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Abstract

We prove existence and uniqueness of physical and minimal solutions to McKean-
Vlasov equations with positive feedback through elastic stopping times. We do this
by establishing a relationship between this problem and a problem with absorbing
stopping times. We show convergence of a particle system to the McKean-Vlasov
equation. Moreover, we establish convergence of the elastic McKean-Vlasov problem
to the problem with absorbing stopping times and to a reflecting Brownian motion as
the elastic parameter goes to infinity or zero respectively.
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1 Introduction

McKean-Vlasov equations with positive feedback through hitting times have recently
been used in the modelling of a range of phenomena, from the self-excitation of neurons
[7], [8], through the modelling of default and systemic risk in banking networks, [9], [10],
[11], [12], [13], to a probabilistic representation for the supercooled Stefan problem [6].
In these models, the feedback is generated through the dependence of the process on
the distribution of its hitting times. These create singular interactions that can lead to
jumps and cause complexity in the mathematical analysis such as non-uniqueness of
solutions in general.

Our aim in this paper is to consider a variant in which the feedback is provided
through elastic stopping times. The McKean-Vlasov equation we consider is{

Xt = X0− +Bt − αΛt + Lt, t ≥ 0

Λt = P(τ ≤ t), t ≥ 0, where τ = inf{t ≥ 0 : Lt ≥ ξ},
(1.1)

where ξ is an exponential random variable with parameter κ > 0, X0− is a random
variable with law ν0−, α > 0 a constant, B a standard Brownian motion, independent of
ξ and X0−, and L the reflection term we need to add to obtain a non-negative process.
In the case of a continuous process, L is the local time but as we will see the process
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McKean-Vlasov equations with positive feedback through elastic stopping times

X may possess discontinuities and thus L is the positivity preserving function in the
corresponding Skorokhod problem. Feedback models with absorbing stopping times can
be obtained by setting ξ = 0.

These problems are interesting from a mathematical point of view but can also be
applied in several areas. For example, they can be used to model default cascades and
systemic risk in the banking sector when default does not happen immediately. The
elastic boundary can represent factors that can influence default such as negotiations
over additional funds. In addition we will see that the elastic feedback model is closely
connected to the supercooled Stefan problem with kinetic undercooling discussed in [1].

The discontinuities that can occur as a result of the feedback lead to non-uniqueness.
To resolve this problem, in the absorbing case, [7] introduced the concept of a physical
solution to such a McKean-Vlasov equation. Existence of such solutions has been
established for several different feedback models [2], [3], [4], [7], [9], [12], while
uniqueness remained an open problem until Delarue et al. [6] were able to use the
connection to the super-cooled Stefan problem to prove uniqueness for a class of initial
conditions with restricted oscillations. In [5], the authors analyzed minimal solutions
as an alternative natural solution concept. They were able to prove the existence of
minimal solutions and show that minimal solutions are physical solutions.

In Section 2 we will establish existence and uniqueness of physical and minimal
solutions to the elastic feedback problem by exploiting a simple connection to a corre-
sponding absorbing model. In Section 3 we show the connection to the Stefan problem
with kinetic undercooling. We show weak convergence of a particle system to the
McKean-Vlasov problem (1.1) in Section 4. Finally, in Section 5, we prove convergence
of (1.1) to a reflecting Brownian motion and an absorbing feedback model when letting
κ go to zero or infinity, respectively. This is a probabilistic extension of the result in [1]
where convergence to the absorbing feedback model is shown under the assumption of
continuous solutions.

2 Physical and minimal solutions

A solution to the problem (1.1) is a deterministic càdlàg function t 7→ Λt, called the
loss function, that starts at 0, is increasing and satisfies the problem (1.1). We will define
a physical and a minimal solution for this problem. We will then show how to exploit
the results for absorbing equations to prove that (1.1) has unique physical and minimal
solutions and that these coincide.

The process X is a reflected process that is the result of an application of the
Skorokhod map Θ : D([0,∞))→ D([0,∞)) that maps a real-valued càdlàg function to the
corresponding non-negative reflected process (see [16] Chapter 13.5). We see that the
process X can be constructed by taking a process Y defined as

Yt = X0− +Bt − αΛt (2.1)

and applying the Skorokhod map Θ, i.e. X = Θ(Y ). The term L that is needed to keep X
nonnegative is given by

Lt = (− inf
0≤s≤t

Ys) ∨ 0. (2.2)

We can use this to find the following expression for the elastic stopping time

τ = inf{t ≥ 0 : Lt ≥ ξ} = inf{t ≥ 0 : Yt ≤ −ξ}

and the loss function Λt becomes

Λt = P(τ ≤ t) = P( inf
0≤s≤t

Ys ≤ −ξ).
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A first result that is important in the elastic case uses a simple argument, similar to
that proving [9] Theorem 1.1, to show that if the feedback parameter α is large enough,
any solution to (1.1) cannot be continuous for all times t ≥ 0.

Lemma 2.1. Let m0− :=
∫∞

0
xν0−(dx). If α > 2(m0− + 1

κ ), then any solution Λ to (1.1)
cannot be continuous for all times t ≥ 0.

Proof. Assume α > 2(m0− + 1
κ ) and Λ is a continuous solution. We have that

0 ≤ Xt∧τ = X0− +Bt∧τ − αΛt∧τ + Lt∧τ .

After taking expectations and rearranging

m0− ≥ αE[Λt∧τ ]− E[Lt∧τ ].

Taking the limit as t→∞ and noting that Λ∞ = 1, as inft≥0Bt = −∞, yields

m0− ≥ α
∫ ∞

0

ΛsdΛs − E[ξ] =
1

2
α(Λ2

∞ − Λ2
0)− 1

κ
=

1

2
α− 1

κ
.

Thus we get 2(m0− + 1
κ ) ≥ α, a contradiction.

The fact that, as in the absorbing case, solutions in general are not continuous means
we need to define a suitable solution concept. The two most natural ones to consider are
that of a physical solution and a minimal solution.

Definition 2.2 (Minimal Solution). A minimal solution Λ is a solution to (1.1) such that
for any other solution Λ we have

Λt ≤ Λt, t ≥ 0.

In the case of absorbing feedback models these solutions have been introduced and
studied in detail in [5].

Earlier the idea of a physical solution was introduced by Delarue et al. [7].
A physical solution, in the absorbing case, is defined as a solution Λ such that the

condition
∆Λt = inf{x ≥ 0 : P(t < τa, 0 < X0− +Bt − αΛt− < αx) < x} (2.3)

is satisfied, where τa = inf{t ≥ 0 : Xt ≤ 0} denotes the absorbing stopping time.
Recalling the definitions of the elastic stopping time in (1.1) and the map L from (2.2)

an equivalent condition for a solution Λ to the elastic feedback model can be defined.

Definition 2.3 (Physical Solution). A physical solution Λ to (1.1) is a solution such that
the condition

∆Λt = inf{x ≥ 0 : P(t < τ, 0 < X0− + ξ +Bt − αΛt− < αx) < x} (2.4)

holds for all t ≥ 0.

We will establish the existence and uniqueness of a physical solution for (1.1). The
key idea is that we can relate the elastic feedback model to an absorbing feedback model
for which these are known results by [6].

Lemma 2.4. Let Λ be an increasing càdlàg function with Λ0 = 0. Then Λ is a solution to
the McKean-Vlasov problem (1.1) if and only if it is a solution to the absorbing feedback
model {

Yt = Y0− +Bt − αΛat , t ≥ 0

Λat = P(τa ≤ t), t ≥ 0, where τa = inf{t ≥ 0 : Yt ≤ 0}
(2.5)

with initial condition Y0− := X0− + ξ.
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Proof. Let Λ be a solution to the problem (1.1). We can rewrite this using the definition
of the stopping time τ and the Skorokhod map Θ in the following way

Λt = P(τ ≤ t) = P(Lt ≥ ξ) = P(inf
s≤t

(X0− +Bs − αΛs) ≤ −ξ)

= P(inf
s≤t

(ξ +X0− +Bs − αΛs) ≤ 0)

= Λat .

Therefore, a solution to the elastic feedback model (1.1) is also a solution to the absorbing
model (2.5). Conversely, any solution to (2.5) solves the elastic model.

Theorem 2.5. LetX0− be a random variable with bounded density f such that f changes
monotonicity at most finitely often on any compact interval. Then there exists a unique
physical solution to the elastic feedback model (1.1).

Proof. By Lemma 2.4 we know that an increasing càdlàg process Λ solves the McKean-
Vlasov problem (1.1) if and only if it solves the problem (2.5). Additionally, considering the
definition of a physical solution to the absorbing model (2.3) and to the elastic model (2.4),
we see that the same holds for physical solutions. Hence a map Λ is a physical solution
to the elastic feedback model if and only if it is a physical solution to the absorbing
feedback model (2.5). The random variable Y0− with the law of X0− + ξ, has a density g
which inherits the properties from f , i.e. g is bounded and changes monotonicity at most
finitely often on compact intervals. Moreover, since ξ is an exponential random variable
we obtain from the convolution formula that g(0) = 0. We can apply the results from [6]
for absorbing feedback models and conclude that the elastic feedback model (1.1) has a
unique physical solution.

Similarly, Lemma 2.4 can be combined with the ideas from [5] about minimal solu-
tions.

Theorem 2.6. The elastic feedback model has a unique minimal solution. Moreover, if
the conditions of Theorem 2.5 hold, then the unique minimal solution and the unique
physical solution coincide.

Proof. Using the reformulation in terms of an absorbing feedback problem from Lemma
2.4, by [5] there exists a unique minimal solution and the minimal solution is a physical
solution. If we additionally have that the density of X0− is bounded and changes
monotonicity at most finitely often on compact intervals, Theorem 2.5 applies and the
physical solution is unique.

Remark 2.7. The results in this section and in Section 4 only rely on the random variable
ξ being nonnegative, L1 and such that the density of X0− + ξ satisfies the conditions of
[6]. Thus we could extend our McKean-Vlasov equation to this more general formulation.
However, since we are mainly interested in elastic boundary behaviour, we focus on the
case of ξ having an exponential distribution.

3 PDE formulation and connection with the kinetic undercooled
stefan problem

In [1] the authors study a free boundary problem called the supercooled Stefan
problem with kinetic undercooling as an approximation to the supercooled Stefan prob-
lem. They work in the regime without jumps and use a probabilistic representation of
solutions based on a Feynmac-Kac formula to derive their results. In this section we
outline, under the assumption of continuous solutions, the arguments showing that the
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elastic feedback model is a probabilistic formulation of the Stefan problem with kinetic
undercooling. Thus, the results in Section 2 on existence and uniqueness, as well as
the approximation results discussed in Section 5, are a probabilistic generalisation of
the results in [1]. We define a measure ν by its action on test functions φ ∈ C2 with
κφ(0) = ∂xφ(0) as νt(φ) := E[φ(Xt)1t<τ ]. To obtain the dynamics we calculate φ(Xt∧τ ) by
applying Ito’s formula

dφ(Xt∧τ ) = ∂xφ(Xt∧τ )dBt − α∂xφ(Xt∧τ )dΛt + ∂xφ(Xt∧τ )dLt +
1

2
∂xxφ(Xt∧τ )dt.

As Xτ = 0, we have
φ(Xt∧τ ) = φ(Xt)1t<τ + φ(0)1τ≤t.

Using this fact and taking expectations we have the measure dynamics

dνt(φ) =
1

2
νt(∂xxφ)dt− ανt(∂xφ)dΛt + κφ(0)E[Lt∧τ ]− φ(0)P(τ ≤ t).

We focus on the last two terms and compute

κE[Lt∧τ ]− P(τ ≤ t) = κE[Lt1t<τ ] + κE[ξ1t≥τ ]− P(τ ≤ t)
= κE[Lte

−κLt ]− κE[Lte
−κLt ] + P(τ ≤ t)− P(τ ≤ t) = 0.

Thus we obtain the weak form of the nonlinear PDE{
νt(φ) = ν0(φ) + 1

2

∫ t
0
νs(∂xxφ)ds− α

∫ t
0
νs(∂xφ)dΛs,

Λt = 1−
∫∞

0
νt(dx).

By removing the continuous drift using Girsanov’s theorem and applying the Radon-
Nikodym Theorem it can be shown that the measure νt possesses a density V (t, x). We
can use integration by parts to derive the PDE governing the evolution of the density{

∂tV (t, x) = 1
2∂xxV (t, x) + αΛ̇t∂xV (t, x),

1
2∂xV (t, 0) =

(
κ
2 − αΛ̇t

)
V (t, 0).

Now we reparametrize and set β = 2
α , L = α

2 Λ, and for an ε > 0 set κ = β/ε. Finally,
writing u(t, x) = V (t, x− Lt), we have that u solves the free boundary problem

∂tu = 1
2∂xxu, on Γ := {(t, x) = [0,∞)2 : x ≥ Lt},

u(t,Lt) = εL̇t, t ≥ 0,

(β − 2u(t,Lt))L̇t = ∂xu(t,Lt), t ≥ 0, L0 = 0.

This is the Stefan problem with kinetic undercooling as discussed in [1].

4 Particle system approximation

We consider a system of particles with elastic feedback given by{
Xi,N
t = Xi

0− +Bit − αΛNt + Li,Nt , t ≥ 0

ΛNt = 1
N

∑N
i=1 1τi,N≤t, t ≥ 0, where τi,N = inf{t ≥ 0, Li,Nt ≥ ξi},

(4.1)

where the parameters are as discussed in Section 1 and the random variables ξi are i.i.d.
We can use the ideas from Section 2 and formulate this as a system of particles with
absorbing boundary and initial conditions Xi

0− + ξi. This way, we see that the theory for
absorbing particle systems also holds for the elastic ones. As for our McKean-Vlasov
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problem, minimal and physical solutions can be defined for this particle system. In
[5] existence of a minimal solution is shown. Moreover, the authors establish that the
physical solution is equal to the minimal solution.

The goal of this section is to establish weak convergence, on the Skorokhod space with
the M1-topology [16], of the system (4.1) to a solution to the McKean-Vlasov equation
(1.1). After verifying tightness in the M1-topology we show that physical solutions to
the particle system converge to physical solutions of (1.1). We can then refer to the
uniqueness results in Theorem 2.5 to deduce weak convergence. The main idea is again
to use the structure of the processes Xi,N

t in terms of the Skorokhod map Θ, that is

Xi,N
t = Θ(Y i,Nt ) = Θ(Xi

0− +Bit − αΛNt )

and exploit the fact that the Skorokhod map is continuous on the Skorokhod space with
the M1-topology (see [16] Theorem 13.5.1).

4.1 Tightness

We closely follow the approach in [5]. We consider the loss processes ΛN to be
elements of the space M defined by

M := {l : R̄→ [0, 1]|l càdlàg and increasing, l0− = 0, l∞ = 1}. (4.2)

Writing P(E) for the space of probability measures on a Polish space E, the space M can
be identified with distribution functions of measures in P([0,∞]). If we equip it with the
topology of weak convergence it becomes a compact Polish space, because the topology
is metrizable (for example using the Lévy metric). Define the spaces Ē and Ê as

Ē := C([0,∞))×M, Ê := Ē ×R.

Theorem 4.1. Endowed with the product topology induced by compact convergence
on C([0,∞)), and the Lévy-metric on M, the space Ē and then also Ê are Polish. For
w ∈ C([0,∞)) and l ∈M , define

ŵt :=

{
w0 t ∈ [−1, 0)

wt t ∈ [0,∞)
ľt :=

{
0 t ∈ [−1, 0)

lt t ∈ [0,∞).

For any α ∈ R the embedding ια : Ê → (D([−1,∞))×R) defined via

ια(w, l, z) = (ŵ − αľ, z)

is continuous.

Proof. The space Ê is Polish as the product space of Polish spaces. The fact that the
map (w, l) 7→ (ŵ − αľ) is a continuous map from Ē to D([−1,∞)) then follows as in the
proof of [5] Theorem 4.2. As a consequence ια is a continuous map.

Theorem 4.2. Let (XN )N∈N be a sequence of stochastic processes with paths in
D([0,∞)). Suppose that XN is of the form

XN = Θ(Y N ) = Θ(ZN − αNΛn)

with αN a real number, ZN continuous and ΛN ∈ M . Suppose that (ZN )N∈N is tight
on C([0, T ]) for each T > 0 and (αN )N∈N is tight on R. Furthermore, let (ξN )N∈N be a
tight sequence of random variables on R. Following the notation from Theorem 4.1 we
denote by Ŷ N the extension of Y N to D([−1,∞)) and set X̂N = Θ(Ŷ N ). Then the random
variables ((ZN ,ΛN , ξN ))N∈N are tight on Ê, the random variables ((Ŷ N , ξN ))N∈N are
tight on D([−1,∞))×R and the random variables (X̂N )N are tight on D([−1,∞)).
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Proof. By [5] Theorem 4.4 the random variables ((ZN ,ΛN ))N∈N are tight on Ē and the
random variables (Y N )N∈N are tight on D([−1,∞). Since (ξN )N∈N are tight on R by
assumption it follows that ((ZN ,ΛN , ξN ))N∈N are tight on Ê and ((Ŷ N , ξN ))N∈N are tight
on D([−1,∞))×R. By continuity of the Skorokhod map it then follows that the random
variables (X̂N )N∈N are tight on D([−1,∞)).

In the rest of this article we will no longer distinguish between processes on D([0,∞))

and their extensions to D([−1,∞)). Theorem 4.2 yields tightness of the processes we
consider, but we need tightness for the corresponding empirical measures. By the
following result of [15], if we have exchangeability, then this tightness follows from the
tightness of a sequence of particles.

Proposition 4.3 ([15], Proposition 2.2.). Let E be a Polish space and let XN := (X1,N ,

. . . , XN,N ) be N -exchangeable on EN for every N ∈ N, then the P(E)-valued random
variables (µN )N∈N given by

µN =
1

N

N∑
i=1

δXi,N

are tight if and only if (X1,N )N∈N is tight on E.

Corollary 4.4. Suppose that XN has dynamics

Xi,N
t = Θ(Y i,N ) = Θ(Xi,N

0− +Bit − αΛNt )

where α > 0, (XN
0−)N∈N and (ξi,N )N∈N are N -exchangeable random vectors, (Bi)i∈N

independent Brownian motions, and ΛN ∈M . If (X1,N
0− )N∈N and (ξ1,N )N∈N are tight on

R, then the empirical measures

µΘ
N =

1

N

N∑
i=1

δXi,N µN =
1

N

N∑
i=1

δ(Y i,N ,ξi,N ), and ζN =
1

N

N∑
i=1

δ(Xi,N0− +Bi,ΛN ,ξi,N )

(4.3)
are tight on P(D([−1,∞))), P(D([−1,∞))×R), and P(Ê) respectively.

Proof. Since (X1,N
0− )N∈N is tight on R it easily follows that (X1,N

0− + B1)N∈N is tight on
C[0, T ] for all T > 0. Thus, the conditions of Theorem 4.2 are satisfied and we can
combine this with Proposition 4.3 to finish the proof.

We will write f(µ) for the pushforward of a measure µ by a map f .

Corollary 4.5. Let (µΘ
N )N∈N and (µN )N∈N be as in the Corollary 4.4. Then there are

P(Ê)-valued random variables ζ, ζN such that, at least for a subsequence, law(µN ) =

law(ια(ζN )), ζN → ζ and ια(ζN ) → ια(ζ) a.s. It holds that law(µΘ
N ) = law(Θ(µN )) and

Θ(µN )→ Θ(ια(ζ)) a.s. Moreover,

law(ζN ) = law

(
1

N

N∑
i=1

δ(Xi,N0− +Bi,ΛN ,ξi,N )

)
.

Proof. The result follows by combining Corollary 4.4, the Skorokhod representation
theorem and the continuity of the maps involved.

4.2 Convergence of solutions

We consider the setting of Corollary 4.4. The three empirical measures given in (4.3)
have the following relations

law(µN ) = law(ια(ζN )); law(µΘ
N ) = law(Θ(µN )).
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Definition 4.6. For t ∈ R, x ∈ D([−1,∞)) and z ∈ R define the following path function-
als

τ0(x, z) := inf{s ≥ 0 : xs ≤ −z} and λt(x, z) := 1τ0(x,z)≤t

Lemma 4.7. Assume that (xn, zn) → (x, z) in (D([−1,∞)) × R) with (xn, zn), (x, z) ∈
ια(Ê) and x satisfies the crossing property

inf
0≤s≤h

(xτ(x,z)+s − xτ(x,z)) < 0, h > 0.

Then we have that
lim
n→∞

λt(x
n, zn) = λt(x, z)

for all t ∈ [0,∞) in the complement of a countable set.

Proof. Define the map

Ξ : (D([−1,∞))×R)→ D([−1,∞)); (x, z) 7→ x+ z.

This map is continuous with respect to the M1-topology and the function Ξ(x, z) satisfies
the crossing property. We have

λt(x, z) = λt(Ξ(x, z), 0).

The convergence then follows as in the proof of [5] Lemma 5.4.

Lemma 4.8. Assume that (ζn)n∈N is a convergent sequence of probability measures on
Ê with limit ζ. Define µn := ια(ζn) and µ := ια(ζ). If µ-a.e path satisfies the crossing
property

µ({(x, z) ∈ D([−1,∞))×R : inf
0≤s≤h

(xτ0(x,z)+s − xτ0(x,z)) = 0}) = 0, h > 0, (4.4)

then limn→∞〈µn, λ〉 = 〈µ, λ〉 in M .

Proof. The map ια is continuous. As a result, the convergence µn → µ in P(D[−1,∞)×R)

follows. We set lnt := 〈µn, λt〉 and note that for all n ∈ N the map ln is in M . As mentioned
at the beginning of the section, the space M is compact. Thus, we have the existence
of a limit point l ∈M . We need to prove that l = 〈µ, λ〉. This can be done following the
arguments in the proof of [5] Lemma 5.5 and replacing their path functionals by the
paths functional τ0(x, z) and λt(x, z) considered here.

The following two lemmas are important tools in the proof of convergence to the
McKean-Vlasov problem. Their proofs follow from the argument used in [5], replacing the
path functionals with the functionals τ0(x, z) and λt(x, z), and extending the measures
involved to the spaces Ê and D([−1,∞))×R.

Lemma 4.9. For almost every realization (ω, z), if law((W,Λ, ξ)) = ζ(ω, z), then W −W0

is a Brownian motion with respect to the filtration generated by (W,Λ). In particular,
W −W0 is independent of W0.

Lemma 4.10. Suppose that law(µN )→ law(µ) for some random variable µ in P(D[−1,

∞) × R) with µN and µ of the same form as in Lemma 4.8. Then µ satisfies property
(4.4) almost surely.

Proposition 4.11. For N ∈ N, let (XN ,ΛN ) be a solution to the particle system{
Xi,N
t = Θ(Y i,N )t = Θ(Xi,N

0− +Bit − αΛNt ) = Xi,N
0− +Bit − αΛNt + Li,Nt

Λnt = 1
N

∑N
i=1 1τi,N≤t, τi,N = inf{t ≥ 0 : Li,Nt ≥ ξi,N}
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for ξi,N , i = 1, . . . , n, independent, exponentially distributed random variables with
parameter κ > 0. Let µN and µΘ

N denote the corresponding empirical measures defined
in (4.3). Suppose that for some random measure µΘ and some measure ν0− ∈ P(R+) we
have

lim
N→∞

1

N

N∑
i=1

δXi,N0−
= ν0−

and law(µΘ
N )→ law(µΘ) along some subsequence. Then µΘ corresponds almost surely

to the law of a solution to the McKean-Vlasov problem (1.1) with law(X0−) = ν0−.

Proof. We can assume that the empirical measures are given as µN = ια(ζN ), µΘ
N =

Θ(µN ) with ζN as in (4.3). The same can be assumed for the limit points µ = ια(ζ)

and µΘ = Θ(µ) by continuity. The map t 7→ E[〈µ, λt〉] is increasing. Hence, it has
at most countably many points of discontinuity, and the same holds for the map t 7→
E[
∫
ltdζ(ω, l, z)]. We denote the set of discontinuities of these maps by J and fix a t that

is a continuity point of all these maps, i.e. t /∈ J . Then 〈µ, λt−〉 = 〈µ, λt〉 almost surely.
From Lemma 4.10 the crossing property holds and we can use Lemma 4.8 to deduce the
almost sure convergence limN→∞〈µN , λt〉 = 〈µ, λt〉. The goal is to show that the measure
µ is the law of the process (Y, ξ) of the McKean-Vlasov problem.

Step 1: We show that for almost every realization (ω, z), if law(W,Λ, ξ) = ζ(ω, z), then
Λ = 〈µ(ω, z), λ〉 almost surely. We obtain the estimate

E

[∫
Ê

∣∣∣|lt − 〈µ, λt〉| − |lt − 〈µN , λt〉|∣∣∣dζN (ω, l, z)

]
≤ E [|〈µ, λt〉 − 〈µN , λt〉|]

and see that the right-hand side vanishes as N →∞ using the DCT. Since t /∈ J the map
l 7→ lt is continuous on M and it follows that for ζ-almost every l we have

E

[∫
Ê

|lt − 〈µ, λt〉|dζ(ω, l, z)

]
≤ lim
N→∞

E

[∫
Ê

|lt − 〈µN , λt〉|dζN (ω, l, z)

]
= 0

because 〈µN , λ〉 = l for ζN -almost every l ∈ M , almost surely. Let t range through a
countable dense subset of [0,∞) \ J and use right-continuity to conclude.

Step 2: We show that for a.e. realization (ω, z) if law(W,Λ, ξ) = ζ(ω, z), then law(W0) =

ν0−. Let the evaluation map π̂0 defined on Ê be given by (ω, l, z) → ω0. Since π̂0 is a
continuous map, the continuous mapping theorem yields that for the pushforward of ζ
by π̂0 we obtain

π̂0(ζ) = lim
N→∞

π̂0(ζN ) = lim
N→∞

1

N

N∑
i=1

δXi,N0−
= ν0−

Step 3: We have law(X0−) = ν0− and ια(ζ) = µ. Step 1 yields that if law(W,Λ, ξ) = ζ(ω, z)

the equation

law((W0,W −W0)) = law((X0−, Y −X0− + α〈µ, λ〉))

holds. Using Lemma 4.9 we obtain that Y −X0− + 〈µ, λ〉 is a Brownian motion.

If we now combine the results from Step 2, Step 3 and apply the pushforward with
the Skorokhod map we obtain the theorem by the continuous mapping theorem.

Theorem 4.12. Suppose that X0− has density f that is bounded and changes mono-
tonicity finitely often on any compact interval. Let (Xi,N ,ΛN ) be a physical solution to
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the particle system (4.1) and let µΘ be the law of the unique physical solution to the
McKean-Vlasov problem (1.1). Then we have the convergence

lim
N→∞

1

N

N∑
i=1

δXi,N = µΘ (4.5)

weakly on P(D[−1,∞)).

Proof. Corollary 4.4 yields tightness of the empirical-measure process of the particle
system (4.1). Thus, we know that limit points exist. Moreover, Proposition 4.11 shows
that limit points are laws of solutions to the McKean-Vlasov problem. If we now re-
strict to physical solutions to the particle system, we can use the result from [7] that
physical solutions converge to physical solutions and combine it with Lemma 2.4 and
the corresponding result for the particle systems. The conditions on the initial density
imply uniqueness of physical solutions using Theorem 2.5 and we can conclude weak
convergence.

5 Convergence to absorbing and reflecting models

The elastic boundary is a mixture of absorbing and reflecting boundaries. Thus we
can expect to obtain the absorbing and reflecting models as limit cases of the elastic
model. In this section we show that as κ→∞ the solution to the elastic model converges
to the solution of the absorbing feedback model. On the other hand, if we consider the
limit as κ→ 0, the elastic model converges to a reflecting Brownian motion.

Our first goal is to show convergence for the loss process Λκ as κ→ 0 and κ→∞.

Proposition 5.1. Let Λκ be a physical solution to the McKean-Vlasov problem (1.1) with
parameter κ > 0. Then we have the two limits

lim
κ→0

Λκ = 0, in M1, and lim
κ→∞

Λκ = Λ∞, in M1. (5.1)

Moreover, Λ∞ is a physical solution to the absorbing feedback model.

Proof. Let κ1, κ2 > 0 be such that κ1 < κ2 and consider the two related McKean-
Vlasov problems, one with ξκ1 and one with ξκ2 . Following [5] we define the operator
Γκ : M →M by{

Xκ,l
t = X0− + ξκ +Bt − αlt, t ≥ 0

Γκ[l]t = P(τκ,l ≤ t), t ≥ 0, where τκ,l = inf{t ≥ 0, Xκ,l
t ≤ 0}.

(5.2)

A solution to the absorbing feedback model is a fixed point of the operator Γκ and in
[5] the authors show that the minimal solution and therefore also the unique physical
solution can be obtained by limn→∞ Γ

(n)
κ [0]. Moreover, by Lemma 2.5 the solution to this

absorbing model is a solution to (1.1). Using the operators Γκi , i = 1, 2 we have

Γκ1
[0]t = P(inf

s≤t
X0− + ξκ1 +Bs ≤ 0) ≤ P(inf

s≤t
X0− + ξκ2 +Bs ≤ 0) = Γκ2

[0]t,

for all t ≥ 0. Assume that

Γ(n)
κ1

[0]t ≤ Γ(n)
κ2

[0]t, for all t ≥ 0, (5.3)

for some n ∈ N. Then we have

Γ(n+1)
κ1

[0]t = Γκ1 [Γ(n)
κ1

[0]]t = P(inf
s≤t

X0− + ξκ1 +Bs − Γ(n)
κ1

[0]s ≤ 0)

≤ P(inf
s≤t

X0− + ξκ2 +Bs − Γ(n)
κ2

[0]s ≤ 0)

= Γκ2 [Γ(n)
κ2

[0]]t = Γ(n+1)
κ2

[0]t
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for all t ≥ 0 and by induction the relation (5.3) is true for all n ∈ N. Therefore, we have
that, for all t ≥ 0, Λκt is increasing in κ. Moreover it is bounded between zero and one.
This means that limit points exist in both cases and we can define

Λ0
t = lim

κ→0
Λκt , for all t ≥ 0, and Λ∞t = lim

κ→∞
Λκt , for all t ≥ 0.

In the first case we can use the reverse Fatou lemma. This yields

Λ0
t = lim

κ→0
Λκt ≤ P( lim

κ→0
X0− + ξκ +Bt − αΛκt ≤ 0) = 0,

for all t ≥ 0. Thus, we obtain Λ0 = 0. By [16] Corollary 12.5.1 convergence in the
M1-topology follows.

For the second case we have

Λ∞t = lim
κ→∞

Λκt = lim
κ→∞

P(X0− + ξκ +Bt − αΛκt ≤ 0) = P(X0− +Bt − αΛ∞t ≤ 0)

where we applied the Portmanteau Theorem in the last step which is possible because
the law of the random variable under consideration has no atoms. Hence Λ∞ is a solution
to the absorbing feedback model with initial condition X0−. Another application of [16]
Corollary 12.5.1 yields the desired convergence in M1.

To show that Λ∞ is a physical solution we let Λa be a solution to the absorbing
feedback model. Then we have Λκ ≤ Λa for all κ > 0 and by taking limits we obtain
Λ∞ ≤ Λa. Thus Λ∞ is the minimal solution and therefore by [5] a physical solution.

Proposition 5.2. Let τκ be the elastic stopping time in the feedback model (1.1) with
parameter κ > 0 and denote by τ∞ the absorbing stopping time in the absorbing feedback
model. Then we have the following almost sure convergences in the M1-topology

1t<τκ → 1, as κ→ 0; 1t<τκ → 1t<τ∞ , as κ→∞. (5.4)

Proof. As in Section 4 we can see that the crossing property is satisfied. We can then use
Lemma 4.7 to infer convergence for all t ∈ [0,∞) in the complement of a countable set.
Since the functions we consider in this proposition are all monotone, the convergence in
M1 follows from [16] Corollary 12.5.1.

Equipped with these results we can turn to our goal and show convergence for
1t<τκX

κ.

Theorem 5.3. Let Xκ be the elastic feedback process corresponding to a physical
solution to the McKean-Vlasov problem (1.1) with parameter κ > 0 and τκ the associated
elastic stopping time. Then

1. as κ→∞, 1t<τκXκ converges almost surely in the M1-topology to 1t<τ∞X∞ with
X∞ given by

X∞ = X0− +B − αΛ∞

with Λ∞ being a physical solution to the absorbing feedback model.

2. as κ → 0, 1t<τκXκ converges almost surely in the M1-topology and uniformly to
X0 given by

X0 = Θ(X0− +B).

The law of X0 is a reflecting Brownian motion started at X0−.
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Proof. (i) From Proposition 5.1 we know that Λκ converges to Λ∞ in M1 and that Λ∞

is a physical solution. Since the Brownian motion B has continuous paths a.s., the
convergence

X0− +B − αΛκ → X∞, as κ→∞

in M1 follows from [16] Theorem 12.7.3. By continuity of the Skorokhod map Θ with
respect to the M1-topology we can deduce the convergence Xκ → Θ(X∞) as κ→∞ in
M1. Moreover, by Proposition 5.2 we have the M1-convergence 1t<τκ → 1t<τ∞ . Note
that both processes Θ(X∞) and 1t<τ∞ only have downward jumps. Thus, we can use
[16] Theorem 13.3.2 to obtain the desired convergence

1t<τκX
κ → 1t<τ∞Θ(X∞), as κ→∞,

in M1. Since τ∞ is the first hitting time of zero by X∞ we have the equality

1t<τ∞Θ(X∞) = 1t<τ∞X
∞,

which finishes the proof.
(ii) Using the results from Proposition 5.1 and Proposition 5.2 and following the same

arguments as in (i) yields the convergence 1t<τκXκ → X0, as κ→ 0, in M1. Since X0

has continuous paths almost surely we obtain the uniform convergence almost surely by
[16] Theorem 12.4.1. The characterization of X0 as a reflecting Brownian motion then
follows by applying Tanaka’s formula to X0− + B and using [14] Chapter VI Corollary
2.2.
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