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1 Introduction

In the seminal paper [17], Lyons builds the theory of rough paths. The theory solves
rough differential equations (RDEs) of the form

dyt = f (yt) dxt, y0 = ξ,

where x can be highly oscillating. Under a Lipschitz condition on the vector field, Lyons
proves the unique solvability of the differential equation, and the solution obtained is
continuous with respect to the driving signal in rough paths metric. The theory has an
embedded component in stochastic analysis, and x can be Brownian motion, continuous
semi-martingales, Markov processes, Gaussian processes [11] etc.

In 1972, Butcher [4] identifies a group structure in a class of integration methods
including Runge-Kutta methods and Picard iterations, where each method can be repre-
sented by a family of real-valued functions indexed by rooted trees. In [14], Grossman
and Larson describe several Hopf algebras associated with families of trees. One Hopf
algebra of simple rooted trees, with product [14, (3.1)] and coproduct [14, p.199], is
particularly relevant to our setting, which we refer to as the Grossman Larson Hopf
algebra, denoted as H. In [6], Connes and Kreimer describe a Hopf algebra based on
rooted trees [6, Section 2] to disentangle the intricate combinatorics of divergences
in quantum field theory. We call this Hopf algebra the Connes Kreimer Hopf algebra,
denoted as HR. The group identified by Butcher is the group of characters of HR [7].
Based on [9,16,19], H is isomorphic to the graded dual of HR.

Rough differential equations are originally driven by geometric rough paths over
Banach spaces [17]. Geometric rough paths satisfy an abstract integration by parts
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formula, and take values in a nilpotent Lie group. The nilpotent Lie group can be
expressed as a truncated group of characters of the shuffle Hopf algebra [20]. In
[12], Gubinelli defines branched rough paths. Branched rough paths take values in a
truncated group of characters of a labeled Connes Kreimer Hopf algebra. Both geometric
and branched rough paths are of finite p-variation in rough paths metric, and encode
information needed to construct solutions to differential equations. There exists a
Hopf algebra homomorphism from the Connes Kreimer Hopf algebra onto the shuffle
Hopf algebra, which induces an embedding of geometric rough paths into branched
rough paths. On the other hand, the Grossman Larson algebra is freely generated
by a collection of trees [5, 10]. Based on the freeness of Grossman Larson algebra,
Boedihardjo and Chevyrev construct an isomorphism between branched rough paths
and a class of geometric rough paths [2]. As a result, a branched RDE can be expressed
as a geometric RDE driven by a Π-rough path defined by Gyurkó [13].

Based on the isomorphism between H and the graded dual of HR [9, 16, 19], we
clarify a relationship between rough paths taking values in the truncated group of
characters of HR and rough paths taking values in the truncated group of grouplike
elements in H (Proposition 2.3). Based on this relationship and the freeness of the
Grossman Larson algebra, sub-Riemannian geometry [11, Section 7.5] and the neo-
classical inequality [15, 17], which are typical geometric rough paths tools, can be
applied to branched rough paths. As an application, we provide an estimate for the
remainder of the truncated Taylor expansion for the solution of a controlled differential
equation driven by a branched rough path (Theorem 2.5). The remainder estimate is in
the optimal order (Remark 2.7), which is pleasantly surprising noting the rapid increase
of the dimension of simple rooted trees.

2 Notations and results

A rooted tree is a finite connected graph that has no cycle with a distinguished
vertex called root. We call a rooted tree a tree. We assume trees are non-planar, which
means that the children trees of each vertex are commutative. A forest is a commutative
monomial of trees. The degree |ρ| of a forest ρ is given by the number of vertices. For a
given label set, a labeled forest is a forest for which each vertex is attached with a label.

Denote the label set L := {1, 2, . . . , d}. Let FL (TL) denote the set of L-labeled forests
(trees) of degree greater or equal to 1. Let FNL (TNL ) denote the set of elements in FL
(TL) of degree 1, . . . , N .

Let GNL denote the set of degree-N characters of the L-labeled Connes Kreimer Hopf
algebra [6, p.214]. a is an element of GNL , if a is an R-linear map RFNL → R that satisfies

(a, ρ1) (a, ρ2) = (a, ρ1ρ2)

for every ρ1, ρ2 ∈ FNL , |ρ1|+ |ρ2| ≤ N , where ρ1ρ2 denotes the multiplication of commuta-
tive monomials of trees. Let4 denote the coproduct of the Connes Kreimer Hopf algebra
based on admissible cuts [6, p.215]. Then GNL is a group with the multiplication given by

(ab, ρ) := (a⊗ b,4ρ)

for every ρ ∈ FNL . GNL is a labeled truncated Butcher group [4]. We equip GNL with the
norm

‖a‖ := max
ρ∈FNL

|(a, ρ)|
1
|ρ| . (2.1)

With L = {1, 2, . . . , d}, let HL denote the L-labeled Grossman Larson Hopf algebra
with product [14, (3.1)] and coproduct [14, p.199]. Denote the product and coproduct
of HL as ∗ and δ respectively. We consider HL as a Hopf algebra of labeled forests (by
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deleting the additional root in [14]). An element a ∈ HL is grouplike if δa = a⊗ a. Let
GL denote the group of grouplike elements in HL. For integer N ≥ 1, the set of series
b =

∑
ρ∈FL,|ρ|>N (b, ρ) ρ form an ideal of HL. Let HNL denote the quotient algebra. Denote

GNL := GL ∩HNL . GNL is a group. We equip GNL with a continuous homogeneous norm.
Let •a denote the labeled tree of one vertex with a label a ∈ L on the vertex. Let

[τ1 · · · τk]a denote the labeled tree with children trees τ1, . . . , τk on the root and a label
a ∈ L on the root. Define σ : FL → N as the symmetry factor given inductively by
σ (•a) := 1 and

σ (τn1
1 · · · τ

nk
k ) = σ

(
[τn1

1 · · · τ
nk
k ]

a

)
:= n1! · · ·nk!σ (τ1)

n1 · · ·σ (τk)
nk ,

where τ i ∈ TL are different labeled trees (with labels counted). σ is the order of the
permutation group on vertices in a tree that keeps the tree unchanged.

Let 4 denote the coproduct of the Connes Kreimer Hopf algebra, and let ∗ denote
the product of the Grossman Larson Hopf algebra. Based on [9, Theorem 43] and [16,
Proposition 4.4], for ρ ∈ FL,

4 ρ =
∑
ρi∈FL

σ (ρ)

σ (ρ1)σ (ρ2)
(ρ1 ∗ ρ2, ρ) ρ1 ⊗ ρ2. (2.2)

Definition 2.1. Suppose G is a group with norm ‖·‖. Let X : [0, T ]→ (G, ‖·‖). Denote

Xs,t := X−1s Xt.

For p ≥ 1, define

‖X‖p−var,[0,T ] :=

(
sup

0=t0<···<tn=T,n≥1

n−1∑
i=0

∥∥Xti,ti+1

∥∥p) 1
p

.

For p ≥ 1, let [p] denote the largest integer that is less or equal to p.

Definition 2.2. For p ≥ 1, X is a branched p-rough path if X : [0, T ]→ G
[p]
L is continuous

and of finite p-variation.

Proposition 2.3. For p ≥ 1, suppose X : [0, T ]→ G
[p]
L is a branched p-rough path. Define

X̄ : [0, T ]→
(
F

[p]
L → R

)
as (

X̄t, ρ
)

:=
(Xt, ρ)

σ (ρ)

for t ∈ [0, T ] and ρ ∈ F
[p]
L . Then X̄ takes values in G[p]L , is continuous and of finite

p-variation, and (
X̄s,t, ρ

)
=

(Xs,t, ρ)

σ (ρ)
(2.3)

for 0 ≤ s ≤ t ≤ T and ρ ∈ F [p]
L . For integer N ≥ [p] + 1, there exists a unique extension of

X resp. X̄ to a continuous path of finite p-variation taking values in GNL resp. GNL . Still
denote their extension as X resp. X̄. Then (2.3) holds for 0 ≤ s ≤ t ≤ T and ρ ∈ FNL .

Remark 2.4. Since the Grossman Larson algebra is free on a collection of trees [5,10],
X̄ acts as a bridge between X and geometric rough paths. In particular, sub-Riemannian
geometry technique [11, Section 7.5] and the neo-classical inequality [15,17] can be
applied to X̄. Then results are transferred back to X based on (2.3).

Let L
(
Rd,Re

)
denote the set of linear mappings from Rd to Re. For f = (f1, . . . , fd) :

Re → L
(
Rd,Re

)
that is sufficiently smooth, define f : TL → (Re → Re) inductively as

f (•a) := fa and f ([τ1 · · · τk]a) :=
(
dkfa

)
(f (τ1) · · · f (τk)) (2.4)
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for τ i ∈ TL and a ∈ L, where dkfa denotes the kth Fréchet derivative of fa.
Lipschitz functions and norms are defined as in [17, Definition 1.2.4, p.230]. For

γ > 1, let bγc denote the largest integer that is strictly less than γ.

Theorem 2.5. For γ > p ≥ 1, suppose X : [0, T ]→ G
[p]
L is a branched p-rough path over

base space Rd, and f : Re → L
(
Rd,Re

)
is Lip (γ). Let y denote the unique solution of

the branched rough differential equation

dyt = f (yt) dXt, y0 = ξ ∈ Re.

Then with N := bγc, there exist two positive constants c1p,d,ω(0,T ) and c2p,d such that,∥∥∥∥∥∥yt − ys −
∑
τ∈TNL

f (τ) (ys)
(Xs,t, τ)

σ (τ)

∥∥∥∥∥∥ ≤ c1p,d,ω(0,T )N !
ω (s, t)

N+1
p(

N+1
p

)
!

(2.5)

where ω (s, t) := c2p,d ‖f‖
p
Lip(γ) ‖X‖

p
p−var,[s,t].

The solution to branched RDEs is defined as in [12, Section 8.1]. The existing
Taylor remainder estimates for the solution of branched RDEs only deal with the case
N = [p] [12, Theorem 8.8]. Theorem 2.5 considers the general case N ≥ [p], and the
estimate (2.5) is in the optimal order (Remark 2.7).

Remark 2.6. When p = 1 and ‖f‖Lip(∞) <∞, suppose ‖f‖Lip(∞) ‖X‖1−var,[s,t] <
(
c21,d

)−1
.

Then the Taylor series converges [12, Theorem 5.1].

Remark 2.7. Suppose x : [0, T ] → Rd is continuous and of bounded variation, and
f : Re → L

(
Rd,Re

)
is sufficiently smooth. Consider the ODE

dyt = f (yt) dxt, y0 = ξ.

Based on the fundamental theorem of calculus, for s ≤ t,

yt = ys +

N∑
k=1

f◦k (ys)X
k
s,t +

∫
· · ·
∫

s<u1<···<uN+1<t

f◦(N+1) (yu1) dxu1 · · · dxuN+1

where f◦1 := f, f◦(k+1) := df◦k (f) and Xk
s,t :=

∫
·· ·
∫
s<u1<···<uk<t dxu1

⊗ · · · ⊗ dxuk .

Suppose X is a geometric p-rough path. Let XN+1
s,t denote the (N + 1)th level element

of X on [s, t]. Based on Lyons’ extension Theorem [17, Theorem 2.2.1, p.242], there
exists a positive constant βp such that

∥∥XN+1
s,t

∥∥ ≤ ω (s, t)
N+1
p

βp

(
N+1
p

)
!

for every s ≤ t and every N . On the other hand, consider f (t) = e−t. Then ‖f‖Lip(n) = 1

on t ≥ 0 for n = 1, 2, . . . and ∣∣∣f◦(N+1) (0)
∣∣∣ = N !

The estimate (2.5) states that the remainder can be bounded similarly to
f◦(N+1) (ys)X

N+1
s,t that is in the optimal order even in the geometric case. The dimension

of trees contributes a geometric increase factor1 that is part of the control ω.

1Based on [8, Section I.5.2], the number of unlabeled simple rooted trees is EIS A000081, and Hn ∼
λβnn−3/2 with λ approximately 0.43992 and β approximately 2.95576.
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The proof of Theorem 2.5 is based on a mathematical induction that is an inho-
mogeneous analogue of [3]. The main estimate (2.5) is obtained by exploring the
sub-Riemannian geometry of the truncated group of grouplike elements in the Gross-
man Larson Hopf algebra. The sub-Riemannian geometry structure is similar to that
of the nilpotent Lie group [11, Theorem 7.32]. The factor ((N + 1) /p)! is obtained by
the neo-classical inequality [15,17]. The tree neo-classical inequality is known to be
false [1, Section 3]. Since the Grossman Larson algebra is free on a collection of trees,
the analysis can be transferred back to the Tensor algebra where the neo-classical
inequality holds. Our estimates rely critically on the simple fact that the number of
words generated by a finite set of letters grows geometrically (Lemma 3.7).

3 Proofs

Proof of Proposition 2.3. Since (Xt, ρ) /σ (ρ) =
(
X̄t, ρ

)
for ρ ∈ FL, |ρ| = 1, . . . , [p], it can

be proved inductively based on (2.2) that for ρ ∈ FL, |ρ| = 1, . . . , [p], and s ≤ t,

(
X̄s,t, ρ

)
=

(Xs,t, ρ)

σ (ρ)
.

The existence and uniqueness of the extension of X and X̄ can be proved similarly
to [17, Theorem 2.2.1]. Based on (2.2), when ρ ∈ FL, |ρ| = n, n ≥ [p] + 1,

(Xs,t, ρ)

= σ (ρ) lim
D⊂[s,t],|D|→0

∑
ρi∈FL,|ρi|<|ρ|

(Xt0,t1 , ρ1)

σ (ρ1)
· · ·
(
Xtk−1,tk , ρk

)
σ (ρk)

(ρ1 ∗ · · · ∗ ρk, ρ)

= σ (ρ) lim
D⊂[s,t],|D|→0

∑
ρi∈FL,|ρi|<|ρ|

(
X̄t0,t1 , ρ1

)
· · ·
(
X̄tk−1,tk , ρk

)
(ρ1 ∗ · · · ∗ ρk, ρ)

= σ (ρ)
(
X̄s,t, ρ

)
.

Based on [10, Section 8] and [5], the Grossman Larson algebra is freely generated by
a collection of unlabeled trees. Denote this collection of trees as B. Let BL denote the
L-labeled version of B with L = {1, 2, . . . , d}.
Notation 3.1. Let B[p]L = {υ1, . . . , υK} denote the set of elements in BL with degree less
or equal to [p].

Definition 3.2. For a ∈ G[p]L , define

‖a‖′ := inf
x

K∑
i=1

‖xυi‖
1

|υi|
1−var (3.1)

where the infimum is taken over all continuous bounded variation paths x=(xυ1 , . . . , xυK ) :

[0, 1]→ RK that satisfy

(a, υi1 ∗ · · · ∗ υik) =

∫
· · ·
∫

0<u1<···<uk<1

dx
υi1
u1 · · · dx

υik
uk

for υij ∈ B
[p]
L , |υi1 |+ · · ·+ |υik | ≤ [p]. The infimum in (3.1) can be obtained at a continuous

bounded variation path x, which is called a geodesic associated with a ∈ G[p]L .

Remark 3.3. Such x exists based on Chow-Rashevskii Theorem [11, Theorem 7.28].
Based on Arzelà-Ascoli Theorem and lower semi-continuity of 1-variation, the infimum
can be obtained at some x that is continuous and of bounded variation.
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For a : FNL → R and c > 0, define δca : FNL → R as (δca, ρ) := c|ρ| (a, ρ). A norm
‖·‖ is homogeneous if ‖δca‖ = c ‖a‖ for every c > 0 and every a. ‖·‖′ is a continuous
homogeneous norm. The continuity of ‖·‖′ can be proved similarly as [11, Proposition
7.40(v)].

Proposition 3.4. Continuous homogeneous norms on G[p]L are equivalent up to a constant
depending on p and d.

Proof. The proof is similar to [11, Theorem 7.44].

Lemma 3.5. Let x = (xυ1 , . . . , xυK ) : [0, 1] → RK be a geodesic associated with X̄s,t.
Then there exists Mp,d > 0 such that

‖xυi‖1−var ≤ (Mp,d)
|υi| ‖X‖|υi|p−var,[s,t]

for every υi ∈ B[p]L .

Proof. Define a norm on G[p]L as ‖a‖1 := max
ρ∈F [p]

L
|(a, ρ)|

1
|ρ| . Based on the definition

of ‖·‖′, equivalency of continuous homogeneous norms as in Proposition 3.4 and that(
X̄s,t, ρ

)
= (Xs,t, ρ) /σ (ρ), the proposed inequality holds.

Notation 3.6. Let W denote the set of finite sequences t1 · · · tk of ti ∈ B[p]L , including
the empty sequence denoted as η. The degree |w| of w = t1 · · · tk is |t1|+ · · ·+ |tk|. The
degree of η is 0.

Lemma 3.7. Let Tn denote the number of elements inW of degree n. Then there exists
Kp ≥ 1 such that for n = 1, 2, 3, . . .

Tn ≤ (Kpd)
n
.

Proof. Recall that B denotes the collection of trees that freely generate the Grossman
Larson algebra. For i = 1, 2, . . . , [p], let li denote the number of trees in B of degree

i. Then Tn ≤
∑[p]
i=1 Tn−ilid

i. Set T0 = 1 and T−n = 0 for n = 1, 2, . . . [p]. For p ≥ 1, let

Kp ≥ 1 be a number such that
∑[p]
i=1 li (Kp)

−i ≤ 1. Then it can be proved inductively
Tn ≤ (Kpd)

n.

Define I (x) := x for x ∈ Re.
Notation 3.8. For t ∈ B[p]L and w ∈ W, denote F η := I, F t := f (t) as at (2.4) and

F tw := dFw (f (t)) .

Notation 3.9. With f (ti) defined at (2.4), let ψf denote the R-linear map from RFL to
differential operators, given by ψf (t1 · · · tk) (ϕ) := dkϕ (f (t1) · · · f (tk)) for ti ∈ TL and
smooth ϕ : Re → Re.

For trees ti and a forest ρ, define (t1 · · · tk) y ρ as the sum of |ρ|k forests that are
obtained by linking each of the roots of ti, i = 1, . . . , k to a vertex of ρ by a new edge.
Recall that ∗ denotes the product in the Grossman Larson Hopf algebra (we delete the
additional root in [14]). Then for trees t and ti, t ∗ (t1 · · · tk) = tt1 · · · tk + ty (t1 · · · tk).

Lemma 3.10. With f (t) defined at (2.4), for ti ∈ TL, i = 1, . . . , k,

F t1···tk = f (t1 y (t2 y · · · (tk−1 y tk))) = ψf (t1 ∗ · · · ∗ tk) (I) .

Proof. Since df (t2) f (t1) = f (t1 y t2) for t1, t2 ∈ TL, the first equality holds. For trees
t1, t2 and a forest ρ, t1 y (ρy t2) = (t1 ∗ ρ) y t2. Then it can be proved inductively
that, for ti ∈ TL, t1 y (t2 y · · · (tk−1 y tk)) = (t1 ∗ t2 ∗ · · · ∗ tk−1) y tk. Then the second
equality holds based on f ((t1 ∗ t2 ∗ · · · ∗ tk−1) y tk) = ψf (t1 ∗ t2 ∗ · · · ∗ tk−1 ∗ tk) (I).

ECP 27 (2022), paper 46.
Page 6/12

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP473
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A remainder estimate for branched rough differential equations

For γ > p ≥ 1, suppose X : [0, T ] → G
[p]
L is a branched p-rough path and suppose

f : Re → L
(
Rd,Re

)
is Lip (γ). Define ω : {(s, t) |0 ≤ s ≤ t ≤ T} → [0,∞) as

ω (s, t) := ‖f‖pLip(γ) ‖X‖
p
p−var,[s,t] .

By rescaling ‖f‖−1Lip(γ) f and δ‖f‖Lip(γ)
X, we assume ‖f‖Lip(γ) = 1.

Denote N := bγc and {γ} := γ − bγc.
Lemma 3.11. For w ∈ W, |w| ≤ N ,

‖Fw (y1)− Fw (y2)‖ ≤ |w|! ‖y1 − y2‖

for yi ∈ Re. For w ∈ W, |w| < N and t ∈ B[p]L ,

sup
y∈Re

∥∥F tw (y)
∥∥ ≤ (N − 1)!

Proof. All trees here are labeled by L = {1, 2, . . . , d}. Based on Lemma 3.10, F t1···tk =

f (t1 y (t2 y · · · (tk−1 y tk))). Then F t1···tk is the sum of the image of

|tk| (|tk|+ |tk−1|) · · · (|tk|+ |tk−1|+ · · ·+ |t2|)

trees. Hence, for w ∈ W, the number of trees in Fw is bounded by (|w| − 1)!. Each
of these trees t is of degree |w| and corresponds to f (t) : Re → Re that is at least
Lip (1 + {γ}) as |w| ≤ N . Then df (t) is a sum of |w| terms, as the differential d chooses a
vertex in t. Hence, df (t) is bounded by |w|, because f and its derivatives of order up to
N are uniformly bounded by 1 (we rescaled f by ‖f‖−1Lip(γ)). As a result, for each tree t
of degree |w|, ‖f (t) (y1)− f (t) (y2)‖ ≤ ‖df (t)‖∞ ‖y1 − y2‖ ≤ |w| ‖y1 − y2‖. Then the first
estimate follows, as there are at most (|w| − 1)! such trees in Fw.

For w ∈ W, |w| < N and t ∈ B[p]L , the number of trees in F tw is bounded by |w|! ≤
(N − 1)!. Each tree corresponds to a map that is bounded on Re by 1.

Recall that B[p]L = {υ1, . . . , υK}. For s ≤ t, let x = (xυ1 , . . . , xυK ) : [s, t] → RK be a
geodesic associated with X̄s,t. With f (υi) defined at (2.4), let ys,t denote the unique
solution of the ODE

dys,tu =

K∑
i=1

f (υi)
(
ys,tu
)
dxυiu , y

s,t
s = ys,

where y denotes the unique solution of the branched RDE

dyt = f (yt) dXt, y0 = ξ.

The existence and uniqueness of y is based on [18, Theorem 22].

Lemma 3.12. For w ∈ W, |w| = N − [p] , . . . , N − 1,

Fw
(
ys,tt
)
− Fw (ys)

−
∑

|t1|+···+|tk|=1,...,N−|w|

F t1···tkw (ys)

∫
· · ·
∫

s<u1<···<uk<t

dxt1u1
· · · dxtkuk

=
∑

|t1|+···+|tk|=N−|w|

∫
· · ·
∫

s<u1<···<uk<t

(
F t1···tkw

(
ys,tu1

)
− F t1···tkw (ys)

)
dxt1u1

· · · dxtkuk

+
∑

|t2|+···+|tk|<N−|w|
|t1|+|t2|+···+|tk|>N−|w|

∫
· · ·
∫

s<u1<···<uk<t

F t1···tkw
(
ys,tu1

)
dxt1u1

· · · dxtkuk

where ti, i = 1, 2, . . . range over elements in B[p]L .
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Proof. The equality can be obtained by iteratively applying the fundamental theorem of
calculus.

Lemma 3.13.
sup
u∈[s,t]

∥∥ys,tu − ys∥∥ ≤ C (p, d, ω (0, T ))ω (s, t)
1
p

Proof. Since K is the number of elements in B[p]L with L = {1, . . . , d}, K only depends on
p, d. Since ‖f‖Lip(γ) = 1, based on Lemma 3.5,

sup
u∈[s,t]

∥∥ys,tu − ys∥∥ ≤ K∑
i=1

‖xυi‖1−var ≤ C (p, d, ω (0, T ))ω (s, t)
1
p .

Recall that ∗ denotes the product of the Grossman Larson Hopf algebra.

Notation 3.14. Define TX as(
TXs,t, t1 · · · tk

)
:=
(
X̄s,t, t1 ∗ · · · ∗ tk

)
for s ≤ t and t1 · · · tk ∈ W for ti ∈ B[p]L , |t1|+ · · ·+ |tk| ≤ [p].

Denote βp := p2
(

1 +
∑
n≥2

(
2
n

) [p]+1
p

)
.

Lemma 3.15. Denote ω̃ := (Kpd)
p
ω. For w ∈ W, |w| = N − [p] , . . . , N − 1,∥∥∥∥∥∥Fw (ys,tt )− Fw (ys)−

∑
l∈W,|l|=1,...,N−|w|

F lw (ys)
(
TXs,t, l

)∥∥∥∥∥∥
≤ C (p, d, ω (0, T ))N !

ω̃ (s, t)
N+1−|w|

p

βp

(
N+1−|w|

p

)
!
.

For w ∈ W, |w| = 0, . . . , N − [p]− 1,∥∥∥∥∥∥Fw (ys,tt )− Fw (ys)−
∑

l∈W,|l|=1,...,[p]

F lw (ys)
(
TXs,t, l

)∥∥∥∥∥∥
≤ C (p, d, ω (0, T )) (|w|+ [p])!ω̃ (s, t)

[p]+1
p .

Proof. We prove the first estimate. The proof for the second estimate is similar. Recall
that Tn denotes the number of elements in W of degree n. Based on Lemma 3.12,
Lemma 3.11, Lemma 3.13, Lemma 3.5 and that Tn ≤ (Kpd)

n in Lemma 3.7, we have∥∥∥∥∥∥Fw (ys,tt )− Fw (ys)−
∑

l∈W,|l|=1,...,N−|w|

F lw (ys)
(
TXs,t, l

)∥∥∥∥∥∥
≤ C (p, d, ω (0, T ))N !

TN−|w|ω (s, t)
N+1−|w|

p +

[p]−1∑
j=1

TN−|w|+jω (s, t)
N−|w|+j

p


≤ C (p, d, ω (0, T ))N ! ((Kpd)

p
ω (s, t))

N+1−|w|
p

≤ C (p, d, ω (0, T ))N !
ω̃ (s, t)

N+1−|w|
p

βp

(
N+1−|w|

p

)
!

as N+1−|w|
p ≤ [p]+1

p ≤ 2, where ω̃ := (Kpd)
p
ω.
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Proposition 3.16. For integer N ≥ [p],

N∑
l∈W,|l|=1

F l
(
TXs,t, l

)
=
∑
τ∈TNL

f (τ)
(Xs,t, τ)

σ (τ)
.

Proof. According to TXs,t in Notation 3.14,(
TXs,t, t1 · · · tk

)
=
(
X̄s,t, t1 ∗ · · · ∗ tk

)
(3.2)

for ti ∈ B[p]L , |t1| + · · · + |tk| ≤ [p]. Then based on the construction of the extension
of TX and X̄ [17, Theorem 2.2.1], it can be proved inductively that (3.2) holds for

ti ∈ B[p]L , |t1| + · · · + |tn| ≤ N,N ≥ [p]. Moreover, if there exists i ∈ {1, . . . , k} such that

ti ∈ BL\B[p]L , then
(
X̄s,t, t1 ∗ · · · ∗ tk

)
= 0.

X̄s,t =
∑

ti∈B[p]
L ,|t1|+···+|tk|≤N

(
X̄s,t, t1 ∗ · · · ∗ tk

)
t1 ∗ · · · ∗ tk

=
∑

ρ∈FNL ,|ρ|≤N

(
X̄s,t, ρ

)
ρ

=
∑

ρ∈FNL ,|ρ|≤N

(Xs,t, ρ)

σ (ρ)
ρ,

where the last step is based on Proposition 2.3. Combined with Lemma 3.10,

N∑
l∈W,|l|=1

F l
(
TXs,t, l

)
= ψf

(
X̄s,t

)
I =

∑
τ∈TNL

f (τ)
(Xs,t, τ)

σ (τ)
.

Proposition 3.17. ∥∥yt − ys,tt ∥∥ ≤ C (p, d, ω (0, T ))ω (s, t)
[p]+1
p

Proof. Let Fw = I with |w| = 0 in the second estimate of Lemma 3.15, and combine with
Proposition 3.16,∥∥∥∥∥∥∥ys,tt − ys −

∑
τ∈T [p]

L

f (τ) (ys)
(Xs,t, τ)

σ (τ)

∥∥∥∥∥∥∥ ≤ C (p, d, ω (0, T ))ω (s, t)
[p]+1
p .

Based on [18, Lemma 17],∥∥∥∥∥∥∥yt − ys −
∑
τ∈T [p]

L

f (τ) (ys)
(Xs,t, τ)

σ (τ)

∥∥∥∥∥∥∥ ≤ C (p, d, ω (0, T ))ω (s, t)
[p]+1
p . (3.3)

The estimate (3.3) can be proved based on the uniform bound on Picard series [18,
Definition 9, Lemma 17] and that Picard series converges to the unique solution [18,
Theorem 22].

Lemma 3.18. Set ω̃ := (Kpd)
p
ω. For w ∈ W, |w| = N − [p] , . . . , N ,∥∥∥∥∥∥Fw (yt)− Fw (ys)−

∑
l∈W,|l|=1,...,N−|w|

F lw (ys)
(
TXs,t, l

)∥∥∥∥∥∥ (3.4)

≤ C (p, d, ω (0, T ))N !
(ω̃ (s, t))

N+1−|w|
p

βp

(
N+1−|w|

p

)
!
.
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For w ∈ W, |w| = 0, . . . , N − [p]− 1,∥∥∥∥∥∥Fw (yt)− Fw (ys)−
∑

l∈W,|l|=1,...,[p]

F lw (ys)
(
TXs,t, l

)∥∥∥∥∥∥ (3.5)

≤ C (p, d, ω (0, T )) (|w|+ [p])!ω̃ (s, t)
[p]+1
p .

Proof. Combine Lemma 3.11 with Proposition 3.17,∥∥Fw (ys,tt )− Fw (yt)
∥∥ ≤ |w|!∥∥ys,tt − yt∥∥ ≤ C (p, d, ω (0, T )) |w|!ω̃ (s, t)

[p]+1
p .

When |w| ≤ N − 1, the results follow from Lemma 3.15. When |w| = N , based on
Lemma 3.11,

‖Fw (yt)− Fw (ys)‖ ≤ N ! ‖yt − ys‖ ≤ N !
(∥∥yt − ys,tt ∥∥+

∥∥ys,tt − ys∥∥)
≤ C (p, d, ω (0, T ))N !

ω̃ (s, t)
1
p

βp

(
1
p

)
!

where the last step follows from Proposition 3.17 and Lemma 3.13.

Lemma 3.19. For l ∈ W, |l| = 1, 2, . . .

∥∥(TXs,t, l)∥∥ ≤ ω̃ (s, t)
|l|
p

βp

(
l
p

)
!

where ω̃ = cp,dω for some constant cp,d depending on p, d.

Proof. Define two norms on G[p]L as ‖a‖1 := max
ρ∈F [p]

L
|(a, ρ)|

1
|ρ| and

‖a‖2 := max
ti∈B[p]

L ,|t1|+···+|tn|≤[p]
|(a, t1 ∗ · · · ∗ tn)|

1
|t1|+···+|tn| .

Based on the definition of TX in Notation 3.14, equivalency of continuous homogeneous
norms on G[p]L as in Proposition 3.4 and

(
X̄s,t, ρ

)
= (Xs,t, ρ) /σ (ρ), we have, for l ∈ W,

|l| = 1, . . . , [p], with ‖Xs,t‖ defined at (2.1),∥∥(TXs,t, l)∥∥ 1
|l| ≤

∥∥X̄s,t

∥∥
2
≤ c1p,d

∥∥X̄s,t

∥∥
1
≤ c1p,d ‖Xs,t‖ ≤ c1p,d ‖X‖p−var,[s,t] .

Then the estimate follows from [17, Theorem 2.2.1] with cp,d :=
(
c1p,dβp

)p
.

Proof of Theorem 2.5. With Kp in Lemma 3.7 and cp,d in Lemma 3.19, denote c2p,d :=

(Kpd)
p

(cp,d ∨ 1) and set ω̃ := c2p,dω. Denote Y wt := Fw (yt) for w ∈ W, |w| ≤ N and
t ∈ [0, T ].

Inductive hypothesis: fix w ∈ W, |w| ≤ N − [p] − 1. Suppose for every w1 ∈ W,
|w1| = |w|+ 1, . . . , N and every s ≤ t,∥∥∥∥∥∥Y w1

t − Y w1
s −

N−|w1|∑
l∈W,|l|=1

Y lw1
s

(
TXs,t, l

)∥∥∥∥∥∥ ≤ c1p,d,ω(0,T )N !
ω̃ (s, t)

N+1−|w1|
p

βp

(
N+1−|w1|

p

)
!
.

The statement holds when |w| = N − [p]− 1 based on (3.4).
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Denote

Ls,t :=

N−|w|∑
l∈W,|l|=1

Y lws
(
TXs,t, l

)
.

Based on Lemma 3.11,
∥∥Y lws ∥∥ ≤ (N − 1)! for l, w ∈ W, |l|+ |w| ≤ N . Combined with (3.5)

and Lemma 3.19,

‖Y wt − Y ws − Ls,t‖

≤

∥∥∥∥∥∥Y wt − Y ws −
[p]∑

l∈W,|l|=1

Y lws
(
TXs,t, l

)∥∥∥∥∥∥+

∥∥∥∥∥∥
N−|w|∑

l∈W,|l|=[p]+1

Y lws
(
TXs,t, l

)∥∥∥∥∥∥
≤ C (p, d, ω (0, T ) , N)ω (s, t)

[p]+1
p .

Then

Y wt − Y ws = lim
|D|→0,D⊂[s,t]

∑
i,ti∈D

Lti,ti+1
.

For s ≤ u ≤ t,

Ls,u + Lu,t − Ls,t

=

N−|w|∑
l∈W,|l|=1

Y lws
(
TXs,u, l

)
+

N−|w|∑
l∈W,|l|=1

Y lwu
(
TXu,t, l

)
−

N−|w|∑
l∈W,|l|=1

Y lws
(
TXs,t, l

)

=

N−|w|∑
l∈W,|l|=1

Y lwu − N−|w|−|l|∑
l1∈W,|l1|=0

Y l1lws

(
TXs,u, l1

)(TXu,t, l) .
Combine the inductive hypothesis and Lemma 3.19,

‖Ls,u + Lu,t − Ls,t‖

≤ c1p,d,ω(0,T )N !

N−|w|∑
n=1

Tn
ω̃ (s, u)

N+1−n−|w|
p

βp

(
N+1−n−|w|

p

)
!

(cp,dω (u, t))
n
p

βp

(
n
p

)
!

.

where Tn denotes the number of elements inW of order n, and Tn ≤ (Kpd)
n based on

Lemma 3.7.

Since ω̃ = (Kpd)
p

(cp,d ∨ 1)ω, based on the neo-classical inequality [15,17],

‖Ls,u + Lu,t − Ls,t‖ ≤ c1p,d,ω(0,T )N !
p2(
βp
)2 ω̃ (s, t)

N+1−|w|
p(

N+1−|w|
p

)
!

Since |w| ≤ N − [p]− 1, N+1−|w|
p > [p]+1

p . Successively dropping points similarly to the
proof of [17, Theorem 2.2.1],∥∥∥∥∥∥Y wt − Y ws −

N−|w|∑
l∈W,|l|=1

Y lws
(
TXs,t, l

)∥∥∥∥∥∥ ≤ c1p,d,ω(0,T )N !
ω̃ (s, t)

N+1−|w|
p

βp

(
N+1−|w|

p

)
!
.

The induction is complete.

Let w be the empty sequence. Then |w| = 0 and Y wt = yt. Combined with Proposi-
tion 3.16, the proposed estimate holds.
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