
Electron. Commun. Probab. 27 (2022), article no. 21, 1–13.
https://doi.org/10.1214/22-ECP462
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Geometric sums, size biasing and zero biasing

Qingwei Liu* Aihua Xia†

Abstract

The geometric sum plays a significant role in risk theory and reliability theory
[Kalashnikov (1997)] and a prototypical example of the geometric sum is Rényi’s
theorem [Rényi (1956)] saying a sequence of suitably parameterised geometric sums
converges to the exponential distribution. There is extensive study of the accuracy of
exponential distribution approximation to the geometric sum [Sugakova (1995), Kalash-
nikov (1997), Peköz & Röllin (2011)] but there is little study on its natural counterpart
of gamma distribution approximation to negative binomial sums. In this note, we show
that a nonnegative random variable follows a gamma distribution if and only if its
size biasing equals its zero biasing. We combine this characterisation with Stein’s
method to establish simple bounds for gamma distribution approximation to the sum of
nonnegative independent random variables, a class of compound Poisson distributions
and the negative binomial sum of random variables.
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1 Introduction

Rényi’s theorem [Rényi (1956)] states that L (p
∑N
i=1Xi)→ Exp(1) as p→ 0, where

L denotes the distribution, {Xi} is a sequence of independent and identically distributed
(i.i.d.) random variables with EX1 = 1, N is a geometric random variable with distri-
bution P(N = k) = p(1 − p)k for k ∈ Z+ := {0, 1, 2, . . .}, denoted by N ∼ Ge(p), and
N is independent of {Xi}. Geometric sums are a natural object in risk theory and
reliability theory [Kalashnikov (1997)] and, under mild conditions, they are asymptoti-
cally close to the exponential distribution (see [Sugakova (1995), Kalashnikov (1997)]
and references therein). The accuracy of exponential distribution approximation can
be estimated through renewal techniques hinged on the memoryless property of the
geometric distribution [Sugakova (1995), Kalashnikov (1997)] but these techniques
seem to be less efficient in tackling its natural counterpart of gamma distribution ap-
proximation to negative binomial sums. Stein’s method related to gamma distribution
approximation [Diaconis & Zabell (1991), Luk (1994), Peköz & Röllin (2011), Gaunt,
Pickett & Reinert (2017), Gaunt (2019), Slepov (2021)] is more flexible than renewal
techniques and gamma distribution approximation of random variables in a fixed Wiener
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chaos of a general Gaussian process using the Malliavin-Stein method has been investi-
gated by [Eichelsbacher & Thäle (2015), Ledoux, Nourdin & Peccati (2015), Nourdin
& Peccati (2009)]. The key to the success of using Stein’s method is to find suitable
distributional transformations of the random object under consideration [Goldstein &
Reinert (2005)], hence the first obstacle we need to overcome is to find such distribu-
tional transformations characterising the gamma distribution. To this end, let us recall
the two most commonly used distributional transformations, namely, size biasing and
zero biasing.

For any nonnegative random variable V with finite mean µ, we say that V s has V -size
biased distribution if

E[V f(V )] = µE f(V s) (1.1)

for all functions f such that E |V f(V )| < ∞. For the geometric sum S :=
∑N
i=1Xi

mentioned above [Rényi (1956)], it is a routine exercise to verify that Ss
d
= S + S′ +Xs

1 ,

where
d
= stands for “equal in distribution”, S′

d
= S, and S, S′, Xs

1 are independent. This
form of size biasing does not seem promising to study gamma distribution approximation
of the geometric sum using the size biasing only.

For a random variable W with mean µ and variance σ2 ∈ (0,∞), we say W z has the
W -zero biased distribution if for all differentiable function f with E |Wf(W )| <∞,

E[(W − µ)f(W )] = σ2E f ′(W z). (1.2)

The zero-bias transformation dates back at least to [Lukacs (1970), Theorem 12.2.5 (a)]
and it was first systematically studied by [Goldstein & Reinert (1997)]. [Stein (1972)]
appears to be the first to observe that the normal distribution is the fixed point of the
zero-bias transformation: Z is a normal random variable with zero mean and variance σ2

if and only if for all absolutely continuous f with E |Zf(Z)| <∞,

E[Zf(Z)] = σ2E f ′(Z).

The discrete version of zero biasing was introduced in [Goldstein & Xia (2006)] and it is
slightly different from the zero biasing defined above. It is an elementary exercise to

verify that zero biasing satisfies W z d
= (W − a)z + a for all a ∈ R.

As observed in [Goldstein & Reinert (2005)], both size biasing and zero biasing
are special cases of the transformation that can be used to construct approximation
theory based on a distribution which is the fixed point of the transformation. Both
of the biasing transformations play significant roles in a wide range of distributional
approximations including normal [Chen, Goldstein & Shao (2010)], Poisson [Barbour,
Holst & Janson (1992)] and exponential [Peköz & Röllin (2011)].

In Section 2, we show that the gamma distribution is uniquely characterised by the
property that its size biased distribution is the same as its zero biased distribution.
We then combine this characterisation with Stein’s method in Section 3 to establish
simple bounds for gamma distribution approximation with application to the sum of
independent nonnegative random variables. As the gamma distribution is in the family of
infinitely divisible distributions, we present the direct relationship between size biasing
and zero biasing for infinitely divisible distributions on R+ := [0,∞) in Lemma 4.2. In the
remaining part of Section 4, we consider gamma distribution approximation to a class
of compound Poisson distributions and the negative binomial sum of random variables.
In particular, our result provides an intuitive explanation why the gamma distribution
is a continuous counterpart of the negative binomial distribution and why the gamma
process is a pure jump increasing process while the gamma distribution is continuous.
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2 Gamma distribution: the intersection of size biasing and zero
biasing

The gamma distribution Γ(r, α) we consider has the probability density function
1

Γ(r)α
rxr−1e−αx, x > 0. The following theorem states that the unique distribution having

the same size biased distribution and zero biased distribution is a gamma distribution.
A well-known fact is that for W ∼ Γ(r, α), W s ∼ Γ(r + 1, α) [Arratia, Goldstein &
Kochman (2019)].

Theorem 2.1. For a random variable W ≥ 0 with mean µ and variance σ2 ∈ (0,∞), we

have W ∼ Γ(r, α) with α := µ
σ2 , r := µ2

σ2 if and only if

W s d
= W z. (2.1)

Proof The proof relies on Stein’s identity of the gamma distribution [Luk (1994)]:

xf ′′(x) + (r − αx)f ′(x) = h(x)− Γr,αh, (2.2)

where Γr,αh := Eh(Z) for Z ∼ Γ(r, α). Therefore, the random variable W ∼ Γ(r, α) if
and only if

E[Wf ′′(W ) + (r − αW )f ′(W )] = 0

for all twice differentiable functions f such that the expectations E |Wf ′′(W )| and
E |Wf ′(W )| are finite.

For the necessity part, assume that W ∼ Γ(r, α) for some r, α > 0, hence

µ =
r

α
, σ2 =

r

α2
.

For a differentiable h such that E |Wh(W )| <∞,

σ−2E[(W − µ)h(W )] = αE[h(W s)− h(W )]

= α

∫ ∞
0

h(x)

[
1

Γ(r + 1)
αr+1xre−αx − 1

Γ(r)
αrxr−1e−αx

]
dx

= −
∫ ∞

0

h(x)d

[
1

Γ(r + 1)
αr+1xre−αx

]
=

∫ ∞
0

h′(x)
1

Γ(r + 1)
αr+1xre−αxdx

= Γr+1,αh
′,

which ensures that W z ∼ Γ(r + 1, α). Since W s ∼ Γ(r + 1, α), (2.1) follows. Conversely,
if (2.1) holds, since µ = ασ2, for all twice differentiable f such that the following
expectations exist, we have

E[Wf ′′(W ) + (r − αW )f ′(W )]

= E[Wf ′′(W )]− αE[(W − µ)f ′(W )]

= µE f ′′(W s)− ασ2E f ′′(W z)

= 0.

This ensures that W ∼ Γ(r, α) and the proof is complete.
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3 Main results

In this section, we bound the errors of gamma distribution approximation in terms of
the Wasserstein distance dW and the Kolmogorov distance dK defined as

dW(L (X),L (Y )) := sup
f∈FW

|E f(X)− E f(Y )|, (3.1)

dK(L (X),L (Y )) := sup
f∈FK

|E f(X)− E f(Y )|,

where FW := {f : R→ R, |f(x)− f(y)| ≤ |x− y|,∀x, y ∈ R} and FK := {1{·≤z},∀z ∈ R}.
Theorem 3.1. Let W be a nonnegative random variable with mean µ and variance
σ2 ∈ (0,∞). For α = µ/σ2, r = µ2/σ2,

dW(L (W ),Γ(r, α)) ≤ 8

√
3r

α(r + 2)
Θ1/2 +

8r

r + 2
Θ, (3.2)

dK(L (W ),Γ(r, α)) ≤ ar,αΘ
r∧1

r∧1+2 + br,αΘ
r∧1+1
r∧1+2 , (3.3)

where Θ := dW(L (W s),L (W z)) and

ar,α =

 0.5(48α)r/(r+2)
(

r+2
Γ(r+1)

)2/(r+2)

≤ 1.15(48α)r/(r+2), 0 < r < 1,

3
(

6αr
r+2

)1/3 [
1

Γ(r)

(
r−1
e

)r−1
]2/3

≤ 5.46
(

α
2r+1

)1/3

, r ≥ 1;
(3.4)

br,α =

 8
(
αr
r+2

) r+1
r+2
[

1
48Γ(r)

] 1
r+2 ≤ 1.11α(r+1)/(r+2), 0 < r < 1,

4α2/3r
(r+2)2/3

[
1

6Γ(r+1)

(
r−1
e

)r−1
]1/3

≤ 4.24α2/3r−1/6, r ≥ 1.
(3.5)

Remark 3.2. (i) Due to the generality of the theorem, we don’t know the optimal orders
of the bounds in terms of Θ. Tractable examples indicate that the powers of Θ seem to
be the artefacts of the proofs.

(ii) In respect of r as r → ∞, (3.2) is of optimal order but the optimal orders of
ar,α and br,α in (3.3) seem to be O(r−1/2). To check this, take W as a sum of i.i.d.
random variables having finite third moment, then both W and Γ(r, α) can be well
approximated by the normal distribution with the same mean and variance and we
can use the order of normal approximation as the benchmark. Corollary 3.3 ensures
that Θ does not depend on r, hence the optimal order of dW(L (W ),Γ(r, α)) is O(1)

[Esseen (1958), Zolotarev (1964)] or [Chen, Goldstein & Shao (2010), Theorem 4.2] and
dK(L (W ),Γ(r, α)) is of order O(r−1/2) [Berry (1941), Esseen (1942)] or [Chen, Goldstein
& Shao (2010), Theorem 3.6].

Proof of Theorem 3.1 For any h ∈ FW and δ > 0, we can construct an interpolating
spline function h̃ as follows. For i ∈ Z := {0,±1,±2, · · · }, let xi = −iδ, (xi, yi) :=

(xi, h(xi)) and

h̃(x) := yi + (yi+1 − yi)φ
(

x− xi
xi+1 − xi

)
, x ∈ [xi, xi+1),

where

φ(t) =


0, t < 0,

2t2, 0 ≤ t < 1/2,

1− 2(1− t)2, 1/2 ≤ t ≤ 1,

1, t > 1.
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It is easy to verify that h̃ is twice differentiable and

‖h̃′‖ := sup
x∈R
|h̃′(x)| ≤ 2, ‖h− h̃‖ ≤ δ, ‖h̃′′‖ ≤ 4δ−1,

since
∣∣∣ yi+1−yi
xi+1−xi

∣∣∣ ≤ 1. Let f̃ := fh̃ be the solution of the Stein equation (2.2) with h̃ in place

of h, then

‖f̃ ′′′‖ ≤ 2

r + 2
(3‖h̃′′‖+ 2α‖h̃′‖) ≤ 8

r + 2

(
3δ−1 + α

)
, (3.6)

see [Gaunt, Pickett & Reinert (2017), Theorem 2.1]. By virtue of (2.2), (1.1) and (1.2),
we have

E h̃(W )− Γr,αh̃ = E[Wf̃ ′′(W ) + (r − αW )f̃ ′(W )]

= µE f̃ ′′(W s)− αE[(W − µ)f̃ ′(W )]

= µE[f̃ ′′(W s)− f̃ ′′(W z)],

which, together with (3.6), implies

|E h̃(W )− Γr,αh̃| ≤
8µ

r + 2

(
3δ−1 + α

)
Θ. (3.7)

By the triangle inequality, we have

|Eh(W )− Γr,αh| ≤ |Eh(W )− E h̃(W )|+ |E h̃(W )− Γr,αh̃|+ |Γr,αh̃− Γr,αh|

≤ 2δ +
8µ

r + 2

(
3δ−1 + α

)
Θ,

and (3.2) follows from (3.1) and δ =
√

12µ
r+2Θ1/2.

The proof of (3.3) relies on the following concentration inequality of Z ∼ Γ(r, α): for
δ > 0 and z ≥ 0,

P(z < Z ≤ z + δ) ≤ ε(δ) :=


αrδr

Γ(r + 1)
, 0 < r < 1,

M(r, α)δ, r ≥ 1,

where M(r, α) := α
Γ(r)

(
r−1
e

)r−1
is the maximum of the density function of Γ(r, α). In fact,

for r ≥ 1, the bound is obvious, and for r ∈ (0, 1), the bound follows from the fact that

g(δ) :=
∫ z+δ
z

xr−1e−αxdx− δr/r is decreasing in δ and g(0) = 0.
Assume now hz(·) = 1{·≤z} ∈ FK , z ≥ 0. Denote

h̃z(x) := 1− φ
(
x− z
δ

)
,

and note that ‖h̃′z‖ ≤ 2δ−1 and ‖h̃′′z‖ ≤ 4δ−2. As

P(W ≤ z)− P(Z ≤ z) ≤ E h̃z(W )− E h̃z(Z) + E h̃z(Z)− P(Z ≤ z)
≤ E h̃z(W )− E h̃z(Z) + P(z < Z ≤ z + δ)

≤ |E h̃z(W )− Γr,αh̃z|+ ε(δ),

and, following the same argument for (3.7), we have

|E h̃z(W )− Γr,αh̃z| ≤ µ‖f̃ ′′′z ‖Θ ≤
8µ

r + 2
(3δ−2 + αδ−1)Θ =: e(δ).
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Analogously,

P(W ≤ z)− P(Z ≤ z) ≥ E h̃z−δ(W )− E h̃z−δ(Z)− P(z − δ < Z ≤ z)
≥ −e(δ)− ε(δ).

Therefore, for 0 < r < 1, we have

dK(L (W ),Γ(r, α)) ≤ e(δ) +
αrδr

Γ(r + 1)
=

8µ

r + 2
(3δ−2 + αδ−1)Θ +

αrδr

Γ(r + 1)
,

which implies (3.3) with δ =
[

48µΘΓ(r)
(r+2)αr

]1/(r+2)

. Similarly, for r ≥ 1,

dK(L (W ),Γ(r, α)) ≤ 8µ

r + 2
(3δ−2 + αδ−1)Θ +M(r, α)δ,

which, together with δ =
(

48µΘ
(r+2)M(r,α)

)1/3

and µ = r/α, ensures (3.3). In terms of

the upper bounds in (3.4), if 0 < r < 1, we use the fact that Γ(r + 1) ≥ 0.8856 and(
r+2

0.8856

)2/(r+2)
attains its maximum at r0 = 0.8856e−2 to obtain the upper bound; if r ≥ 1,

we use [Batir (2008), Theorem 1.5] to get Γ(r) ≥
√

2e
(
r−1/2
e

)r−1/2

and the fact that
r

(r+2)(r−1/2) ≤
1

r+1/2 to obtain√
r

r + 2

(
r − 1

e

)r−1
1

Γ(r)
≤
√

r

2(r + 2)(r − 1/2)

(
r − 1

r − 1/2

)r−1

≤ (2r + 1)−1/2.

Similarly, we can establish the upper bounds in (3.5). For 0 < r < 1,(
r

r + 2

) r+1
r+2
[

1

48Γ(r)

] 1
r+2

=
r

(r + 2)
r+1
r+2

[
1

48Γ(r + 1)

] 1
r+2

≤ r

(r + 2)
r+1
r+2

[
1

48× 0.8856

] 1
r+2

=: g̃(r).

It is easy to verify that g̃(r) is increasing in r, so g̃(r) ≤ g̃(1) and the upper bound follows
immediately. For r ≥ 1, we apply the bound [Batir (2008), Theorem 1.5] again to get

Γ(r + 1) ≥
√

2e
(
r+1/2
e

)r+1/2

so

4r

(r + 2)2/3

[
1

6Γ(r + 1)

(
r − 1

e

)r−1
]1/3

≤ 4er

61/3
√

2(r + 2)2/3

(
(r − 1)r−1

(r + 1/2)r+1/2

)1/3

≤ 4.24r−1/6.

Theorem 3.1 says that the accuracy of gamma distribution approximation with respect
to dW and dK is determined by Θ = dW(L (W s),L (W z)). The next corollary says that
for the sum of nonnegative independent random variables, Θ can be easily bounded.

Corollary 3.3. Let {Xi : 1 ≤ i ≤ n} be nonnegative independent random variables with
positive finite variances and W =

∑n
i=1Xi, then (3.2) and (3.3) hold with

Θ = E |Xs
I1 +XI2 −XI1 −Xz

I2 |,

where Xs
i and Xz

i have the size-biased distribution and zero-biased distribution of Xi,
respectively, I1, I2 are random indices, independent of X1, . . . , Xn, with distributions

P(I1 = i) =
EXi

EW
, P(I2 = i) =

Var(Xi)

Var(W )
, (3.8)

for i = 1, . . . , n. In particular, when X1, . . . , Xn are i.i.d. random variables, we have (3.2)
and (3.3) with Θ = E |Xs

1 −Xz
1 |.
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Proof According to [Goldstein & Rinott (2005)] and [Goldstein & Reinert (1997)], we
can set W s :=

∑
j 6=I1 Xj +Xs

I1
and W z :=

∑
j 6=I2 Xj +Xz

I2
, hence

E |W s −W z| = E |Xs
I1 +XI2 −XI1 −Xz

I2 |. (3.9)

When X1, . . . , Xn are i.i.d. random variables, we may take I1 = I2, which is uniformly
distributed on {1, . . . , n}. Hence, (3.9) can be reduced to

E |Xs
I1 −X

z
I1 | = E |Xs

1 −Xz
1 |,

as claimed.
Convolutions of gamma distributions commonly arise in queuing type problems. For

examples, the total waiting time of a system with independent exponentially distributed
component lifetimes and the total amount of water collected in a dam from independent
excess flows at different occasions [Moschopoulos (1985)]. In fact, as a more general
form of the exponential distribution, convolutions of gamma distributions may appear in
applications where random events in space or time occur in tandem with gaps of events
following gamma distributions, see [Stewart et al. (2007), Vellaisamy & Upadhye (2009)]
for more discussion of such applications. There are extensive theoretical studies of
the problem and we refer interested readers to [Vellaisamy & Upadhye (2009), Covo
& Elalouf (2014)] for further reading in this area. In particular, it is well known that
weighted sums of independent Chi-square random variables can be written as a con-
volution of gamma random variables [Jensen & Solomon (1972)]. The convolution of
gamma distributions is generally intractable but can be well approximated by a gamma
distribution with the same first and second moments [Moschopoulos (1985)] and the next
corollary provides the error estimates of the gamma distribution approximation to such
convolutions. Before we state the corollary, we mention that other parameterisations of
the approximating gamma distribution may be possible [Covo & Elalouf (2014)].

Corollary 3.4. If Xi ∼ Γ(ri, αi), 1 ≤ i ≤ n, are independent gamma distributed random
variables, with µ =

∑n
i=1 ri/αi, σ

2 =
∑n
i=1 ri/α

2
i , α = µ/σ2, r = αµ, then (3.2) and (3.3)

hold with Θ = E |YI1 − YI2 |, where I1 and I2 are random indices satisfying

P(I1 = i) =
riα
−1
i∑n

j=1 rjα
−1
j

, P(I2 = i) =
riα
−2
i∑n

j=1 rjα
−2
j

, (3.10)

Yi ∼ Γ(1, αi), i = 1, . . . , n, {Yi} are independent and are independent of {I1, I2}.
Proof By Corollary 3.3, it suffices to bound E |Xs

I1
+ XI2 − XI1 − Xz

I2
|. Recalling that

Xs
i
d
= Xz

i ∼ Γ(ri + 1, αi), we can set Xs
i := Xi + Yi, Xz

i = Xs
i , where Yi ∼ Γ(1, αi) is

independent of {Xj : 1 ≤ j ≤ n}, 1 ≤ i ≤ n. The distributions of I1, I2 in (3.8) are reduced
to (3.10) and E |Xs

I1
+XI2 −XI1 −Xz

I2
| = E |YI1 − YI2 |.

4 Applications

Before we consider applications, it is handy to have the following lemma bounding
the Wasserstein distance between two gamma distributions.

Lemma 4.1. For r1, r2, α1, α2 > 0,

dW(Γ(r1, α1),Γ(r2, α2)) ≤ |r1 − r2|
α1 ∨ α2

+ (r1 ∨ r2)

∣∣∣∣ 1α 1
− 1

α 2

∣∣∣∣ .
Proof Without loss, we assume α1 < α2, then by the triangle inequality,

dW(Γ(r1, α1),Γ(r2, α2)) ≤ dW(Γ(r1, α1),Γ(r1, α2)) + dW(Γ(r1, α2),Γ(r2, α2))

= r1

∣∣∣∣ 1

α1
− 1

α2

∣∣∣∣+
|r1 − r2|
α2

,
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where the last equality is due to the facts that Γ(r, α) is stochastically increasing in r

and stochastically decreasing in α, and for two distributions F1 and F2 such that F2 is
stochastically smaller than F1, i.e., F1(t) ≤ F2(t) for all t ∈ R, then the main theorem of
[Vallender (1972)] ensures

dW(F1, F2) =

∫
tdF1(t)−

∫
tdF2(t). (4.1)

We will also need size biasing and zero biasing of infinitely divisible distributions on
R+, see [Arratia, Goldstein & Kochman (2019), Theorem 11.2] and [Arras & Houdré (2019),
Proposition 3.8] for more details. The direct relationship between the two biasings seems
to be not noted anywhere in the literature so we give a proof for the relationship.

Lemma 4.2. Suppose X is a nonnegative random variable with Var(X) > 0.

(a) L (X) is infinitely divisible if and only if there exists a random variable X ′ ≥ 0 a.s.
independent of X such that the size biased distribution of X satisfies

Xs d
= X +X ′. (4.2)

(b) L (X) is infinitely divisible if and only if there exists a random variable X ′′ indepen-
dent of X such that the zero biased distribution of X satisfies

Xz d
= X +X ′′. (4.3)

The distribution of X ′′ has the density function

1

EX ′
P(X ′ ≥ x), x ≥ 0, (4.4)

where X ′ is uniquely determined in (4.2).

Proof of (4.4) The proof is a simple application of the Laplace transform. For θ > 0,
denote φV (θ) := E e−θV for some non-negative random variable V . For simplicity, we
denote µ := EX, and σ2 := Var(X). By taking V = X and f(x) = e−θx in (1.2), together

with EX ′ = EXs − EX = σ2

µ , we have

φX∗(θ) = − 1

σ2θ
E
[
(X − EX)e−θX

]
= − µ

σ2θ
[φXs(θ)− φX(θ)]

= φX(θ)
µ

σ2θ
E[1− e−θX

′
]

= φX(θ)
µ

σ2

∫ ∞
0

e−θx[1− P(X ′ ≤ x)]dx

= φX(θ)

∫ ∞
0

e−θx
1− P(X ′ ≤ x)

EX ′
dx,

where the third equality is due to (4.2), and the fourth one is from the integration by
parts. This is equivalent to (4.3).

We note that the distribution of X ′′ is also called the equilibrium distribution with
respect to X ′ in [Peköz & Röllin (2011)]. [Arras & Houdré (2019)] state that the only
probability measure that has an additive exponential size biased distribution is the
gamma distribution and [Peköz & Röllin (2011)] say that the exponential distribution is
the unique fixed point under the equilibrium transformation, their observations confirm
Theorem 2.1 in the case of infinitely divisible distributions on R+.
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The first application we consider is to estimate the difference between a compound
Poisson distribution and a gamma distribution having the same mean and variance.
Recall that a compound Poisson distribution, denoted by CP(λ,L (X)), is the distribution
of W =

∑N
i=1Xi, where {X,Xi, i ≥ 1} are i.i.d. random variables independent of

N ∼ Pn(λ).

Proposition 4.3. Assume that X ≥ 0 and Var(X) ∈ (0,∞) such that both Xs and Xz

exist. Let W ∼ CP(λ,L (X)) with µ = EW and σ2 = Var(W ). Taking α = µ/σ2,
r = µ2/σ2, then (3.2) and (3.3) hold with Θ = dW(L (Xs),L (X̃)), where the density
function of X̃ is given by

fX̃(y) =
1

E(X2)
E
[
X1{X≥y}

]
, y ≥ 0.

Proof In this case, L (W ) is finitely divisible and W s = W + Xs [Arratia, Goldstein &
Kochman (2019), p. 7], Lemma 4.2 ensures W z = W + X̃, the claim is an immediate
consequence of Theorem 3.1.

The intriguing phenomenon that the gamma process is a pure-jump increasing process
while the gamma distribution is continuous can be well explained by the following bound.
The bound is the result of direct calculations from Proposition 4.3 and (4.1), so we omit
the details. The example tells us that the bounds in Proposition 4.3 have some room for
improvement. Recall that the Lévy measure of the gamma process is γ(dy) = e−y/y dy.

Example 4.4. Let W ∼ CP(λ,L (X)) with λ =
∫∞
δ

e−x

x dx and the density of L (X) given

by 1
λ
e−x

x 1{x≥δ} for some δ > 0, then

dW(L (W ),Γ(1, 1)) ≤ 8
√
δ +

17

3
δ.

Remark 4.5. The bound in Example 4.4 is not of optimal order. In fact, let Ξ be a Poisson
point process on (0,∞) with intensity measure µ(dx) = e−x

x dx, and Ξ̃ := Ξ|(δ,∞) be the

restriction of Ξ to (δ,∞). Let Z :=
∑
ξ∈Ξ ξ and W̃ :=

∑
ξ∈Ξ̃ ξ. It is easy to verify that

W̃
d
= W and Z ∼ Γ(1, 1), which ensure that L (Z) is stochastically bigger than L (W ),

hence

dW(L (W ),Γ(1, 1)) = EZ − EW = 1− e−δ ≤ δ.

It is tempting to ask whether for W ∼ CP(λ,L (X)) with λ → ∞,EW → a
b and

Var(W )→ a
b2 for some a, b > 0 are sufficient to ensure that W converges in distribution

to Γ(a, b). The following example gives a negative answer to this question, indicating that
dW(L (Xs),L (X̃)) → 0 in Proposition 4.3 is also necessary for the compound Poisson
distribution to be close to the gamma distribution.

Counterexample 4.6. Let P(X = 1) = 1/λ = 1− P(X = 0), then W ∼ CP(λ,L (X)) =

Pn(1), EW = Var(W ) = 1, but W does not converge to Γ(1, 1) as λ→∞.

For κ > 0 and 0 < p < 1, we write V ∼ NB(κ, p) if

P(V = i) =
Γ(κ+ i)

Γ(κ)i!
pκ(1− p)i, i = 0, 1, . . . .

Hence, EV = κ(1− p)/p and Var(V ) = κ(1− p)/p2.

To estimate gamma distribution approximation to negative binomial sums, we first
bound the difference between a rescaled negative binomial distribution and a gamma
distribution.
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Proposition 4.7. Let Tp ∼ NB(κ, p), Wp := pTp. Then

dW(L (Wp),Γ(κ(1− p), 1)) ≤ 4

√
6κ(1− p)p
κ(1− p) + 2

+
4κ(1− p)p
κ(1− p) + 2

,

dK(L (Wp),Γ(κ(1− p), 1)) ≤ ar,α(0.5p)
r∧1

r∧1+2 + br,α(0.5p)
r∧1+1
r∧1+2 ,

where ar,α and br,α are given in (3.4) and (3.5).

Proof We write Tp :=
∑N
i=1Xi, where {X,X1, X2, . . . } are i.i.d. random variables with

the logarithmic distribution

P(X = i) = − 1

ln(p)

(1− p)i

i
, i ≥ 1, (4.5)

and N ∼ Pn(−κ ln(p)), independent of Xi’s. It is obvious to see that EX = − 1−p
p ln(p) , and

E(X2) = − 1−p
p2 ln(p) , giving

EWp = Var(Wp) = κ(1− p).

From Lemma 4.2, we know that Wp = p
∑N
i=1Xi has the size biased distribution

W s
p
d
= Wp + (pX)

s
,

where Wp and (pX)
s are independent. For any i ∈ N, x = pi, we have

P ((pX)
s

= x) =
xP(pX = x)

E(pX)
=
iP(X = i)

EX
= P(Xs = i). (4.6)

From (4.5), we can derive the size biased distribution of X: for i ≥ 1

P(Xs = i) =
iP(X = i)

EX
= p(1− p)i−1. (4.7)

Likewise, W z
p
d
= Wp + X̃, where X̃ is independent of Wp, having density

fX̃(y) =
E
[
(pX)1{pX≥y}

]
E [(pX)2]

=
E
[
X1{X≥y/p}

]
pE(X2)

.

Noting that for p(i− 1) < y ≤ pi, we have i− 1 < y/p ≤ i, thus

fX̃(y) =
EXP(Xs ≥ y/p)

pE(X2)
= P(Xs ≥ i)

= (1− p)i−1.

dW

(
L ((pX)

s
) ,L (X̃)

)
=

∫ ∞
0

∣∣∣P ((pX)
s ≥ x)− P(X̃ ≥ x)

∣∣∣ dx
=

∞∑
i=1

∫ pi

p(i−1)

∣∣∣P ((pX)
s ≥ x)− P(X̃ ≥ x)

∣∣∣ dx.
For p(i− 1) < x ≤ pi, from (4.6) and (4.7), we have

P ((pX)
s ≥ x) =

∞∑
k=i

P(Xs = k) = (1− p)i−1.
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On the other hand,

P(X̃ ≥ x) =

∫ ∞
x

fX̃(y)dy = (pi− x)(1− p)i−1 +

∞∑
k=i

p(1− p)k

= (pi− x)(1− p)i−1 + (1− p)i < (1− p)i−1 = P ((pX)
s ≥ x) .

Therefore,

dW

(
L ((pX)

s
) ,L (X̃)

)
=

∫ ∞
0

(
P ((pX)

s ≥ x)− P(X̃ ≥ x)
)
dx

= E (pX)
s − E X̃

=
E (pX)

2

E (pX)
−
∞∑
i=1

∫ pi

p(i−1)

P(X̃ ≥ x)dx

= 1−
∞∑
i=1

(
p(1− p)i + 0.5p2(1− p)i−1

)
= 0.5p.

This, together with Proposition 4.3, completes the proof.

Corollary 4.8. Let Tp ∼ NB(κ, p) and {Xi} be a sequence of random variables, define
Sn =

∑n
i=1Xi. Assume that E(Xi|Tp) = 1 and Var(Si|Tp = i) = iν2 for all i ≥ 1, then

Wp = p
∑Tp

i=1Xi satisfies

dW(L (Wp),Γ(κ, 1)) ≤ 4

√
6κ(1− p)p
κ(1− p) + 2

+
4κ(1− p)p
κ(1− p) + 2

+ ν
√
κ(1− p)p+ pκ.

Proof By the triangle inequality,

dW(L (Wp),Γ(κ, 1))

≤ dW(L (Wp),L (pTp)) + dW(L (pTp),Γ(κ(1− p), 1)) + dW(Γ(κ(1− p), 1),Γ(κ, 1))

≤ E |Wp − pTp|+ 4

√
6κp(1− p)
κ(1− p) + 2

+
4κp(1− p)
κ(1− p) + 2

+ pκ,

where the last inequality comes from Proposition 4.7 and Lemma 4.1 using the fact that
Γ(r, 1) is stochastically increasing in r. The remaining part E |Wp − pTp| is bounded by
the Cauchy-Schwarz inequality:

E |Wp − pTp| = pE

∣∣∣∣∣∣
Tp∑
i=1

(Xi − 1)

∣∣∣∣∣∣ ≤ p
√√√√√Var

 Tp∑
i=1

(Xi − 1)



= p

√√√√√E
Var

 Tp∑
i=1

(Xi − 1)

∣∣∣∣Tp
 = p

√
E[Tpν2] = ν

√
κ(1− p)p.
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