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Abstract

Graph shotgun assembly refers to the problem of reconstructing a graph from a
collection of local neighborhoods. In this paper, we consider shotgun assembly of
Erdős–Rényi random graphs G(n, pn), where pn = n−α for 0 < α < 1. We consider
both reconstruction up to isomorphism as well as exact reconstruction (recovering the
vertex labels as well as the structure). We show that given the collection of distance-1
neighborhoods, G is exactly reconstructable for 0 < α < 1

3
, but not reconstructable

for 1
2
< α < 1. Given the collection of distance-2 neighborhoods, G is exactly

reconstructable for α ∈
(
0, 1

2

)
∪
(
1
2
, 3
5

)
, but not reconstructable for 3

4
< α < 1.
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1 Introduction

Graph shotgun assembly refers to the reconstruction of a graph from a collection of
local neighborhoods. The terminology is inspired by DNA shotgun assembly, which is
the problem of determining a DNA sequence from multiple short sequences. Mossel and
Ross [9] introduced the problem of graph shotgun assembly for generative models.

We now describe the graph shotgun assembly problem. Let G = (V,E) be a graph
with vertices labeled from [n] = {1, 2, . . . , n}. For a vertex v ∈ V , let Nr(v) be the
subgraph induced by all vertices at distance at most r from v in the graph G. For
each vertex v ∈ V , we observe the neighborhood Nr(v). The central vertex v in this
neighborhood is labeled, and other vertices are unlabeled.

We say two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there exists
a bijection f : VG → VH such that (u, v) ∈ EG ⇐⇒ (f(u), f(v)) ∈ EH . In that case,
we write G ∼ H. The goal is to reconstruct G from the set of r-neighborhoods, up to
isomorphism. In other words, we wish to find a graph H isomorphic to G given the
unlabeled r-neighborhoods of G.

We say that two graphs H1(V,E1) and H2(V,E2) have the same r-neighborhoods if for
all v ∈ V , the r-neighborhood around v in H1 is isomorphic to the r-neighborhood around
v in H2. In that case we write H1 ∼r H2. We say that the graph G is reconstructable
from its r-neighborhoods if for all graphs H = (V,EH), G ∼r H =⇒ G ∼ H. In other
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words, G is reconstructable from its r-neighborhoods if the only other graphs with the
same r-neigborhoods are those that are isomorphic to G.

In addition to the above reconstructability question, we consider exact reconstructabil-
ity. We say that a graph G is exactly reconstructable if it is possible to recover G (rather
than just H ∼ G). Note that exact reconstructability implies reconstructability up to
isomorphism. For an example where reconstruction up to isomorphism is possible, but
exact reconstruction is not, consider the graph on vertices {1, 2, 3, 4} with edges (1, 2)

and (3, 4). This graph has the same neighborhoods as the graph on vertices {1, 2, 3, 4}
with edges (1, 3) and (2, 4)

Along with introducing the problem of graph shotgun assembly for generative models,
[9] considered several random structure models. First, they considered the d-dimensional
n-lattice, where the vertices are additionally labeled i.i.d. according to some distribution
on [q]. Next, they considered the reconstruction of Erdős–Rényi random graphs, both
in the dense and sparse case. In the sparse case where pn = λ

n , it was shown that
the asymptotic threshold for reconstructability is a radius of r = log(n), as long as
λ 6= 1. In the dense case, it was shown that r = 3 suffices for reconstruction when
limn→∞

npn
log2(n)

=∞. Finally, [9] introduced the random jigsaw puzzle, for which there
has been much follow-up work ([1], [2], [6], [7], [11]). A jigsaw puzzle is an n× n grid
where the border of two adjacent pieces is uniformly assigned to one of q possible shapes
called “jigs.” Martinsson ([6], [7]) showed that reconstruction is possible if q ≥ (2 + ε)n,
and impossible if q ≤ 2√

e
n. Other follow-up work includes a study of reconstruction in

random regular graphs [10] and the hypercube [12].

In this paper, we continue the study of graph shotgun assembly for Erdős–Rényi
random graphs. Let G = (V,E) be a labeled Erdős-Rényi graph drawn from the model
G(n, pn). The following general observation was used in [9] to establish reconstruction
from 3-neighborhoods.

Lemma 1.1 (Lemma 2.4 in [9]). If Nr−1(v) 6∼ Nr−1(w) for all vertices v 6= w, then there
is an algorithm for recovering the graph from r-neighborhoods.

The algorithm is as follows: Given a neighborhood Nr(v), we can uniquely label any
neighbor v0 of v by examining Nr−1(v0), which is contained within Nr(v). We call this
algorithm the “overlap method.” Using Lemma 1.1, [9] showed the following.

Theorem 1.2 (Theorem 4.5 in [9]). G(n, pn) is reconstructable from its 3-neighborhoods
with high probability, for pn satisfying limn→∞

npn
log2(n)

=∞.

The proof of Theorem 1.2 shows that no two vertices u, v ∈ V have the same degree
neighborhoods with high probability. (We say that two vertices u, v have the same degree
neighborhoods if they have the same degree and the degrees of their neighbors are
equal as multi-sets.)

In this paper, we extend the results of [9], by establishing regimes where reconstruc-
tion is possible and when it is not, given the collection of 1- or 2-neighborhoods.

1.1 Main Results

We first investigate reconstructablity from 1-neighborhoods (Section 2). First, we
establish a range where reconstruction is possible using a “fingerprinting” idea from
[13], which studied reconstruction in another random graph model.

Theorem 1.3. Let pn = n−α for 0 < α < 1
3 . Then G(n, pn) is exactly reconstructable

from its 1-neighborhoods with high probability.

We outline the proof. For vertices u, v such that (u, v) ∈ E, let Hu,v denote the graph
induced by the common neighbors of u and v. The graph Hu,v is a “fingerprint” for
the edge (u, v) (note that Hu,v ∼ Hv,u). The following lemma establishes that under a
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uniqueness of fingerprints condition, the graph can be reconstructed.

Lemma 1.4 (Fingerprint Lemma). Suppose Hu,v ∼ Hx,y if and only if (u, v) and (x, y)

are the same edge. Then we can exactly reconstruct G from the collection of 1-
neighborhoods.

Given the Fingerprint Lemma, it remains to establish the uniqueness of the Hu,v

graphs.
We then show a negative result about the reconstructability of G(n, pn) from 1-

neighborhoods using a counting argument.

Theorem 1.5. Let pn = n−α for 1
2 < α < 1. Then with high probability, G(n, pn) cannot

be reconstructed from its 1-neighborhoods.

Next, we consider reconstruction from 2-neighborhoods (Section 3). Theorem 1.6
establishes that G(n, pn) is exactly reconstructable from 2-neighborhoods for pn = n−α

where 0 < α < 3
5 . When 0 < α < 1

2 , the graph has diameter 2 with high probability
(Lemma 3.1). We then construct a canonical labeling, which is guaranteed by Lemma
3.2. For values 1

2 < α < 3
5 , we demonstrate reconstructability by a fingerprint argument

similar to the proof of Theorem 1.3.

Theorem 1.6. Let pn = n−α for α ∈
(
0, 12
)
∪
(
1
2 ,

3
5

)
. Then G(n, pn) is exactly recon-

structable from its 2-neighborhoods with high probability. Moreover, there is an efficient
algorithm for reconstruction when α < 1

2 .

On the other hand, when 3
4 < α < 1, we show by a counting argument that G(n, pn)

cannot be reconstructed from its 2-neighborhoods.

Theorem 1.7. Let pn = n−α for 3
4 < α < 1. Then with high probability, G(n, pn) cannot

be reconstructed from its 2-neighborhoods.

These above results do not cover α ∈
{

1
2

}
∪
[
3
5 ,

3
4

]
. Proposition 1.8 gives a partial

answer for the range α ∈
(
2
3 ,

3
4

]
.

Proposition 1.8. Let pn = n−α for 2
3 < α < 1. Then with high probability, G(n, pn)

cannot be exactly reconstructed from its 2-neighborhoods using the overlap method.

Finally, recall that the center of each neighborhood was assumed to be labeled. In
Section 4, we show how to find the center if it is unlabeled.

1.2 Follow-up work

After posting of this paper to arXiv, Huang and Tikhomirov [4] contributed further
results on the reconstruction of Erdős–Rényi random graphs from 1-neighborhoods. Their
first result refined Theorem 1.5, showing that G(n, pn) is a.a.s. non-reconstructable from
its 1-neighborhoods if pn satisfies pn = ω(n−1 log n) and pn = o(n−

1
2 ). Their second result

showed that there exist universal constants C, c > 0 such that if n−
1
2 logC(n) ≤ pn ≤ c

n

for large n, then G(n, pn) is a.a.s. reconstructable from its 1-neighborhoods. Therefore,
p = Θ̃(n−

1
2 ) marks the transition between reconstructability and non-reconstructability,

addressing an open problem that we had raised.

1.3 Preliminaries

We collect some results that will be used to establish the theorems.

Lemma 1.9 (Chernoff Bound [8]). Let {Xi}mi=1 be independent indicator random vari-
ables, and let X =

∑m
i=1Xi. Then for any ε > 0,

P (X ≤ (1− ε)E[X]) ≤ exp

(
−ε

2

2
E[X]

)
and P (X ≥ (1 + ε)E[X]) ≤ exp

(
− ε2

2 + ε
E[X]

)
.
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Corollary 1.10. Let X be a binomial random variable with parameters (n, n−β) for
constant β > 0. For any constant c > 0,

P
(
X ≥ n1−β+c

)
≤ exp

(
− (nc − 1)

2

nc + 1
n1−β

)
= exp

(
−Θ(n1−β+c)

)
.

Lemma 1.11. Let X and Y be random variables such that conditioned on Y , X is
distributed as a binomial random variable with parameters (Y, p). Let Z(m) be a binomial
random variable with parameters (m, p). Then

P
(
X ≤ t1

∣∣∣ Y ≥ t2) ≤ P (Z(t2) ≤ t1) and P
(
X ≥ t1

∣∣∣ Y ≤ t2) ≤ P (Z(t2) ≥ t1) .

Proof. The inequalities follow from the observation that P (Z(m1) ≥ t) ≤ P (Z(m2) ≥ t)
for m1 < m2.

2 Reconstruction from 1-neighborhoods

Proof of Lemma 1.4. To determine whether a pair of vertices u, v is connected by an
edge, we examine the neighborhoods of u and v, observing graphs Hu,u0

and Hv,v0 for
neighbors u0 ∼ u and v0 ∼ v. We declare that u and v are connected if we observe
vertices u0 ∼ u and v0 ∼ v in the neighborhoods of u and v respectively such that
Hu,u0

∼ Hv,v0 . Clearly this occurs if (u, v) ∈ E. For the other direction, suppose
there exist vertices u0 ∼ u and v0 ∼ v such that Hu,u0

∼ Hv,v0 . By the assumption of the
lemma, (u, u0) and (v, v0) are the same edge, and we conclude that u and v are connected.
Continuing this process, we recover the whole graph.

Proof of Theorem 1.3. Applying Lemma 1.4, it suffices to show that with high probability,
whenever (u, v), (x, y) ∈ E are distinct edges, then Hu,v � Hx,y.

Let Wab denote the number of shared neighbors of vertices a and b. If Hu,v ∼ Hx,y,
then Wuv = Wxy. Let Z = 1{u ∼ x, v ∼ x}+ 1{u ∼ y, v ∼ y}, and suppose Wuv = Wxy =

λ+ Z. In other words, λ is the number of common neighbors of u and v excluding x and
y. Let Y be the number of shared neighbors of u, v, x, and y. Suppose also that Y = µ.
Let G1 be the subgraph induced by the λ− µ shared neighbors of u and v (excluding x
and y) that are not neighbors of both x and y. Let G2 be the subgraph induced by all
λ+ Z shared neighbors of x and y. The graphs G1 and G2 are disjoint. Observe that if
Hu,v ∼ Hx,y, then G1 must be a subgraph of G2, which we write as G1 ⊂ G2.

We upper-bound the probability of the event {G1 ⊂ G2} by the First Moment Method.
Observe that G1 is an Erdős–Rényi graph, while we may have already revealed some
edges of G2. We note that up to 2µ+ 1 edges have already been revealed in G2; if u, v,
x, and y form a clique, then the edges from u and v to the shared neighbors of u, v, x,
and y have been revealed, contributing 2µ edges, with the last edge revealed being (u, v)

itself. Let E(H) denote the number of edges of a graph H. We have

P
(
Hu,v ∼ Hx,y

∣∣ Wuv = Wxy = λ+ Z, Y = µ,E(G1) = k
)

≤ P
(
G1 ⊂ G2

∣∣ Wuv = Wxy = λ+ Z, Y = µ,E(G1) = k
)

≤
(
λ+ 2

λ− µ

)
(λ− µ)!pk−2µ−1n

≤ (λ+ 2)λ−µpk−2µ−1n

≤ exp (λ log(n) + (k − 2µ− 1) log(pn))

= exp (log(n) (λ− α(k − 2µ− 1)))

≤ exp (log(n) ((2α+ 1)λ+ α− αk)) (2.1)
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We now provide high probability bounds on Wuv − Z ≤ Wuv and E(G1). Observe that
Wuv is distributed as a binomial random variable with parameters (n− 2, p2n). Let c > 0,
to be determined. By Corollary 1.10,

P
(
Wuv ≥ nc(n− 2)p2n

)
≤ exp

(
−Θ

(
n1+c−2α

))
.

For this to be a high probability bound, we need 1 + c− 2α > 0 ⇐⇒ c > 2α− 1. In that
case, we obtain

P
(
Wuv ≥ n1+c−2α

)
= o

(
1

n4

)
. (2.2)

Next, observe that E(G1) is a binomial random variable with parameters
((
λ−µ
2

)
, pn

)
,

conditioned on Wuv −Y −Z = λ−µ. In turn, Wuv −Y −Z is a binomial random variable.
If the vertices u, v, x, and y are distinct, then Wuv − Y − Z is binomial with parameters(
n− 4, p2n(1− p2n)

)
. Otherwise, Wuv−Y −Z is binomial random variable with parameters(

n− 3, p2n(1− pn)
)
. Fix 0 < ε < 1

2 . In the case of distinct vertices, we have

P
(
Wuv − Y − Z ≤ (1− ε)(n− 4)p2n(1− p2n)

)
≤ exp

(
−ε

2

2
(n− 4)p2n(1− p2n)

)
= exp

(
−Θ

(
n1−2α

))
= o

(
1

n4

)
.

A similar conclusion holds if the vertices are not distinct, so that

P

(
Wuv − Y − Z ≤

1

2
np2n

)
= o

(
1

n4

)
, (2.3)

for n sufficiently large. Applying (2.3) and Lemma 1.11, we obtain

P

(
E(G1) ≤ (1− ε)pn

( 1
2np

2
n

2

))
≤ exp

(
−ε

2

2
pn

( 1
2np

2
n

2

))
+ o

(
1

n4

)
= exp

(
−Θ

(
n2−5α

))
+ o

(
1

n4

)
. (2.4)

Using (2.2) and (2.4) in (2.1), we arrive at

P (Hu,v ∼ Hx,y) ≤ exp
(
Θ
(
n1+c−2α log(n)

)
−Θ

(
n2−5α log(n)

))
+ o

(
1

n4

)
.

For this to be a high probability bound, we need 1 + c− 2α < 2− 5α ⇐⇒ c < 1− 3α.
Summarizing, the conditions are max{0, 2α − 1} < c < 1 − 3α. This is a consistent

condition, since α < 1
3 . We choose c = 1

2 (max{0, 2α− 1}+ 1− 3α). Applying a union
bound, we conclude that Hu,v � Hx,y whenever (u, v) and (x, y) are distinct edges, with
high probability.

Remark 2.1. Intuitively, Hu,v looks like G
(
np2n, pn

)
, and therefore we expect that if it

is supercritical, i.e. np3n � 1, then it will not be isomorphic to an independent copy. Of
course, Hu,v and Hx,y are not independent, which needs to be accounted for in the proof.
Similarly, for radius r, the expected number of vertices in the analogue of Hu,v is of order
n ((npn)

r
/n)

2
= n2r−1p2rn , so reconstruction should be possible when G

(
n2r−1p2rn , pn

)
is

supercritical, i.e. pn � n
1−2r
1+2r . On the other hand, [9] showed that for r = 3 it suffices

that limn→∞
npn

log2(n)
=∞, a weaker condition than limn→∞ n

5
7 pn =∞. This suggests that

the fingerprint argument may not be optimal.
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Proof of Theorem 1.5. Let Nr(G) denote the collection of r-neighborhoods of a graph G.
Consider a particular reconstruction algorithm. Given a collection of neighborhoods,
the algorithm outputs a graph. We will find a set S of neighborhood collections such
that with high probability, N1(G) ∈ S. Next, suppose we know that |E| = m. Given

this information, there are
((n2)
m

)
possible labeled graphs, which are sampled with equal

probability. The algorithm maps each element of S to an isomorphism class, which
corresponds to at most n! graphs. Therefore, conditioned on |E| = m, the algorithm fails
with probability at least

P
(
N1(G) ∈ S

∣∣ |E| = m
)
− n!|S|((n2)

m

) =

((n2)
m

)
− n!|S|((n2)
m

) − P(N1(G) 6∈ S
∣∣ |E| = m).

To see this, observe that the algorithm fails whenever G is such that N1(G) ∈ S but G is
not one of the at most n!|S| graphs corresponding to the algorithm’s output on |S|. Let
SE ⊂

[(
n
2

)]
. The overall failure probability of the algorithm is then at least

∑
m∈SE

((n2)
m

)
− n!|S|((n2)
m

) P (|E| = m)− P (N1(G) 6∈ S ∩ |E| ∈ SE)

≥ P (|E| ∈ SE) min
m∈SE

((n2)
m

)
− n!|S|((n2)
m

) − P (N1(G) 6∈ S) .

Therefore, it suffices to show N1(G) ∈ S with high probability, |E| ∈ SE with high

probability, and n!|S| = o
(((n2)

m

))
for all m ∈ SE .

We now construct the set S. Fix 0 < ε < 1, and let qn = (1 + ε)pn. Let c > 0, to
be determined, and let tn = (1 + nc)pn. Let S be the set of possible 1-neighborhood
collections where the degree of each central vertex is less than qnn and each neighbor-
hood has fewer than 1

2q
2
ntnn

2 neighbor edges. We need to show that the collection of
1-neighborhoods of G appears in S with high probability. By a Chernoff bound,

P (deg(v) < qnn) ≥ P (deg(v) < qn(n− 1))

= 1− P (deg(v) ≥ (1 + ε)pn(n− 1))

≥ 1− exp

(
−ε

2pn(n− 1)

3

)
. (2.5)

Let Z(v) be the number of edges among the neighbors of v. Conditioned on deg(v), Z(v)

is distributed as a binomial random variable with parameters
((

deg(v)
2

)
, pn

)
. We have

P

(
Z(v) ≥ 1

2
q2ntnn

2

)
≤ P

(
Z(v) ≥ 1

2
q2ntnn

2
∣∣∣ deg(v) < qnn

)
+ P (deg(v) ≥ qnn) . (2.6)

By Lemma 1.11 and a Chernoff bound,

P

(
Z(v) ≥ 1

2
q2ntnn

2
∣∣∣ deg(v) < qnn

)
≤ P

(
Z(v) ≥ 1

2
q2ntnn

2
∣∣∣ deg(v) = bqnnc

)
≤ P

(
Z(v) ≥

(
bqnnc

2

)
tn

∣∣∣ deg(v) = bqnnc
)

≤ exp

(
− n2c

2 + nc

(
bqnnc

2

)
pn

)
. (2.7)

Substituting (2.5) and (2.7) into (2.6), we arrive at

P

(
Z(v) ≥ 1

2
q2ntnn

2

)
≤ exp

(
− n2c

2 + nc

(
bqnnc

2

)
pn

)
+ exp

(
−ε

2pn(n− 1)

3

)
.
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By a union bound,

P

(⋂
v∈V

{
deg(v) < qnn ∩ Z(v) <

1

2
q2ntnn

2

})

≥ 1− n exp

(
− n2c

2 + nc

(
bqnnc

2

)
pn

)
− n exp

(
−ε

2pn(n− 1)

3

)
= 1− n exp

(
−Θ(n2+c−3α)

)
− n exp

(
−Θ(n1−α)

)
.

We therefore need α < 1 and 2+c−3α > 0 ⇐⇒ c > 3α−2 for this to be a high probability
bound. If these constraints are satisfied, then N1(G) ∈ S with high probability.

We now bound |S|. For clarity of presentation, we omit floor functions; the resulting
off-by-one errors will not affect asymptotics. In each neighborhood, there are qnn choices
for the degree of the central vertex, and 1

2q
2
ntnn

2 choices for the number of neighbor
edges. If tn = o(1) ⇐⇒ c < α, then the number of choices for the set of edges is

upper-bounded by
( (qnn2 )

1
2 q

2
ntnn

2

)
. Therefore,

|S| ≤

(
qnn ·

1

2
q2ntnn

2

( (
qnn
2

)
1
2q

2
ntnn

2

))n
≤

(
1

2
q3ntnn

3

(
e(qnn)2

q2ntnn
2

) 1
2 q

2
ntnn

2)n

=

(
1

2
q3ntnn

3

(
e

tn

) 1
2 q

2
ntnn

2)n
. (2.8)

We now choose SE to be {m ∈ N :
∣∣m− (n2)pn∣∣ < ε

(
n
2

)
}. By a Chernoff bound,

P (|E| 6∈ SE)) = P

(∣∣∣∣|E| − (n2
)
pn

∣∣∣∣ ≥ ε(n2
))
≤ 2 exp

(
−ε

2

3

(
n

2

)
pn

)
= o(1).

Therefore, |E| ∈ SE with high probability.
We now compute

min
m∈SE

((n2)
m

)
− n!|S|((n2)
m

) = 1− max
m∈SE

n!|S|((n2)
m

) .
We have

min
m∈SE

((n
2

)
m

)
=

( (
n
2

)
(1− ε)

(
n
2

)
pn

)
≥
(

1

(1− ε)pn

)(1−ε)(n2)pn
. (2.9)

Using (2.8), (2.9), and the bound n! ≤ exp(n log(n)), we have

max
m∈SE

n!|S|((n2)
m

) ≤ exp(n log(n))

(
1
2q

3
ntnn

3
(
e
tn

) 1
2 q

2
ntnn

2)n
(

1
(1−ε)pn

)(1−ε)(n2)pn
= exp

{
n log(n) + n

[
log

(
1

2
q3ntnn

3

)
+

1

2
q2ntnn

2 log

(
e

tn

)]
− (1− ε)

(
n

2

)
pn log

(
1

(1− ε)pn

)}
= exp

{
n log(n) + Θ(n log

(
n3+c−4α

)
) + Θ(n3+c−3α log(n))−Θ(n2−α log(n))

}
= exp

{
Θ(n log (n)) + Θ(n3+c−3α log(n))−Θ(n2−α log(n))

}
.

We need 3 + c− 3α < 2− α ⇐⇒ c < 2α− 1 for this bound to go to zero.
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Summarizing, we require

max{0, 3α− 2} < c < min{α, 2α− 1}.

This is consistent for 1
2 < α < 1. Then min{α, 2α− 1} = 2α− 1. The proof is completed

by choosing

c =
1

2
(max{0, 3α− 2}+ 2α− 1) .

3 Reconstruction from 2-neighborhoods

The following lemmas will be used to prove Theorem 1.6 for the case 0 < α < 1
2 .

Lemma 3.1 ([5]). Let pn = c
√
logn√
n

. If c >
√

2, then the diameter is 2 with high probability.

If c <
√

2, then the diameter is at least 3 with high probability.

A canonical labeling of a graph involves assigning a unique label to each vertex, in a
way that is invariant under isomorphism.

Lemma 3.2 ([3]). Suppose pn ≤ 1
2 and pn = ω

(
log4(n)

n log(log(n))

)
, and let G(V,E) ∼ G(n, pn).

Then with high probability, any u, v ∈ V have different degree neighborhoods. Further-
more, one can produce a canonical labeling of G by sorting the vertices in lexicographic
order by their degree neighborhoods.

Remark 3.3. The proof of Theorem 1.2 (Theorem 4.5 in [9]) shows that the statement

of Lemma 3.2 is true for pn = ω
(

log2(n)
n

)
, which strengthens the result of [3].

Proof of Theorem 1.6 for 0 < α < 1
2 . By Lemma 3.1, the diameter is equal to 2 with high

probability, so we see the entire graph from any 2-neighborhood. To label the graph, we
produce the canonical labeling of any 2-neighborhood, which is possible (and efficient)
with high probability by Lemma 3.2. We then sort the vertices lexicographically by their
degree neighborhoods in order to determine the canonical label of each vertex. This
procedure exactly reconstructs G.

Proof of Theorem 1.6 for 1
2 < α < 3

5 . The proof is similar to the proof of Theorem 1.3.
This time, for u, v ∈ V where (u, v) ∈ E, we define Lu,v as the subgraph induced by those
vertices which are at distance exactly 2 from both u and v. Lemma 1.4 applies to the
Lu,v graphs as well. It therefore suffices to show that with high probability, whenever
(u, v) and (x, y) are distinct edges, then Lu,v � Lx,y.

Consider two distinct edges (u, v) and (x, y). Our goal is to show that P (Lu,v ∼ Lx,y) =

o
(
n−4

)
. Similarly to the proof of Theorem 1.3, we will identify two graphs G1 and G2

such that P (Lu,v ∼ Lx,y) ≤ P (G1 ⊂ G2). Note that by revealing which vertices are at
distance exactly 2 from u and v, we have not revealed any of the edges among those
distance-2 neighbors.

Let Wab be the number of shared distance-2 neighbors of a and b. If Lu,v ∼ Lx,y, then
Wuv = Wxy. Let d(a, b) be the graph distance between vertices a and b, and let

Z = 1 {d(u, x) = d(v, x) = 2}+ 1 {d(u, y) = d(v, y) = 2} .

Suppose Wuv = Wxy = λ+ Z, so that λ counts all shared distance-2 neighbors of u and
v except for x and y. Let Y = |N2(u) ∩N2(v) ∩N2(x) ∩N2(y)| be the number of shared
distance-2 neighbors of u, v, x, and y. Suppose also that Y = µ. Let G1 be the subgraph
induced by the λ − µ shared distance-2 neighbors of u and v that are not x, y, or a
shared distance-2 neighbor of x and y. Let G2 be the subgraph induced by all distance-2
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neighbors of x and y. Finally, suppose |N1(u)| + |N1(v)| = d. Similarly to the proof of
Theorem 1.3, we claim

P
(
Lu,v ∼ Lx,y

∣∣ Wuv = Wxy = λ+ Z, Y = µ,E(G1) = k, |N1(u)|+ |N1(v)| = d
)

≤
(
λ+ 2

λ− µ

)
(λ− µ)!pk−dn ≤ exp (log(n) (λ− α(k − d))) . (3.1)

To see the claim, consider the following way of determining which vertices belong in G1

and G2. First, determine which vertices are at distance-1 and distance-2 from x, and do
the same for y. From this information, we determine which vertices are in G2. We have
not revealed any of the edges in G2, unless u and v are both shared neighbors of x and y.
In that case, we have revealed the edge (u, v). Next, we reveal the distance-1 neighbors
of u and v. This step reveals at most |N1(u)|+ |N1(v)| edges in G2. Finally, to determine
which vertices are in G1, we consider all vertices that are not in G2. From among those
vertices, we place those that are shared distance-2 neighbors of u and v into G1. This
last step does not reveal any edges in G2. Therefore, G2 has at most |N1(u)| + |N1(v)|
edges revealed in this process, so the probability that any particular collection of k edges
exists is at most pk−(|N1(u)|+|N1(v)|)

n .
We will now find high probability bounds on λ, E(G1), and |N1(u)| + |N1(v)|. Since

Wuv − 2 ≤ λ ≤ Wuv, we will bound Wuv. Note that conditioned on |N1(u)|, |N1(v)|, and
|N1(u) ∩N1(v)|, the number of shared distance-2 neighbors is distributed as a binomial
random variable with parameters (n− |N1(u) ∪N1(v)|, qn), where

qn = 1− (1− pn)|N1(u)∩N1(v)|

+ (1− pn)|N1(u)∩N1(v)|
(

1− (1− pn)|N1(u)\N1(v)|−1
)(

1− (1− pn)|N1(v)\N1(u)|−1
)
.

To see this, observe that a candidate shared distance-2 neighbor must either be connected
to some vertex in N1(u) ∩ N1(v), or failing this, must be connected to some vertex in
N1(u) \ {N1(v) ∪ {v}} and some vertex in N1(v) \ {N1(u) ∪ {u}}. To derive bounds on
Wuv, we use bounds on qn:

qn ≤ 1− (1− pn)|N1(u)∩N1(v)| +
(

1− (1− pn)|N1(u)|
)(

1− (1− pn)|N1(v)|
)

qn ≥
(

1− (1− pn)|N1(u)\N1(v)|−1
)(

1− (1− pn)|N1(v)\N1(u)|−1
)
.

Fix 0 < ε < 1. We have that |N1(u)|, |N1(v)| ≤ (1 + ε)n1−α with probability 1 − o(n−4).
Noting that E [|N1(u) ∩N1(v)|] = (n− 2)p2n = Θ

(
n1−2α

)
and applying Corollary 1.10, we

have |N1(u) ∩N1(v)| ≤ n1−2α+c with probability 1− o(n−4) for c satisfying 1− 2α+ c >

0 ⇐⇒ c > 2α−1. Therefore, using the upper bound on qn, we have that with probability
1− o(n−4),

Wuv ≤ (1 + ε)n

[
1− (1− pn)n

1−2α+c

+
(

1− (1− pn)(1+ε)n
1−α
)2]

≤ (1 + ε)n
[
1− exp

(
−2n1−3α+c

)
+
(
1− exp

(
−2(1 + ε)n1−2α

))2]
≤ (1 + ε)n

[
2n1−3α+c +

(
2(1 + ε)n1−2α

)2]
= Θ

(
n2−3α+c

)
+ Θ

(
n3−4α

)
,

where we have used the inequalities 1 − x ≥ e−2x for x ≤ 1
2 , and 1 − e−x ≤ x. Taking

c > 2α−1 sufficiently small, the second term dominates and we arrive atWuv = O
(
n3−4α

)
with probability 1− o(n−4).
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Next, observe that E(G1) is a binomial random variable with parameters
((
λ−µ
2

)
, pn

)
,

conditioned on Wuv − Y − Z = λ − µ. We similarly lower bound Wuv, using the lower
bound on qn. Observe that |N1(u) \N1(v)|, |N1(v) \N1(u)| ≥ (1− ε)n1−α with probability
1− o(n−4). Therefore, with probability 1− o(n−4),

Wuv ≥ (1− ε)n
(

1− (1− pn)(1−ε)n
1−α−1

)2
= Ω

(
n3−4α

)
.

By similar reasoning, we have µ = O
(
n5−8α

)
with probability 1 − o(n−4) if the four

vertices are distinct, and otherwise µ = O
(
n4−6α

)
with probability 1 − o(n−4). Since

5 − 8α, 4 − 6α < 3 − 4α, we have
(
λ−µ
2

)
= Θ

(
n6−8α

)
, so that E(G1) = Θ

(
n6−9α

)
, with

probability 1− o(n−4).
Finally, examining the bound (3.1), we first compare E(G1) to |N1(u)|+ |N1(v)|. We

see that the order of E(G1) dominates when

6− 9α > 1− α ⇐⇒ α <
5

8
.

Since 5
8 >

3
5 , the edge count indeed dominates. Next, we compare λ to E(G1). We see

that the order of E(G1) dominates when

6− 9α > 3− 4α ⇐⇒ α <
3

5
.

We have shown that for a given pair of distinct edges (u, v) and (x, y), we have P(Lu,v ∼
Lx,y) = o(n−4). Taking a union bound completes the proof.

Proof of Theorem 1.7. The proof is similar to the proof of Theorem 1.5. Again we set
SE = {m ∈ N :

∣∣m− (n2)pn∣∣ < ε
(
n
2

)
}. It remains to find a set S of collections of 2-

neighborhoods such that N2(G) ∈ S with high probability, and show that

max
m∈S

n!|S|((n2)
m

) = o(1).

We now construct the set S. Fix 0 < ε < 1 to be determined, and let qn = (1 + ε)pn.
For some c > 0 to be determined, let tn = (1 + nc)pn. Let X(v) and Y (v) respectively
be the number of vertices and edges in the graph N2(v). Let S be the set of possible
2-neighborhood collections where for each v ∈ V , the following three conditions hold: (1)
deg(v) < qnn; (2) deg(w) < qnn for each w ∼ v; (3) Y (v) < 1

2q
4
ntnn

4 +X(v)− 1. We need
to show that the collection of 2-neighborhoods of G appears in S with high probability.
As was shown in the proof of Theorem 1.5

P (∩v∈V {deg(v) < qnn}) = 1− o(1).

Therefore, the first two properties hold for every neighborhood with high probability.
Let Ev be the event that properties (1) and (2) hold in the 2-neighborhood around v.

Next, we bound the number of edges. Our goal is to lower-bound

P

(
Y (v) ≥ 1

2
q4ntnn

4 +X(v)− 1
∣∣∣ Ev) .

We reveal the neighborhood N2(v) in a particular way. We start from v, and reveal its
neighbors (and therefore the edges {(v, w) : w ∼ v}). Then we choose an arbitrary order
for the neighbors. Starting from the first neighbor w1, we reveal all of its additional
neighbors apart from v. Next, we come to the second neighbor w2, and reveal all of its
neighbors apart from v and w1. Continuing through the neighbors of v, we reveal all the
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vertices of the neighborhood using X(v)−1 edges (since each vertex except v is revealed
by exactly one other vertex). The number of additional edges in N2(v) is dominated by a

binomial random variable with parameters
((b(qnn)2c

2

)
, pn

)
. Let Z ∼ Bin

((b(qnn)2c
2

)
, pn

)
.

We therefore have

P

(
Y (v) ≥ 1

2
q4ntnn

4 +X(v)− 1
∣∣ Ev) ≤ P(Z ≥ 1

2
q4ntnn

4

)
≤ P

(
Z ≥

(⌊
(qnn)2

⌋
2

)
tn

)
≤ exp

(
− n2c

2 + nc

(⌊
(qnn)2

⌋
2

)
pn

)
= exp

(
−Θ

(
n4+c−5α

))
.

For this to be a high probability bound, we need 4 + c− 5α > 0 ⇐⇒ c > 5α− 4. We then
have

P

(⋂
v∈V

{
deg(v) < qnn, Y (v) <

1

2
q4ntnn

4 +X(v)− 1

})
= 1− o(1),

We conclude that N2(G) ∈ S with high probability.
We now bound |S|. Consider one collection of 2-neighborhoods in the set S, and a

particular vertex v ∈ V . There are qnn choices for the number of neighbors of v. Next,
there are fewer than qnn(qnn − 1) < (qnn)2 vertices which are at distance 2 from v.
We reveal the distance-2 neighbors sequentially, as described above. Each distance-2
neighbor is assigned to one of the distance-1 neighbors, according to which distance-
1 neighbor revealed it. Using a stars-and-bars argument, the number of ways this
assignment can happen is upper-bounded by(

qnn(qnn− 1) + qnn− 1

qnn− 1

)
=

(
(qnn)2 − 1

qnn− 1

)
<

(
(qnn)2

qnn

)
.

So far, X(v)−1 edges have been revealed. There are fewer than q4ntnn
4 remaining edges,

and at most
(((qnn)2+1

2 )
q4ntnn

4

)
choices for their locations, as long as q4ntnn

4 < 1
2

(
(qnn)

2+1
2

)
, which

is satisfied for c < α. We therefore have

|S| ≤

[
qnn · (qnn)2 ·

(
(qnn)2

qnn

)
· q4ntnn4 ·

(((qnn)2+1
2

)
q4ntnn

4

)]n

≤

q7ntnn7 (eqnn)
qnn

(
e
(
(qnn)

2+1
2

)
q4ntnn

4

)q4ntnn4n

= exp

{
n

(
log
(
q7ntnn

7
)

+ qnn log (eqnn) + q4ntnn
4 log

(
e
(
(qnn)

2+1
2

)
q4ntnn

4

))}

= exp

{
n log

(
q7ntnn

7
)

+ (1 + ε)n2−α log(e(1 + ε)) + (1− α)(1 + ε)n2−α log(n)

+ q4ntnn
5 log

(
e
(
(qnn)

2+1
2

)
q4ntnn

4

)}
= exp{(7 + c− 8α)Θ (n log(n)) + Θ

(
n2−α

)
+ (1− α)(1 + ε)n2−α log(n)

+ Θ
(
n5+c−5α log(n)

)
}

= exp
{

Θ
(
n2−α

)
+ (1− α)(1 + ε)n2−α log(n) + Θ

(
n5+c−5α log(n)

)}
.
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As noted in the proof of Theorem 1.5,

min
m∈SE

((n
2

)
m

)
≥
(

1

(1− ε)pn

)(1−ε)(n2)pn
≥ exp

(
1

2
(1− ε)(n− 1)2n−α log

(
nα

(1− ε)

))
.

Using this bound and the bound on |S|, we have

max
m∈S

n!|S|((n2)
m

) ≤ exp
{

Θ
(
n2−α

)
+ (1− α)(1 + ε)n2−α log(n) + Θ

(
n5+c−5α log(n)

)
− 1

2
(1− ε)(n− 1)2n−α log

(
nα

(1− ε)

)}
= exp

{
Θ
(
n2−α

)
+ (1− α)(1 + ε)n2−α log(n) + Θ

(
n5+c−5α log(n)

)
− α

2
(1− ε)(n− 1)2n−α log (n)

}
.

Therefore, it suffices to have 5 + c− 5α < 2− α ⇐⇒ c < 4α− 3 as well as

(1− α)(1 + ε) <
α

2
(1− ε) ⇐⇒ α >

2 + 2ε

3 + ε
.

Taking ε = 1
6 satisfies the above. We then obtain

max
m∈S

n!|S|((n2)
m

) ≤ exp
(
Θ
(
n2−α

)
−Θ

(
n2−α log(n)

))
= o(1).

Summarizing, we require max{0, 5α − 4} < c < min{α, 4α − 3}. This is a consistent
condition for 3

4 < α < 1. We then choose c = 1
2 (max{0, 5α− 4}+ min{α, 4α− 3}).

Proof of Proposition 1.8. Let β = 1
2

(
α+ 2

3

)
, so that 2

3 < β < α. We will show that with
probability 1− o(1), there exists some kn ≤ n1−β such that there are at least 1

2n
β stars

of degree kn in Gn, implying that the 1-neigborhoods are not unique.
Consider an arbitrary vertex v. By the Markov inequality,

P
(
deg(v) > n1−β

)
≤ n1−α

n1−β
= nβ−α = o(1). (3.2)

Let Sv be the indicator that N1(v) is a star of degree at most n1−β. Let Z ∼ Bin
((
n1−β

2

)
,

pn

)
. Observe that E[Z] < 1

2n
2−2β−α = o(1). Applying (3.2), we have

P (Sv = 1) = P
(
Sv = 1 | deg(v) ≤ n1−β

)
(1− o(1)) + o(1)

≥ P
(
Sv = 1 | deg(v) = n1−β

)
(1− o(1))

= 1− P (Z ≥ 1)− o(1)

≥ 1− E[Z]− o(1) = 1− o(1).

By the Markov inequality, P
(∑

v∈V Sv <
3n
4

)
= P

(∑
v∈V (1− Sv) > n

4

)
= o(1). We con-

clude that with probability 1 − o(1), there are at least 3n
4 vertices v such that N1(v) is

a star of degree at most n1−β. Then by the Pigeonhole Principle, there is at least one
kn ≤ n1−β such that the number of stars of degree kn is at least 3n

4(n1−β+1)
≥ n

2n1−β .

4 Finding the neighborhood centers

Previously we assumed that the central vertex v of each neighborhood Nr(v) was
labeled. In this section, we show how to determine the center if it is not labeled.
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4.1 Finding centers of 1-neighborhoods

The following lemma shows that in order to identify the center of each neighborhood,
we should simply take the vertex that is connected to all others.

Lemma 4.1. Suppose pn = n−α for 0 < α < 1. Then with high probability, for all v ∈ V ,
the vertex v is the only other vertex connected to every other vertex in N1(v).

Proof. Consider v ∈ V and the neighborhood N1(v). The degree of v is distributed
according to a binomial distribution with parameters (n − 1, pn). Furthermore, for
0 < ε < 1, it holds that deg(v) ≥ (1 − ε)(n − 1)pn with high probability. Conditioned on
deg(v) = m ≥ (1− ε)pn(n− 1), the probability that a given neighbor w ∼ v is connected
to all other neighbors of v is then pm−1n . The claim follows by a union bound.

4.2 Finding centers of 2-neighborhoods

To identify the center of a neighborhood, we first prune the neighborhood by removing
all vertices with degree less than 1

2n
1−α. We then return the vertex with the highest

degree in the subgraph induced by the remaining vertices (which is also the only vertex
connected to all the others). Recall that if α < 1

2 , then the graph G has diameter 2 with
high probability.

Lemma 4.2. Suppose pn = n−α for 1
2 < α < 1. Then with high probability, for all v ∈ V ,

the above approach recovers the center v in N2(v).

Proof. Consider the neighborhood N2(v). Observe that with high probability, the total
number of vertices in the 2-neighborhood is of order at most (npn)2 = n2−2α. Each
neighbor u of v has (n − 1)pn = Θ

(
n1−α

)
expected neighbors, with exponential con-

centration. On the other hand, each vertex w which is at a distance of 2 from v has
1 + (|V (N2(v))| − 3) pn = O

(
n2−3α

)
expected neighbors in N2(v). Comparing exponents,

we have 2 − 3α < 1 − α for α > 1
2 . Therefore, by removing all vertices with fewer

than 1
2n

1−α neighbors, we remove all vertices which are at distance 2 from v, while not
removing any neighbors of v, with high probability. By a union bound, this process leaves
us with N1(v) for each v ∈ V with high probability. By Lemma 4.1, we can identify the
center of each pruned neighborhood.

5 Conclusion and open problems

In this paper, we have studied the problem of shotgun assembly of Erdős–Rényi
graphs from 1- and 2-neighborhoods. We have established regimes for reconstructability
and non-reconstructability in terms of the edge probability pn = n−α. Our work leaves
some open problems:

1. Is reconstruction from 2-neighborhoods possible for α = 1
2 or 3

5 ≤ α ≤
3
4?

2. Our results show that there is an efficient algorithm for reconstruction from 2-
neighborhoods in the regime 0 < α < 1

2 . Can we find efficient algorithms for
reconstruction in other cases?
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