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Abstract

In this paper we study the self-intersection of paths solving elliptic stochastic differen-
tial equations driven by fractional Brownian motion. We show that such a path has no
self-intersection – except for paths forming a set of zero (r, q)-capacity in the sample
space – provided the dimension d of the space and the Hurst parameter H satisfy the
inequality d > rq + 2/H. This inequality is sharp in the case of brownian motion and
fractional brownian motion according to existing results. Various results exist for the
critical case where d = rq + 4 for Brownian motion.
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1 Introduction

The presence or absence as well as the number of self-intersections are important
properties of the path of a stochastic process. These properties are studied along
with differentiability vs. non-differentiability, modulus of continuity, and others (see
e.g.[21][29]). Pólya [31] studied recurrence, the related property of whether a path
returns to a point previously visited and how often, for paths of random walks. Lévy
studied the question of recurrence and showed that in dimension 2 double points exist
almost surely in [18][19]. Kakutani proved in 1944 that the paths of Brownian motion
almost surely have no self-intersection for d ≥ 5 [15]. This corresponds to r = 0 and
H = 1/2 in the inequality d > rq + 2/H. Dvoretzky, Erdös, and Kakutani subsequently
proved that there is no self intersection for Brownian motion for d = 4, the critical
dimension. Subsequently the authors proved that there are double intersections but no
triple intersections in d = 3, whereas there are intersections of arbitrary multiplicity for
d ≤ 2 [6][7][8].

Results on the capacity of the set of paths with self-intersection began with Fukushima,
who showed in [10] that the set of Brownian motion paths which intersect themselves has
zero (1, 2)-capacity for d ≥ 7. Takeda proved the result for Brownian Motion that the set
of self-intersecting paths has zero (r, q)-capacity provided d > rq + 4 [33]. Lyons proved
that there is no self-intersection except on a set of zero (1, 2)-capacity for the critical
case d = 6 [26]. Khoshnevisan reviews numerous results on the capacity of Brownian
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Quasi-sure non-self-intersection for rough differential equations

self-intersection in the 2003 paper [16], where he also provides an elementary proof
of past results and relates the self-intersection property to methods from the theory
of renormalization groups. These authors use various definitions of capacity, resulting
from the Ornstein-Uhlenbeck semi-group, the Sobolev norm for the Malliavin derivative,
and the classical potential theory. These different definitions are mutually absolutely
continuous as outer measures and comparable as norms [12][30][32].

We will use the definition of the capacity based on the Sobolev norm for the Malliavin
deriviative in this paper. In 2018 Li and Qian published a paper proving that self-
intersecting paths of a fractional Brownian motion (fBm) with Hurst parameter H form a
set of zero (r, q)-capacity when d > rq+ 2/H [22], which our paper will show also applies
to stochastic differential equations driven by fBm. Li and Qian point out that the critical
dimension case is currently an open problem for fractional Brownian motion because it
is not possible to apply the classical potential theory. We follow the methods Boedihardjo
et al. employed in [3] to analyze the self-intersection of the signature of a Brownian
motion.

To employ the tools of the quasi-sure anlaysis we will have to show that the map
between the sample space and solutions to the rough differential equation (RDE) is quasi-
continuous. The results of Coutin and Qian demonstrate that dyadic interpolation of
paths of fractional Brownian motion converge in p-variation except on a set of zero (r, q)-
capacity in the sample space, provided the Hurst parameter H satisfies 1/4 < H < 1 and
p > 1/H [5]. These results were generalized and elaborated upon by both Boedihardjo et
al. and Lyons and Qian [2][24]. Critically the dyadic interpolations do not converge in p-
variation for any p even almost surely for H ≤ 1/4, so we will only consider 1/4 < H < 1.

Combining this result with the universal limit theorem and a theorem of Malliavin
we show that the map between the sample space and solutions to the RDE is quasi-
continuous [25][27]. This allows us to apply the Chebyshev inequality for capacity to
bound the capacity in a similar manner to the Chebyshev inequality for probability. We
combine the Chebyshev inequality and bounds on the probability density for the path of
the solution from Ouyang et al. in [20][1].

2 Preliminaries

2.1 Fractional Brownian motion as a rough path

Kolmogorov defined the process that Mandelbrot and Van Ness would later call
fractional Brownian motion (fBm) in a 1940 paper [17] [28]. An fBm, Bt, is a Gaussian
stochastic process with mean zero and covariance

E [BtBs] = R(s, t) :=
1

2

(
s2H + t2H − |t− s|2H

)
.

In order to analyze solutions to rough differential equations (rde) driven by such
paths we apply Lyons’ theory of rough paths [25]. Lyons introduced this theory in his
seminal 1998 paper [23]. The context for the definition of a rough path on Rd is the
tensor algebra

T (Rd) =

∞⊕
n=0

(
Rd
)⊗n

,

where
(
Rd
)⊗0

= R. The tensor algebra is equipped with a tensor product ⊗, and a rough
path is a function Xs,t from the simplex ∆2 = {(s, t) ∈ [0, T ]2 : s < t} to T (Rd), such that

Xs,t = Xs,u ⊗Xu,t,
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for s < u < t. We refer to the i-th coordinate of Xs,t as xis,t. The p-variation norm of a
rough path can be defined

||Xs,t||p = max
1≤i≤bpc

sup
D⊂[0,T ]

(∑
li∈D

||xili,li−1
||
i
p

(Rd)⊗i

) p
i

,

where bpc denotes the integer floor, D a partition of [0, T ], and || · ||(Rd)⊗i the norm on
the tensor product space induced by the Euclidean norm on Rd. This is an example of a
control, a super-additive function that plays to role of a norm in the rough path context
[25].

For a path Xt : [0, T ] → Rd of bounded variation, where the Lebesgue-Stieltjes
integral is defined, a canonical rough path representative exists that corresponds with
the Chen signature,

S(Xt) =

(
1,

∫
0≤s0≤t

dXs0 ,

∫
0≤s0≤s1≤t

dXs0 ⊗ dXs1 , . . .

)
.

In [4] Chen proved – in the context of the algebraic topology – that the signature is a
homomorphism between the space of paths and the tensor algebra. If we let γ1, γ2 be
paths in Rd and let ∗ denote the concatenation operation, then

S(γ1 ∗ γ2) = S(γ1)⊗ S(γ2).

This identity guarantees that S(Xt) will be a multiplicative functional, i.e. a rough
path in Lyons’ definition [4]. The geometric p-rough paths, written GΩp(Rd) is the
completion in the p-variation norm of the space of signatures of paths of bounded
variation.

Given a path Xt ⊂ Rd of bounded p-variation, we define the canonical lift to GΩp(Rd)

by approximating the path with dyadic interpolation. We define the n-th order dyadic
interpolation of Xt as the path coinciding with Xt at the dyadic points k/2n of the interval
[0, T ], where k is an integer, and piecewise linear in between. Explicitly,

X
(n)
t = X k

2n
+

(
t− k

2n

)
· 2−n ·

(
X k+1

2n
−X k

2n

)
,

for t ∈ [ k2n ,
k+1
2n ) ⊂ [0, T ].

If the limit exists (in p-variation norm) we define

X0,t = lim
n→∞

S(X
(n)
t ).

If such a path exists it is called the canonical lift of Xt because in general there are many
distinct rough paths with the same increment x1

s,t.
To summarize, the canonical lift can be defined using the following commutative

diagram:

X
(n)
t Xt

S(X
(n)
t ) X0,t

The top horizontal arrow represents convergence in p-variation norm for a path in Rd,
and the lower horizontal arrow represents convergence in p-variation norm for a rough
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path in GΩp(Rd). The left vertical arrow indicates the Chen Signature map, which is
only defined for paths of bounded variation.

When both the dyadic interpolations X(n)
t and the signatures S(X

(n)
t ) converge in

p-variation norm in their respective spaces, we can define a “lift map” which maps Xt to
X0,t and makes the diagram commute. This map is one to one since we can also map
any rough path in GΩp(Rd) to its increment x1

0,t. We often identify the path Xt with the
rough path X0,t, and we will often throughout this paper refer only to the path Xt while
still applying the rough path technical machinery. In the case of fractional brownian
motion – except for samples paths constituting a zero (r, q)-capacity or slim set – fBm
has a canonical lift to the rough path space according to Coutin and Qian [5].

2.2 Rough differential equations

Lyons’ monograph [25] develops the solution to a rough differential equation by
building a theory of integration of one-forms defined on rough paths. It is too technical
to develop the full theory here. It is sufficient to say that rough path integration with
respect to Brownian motion is a generalization of Stratonovich’s definition of the integral,
and that it is possible to define integration pathwise and with respect to paths of bounded
p-variation for p > 2, where it is not possible to apply the Itô calculus. Lyons’ Universal
Limit Theorem proves that the Itô-Lyons solution map, which maps a driving path to the
solution of an rde, Ψ : GΩp(Rd)→ GΩp(Rd) is continuous in the p-variation norm.

Let Xt be a fBm, and let V i, 0 ≤ i ≤ d be a vector field satisfying elliptic conditions,

vV (x)V ∗(x)v∗ ≥ λ|v|2 for v, x ∈ Rd,

where V (x) = (V ij (x)), and λ > 0.

The solution to the following rde

Zt = x0 +

∫ t

0

V0(Zs)ds+

d∑
i=1

∫ t

0

Vi(Zs)dX
i
s, (2.1)

is then Ψ(X).

We can extend the commutative diagram from the earlier section. We obtain a new
diagram:

X
(n)
t Xt

Z
(n)
t Zt

Ψ Ψ

The Itô-Lyons map Ψ sends the dyadic interpolation of the fBm X
(n)
t to an approxi-

mation Z(n)
t of the solution Zt. Both of these converge in p-variation, to the fBm Xt and

solution Zt respectively, because of the continuity of the solution map. This key fact will
allow us to show that solutions to an rde driven by fBm are quasi-continuous.

2.3 The Malliavin calculus and Malliavin derivative

For some fixed H ∈ ( 1
4 , 1), we consider (Ω,F ,P) the canonical probability space

associated with the fBm with Hurst parameter H. That is, Ω = C0([0, T ]) is the Banach
space of continuous functions vanishing at 0 equipped with the supremum norm, F is
the Borel sigma-algebra and P is the unique probability measure on Ω such that the
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canonical process B = {Bt = (B1
t , . . . , B

d
t ), t ∈ [0, T ]} is a fractional Brownian motion

with Hurst parameter H.
To situate fBm in the context of the Malliavin calculus let us define R as follows,

R (t, s) := E
[
Bjs B

j
t

]
=

1

2

(
s2H + t2H − |t− s|2H

)
, for s, t ∈ [0, 1] and j = 1, . . . , d.

Malliavin techniques are essential in the analysis of fBm, and we proceed here to
introduce some of them (see [30] for further details): let E be the space of Rd-valued
step functions on [0, 1], and H the closure of E for the scalar product:

〈(1[0,t1], · · · ,1[0,td]), (1[0,s1], · · · ,1[0,sd])〉H =

d∑
i=1

R(ti, si).

Some isometry arguments allow us to define the Wiener integral W (h) =
∫ 1

0
〈hs, dBs〉

for any element h ∈ H, with the additional property E[W (h1)W (h2)] = 〈h1, h2〉H for any
h1, h2 ∈ H.

An F -measurable real valued random variable F is then said to be cylindrical if it can
be written, for a given n ≥ 1, as

F = f
(
W (h1), . . . ,W (hn)

)
= f

(∫ 1

0

〈h1
s, dBs〉, . . . ,

∫ 1

0

〈hns , dBs〉
)
,

where hi ∈ H and f : Rn → R is a C∞ bounded function with bounded derivatives. The
set of cylindrical random variables is denoted S.

The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F is the Rd

valued stochastic process (DtF )0≤t≤1 given by

DtF =

n∑
i=1

hi(t)
∂f

∂xi

(
W (h1), . . . ,W (hn)

)
.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk

F = Dt1 . . .DtkF.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into Lp(Ω;H⊗k).
We denote by Dr,q the closure of the class of cylindrical random variables with respect
to the norm

‖F‖r,q =

E (F q) +

r∑
j=1

E
(∥∥DjF

∥∥q
H⊗j

) 1
q

.

This norm is called the (r, q)-Sobolev norm.

2.4 Capacity and quasi-continuity

As mentioned in the introduction, there are various comparable definitions for capac-
ity. For our purposes we will use the definition of capacity based on the (r, q)-Sobolev
norm. Let O be an open set with O ⊂ Ω, the capacity is defined as follows,

Capr,q (O) = inf {||F ||r,q : F ∈ Dr,q, F ≥ 1 on O,F ≥ 0,P-a.s. } .

For a general set A ⊂ Ω

Capr,q (A) = inf
{

Capr,q(O) : O open ,A ⊂ O
}
.
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Note that capacity is strictly increasing in r, and r = 0 corresponds to the probability
measure.

A random variable F , which is measurable with respect to the sigma-field F , is
(r, q)-quasi-continuous if for every ε > 0, there exists an open subset O ⊂ Ω such that
Capr,q(O) < ε and F |Oc is continuous. Note that a norm must be specified on Ω, which
in our context is the supremum norm on Ω = C0([0, T ]). If F is (r, q)-quasi-continuous for
all r, q ∈ N, F is simply called quasi-continuous.

According to Theorem 2.3.3 in [27], every random variable F ∈ Dr,q has a quasi-
continuous modification F ∗ such that F = F ∗ almost surely (a.s.) and F ∗ is (r, q)-quasi-
continuous. The (r, q)-quasi-continuous version F ∗ is unique in the sense that F ∗ = F ∗

′

except on a set of zero (r, q)-capacity if F ∗
′

= F almost surely and F ∗
′

is also (r, q)-quasi-
continuous. Furthermore Theorem 2.3.5 from [27] gives us the following convergence
result for what he calls the (r, q)-redefinition F ∗,

Theorem 2.1. Given ϕn, ϕ∞ ∈ Dr,q, suppose ||ϕn − ϕ∞||r,q → 0. Then it is possible
to find a subsequence nj and a sequence of decreasing open sets Ok such that ϕ∗nj
converges uniformly towards ϕ∗∞ on Ock, cp,r(Ok)→ 0, and Ock is compact.

Remark 2.2. Suppose ϕn = ϕ∗n and ϕn → ϕ∞ quasi-surely. Then we have that ϕnj → ϕ∞
pointwise on each Ock except possibly on a zero (r, q)-capacity subset. Also from the
theorem ϕnj → ϕ∗∞ pointwise on Ock. We must then have ϕ∞ = ϕ∗∞ on a full capacity
subset of Ock. Then taking the union of these sets we have that ϕ∞ = ϕ∗∞ except on a
set of zero (r, q)-capacity. In other words, ϕ∞ is its own (r, q)-redefinition and is thus
(r, q)-quasi-continuous. This convergence theorem is the key technical tool applied in the
following lemma.

We are now in a position to demonstrate that the solution Zt is quasi-continuous.

Lemma 2.3. The solution Zt to the stochastic rde (2.1) is quasi-continuous.

Proof. The map ω 7→ X
(n)
t is quasi-continuous because it is interpolated at a finite

number of points. The key idea is that the 1-variation only depends on the interpolation
points, and it is bounded in terms of these values where interpolation occurs. Z(n)

t is

also quasi-continuous because the 1-variation of Z(n)
t is controlled by the 1-variation

of X(n)
t due to the continuity of the solution map. According to Inahama in [14], Z(n)

t

converges to Zt in (r, q)-Sobolev norm for all r, q given the smoothness and boundedness
conditions on the vector field. Finally we can apply the theorem and Remark 2.2 above
with ϕn = Z

(n)
t and ϕ∞ = Zt to get the result.

2.5 The Chebyshev inequality for capacity

The reason we need to demonstrate quasi-continuity for the rde solution Zt is to apply
the Chebyshev inequality for capacity,

Capr,q(|f | > R) ≤ Mr,q||f ||r,q
R

,R < 0,

One can find the proof of the inequality in Theorem 2.2 in II.iv.2.2 in [27]. The inequality
is very similar to the classical Chebyshev inequality, and in the case of r = 0 it reduces to
the Chebyshev inequality. This inequality holds for any (r, q)-quasi-continuous function
f ∈ Dpr , and Mr,q only depends on r and q.

2.6 Sobolev type bounds on fBm driven SDE

By a similar argument to [1, Lemma 4.1], we have the following bound on the Sobolev
norm of the Malliavin derivative of the solution Zt to (2.1),

‖D(Zt − Zs)‖Nr,q ≤ C(t− s)NH .
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Note that this implies that

|||Zt − Zs|2N ||r,q ≤ C|t− s|2NH . (2.2)

For an elliptic rde we know the density function exists, and we have the following
bound on the density function from [20, Theorem 3.3]. Given ε > 0, we have for
ε < s < t ≤ T a constant C which depends only on ε and T such that

ps,t(y) := P(Zt − Zs ∈ dy) ≤ C(t− s)−dHexp

(
−|y|

(2H+1)∧2

C(t− s)2H

)
≤ C(t− s)−dH . (2.3)

2.7 Dyadic intervals

The following theorem allows us to control the p-variation using dyadic partitions
only, which is key to the proof of the main theorem here as well as in Kakutani’s original
paper [15].

Theorem 2.4. Let X = (X1, . . . , Xbpc) be a p-rough path.

(1) Given a constant γ < p− 1, for 0 ≤ s ≤ t ≤ 1 and 1 ≤ i ≤ bpc define

ρi(X, s, t) =

∞∑
m=1

mγ
2m∑
k=1

∣∣∣Xi
tk−1
m ,tkm

∣∣∣ pi (2.4)

where (tkm)0≤k≤2m is the dyadic partition of [s, t]. Then there exists a constant
C = C(p, γ), such that

sup
P([s,t])

∑
l

∣∣∣Xi
tl−1,tl

∣∣∣ pi ≤ C(p, γ)

i∑
j=1

ρj(X, s, t) (2.5)

for all 1 ≤ i ≤ bpc and 0 ≤ s ≤ t ≤ 1, where the supremum is taken over all finite
partitions of [s, t].

Refer to [24] for the proof.

3 Main theorem

This brings us to the statement of our main theorem which is consistent with previous
results such as [15] in the case of r = 0 and H = 1

2 or [3] for H = 1
2 .

Theorem 3.1. Let H > 1
4 , and let Zt denote the solution to a d-dimensional stochastic

differential equation of the form (2.1) driven by a fractional Brownian motion, then

Cap(r,q) ({Zt = Zs for 0 ≤ s < t ≤ T}) = 0

if
2

H
+ rq < d.

We divide the proof of the main theorem into three sections. First we bound the
capacity of the event that the increment maximum exceeds η (bounding increment
above).

3.1 Bounding capacity of magnitude of increment

Proposition 3.2. Let η > 0, then for N > r satisfying N
H is an even integer,

Cap(r,q)

(
max

t0≤t≤t1
|Zt − Zt0 | > η

)
≤ Cη−NH |t1 − t0|N ,

where C depends on N, q, r, d.
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Proof. Let Zt be the solution to equation (2.1). Choose λ > 0 so that η > λ1/p, and let
ω(s, t) denote the p-variation for p > 1

H . Let ρ1, C(p, γ) denote the constants in theorem
2.4. Then for C = C(p, γ)−1, we have{

max
t0≤t≤t1

|Zt − Zt0 | > η

}
⊆ {ω(t0, t1) > λ} ⊆ {ρ1 > Cλ} .

Given θ > 0 let Cθ > 0 satisfy

Cθ

∞∑
m=1

mγ2−mθ ≤ C.

Then we have ρ1 > Cλ implies

ρ1 =

∞∑
m=1

mγ
2m∑
k=1

|Ztkm − Ztk−1
m
|p > Cλ ≥

∞∑
m=1

Cθλm
γ2−mθ,

where the tkm are the points of the dyadic partition defined in theorem 2.4.
If the inequality above holds, then for some m we must have

2m∑
k=1

|Ztkm − Ztk−1
m
|p > Cθλ2−mθ =

2m∑
k=1

Cθλ2−m(θ+1).

From this inequality it follows that for some term indexed by k,

|Ztkm − Ztk−1
m
|p > Cθλ2−m(θ+1).

Accordingly

{ρ1 > Cλ} ⊆
∞⋃
m=1

2m⋃
k=1

{
|Ztkm − Ztk−1

m
|p > Cθλ2−m(θ+1)

}
.

It follows from the sub-additivity of capacity that

Capr,q ({ρ1 > Cλ}) ≤
∞∑
m=1

2m∑
k=1

Capr,q

({
|Ztkm − Ztk−1

m
|p > Cθλ2−m(θ+1)

})
.

As explained in the introduction, Zt is quasi-continuous. To apply the Chebyshev
inequality we need to replace |Zt − Zs|p with |Zt − Zs|

N
H , where N

H is an even integer
greater than p, since composition with a smooth function preserves quasi-continuity. We
can then apply the Chebyshev inequality for capacity and inequality (2.2) to yield

Capr,q

({
|Ztkm − Ztk−1

m
|N/H > (Cθλ)N/Hp2−mN(θ+1)/Hp

})
≤ M

(Cθλ)N/Hp
|||Ztkm − Ztk−1

m
|N/H ||r,q2mN(θ+1)/Hp

≤ M̃

(Cθλ)N/Hp
(tkm − tk−1

m )N2mN(θ+1)/Hp

=
M̃ |t1 − t0|N

(Cθλ)N/Hp
2mN( (θ+1)

Hp −1)

From this it follows that

Cap(r,q)

(
max

t0≤t≤t1
|Zt − Zt0 | > η

)
≤ M̃ |t1 − t0|N

(Cθλ)N/Hp

∞∑
m=1

2m(N( (θ+1)
Hp −1)+1)
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So we need to have

N

(
(θ + 1)

Hp
− 1

)
+ 1 < 0,

for the sum to converge to a finite number. This is possible since p > 1
H . Finally we

obtain

Cap(r,q)

(
max

t0≤t≤t1
|Zt − Zt0 | > η

)
≤ CN,q,d

|t1 − t0|N

λN/Hp
≤ CN,q,d

|t1 − t0|N

ηN/H

3.2 Bounding capacity of magnitude of total displacement

We now need bounds on the capacity of the event that the increment is smaller than
η.

Proposition 3.3. Let τ > 0 and Zt denote the solution to rde (2.1) as before, then

Cap(r,q) (|Zt1 − Zt0 | ≤ η) ≤ C

|t1 − t0|
dH
τq

η
d
τq−r

Proof. Define a function f ∈ C∞(Rd) such that
0 ≤ f(x) ≤ 1 for all x ∈ Rd
f(x) = 1 for |x| ≤ η
f(x) = 0 for |x| ≥ 2η

|∇kf(x)| ≤ Cn
ηk

for all x ∈ Rd

Define F (ω, t) = f(Zt − Zt0). Using the chain rule and (2.2) we can conclude that for
all q′ > 1,

||F ||r,q′ ≤
C(r, q′, n, d)

ηr
.

We can apply the Chebyshev inequality for capacity because F is smooth and Zt is
quasi-continuous, so their composition is quasi-continuous. Let τ > 1, then

Capr,q(|Zt1 − Zt0 | ≤ η) ≤ Capr,q (|F | ≥ 1)

≤ Cr,q||F ||r,q
≤ Cr,q

∑r
i=0E

(
|DiF |q1{|Zt1−Zt0 |≤2η}

)1/q

≤ ||F ||r,q1P (|Zt1 − Zt0 | ≤ 2η)
1/τq

≤ C
ηrP (|Zt1 − Zt0 | ≤ 2η)

1/τq

where q1 = τq
(τ−1) . We can use the bound (2.3) for density of an elliptic stochastic pde.

This is the reason why we require the vector field Vi in (2.1) to be elliptic (it is possible
that we can loosen this condition to hypoellipticity). Given (2.3), we obtain

Capr,q(|Zt1 − Zt0 | ≤ η) ≤ C
ηrP (|Zt1 − Zt0 | ≤ 2η)

1/τq

≤ C
ηr

(∫
1{|x|≤2η}pt1−t0(x)dx

)1/τq
≤ C

ηr

(∫
1{|x|≤2η}c1t

−dHexp
(
− |y−x|

2H+1∧2

c2t2H

)
dx
)1/τq

≤ C′

ηr|t1−t0|dH/τq
(∫

1{|x|≤2η}dx
)1/τq

≤ C′

|t1−t0|dH/τq
η
d
τq−r,

which proves the result.
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3.3 Combining bounds to prove main theorem

Finally we combine the two bounds for the capacity of events related to the increment
size. We subdivide the intervals where a self-intersection might occur into dyadic sub-
intervals in order to use these controls on capacity to estimate the capacity of the
self-intersection event.

Proof. Let [s0, s1] and [t0, t1] be dyadic intervals. Observe that for s ∈ [s0, s1] and t ∈
[t0, t1], if Zs = Zt, then

|Zt0 − Zs0 | = |Zt0 − Zt + Zs − Zs0 | ≤ |Zt0 − Zt|+ |Zs − Zs0 |.

Accordingly,

{Zt = Zs : for some s ∈ [s0, s1] and t ∈ [t0, t1]}

⊆ {|Zt0 − Zs0 | ≤ 2η}
⋃{

max
t∈[t0,t1]

|Zt − Zt0 | > η

}⋃{
max

s∈[s0,s1]
|Zs − Zs0 | > η

}
.

(3.1)

Note that the q-th power of the capacity is subadditive due to the Meyer’s inequality
and the integral representation formula [2]. Without loss of generality assume |t1 − t0| =
|s1 − s0| = ∆. Then we obtain,

Capr,q({Zt = Zs : for some s ∈ [s0, s1] and t ∈ [t0, t1]})q

≤ Capr,q ({|Zt0 − Zs0 | ≤ 2η})q

+ Capr,q

({
max
t∈[t0,t1]

|Zt − Zt0 | > η

})q
+ Capr,q

({
max

s∈[s0,s1]
|Zs − Zs0 | > η

})q
≤ C

|t0 − s0|
dH
τ

η
d
τ−rq + Cη−

Nq
H |t1 − t0|Nq + Cη−

Nq
H |s1 − s0|Nq

=
C

|t0 − s0|
dH
τ

η
d
τ−rq + Cη−

Nq
H ∆Nq + Cη−

Nq
H ∆Nq.

(3.2)

Now consider covering the intervals [s0, s1] and [t0, t1] with smaller dyadic intervals of
length ∆2−l. Any two intervals of the form [s0 + k2−l, s0 + (k + 1)2−l] and [t0 + (j +

1)2−l, t1 + (j + 1)2−l] are separated by at least a distance of |t0 − s1|. There are also 22l

possible pairs of the new intervals that could contain the self-intersection. This yields

Capr,q({Zt = Zs : s ∈ [s0, s1] and s ∈ [t0, t1]})q

≤ 22l

(
C

|t0−s1|
dH
τ
η
d
τ−rq + Cη−

Nq
H

(
∆2−l

)Nq
+ Cη−

Nq
H

(
∆2−l

)Nq)
≤ C22lη

d
τ−rq + C ′η−

Nq
H 2−l(Nq−2)+1.

Now let η = 2−σl approach zero.

Capr,q({Zt = Zs : s ∈ [s0, s1] and s ∈ [t0, t1]})q

≤ C2−l(σ( dτ−rq)−2) + C ′2−l(Nq(
σ
H+1)−2)+1

In order for this to converge to zero we need

σ

(
d

τ
− rq

)
− 2 > 0,
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and
σ

H
+ 1 > 0.

There is a sigma satisfying both these inequalities if

2
d
τ − rq

< σ < H.

This is possible if
2

H
+ rq < d,

since τ > 1.

4 Conclusion

The critical case remains an open question for both fractional Brownian motion and
stochastic differential equations driven by fractional Brownian motion. The difficulty
to extend our result to solutions to hypo-elliptic stochastic differential equations stems
from the lack of estimate (2.3). A key to obtain such an estimate is a good control of the
Malliavin matrix of Zt − Zs, which is not an easy task for hypo-elliptic equations.
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