kansas Start Up Grant, the University of Kansas New Faculty
General Research Fund, Simons Collaboration Grant No. 637861, and NSF grant DMS-1953687.

†University of Kansas, United States of America.
E-mail: zhipeng@ku.edu https://zhipengliu.ku.edu

https://doi.org/10.1214/22-ECP484
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2106.06913
mailto:zhipeng@ku.edu
https://zhipengliu.ku.edu


When the geodesic becomes rigid in the directed landscape

The geodesic in the directed landscape L from (x, r) to (y, t) is a continuous path
π = πx,r;y,t which maximizes the following length with respect to L

inf
k∈N

inf
r=s0<s1<···<sk=t

k∑
i=1

L(π(si−1), si−1;π(si), si). (1.3)

It has been proved in [12] that such a directed geodesic exists and is unique almost
surely. Moreover, one can prove that the geodesic has the following properties

πx,r;y,t((1− s)r + st)
law
= (t− r)2/3π0,0;0,1(s) + ((1− s)x+ sy), s ∈ [0, 1], (1.4)

where
law
= means that the two sides have the same law, and

L(πx,r;y,t((1− s1)r + s1t), (1− s1)r + s1t;πx,r;y,t((1− s2)r + s2t), (1− s2)r + s2t)

law
= (t− r)1/3L(π0,0;0,1(s1), s1;π0,0;0,1(s2), s2)

− 2(t− r)−1/3(π0,0;0,1(s2)− π0,0;0,1(s1))(y − x)− s2 − s1

t− r
(y − x)2

(1.5)

for any s1, s2 satisfying 0 ≤ s1 ≤ s2 ≤ 1. In other words, the goedesic πx,r;y,t has the
same law as π0,0;0,1 after rescaling, and the directed landscape along the geodesic πx,r;y,t
has the same law as along π0,0;0,1 after shifting and rescaling. These two properties can
be obtained straightforwardly using the formula (1.3) and the stationarity and rescaling
properties of L described in [12, Lemma 10.2]. Hence we do not provide details here.

In this paper, we will fix the point (0, 0; 0, 1). Denote Π(s) = π0,0;0,1(s), 0 ≤ s ≤ 1, the
geodesic from (0, 0) to (0, 1). We also denote L(s) = L(0, 0; Π(s), s) for 0 ≤ s ≤ 1. We
remark that the fact Π(s) is on the geodesic implies L(s) + L(Π(s), s; 0, 1) = L(1).

The main result of this paper is about the fluctuations of Π(s) and L(s) when L(1) = L

becomes large. In the following theorem, the conditional probability P (A | L(1) = L)

should be understood as limε→0+P (A | L(1)− L ∈ (−ε, ε)), for an event A.

Theorem 1.1 (Rigidity of the geodesic). For any fixed s ∈ (0, 1) and x1, x2, `1, `2 ∈ R
satisfying x1 < x2 and `1 < `2, we have

lim
L→∞

P

(
2L1/4Π(s)√
s(1− s)

∈ (x1, x2),
L(s)− sL√
s(1− s)L1/4

∈ (`1, `2)

∣∣∣∣∣ L(1) = L

)

=

∫ x2

x1

p(x)dx

∫ `2

`1

p(`)d`,

(1.6)

where p is the probability density function of the standard Gaussian distribution

p(x) =
1√
2π
e−

x2

2 , x ∈ R. (1.7)

Equivalently, the conditional joint density of 2L1/4Π(s)√
s(1−s)

, L(s)−sL√
s(1−s)L1/4

given L(1) = L con-

verges to the product of two standard Gaussian densities as L→∞.

Remark 1.2. Theorem 1.1 implies that Π(s) becomes very rigid when L becomes large.
It has fluctuations of order L−1/4 and converges to Gaussian distribution after rescaling

lim
L→∞

P

(
2L1/4Π(s)√
s(1− s)

∈ (x1, x2)

∣∣∣∣∣ L(1) = L

)
=

∫ x2

x1

p(x)dx. (1.8)

The rigidity of the geodesic conditioned on large L is not surprising. For example in [3],
the authors were able to show that in the directed last passage percolation model with
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When the geodesic becomes rigid in the directed landscape

i.i.d. exponential weights, if the last passage time is (4+δ)n, then the geodesic fluctuates
of order n1/2+o(1) which is far smaller than the typical fluctuation order n2/3 when the
last passage time is about 4n+O(n1/3). If we write δ = cn−2/3L, then Π(s) · n2/3 has an
order n1/2. So heuristically Π(s) fluctuates as O(n−1/6) = O(L−1/4) which is consistent
with our result above. However, the limiting distribution of Π(s) was not known to our
best knowledge.

Theorem 1.1 also implies that L(s) fluctuates of order L1/4 and has Gaussian distribu-
tion after rescaling

lim
L→∞

P

(
L(s)− sL
L1/4

∈ (`1, `2)

∣∣∣∣∣ L(1) = L

)
=

∫ `2

`1

p(`)d`. (1.9)

Both the fluctuation order and the limiting distribution were not known to our best
knowledge.

Remark 1.3. One can show that

P

(
2L1/4Π(s)√
s(1− s)

∈ (x1, x2),
L(s)− sL√
s(1− s)L1/4

∈ (`1, `2)

∣∣∣∣∣ L(1) = L

)

=

∫ x2

x1

p(x)dx

∫ `2

`1

p(`)d`+ L−3/4 2s− 1

2
√
s(1− s)

∫ x2

x1

p(x)dx

∫ `2

`1

`p(`)d`+O(L−3/2)

when L becomes large. The error terms can be explicitly evaluated by a more careful
calculation using the same argument of this paper. However, the calculation is quite
cumbersome so we do not include it here.

By combing the equations (1.4) and (1.5), and Theorem 1.1, we have the following
general result for the geodesic from (x, r) to (y, t), conditioned on L(x, r; y, t) goes to
infinity.

Corollary 1.4. Suppose x, y ∈ R, and r, t ∈ R≥0 are all fixed. Assume that r < t.
Conditioned on L(x, r; y, t) = L goes to infinity, we have

2L1/4 (πx,r;y,t((1− s)r + st)− ((1− s)x+ sy))

(t− r)3/4
√
s(1− s)

and
L (x, r;πx,t;y,t((1− s)r + st), (1− s)r + st)− sL

(t− r)1/4
√
s(1− s)L1/4

converge to two independent standard Gaussians in distribution.

Our approach relies on the explicit joint density function of L(s) = L(0, 0; Π(s), s),

L(1) − L(s) = L(Π(s), s; 0, 1) and Π(s) which was obtained very recently [21]. As we
mentioned at the beginning of this paper, [21] gives the first explicit formula of the
one-point distribution of the point-to-point geodesic. However, the formula in [21] looks
very complicated and people might doubt whether such a formula has any probabilistic
applications. This paper provides a simple but beautiful application.

The organization of the paper is as follows. In Section 2, we introduce the joint
density function mentioned above. Then we prove Theorem 1.1 In Section 3.

2 The joint density function

In this section, we introduce the joint density function of L(s),L(1)− L(s) and Π(s),
which was obtained in [21, Corollary 1.6]. We rephrase it as follows.
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When the geodesic becomes rigid in the directed landscape

R
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0

Figure 1: The three contours in the left half plane from left to right are ΓL,in,ΓL and
ΓL,out respectively, and the three contours in the right half plane from left to right are
ΓR,out,ΓR and ΓR,in respectively.

Proposition 2.1 ([21]). The joint density function of L(s),L(1)− L(s) and Π(s) is

2p

(
`1 +

x2

s
, `2 +

x2

1− s
, 2x; s

)
, (2.1)

where p(`1, `2, x; s) is the joint density function introduced in [21], and as described
in (2.2) below.

We need to introduce six contours before introducing the function p. Suppose
ΓL,in,ΓL and ΓL,out are three disjoint contours on the left half plane each of which starts
from e−2πi/3∞ and ends to e2πi/3∞. Here ΓL,in is the leftmost contour and ΓL,out is the
rightmost contour. The index “in” and “out” refer to the relative location compared
with −∞. Similarly, suppose ΓR,in,ΓR and ΓR,out are three disjoint contours on the right
half plane each of which starts from e−πi/3∞ and ends to eπi/3∞. Here the index “in”
and “out” refer to the relative location compared with +∞, hence ΓR,in is the rightmost
contour and ΓR,out is the leftmost contour. See Figure 1 for an illustration of these
contours.

The probability density function p(`1, `2, x; s) is defined to be

p(`1, `2, x; s) :=

∮
0

dz

2πi(1− z)2

∑
k1,k2≥1

1

(k1!k2!)2
Tk1,k2(z; `1, `2, x; s) (2.2)

with

Tk1,k2(z; `1, `2, x; s)

:=

k1∏
i1=1

(
1

1− z

∫
ΓL,in

dξ
(1)
i1

2πi
− z

1− z

∫
ΓL,out

dξ
(1)
i1

2πi

)(
1

1− z

∫
ΓR,in

dη
(1)
i1

2πi
− z

1− z

∫
ΓR,out

dη
(1)
i1

2πi

)

·
k2∏
i2=1

∫
ΓL

dξ
(2)
i2

2πi

∫
ΓR

dη
(2)
i2

2πi
·(1−z)

k2

(
1− 1

z

)k1
· f1(ξ(1); `1)f2(ξ(2); `2)

f1(η(1); `1)f2(η(2); `2)
·H(ξ(1),η(1); ξ(2),η(2))

·
2∏
`=1

(
∆(ξ(`))

)2 (
∆(η(`))

)2(
∆(ξ(`);η(`))

)2 · ∆(ξ(1);η(2))∆(η(1); ξ(2))

∆(ξ(1); ξ(2))∆(η(1);η(2))

(2.3)

where the vectors ξ(`) = (ξ
(`)
1 , · · · , ξ(`)

i`
) and η(`) = (η

(`)
1 , · · · , η(`)

i`
) for ` ∈ {1, 2}, the

functions f1, f2 are defined by

f1(ζ; `1) := exp

(
−s

3
ζ3 − 1

2
xζ2 +

(
`1 −

x2

4s

)
ζ

)
,

f2(ζ; `2) := exp

(
− (1− s)

3
ζ3 +

1

2
xζ2 +

(
`2 −

x2

4(1− s)

)
ζ

)
,

(2.4)
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and the function H is defined by

H(ξ(1),η(1); ξ(2),η(2)) =
1

12
S4

1 +
1

4
S2

2 −
1

3
S1S3 (2.5)

with

Sj = Sj(ξ
(1),η(1); ξ(2),η(2)) =

k1∑
i1=1

((
ξ

(1)
i1

)j
−
(
η

(1)
i1

)j)
−

k2∑
i2=1

((
ξ

(2)
i2

)j
−
(
η

(2)
i2

)j)
. (2.6)

We also used the notations

∆(W ) :=
∏

1≤i<j≤n

(wj − wi), ∆(W ;W ′) :=

n∏
i=1

n′∏
i′=1

(wi − w′i′), f(W ) =

n∏
i=1

f(w)

for any two vectors W = (w1, · · · , wn) ∈ Cn and W ′ = (w′1, · · · , w′n′) ∈ Cn
′

and any
function f : C→ C. Here we allow the empty product and set it to be 1.

3 Proof of Theorem 1.1

It is well known that L(1) has the GUE Tracy-Widom distribution FGUE(L), which can
be defined by

FGUE(L) = exp

(
−
∫ ∞
L

(`− L)u2(`)d`

)
(3.1)

in terms of the Hastings-McLeod solution u = u(`) to the Painlevé-II equation

u′′ = `u+ 2u3, u(`)→ 1

2
√
π`1/4

e−
2
3 `

3/2

(1 + o(1)), as `→∞. (3.2)

It is known from the above formulas (see, for example [1, equation (25)] for the expansion
of the squared root of FGUE(L)) that FGUE(L) has the following right tail behavior

1− FGUE(L) ≈ 1

16πL3/2
e−

4
3L

3/2

, as L→∞, (3.3)

and its density function fGUE(L) has

fGUE(L) ≈ 1

8πL
e−

4
3L

3/2

, as L→∞. (3.4)

Here and afterwards, we use ≈ to denote the leading order asymptotics if the next order
term is not needed in our analysis; More explicitly, AL ≈ BL if and only ifAL/BL = 1+o(1)

as L→∞.
Now we come to the proof of Theorem 1.1. For fixed s ∈ (0, 1) and x, ` ∈ R, we denote

X = X(L) :=
x
√
s(1− s)
L1/4

,

L1 = L1(L) := sL+
√
s(1− s)L1/4`+

x2(1− s)
4L1/2

,

L2 = L2(L) := (1− s)L−
√
s(1− s)L1/4`+

x2s

4L1/2
.

(3.5)

In order to show Theorem 1.1, it is sufficient to prove, by using Proposition 2.1, the
following asymptotic result holds uniformly for x and ` on compact intervals

lim
L→∞

s(1− s)p (L1, L2, X; s)

fGUE(L)
=

1√
2π
e−

1
2 `

2

· 1√
2π
e−

1
2x

2

(3.6)
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where fGUE(L) is the probability density function of L.
Inserting (3.4) in (3.6), we find that (3.6) is equivalent to

p(L1, L2, X; s) =
1

16π2s(1− s)L
e−

4
3L

3/2
(
e−

1
2 (`2+x2) + o(1)

)
, as L→∞ (3.7)

uniformly for x and ` on compact intervals.
Recall the definition (2.2) of p. We have the following two lemmas.

Lemma 3.1. With the scaling (3.5), we have∮
0

dz

2πi(1− z)2
T1,1(z;L1, L2, X; s) =

1

16π2s(1− s)L
e−

4
3L

3/2
(
e−

1
2 (`2+x2) + o(1)

)
(3.8)

as L→∞, where the error term o(1) holds uniformly for x and ` on compact intervals.

Lemma 3.2. Suppose |z| = r ∈ (0, 1) is fixed. With the scaling (3.5), for any fixed
ε ∈ (0, 1), there exists a constant C > 0 such that for sufficiently large L, we have

|Tk1,k2(z;L1, L2, X; s)| ≤ kk1/21 k
k2/2
2 (k1 +k2)(k1+k2)/2Ck1+k2e−

4(1−ε)
3 (sk1+(1−s)k2)L3/2

(3.9)

for all k1, k2 ≥ 1.

The proof of these two lemmas will be given in the following two subsections. Now
we use these two lemmas to show (3.7). Using (2.2), we write

p(L1, L2, X; s) =

∮
0

dz

2πi(1− z)2
T1,1(z;L1, L2, X; s)

+

∮
|z|=r

dz

2πi(1− z)2

∑
k1+k2≥3
k1,k2≥1

1

(k1!k2!)2
Tk1,k2(z;L1, L2, X; s).

(3.10)

By Lemma 3.1, the first term on the right hand side of (3.10) gives the desired leading
term in (3.7). We then apply Lemma 3.2 for the second term on the right hand side
of (3.10) and obtain∣∣∣∣∣∣∣∣
∮
|z|=r

dz

2πi(1− z)2

∑
k1+k2≥3
k1,k2≥1

1

(k1!k2!)2
Tk1,k2(z;L1, L2, X; s)

∣∣∣∣∣∣∣∣
≤
∮
|z|=r

|dz|
2π|1− z|2

∑
k1+k2≥3
k1,k2≥1

1

(k1!k2!)2
k
k1/2
1 k

k2/2
2 (k1+k2)(k1+k2)/2Ck1+k2e−

4(1−ε)
3 (sk1+(1−s)k2)L3/2

≤ C ′ max
k1+k2≥3
k1,k2≥1

e−
4(1−ε)

3 (sk1+(1−s)k2)L3/2

(3.11)

for sufficiently large L, where C ′ is a constant given by

C ′ =

∮
|z|=r

|dz|
2π|1− z|2

∑
k1+k2≥3
k1,k2≥1

1

(k1!k2!)2
k
k1/2
1 k

k2/2
2 (k1 + k2)(k1+k2)/2Ck1+k2 .

Note that the above sum in the definition of C ′ is absolutely convergent using the
Stirling’s approximation formula. On the other hand, we can choose ε small enough such
that 4(1−ε)

3 (sk1 + (1− s)k2) > 4
3 for all k1 + k2 ≥ 3 and k1, k2 ≥ 1. Then the second term

on the right hand side of (3.10) is negligible compared to the first term as L becomes
large. Hence we complete the proof of (3.7).

It remains to prove the two lemmas. We provide the proof in the following two
subsections.
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3.1 Proof of Lemma 3.1

In the proof below, we fixed x and ` for simplification. However, it is easy to check
that the proof is also valid uniformly for x and ` on compact intervals since our error
terms depend on x and ` continuously.

Since k1 = k2 = 1, we drop the subscript 1 in the integration variables for simplifica-
tion

ξ(1) = ξ
(1)
1 , η(1) = η

(1)
1 , ξ(2) = ξ

(2)
1 , and η(2) = η

(2)
1 . (3.12)

Recall the formula for T1,1 in (2.3). We realize that if we expand the integrals, there are
four possible combinations in T1,1

− 1

z

∫
ΓL,in

∫
ΓR,in

∫
ΓL

∫
ΓR

,
1

1− z

∫
ΓL,out

∫
ΓR,in

∫
ΓL

∫
ΓR

,

1

1− z

∫
ΓL,in

∫
ΓR,out

∫
ΓL

∫
ΓR

, −z

∫
ΓL,out

∫
ΓR,out

∫
ΓL

∫
ΓR

,

(3.13)

where we ignore the integrand for simplification. Now if we take the z integration∮
0

dz
2πi(1−z)2 for these four combinations, clearly only the first one survives

∮
0

dz

2πi(1− z)2

(
−1

z

∫
ΓL,in

∫
ΓR,in

∫
ΓL

∫
ΓR

)
= −

∫
ΓL,in

∫
ΓR,in

∫
ΓL

∫
ΓR

. (3.14)

Now we write down the explicit formula for the above integrals, also note

H(ξ(1),η(1); ξ(2),η(2)) = (ξ(1) − η(1))(ξ(2) − η(2))(η(1) − η(2))(ξ(1) − ξ(2)) (3.15)

which follows from a direct calculation. We obtain∮
0

dz

2πi(1− z)2
T1,1(z;L1, L2, X; s)

= −
∫

ΓL,in

dξ(1)

2πi

∫
ΓR,in

dη(1)

2πi

∫
ΓL

dξ(2)

2πi

∫
ΓR

dη(2)

2πi

eg1(ξ(1))eg2(ξ(2))

eg1(η(1))eg2(η(2))

(
ξ(1) − η(2)

) (
η(1) − ξ(2)

)(
ξ(1) − η(1)

) (
ξ(2) − η(2)

)
(3.16)

where

g1(ξ) = −s
3
ξ3 − 1

2
Xξ2 +

(
L1 −

X2

4s

)
ξ, g2(ξ) = −1− s

3
ξ3 +

1

2
Xξ2 +

(
L2 −

X2

4(1− s)

)
ξ.

(3.17)

Now we apply a standard steepest descent analysis to (3.16). Note that if we only
consider the leading term, g1(ξ) ≈ s

(
−ξ3/3 + Lξ

)
and g2(ξ) ≈ (1 − s)(−ξ3/3 + Lξ)

by (3.5). Thus the main contribution of the integral comes from ξ(1), ξ(2) ≈ −
√
L and

η(1), η(2) ≈
√
L. To further analyze the integral we need to zoom in a neighborhood of

these two points.

We deform the contours Γ∗, with ∗ = {L, in}, {L}, {R, in}, and {R}, in the following
way. Here the braces are just introduced to avoid notation confusion but they will not
appear in the subscripts. For example, Γ∗ = ΓL,in if ∗ = {L, in}.
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When the geodesic becomes rigid in the directed landscape

The contour Γ∗ has a vertical part Γ
(L)
∗

Γ
(L)
∗

:=



−X
2s
−
√
L− 1

2

√
1− s
s

`L−1/4+L−1/4 ·
{

iu(1) : − logL ≤ u(1) ≤ logL
}
, ∗ = {L, in},

X

2(1− s)
−
√
L+

1

2

√
s

1− s
`L−1/4+L−1/4 ·

{
iu(2) :−logL ≤ u(2)≤ logL

}
, ∗ = {L},

−X
2s

+
√
L+

1

2

√
1− s
s

`L−1/4+L−1/4 ·
{

iv(1) : − logL ≤ v(1) ≤ logL
}
, ∗={R, in},

X

2(1− s)
+
√
L− 1

2

√
s

1− s
`L−1/4+L−1/4 ·

{
iv(2) :−logL ≤ v(2) ≤ logL

}
, ∗ = {R},

(3.18)

and a second part Γ
(err)
∗ containing two rays

Γ
(err)
∗ :=



−X
2s
−
√
L− 1

2

√
1− s
s

`L−1/4 ± iL−1/4 logL+ e±2πi/3 ·R≥0, ∗ = {L, in},

X

2(1− s)
−
√
L+

1

2

√
s

1− s
`L−1/4 ± iL−1/4 logL+ e±2πi/3 ·R≥0, ∗ = {L},

−X
2s

+
√
L+

1

2

√
1− s
s

`L−1/4 ± iL−1/4 logL+ e±πi/3 ·R≥0, ∗ = {R, in},

X

2(1− s)
+
√
L− 1

2

√
s

1− s
`L−1/4 ± iL−1/4 logL+ e±πi/3 ·R≥0, ∗ = {R}.

(3.19)
Note that the contours ΓL,in and ΓR,in do not intersect during the deformation, similarly
ΓL and ΓR do not intersect. Thus the denominator in the integrand of (3.16) does not
vanish during the deformation of these contours.

Now we estimate gi on Γ
(L)
∗ and Γ

(err)
∗ respectively.

For

ζ = −X
2s
∓
√
L∓ 1

2

√
1− s
s

`L−1/4 + L−1/4iw, − logL ≤ w ≤ logL, (3.20)

we have, after inserting (3.5) and using Taylor expansion,

±
(
g1(ζ)−

(
X3

24s2
− XL1

2s

))
= ∓s

3

(
ζ +

X

2s

)3

± L1

(
ζ +

X

2s

)
= −2

3
sL3/2 −

√
s(1− s)`L3/4 − 1

4
(1− s)`2 − 1

4
(1− s)x2 − sw2 +O(L−3/4(logL)3).

(3.21)

For

ζ = −X
2s
∓
√
L∓ 1

2

√
1− s
s

`L−1/4 + L−1/4i logL+ (∓1 +
√

3i)w, w ∈ R≥0, (3.22)

or

ζ = −X
2s
∓
√
L∓ 1

2

√
1− s
s

`L−1/4 − L−1/4i logL+ (∓1−
√

3i)w, w ∈ R≥0, (3.23)
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When the geodesic becomes rigid in the directed landscape

we have, after a tedious but straightforward calculation,

± Re

(
g1(ζ)−

(
X3

24s2
− XL1

2s

))
= Re

(
∓s

3

(
ζ +

X

2s

)3

± L1

(
ζ +

X

2s

))

= −2

3
sL3/2 −

√
s(1− s)`L3/4 − 1

4
(1− s)`2 − 1

4
(1− s)x2 − s(logL)2 +O(L−3/4(logL)3)

− 8s

3
w3 − (2sL1/2 +

√
s(1− s)`L−1/4 + 2

√
3sL−1/4 logL)w2

−
(

2
√

3sL1/4 logL+ sL−1/2(logL)2 +
√

3s(1− s)`L−1/2 logL

+
x2(1− s)

4
L−1/2 − 1− s

4
`2L−1/2

)
w,

(3.24)

where the error term is independent of w. Note that the w terms behaves like − 8s
3 w

3 −
2sL1/2w2 − 2

√
3sL1/4 logLw as L becomes large.

Similarly, for

ζ =
X

2(1− s)
∓
√
L± 1

2

√
s

1− s
`L−1/4 + L−1/4iw, − logL ≤ w ≤ logL, (3.25)

we have

±
(
g2(ζ) +

(
X3

24(1− s)2
− XL2

2(1− s)

))
= ∓1− s

3

(
ζ − X

2(1− s)

)3

± L2

(
ζ − X

2(1− s)

)
= −2

3
(1− s)L3/2 +

√
s(1− s)`L3/4 − 1

4
s`2 − 1

4
sx2 − (1− s)w2 +O(L−3/4(logL)3).

(3.26)

For

ζ =
X

2(1− s)
∓
√
L± 1

2

√
1− s
s

`L−1/4 + L−1/4i logL+ (∓1 +
√

3i)w, w ∈ R≥0, (3.27)

or

ζ =
X

2(1− s)
∓
√
L± 1

2

√
1− s
s

`L−1/4 − L−1/4i logL+ (∓1−
√

3i)w, w ∈ R≥0, (3.28)

we have

± Re

(
g2(ζ) +

(
X3

24(1− s)2
− XL2

2(1− s)

))
= Re

(
∓1− s

3

(
ζ − X

2(1− s)

)3

± L2

(
ζ − X

2(1− s)

))

= −2

3
(1− s)L3/2 +

√
s(1− s)`L3/4 − 1

4
s`2 − 1

4
sx2 − (1− s)(logL)2 +O(L−3/4(logL)3)

− 8(1− s)
3

w3 − (2(1− s)L1/2 −
√
s(1− s)`L−1/4 + 2

√
3(1− s)L−1/4 logL)w2

−
(

2
√

3(1− s)L1/4 logL+ (1− s)L−1/2(logL)2 −
√

3s(1− s)`L−1/2 logL

+
x2s

4
L−1/2 − s

4
`2L−1/2

)
w.

(3.29)
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When the geodesic becomes rigid in the directed landscape

We remark that the only differences between these two formulas (3.26), (3.29) and two
previous ones (3.21), (3.24) are the switch of s and 1 − s, and the change of the sign
before `.

Inserting these formulas (3.21), (3.24), (3.26) and (3.29) in (3.16), we know that the
main contribution of the integral comes from the contours Γ

(L)
∗ . Also note that

(
ξ(1) − η(2)

) (
η(1) − ξ(2)

)(
ξ(1) − η(1)

) (
ξ(2) − η(2)

) ≈ −1 (3.30)

when all the variables are close to −
√
L (for ξ(i)) and

√
L (for η(i)). Here we use the

notation ≈ for the leading order asymptotics. We obtain, after changing the integration
variables,∮

0

dz

2πi(1− z)2
T1,1(z;L1, L2, X; s)

≈ e−
4
3L

3/2− 1
2 `

2− 1
2x

2

16π4L

·
∫∫∫∫

[− logL,logL]4
e−s(u

(1))2−s(v(1))2−(1−s)(u(2))2−(1−s)(v(2))2du(1)dv(1)du(2)dv(2)

≈ e−
4
3L

3/2− 1
2 `

2− 1
2x

2

16π2s(1− s)L
.

(3.31)

This proves Lemma 3.1.

3.2 Proof of Lemma 3.2

We fix three positive constants c1, c2, c3 satisfying c1 < c2 < c3 < 2c1. We change the
integration variables and deform the contours as follows

ξ
(1)
i1

= −
√
L− c3L−1/4 + L−1/4e±2πi/3u

(1)
i1
,

for ξ
(1)
i1
∈ ΓL,in = −

√
L− c3L−1/4 + L−1/4e±2πi/3R≥0,

ξ
(2)
i2

= −
√
L− c2L−1/4 + L−1/4e±2πi/3u

(2)
i2
,

for ξ
(2)
i2
∈ ΓL = −

√
L− c2L−1/4 + L−1/4e±2πi/3R≥0,

ξ
(1)
i1

= −
√
L− c1L−1/4 + L−1/4e±2πi/3u

(1)
i1
,

for ξ
(1)
i1
∈ ΓL,out = −

√
L− c1L−1/4 + L−1/4e±2πi/3R≥0,

η
(1)
i1

=
√
L+ c3L

−1/4 + L−1/4e±πi/3v
(1)
i1
,

for η
(1)
i1
∈ ΓR,in =

√
L+ c3L

−1/4 + L−1/4e±πi/3R≥0,

η
(2)
i2

=
√
L+ c2L

−1/4 + L−1/4e±πi/3v
(2)
i2
,

for η
(2)
i2
∈ ΓR =

√
L+ c2L

−1/4 + L−1/4e±πi/3R≥0,

η
(1)
i1

=
√
L+ c1L

−1/4 + L−1/4e±πi/3v
(1)
i1
,

for η
(1)
i1
∈ ΓR,out =

√
L+ c1L

−1/4 + L−1/4e±πi/3R≥0.

(3.32)

Note that these contours are nested in the order as in the definition.

Recall the definition of g1 and g2 in (3.17). We show that with the above change of
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variables and the deformed contours,

Re
(
g1(ξ

(1)
i1

)
)
≤ −2(1− ε/2)

3
sL3/2 +m(u

(1)
i1

; s), for all ξ
(1)
i1
∈ ΓL,in ∪ ΓL,out,

Re
(
g2(ξ

(2)
i2

)
)
≤ −2(1− ε/2)

3
(1− s)L3/2 +m(u

(2)
i2

; 1− s), for all ξ
(2)
i2
∈ ΓL,

Re
(
−g1(η

(1)
i1

)
)
≤ −2(1− ε/2)

3
sL3/2 +m(v

(1)
i1

; s), for all η
(1)
i1
∈ ΓR,in ∪ ΓR,out,

Re
(
−g2(η

(2)
i2

)
)
≤ −2(1− ε/2)

3
(1− s)L3/2 +m(v

(2)
i2

; 1− s), for all η
(2)
i2
∈ ΓR

(3.33)

for any fixed ε > 0 and sufficiently large L, where

m(w; s) := −sw2. (3.34)

The proof of these inequalities are similar so we only prove the first one.

We drop the scripts and write ξ = −
√
L− cL−1/4 +w(−1±

√
3i)L−1/4, where w ∈ R≥0,

and c ∈ {c1, c3}. Recall the scaling (3.5). We have

Re (g1(ξ))

= −s
3

Re

((
−
√
L− (c+ w)L−1/4 +

√
3wL−1/4i

)3
)

− X

2
Re

((
−
√
L− (c+ w)L−1/4 +

√
3wL−1/4i

)2
)

+

(
L1 −

X2

4s

)
Re
(
−
√
L− (c+ w)L−1/4 +

√
3wL−1/4i

)
= −2

3
sL3/2 +O(L3/4) + (−2sw2 + 2scw −

√
s(1− s)(x+ `)w)

+

(
−8

3
sw3 − 2scw2 + x

√
s(1− s)w2 + (sc−

√
s(1− s))cw

)
L−3/4

= −2

3
sL3/2 +m(w; s) +O(L3/4) + (−sw2 + 2scw −

√
s(1− s)(x+ `)w)

+

(
−8

3
sw3 − 2scw2 + x

√
s(1− s)w2 + (sc− x

√
s(1− s))cw

)
L−3/4

(3.35)

where the term O(L3/4) is independent of w. Note that when w � L3/8, the last
two w terms in the above expression are bounded by L3/4. When w ≥ O(L3/8), the
last two w terms behave like −sw2 − 8

3sw
3L−3/4 which is negative. Thus we have

Re (g1(ξ)) ≤ − 2(1−ε/2)
3 sL3/2 +m(w; s) for sufficiently large L and any ξ ∈ ΓL,in ∪ ΓL,out.

We need two more estimates before we prove Lemma 3.2. They were obtained in [21]
so we do not provide the proof. The first one is (see (3.12) of [21])∣∣∣∣∣∣∣

2∏
`=1

(
∆(ξ(`))

)2 (
∆(η(`))

)2(
∆(ξ(`);η(`))

)2 · ∆(ξ(1);η(2))∆(η(1); ξ(2))

∆(ξ(1); ξ(2))∆(η(1);η(2))

∣∣∣∣∣∣∣
≤ kk1/21 k

k2/2
2 (k1 + k2)(k1+k2)/2

k1∏
i1=1

1

dist(ξ
(1)
i1

)

1

dist(η
(1)
i1

)

k2∏
i2=1

1

dist(ξ
(2)
i2

)

1

dist(η
(2)
i2

)

(3.36)

where dist(ζ) is the distance between ζ ∈ Γ∗ and the contours ΓL,in ∪ ΓL ∪ ΓL,outΓR,in ∪
ΓR ∪ ΓR,out \ Γ∗. In our choice of contours, it is easy to see that dist(ζ) =

√
3

2 cL
−1/4 for
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c ∈ {c3 − c2, c2 − c1}. Hence we have∣∣∣∣∣∣∣
2∏
`=1

(
∆(ξ(`))

)2 (
∆(η(`))

)2(
∆(ξ(`);η(`))

)2 · ∆(ξ(1);η(2))∆(η(1); ξ(2))

∆(ξ(1); ξ(2))∆(η(1);η(2))

∣∣∣∣∣∣∣
≤ kk1/21 k

k2/2
2 (k1 + k2)(k1+k2)/2

(√
3

2
min{c3 − c2, c2 − c1}

)−2k1−2k2

L(k1+k2)/2

(3.37)

The second estimate is, see (3.13) of [21],∣∣∣H(ξ(1),η(1); ξ(2),η(2))
∣∣∣ ≤ k1∏

i1=1

h(|ξ(1)
i1
|)h(|η(1)

i1
|)

k2∏
i2=1

h(|ξ(2)
i2
|)h(|η(2)

i2
|), (3.38)

where h(y) := (1 + y + y2 + y3)4.
Inserting the estimates (3.33), (3.37) and (3.38) in (2.3), we obtain

|Tk1,k2(z;L1, L2, X; s)|

≤ kk1/21 k
k2/2
2 (k1 + k2)(k1+k2)/2

(√
3

2
min{c3 − c2, c2 − c1}

)−2k1−2k2

L(k1+k2)/2

· e− 4
3 (1−ε/2)(sk1+(1−s)k2)L3/2

· |1− z|k2
∣∣∣∣1− 1

z

∣∣∣∣k1
k1∏
i1=1

(
1

|1− z|

∫
ΓL,in

|dξ(1)
i1
|

2π
+
|z|
|1− z|

∫
ΓL,out

|dξ(1)
i1
|

2π

)
em(u

(1)
i1

;s)h(|ξ(1)
i1
|)

k1∏
i1=1

(
1

|1− z|

∫
ΓR,in

|dη(1)
i1
|

2π
+
|z|
|1− z|

∫
ΓR,out

|dη(1)
i1
|

2π

)
em(v

(1)
i1

;s)h(|η(1)
i1
|)

·
k2∏
i2=1

∫
ΓL

|dξ(2)
i2
|

2π
em(u

(2)
i2

;1−s)h(|ξ(2)
i2
|)
∫

ΓR

|dη(2)
i2
|

2π
em(v

(2)
i2

;1−s)h(|η(2)
i2
|).

(3.39)

On the other hand, note that the function em decays super-exponentially along the
integration contours. We obtain∫

ΓL,in∪ΓL,out

em(u
(1)
i1

;s)h(|ξ(1)
i1
|)
|dξ(1)

i1
|

2π
≤ CL6 · L−1/4 < CL6 (3.40)

where C is a positive constant. Here the term L6 comes from the function h near the
point u(1)

i1
= 0, and L−1/4 from the change of variables. We have similar estimates for all

other integrals on the right hand side of (3.39). Thus we obtain

|Tk1,k2(z;L1, L2, X; s)|

≤ kk1/21 k
k2/2
2 (k1 + k2)(k1+k2)/2Ck1+k2L13(k1+k2)e−

4
3 (1−ε/2)(sk1+(1−s)k2)L3/2 (3.41)

for a different constant C if |z| = r ∈ (0, 1) is fixed. Note that L13(k1+k2) �
e

2
3 ε(sk1+(1−s)k2)L3/2

as L becomes large. Lemma 3.2 follows immediately.
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