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Abstract: This paper presents a number of new findings about the canon-
ical change point estimation problem. The first part studies the estimation
of a change point on the real line in a simple stump model using the robust
Huber estimating function which interpolates between the �1 (absolute de-
viation) and �2 (least squares) based criteria. While the �2 criterion has
been studied extensively, its robust counterparts and in particular, the �1
minimization problem have not. We derive the limit distribution of the es-
timated change point under the Huber estimating function and compare it
to that under the �2 criterion. Theoretical and empirical studies indicate
that it is more profitable to use the Huber estimating function (and in
particular, the �1 criterion) under heavy tailed errors as it leads to smaller
asymptotic confidence intervals at the usual levels compared to the �2 crite-
rion. We also compare the �1 and �2 approaches in a parallel setting, where
one has m independent single change point problems and the goal is to con-
trol the maximal deviation of the estimated change points from the true
values, and establish rigorously that the �1 estimation criterion provides
a superior rate of convergence to the �2, and that this relative advantage
is driven by the heaviness of the tail of the error distribution. Finally, we
derive minimax optimal rates for the change plane estimation problem in
growing dimensions and demonstrate that Huber estimation attains the
optimal rate while the �2 scheme produces a rate sub-optimal estimator
for heavy tailed errors. In the process of deriving our results, we establish
a number of properties about the minimizers of compound Binomial and
compound Poisson processes which are of independent interest.
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1. Introduction

In the canonical change-point or change-boundary estimation problem, one
posits a regression (or a classification) model in which the conditional distri-
bution of the response given the covariate(s) changes from a constant value on
one side of an unknown boundary in covariate space to another on the oppo-
site side. Within the genre of regime change problems, the canonical model is a
particularly convenient formulation for investigating the fundamentals of esti-
mation and inference, and the challenges involved therein. In particular, in the
one-dimensional case, this gives us the so-called ‘stump model’:

Y = α01X≤d0 + β01X>d0 + ξ
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with α0 �= β0, where X assumes values in R. In the multidimensional scenario
with a p-dimensional covariate X, a natural extension is given by

Y = α01ψ(X,d0)≤0 + β01ψ(X,d0)>0 + ξ ,

where ψ(X, d0) = 0 defines a low dimensional smooth surface in Rp.
This paper deals with the estimation of change parameters in such models

under different estimating functions in both fixed and growing dimensions along
with the calibration of minimax optimal rates. The use of a variety of robust esti-
mating functions is necessitated by the fact that heavy-tailed errors frequently
drive data generating mechanisms associated with change-point problems in
applications pertaining to finance ([10]), hydrology ([5]), climate and environ-
mental science ([41]), internet data ([18]) and genetics ([37]). We show in this
paper that such robust criteria are essential for attaining optimal convergence
rates when the number of parameters diverges with sample size. We also show
that in the fixed dimension scenario the choice of the criterion function does not
affect the convergence rate but does affect the tails of the limit distribution of
the estimated change-point in a way that makes the use of robust criteria more
profitable for thick-tailed errors.

We next focus on the organization of the manuscript and articulate the
contributions of each section. But before that, we take a moment to intro-
duce the (scaled) Huber estimating function (HEF) ([21]) which is referred
to below and used throughout the manuscript. The scaled HEF is defined as
H̃k(x) := ((k + 1)/k)Hk(x) where:

Hk(x) =

{
x2

2 . if |x| ≤ k

k
(
|x| − k

2

)
, otherwise .

The cost function corresponding to H̃k in a generic statistical problem can be
written as Ck(Z, θ) := H̃k(g(Z) − h(Z, θ)) where g(Z) is some functional of
the data vector Z (say, the real-valued response in a regression model) and
h(Z, θ) is some known function of Z and the parameter θ (say, the regression
function). Note that as k → 0, we have H̃k(x) → |x| and for k → ∞, H̃k(x) =
x2/2, therefore Ck interpolates between the �1 and �2 cost functions via the
parameter k. The function Hk was introduced in the pioneering work of Peter
Huber [20] for the robust estimation of parameters in presence of outliers. The
key idea here is the observation that �1 discrepancy is more robust to outliers
than the �2 discrepancy, whereas �2 discrepancy has other attractive features like
differentiability with constant curvature. The Huber function seeks to combine
these two discrepancies and utilize the best of both worlds.

Section 2 presents a treatment of the canonical stump model with a one di-
mensional covariate under HEF optimization as well as its limiting incarnations
(the �1 and the �2 criteria) and provides explicit statements of asymptotic dis-
tributions which are seen to be the minimizers of various compound Poisson
processes. While the limiting behavior under �2 has been long known in the
literature, the study of the asymptotic properties under robust criteria is new.
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More interestingly, we are able to characterize the tail behaviors of the limit
distributions in terms of the tail-indices of the corresponding error distributions
which, to the best of our knowledge, was previously unknown. We demonstrate
that under the �2 criterion the tail index of the error adversely affects the tail
of the minimizer of the corresponding compound Poisson process: errors with
polynomial decay of tails lead to polynomially decaying tails for the limit; while
under HEF (including the �1 criterion) the tail of the limit distribution is un-
affected by the tail of the error and is necessarily sub-exponential. This has
direct implications for the construction of asymptotic confidence intervals as we
discuss later.

Section 3 explores the canonical problem for a growing number of change-
point parameters. The first part pertains to situations where multiple change-
point parameters are estimated in parallel from separate data-sources, and this
number is allowed to grow with the total sample size. The second version is
the change-boundary problem alluded to at the beginning of our narrative. We
explore, specifically, the case of a linear boundary, i.e. a model of the form

Y = α0 1XT d0≤0 + β01XT d0>0 + ξ ,

with ‖d0‖2 = 1 (to enforce identifiability) and a p-dimensional covariate X.
This is the so-called change-plane model which captures the core features of the
change-boundary problem. Our motivation for studying change plane problems
stems from the recent use of change-plane models in personalized medicine and
related problems [40], [15], as well as the use of change-plane models in econo-
metrics (e.g. see [36], [27], [32] and references therein). We assume that n i.i.d.
observations are available from this model and that either p = o(n) or p � n
with the number of non-zero co-ordinates of d0 constrained to be appropriately
small. We show that in both the parallel change point and high dimensional
change plane problems, the �2 criterion based estimator suffers from the curse
of dimensionality unlike its robust counterparts.

Section 4 presents a range of simulation studies in the 1-dimensional case
that compare the quantiles of the limit distributions under �1 and �2 criteria
and discusses the observed patterns. Section 5 concludes, providing among other
things an exposition of future challenges in this area.

2. Robust change point estimation in one dimension

Summary: We analyze the canonical change point model (equation (2.1)) in
one dimension under the Huber estimating function H̃k. The asymptotic dis-
tribution of the estimators are presented in Theorem 2.1 - Theorem 2.3. Fur-
thermore, in Theorem 2.4 we show that the tail of the limiting distribution of
the least squares estimator is affected by the tail of the error distribution, i.e. a
heavy tailed error distribution translates to a heavy tailed limiting distribution,
whereas for the least absolute deviation estimator, the limiting distribution has
sub-exponential tail irrespective of the tail of the error distribution.
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Fig 1. The mid-argmin of a piecewise constant function

In this section we analyze the following canonical change point model in one
dimension:

Yi = α01Xi≤d0 + β01Xi>d0 + ξ , (2.1)

for 1 ≤ i ≤ n. The least squares estimators of the parameters of this model have
been well-explored in the literature, but quite surprisingly, nothing is known
about its robust variant, and the trade-offs between the two approaches. To
understand the difference, consider an even simpler model:

Yi = 1Xi>d0 + ξi .

where Xi ∈ R is a real covariate and ξi is a mean 0 error independent of Xi. Here
d0 is the parameter of interest, i.e. the change point in the space of covariates.
Traditionally, one minimizes the squared-error loss to obtain an estimator of d0:

d̂�2 = mid argmind∈I

1

n

n∑
i=1

(Yi − 1Xi>d)
2

= mid argmind∈I

1

n

n∑
i=1

(
Yi −

1

2

)
1Xi≤d

:= mid argmind∈I f(d) .

for some compact interval I ⊂ R. Note that the function f(d) is a right continu-
ous step function with respect to d, therefore its minimizer is not unique, in fact
it is an interval. By mid argmin, we denote the midpoint of the corresponding
interval. (See Figure 1 for an illustration.) The statistical properties of this es-
timator are well-known; e.g. see Chapter 14 of [25] or Proposition 1 of [26] and
its preceding discussion. For example, if X is compactly supported with density
bounded away from 0 and ∞ on its support, then:

n
(
d̂�2 − d0

)
L
=⇒ mid argmint∈RM(t)

where M(t) is a two-sided compound Poisson process with drift described thus:
Let N(t) be a homogeneous Poisson process with intensity parameter fX(d0)
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on [0,∞) where fX(·) is the density of X. Define two independent stochastic
processes V +(t) on [0,∞) and V −(t) on (−∞, 0] as follows:

V +(t) =

N1(t)∑
i=1

(
ξi +

1

2

)

V −(t) =

N2(−t)∑
i=1

(
ξ−i −

1

2

)
where {ξi}i∈Z\{0} are i.i.d. from the distribution of ξ and N1(t), N2(t) are i.i.d

copies of N(t), and are independent of the ξi’s. Then

M(t) = V +(t)1t≥0 − V −(t)1t<0 ,

is a two sided compound Poisson process on the real line (we denote it by
CPP (ξ+1/2, fX(d0)) that drifts off to∞ on either side, and is minimized almost
surely on an interval of points. Taking the mid-argmin of this process ensures
symmetry of the limiting distribution under the symmetry of the distribution
of ξ.

The asymptotics above require only a second moment for the errors and there-
fore are valid for many heavy-tailed errors. However, heavy tailed errors enlarge
the spread of the limit distribution, resulting in wider confidence intervals for
the change-point parameter. This is because the compound Poisson process is
closely related to the two sided random walk on Z with step distribution given
by (ξ + 1/2) to the right of 0 and (−ξ + 1/2) to its left. We quantify later in
this section how the tail of the distribution of the minimizer of this compound
Poisson process depends on the tail index of the error distribution with heavy
tailed errors corresponding to a heavier tail for the minimizer which, in turn,
implies a wider asymptotic confidence interval.

The natural question, then, is what happens if one were to compute d0 via
the robust HEF, in particular, say the �1 criterion, and whether asymptotic
efficiency relative to the �2 criterion would accrue as a result in the case of
heavy-tailed errors. So, consider:

d̂�1 = mid argmind∈I

1

n

n∑
i=1

|Yi − 1Xi≥d| .

For consistency of d̂�1 we need the assumption that med(ξ) = 0. Since the �2
criterion requires E(ξ) = 0, the rest of the paper will be developed for symmetric
errors which simplifies the discussion without compromising conceptual issues.
We show later (see Theorem 2.2) that

n
(
d̂�1 − d0

)
L
=⇒ mid argmint∈RMR(t)

where MR(t) is, again, a two sided compound Poisson process with intensity
parameter fX(d0) and the step-distribution given by that of |ε+ 1| − |ε|. Ob-
serve that the random variable |ε+ 1| − |ε| is bounded in absolute value by 1
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irrespective of the tail index of the error and consequently sub-gaussian. This
translates to a sub-exponential tail for the asymptotic distribution, resulting in
a tighter asymptotic confidence interval than the one obtained via minimizing
squared error loss.

We next present our main results for more general stump model described in
equation (2.1). Minimizing the Huber estimating function yields the following
estimator:(

α̂k, β̂k, d̂k
)
= mid argminα,β,d

1

n

n∑
i=1

H̃k (Yi − α1Xi≤d − β1Xi>d) (2.2)

where, as mentioned earlier, we consider the midpoint of the minimizing interval
of d0. We next present the asymptotic distributions of (α̂k, β̂k, d̂k) upon proper
centering and scaling.

Theorem 2.1. Suppose θ0 = (α0, β0, d0) ∈ I for some compact subset I ⊂ R3.
Assume that the density of X is continuous and strictly positive at d0. Then the
estimators (α̂k, β̂k, d̂k) obtained in equation (2.2) are asymptotically independent
and satisy:

√
n(α̂k − α0)

L
=⇒ N

(
0,

σ2
k

μ2
kFX(d0)

)
,

√
n(β̂k − β0)

L
=⇒ N

(
0,

σ2
k

μ2
kF̄X(d0)

)
,

n(d̂k − d0)
L
=⇒ mid argmint∈RCPP

(
H̃k (ξ + |α0 − β0|)− H̃k(ξ), fX(d0)

)
where the parameters μk and σk are:

μk =
k + 1

k
P (−k ≤ ξ ≤ k)

σ2
k =

(
k + 1

k

)2 (
E
[
ξ21−k≤ξ≤k

]
+ 2k2P (ξ > k)

)
.

where FX is the distribution of X and F̄X is 1−FX is the tail of the distribution
and fX is the density of X.

Note that if k → 0, then μk → μ�1 = 2fξ(0) and σ2
k → (σ�1)2 = 1. One

the other hand, if k → ∞, then μk → μ�2 = 1 and σ2
k → (σ�2)2 = σ2

ξ , as long

as E(ξ2) is finite, which is a requirement for the �2 based estimation strategy
to work. The following two theorems present the asymptotic distribution of the
estimated parameters (upon proper centering and scaling) for these special cases:
�1 and �2 criteria, where we see that the limiting parameters are indeed μ�1 , σ�1

and μ�2 , σ�2 respectively. We note that the proofs do not directly follow by
taking the limit of k in the proof of Theorem 2.1, but rely on similar techniques.

Theorem 2.2. Consider minimizing the �1 criterion function to obtain:

θ̂�1 = argmin
θ∈I

1

n

n∑
i=1

|Yi − α1Xi≤d − β1Xi>d|
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Then, under the assumptions of Theorem 2.1, we have:

√
n(α̂�1 − α0)

L
=⇒ N

(
0,

1

4f2
ξ (0)FX(d0)

)
,

√
n(β̂�1 − β0)

L
=⇒ N

(
0,

1

4f2
ξ (0)F̄X(d0)

)
,

n(d̂�1 − d0)
L
=⇒ mid argmint∈RCPP (|ξ + |α0 − β0|| − |ξ|, fX(d0)) ,

and the estimates of the parameters are asymptotically independent.

Theorem 2.3. Consider minimizing the �2 criterion function to obtain:

θ̂�2 = argmin
θ

1

n

n∑
i=1

(Yi − α1Xi≤d − β1Xi>d)
2

Then, under the assumptions of Theorem 2.1, we obtain:

√
n(α̂�2 − α0)

L
=⇒ N

(
0,

σ2
ξ

FX(d0)

)
,

√
n(β̂�2 − β0)

L
=⇒ N

(
0,

σ2
ξ

F̄X(d0)

)
,

n(d̂�2 − θ0)
L
=⇒ mid argmint∈RCPP

(
ξ +

|α0 − β0|
2

, fX(d0)

)
,

and the estimates of the parameters are asymptotically independent.

Observe from the above results that the asymptotic distributions of
√
n(α̂−

α0) and
√
n(β̂ − β0) are normal irrespective of the estimating function used for

estimation, but the asymptotic variance depends upon the estimating function.
Minimax lower bound: It is evident from Theorem 2.1 - Theorem 2.3 that
the rate of convergence of the change point estimator d̂ is always n−1, regardless
of the tail of the error distribution and estimating function. Moreover, this rate
is minimax optimal, i.e.

inf
θ̂
sup
Pθ

E

[
(α̂− α0)

2 + (β̂ − β0)
2 + |d̂− d0|

]
≥ K

n

for some universal constant K, where Pθ the collection of all distribution such
that X and ξ are independent and Y follows equation (2.1). This result is well-
known in the literature and can be found, for example, in [22] or [33].

The more interesting part is how the asymptotic distributions of n(d̂ − d0)
changes from the �1 to the �2 estimating function. In either case, the asymp-
totic distribution is characterized as the minimizer of a compound Poisson pro-
cess, but the step-size is sensitive to the criterion. This has a bearing on the
tail-behavior of the minimizer when ξ is heavy-tailed as articulated below in
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Theorem 2.4. For notational simplicity, define F�i as the limiting distribution of

n(d̂− d0) under the �i estimating function for i ∈ {1, 2}:

F�1(x) = P (mid argmint∈RCPP (|ξ + |α0 − β0|| − |ξ|, fX(d0)) ≤ x) .

F�2(x) = P

(
mid argmint∈RCPP

(
ξ +

|α0 − β0|
2

, fX(d0)

)
≤ x

)
.

As we are working with the mid argmin, both F�1 and F�2 are symmetric around
0 [e.g. see the discussion in Section 4.2 of [26]].

To compare the tail properties of F�1 and F�2 in presence of heavy tailed
error, we assume the following distribution of ξ in our subsequent analysis:

P (|ξ| > x) =
1

1 + xγ
(2.3)

and ξ is symmetric around 0. This ensures that E[|ξ|γ−ν ] < ∞ for all 0 <
ν ≤ γ. We next present a theorem which quantifies the tails of the asymptotic
distribution of n(d̂− d0) under the �1 and �2 estimating functions for the above
heavy-tailed errors.

Theorem 2.4. In our change point model equation (2.1), under the error dis-
tribution specified in equation (2.3), we have for all x ≥ k0:

F̄�2(x) = 1− F�2(x) ≥
c0

2fγ
X(d0)

x−γ .

for some constants k0, c0, μ0 explicitly mentioned in the proof. On the other
hand, we have for all x > 0:

F̄�1(x) = 1− F�1(x) ≤
p∗

e
μ2
0

8(α0−β0)2 − 1

exp

(
−xfX (d0)

(
1− e

− μ2
0

8(α0−β0)2

))
.

where p∗ = P

(
min1≤i<∞

∑i
j=1 (|ξj + |α0 − β0|| − |ξj |) > 0

)
> 0.

From Theorem 2.4, it is immediate that the asymptotic distribution of n(d̂�2−
d0) is affected by the tail index of the error distribution of ξ: it can not decay

faster than x−γ , whereas the asymptotic distribution of of n(d̂�1 − d0) has a
sub-exponential tail1. Therefore for all large x, we have:

P (−x ≤ D�2 ≤ x) ≤ P (−x ≤ D�1 ≤ x) .

where D�2 (resp. D�1) is the limit of n(d̂�2 − d0) (resp. n(d̂
�1 − d0)). Therefore,

it is preferable to use the change point estimator d̂�1 to d̂�2 for constructing an
asymptotic confidence interval for all large enough levels of confidence. To the
best of our knowledge, this is the first result characterizing the tail behavior of
limiting compound Poisson processes, and can be expected to be of independent
interest. More detailed empirical comparisons are presented in Section 4.

1Some of the constants involved in the sub-exponential tail bound of course depend on the
distribution of ξ.
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Proof idea: We now present a brief sketch of the proof of Theorem 2.4. In
Theorems 2.2 and 2.3, we established the limiting distribution of n(d̂�1 − d0)

and n(d̂�2 −d0) respectively. Both distributions are compound Poisson processes
but with different step distributions: for the limit of the �2 estimator, the step
distribution is ξ + 1/2 and for the �1 estimator, the step distribution is |ξ +
|α0 − β0|| − |ξ|. Hence, if ξ is heavy-tailed (resp. light tailed), so is the step
distribution of the limit of the �2 estimator, whereas the steps of the limit of
the �1 estimator are bounded (and therefore sub-gaussian) irrespective of the
tail of ξ. As a compound Poisson process is closely related to the random walk
corresponding to its step-size, we first establish that the tail of the minimizer
of the random walk depends on that of the error distribution. In particular,
in Lemmas A.2 and A.3, we show that if ξ has a power tail structure, i.e.
P(|ξ| > t) ∼ t−γ for some γ > 0, then the tail of the minimizer of the random
walk is also lower bounded by x−γ . This lower bound can be translated to a
lower bound on the minimizer of the compound Poisson process. On the other
hand, for the limit distribution of the �1 estimator of the change point, the step
distribution is sub-gaussian. Therefore, we first establish an exponential upper
bound on the tail of the minimizer of a random walk with bounded steps and
use it to obtain an exponential tail bound for a compound Poisson process with
bounded steps. Details of the proof of Theorem 2.4 can be found in Appendix A.

Remark 2.5. Although we have assumed a specific distribution for ξ to estab-
lish our results, an inspection of the proofs shows that the only fact essential
to the calculations is the power tail structure of ξ, i.e. P(|ξ| > x) ∼ x−γ for
some γ > 0. Our assumed functional form simply facilitates some routine com-
putations and can be easily extended to the more general case. Therefore, the
first conclusion of Theorem 2.4 is valid as long as ξ has power tail with index
γ. We present a proof for this general tail structure in Subsection B.9 of the
supplementary document. The second conclusion of Theorem 2.4 is agnostic to
the tail index of ξ and continues to hold for any ξ, as long as it has finite vari-
ance. In fact, the broad conclusions of the above theorem are true for any Huber
estimating function H̃k for 0 ≤ k < ∞: any such Huber function based estimate
yields a sub-exponential tail for the limiting minimizer.

Remark 2.6. By using similar arguments to the proof of the above theorem,
we can show that for a sub-gaussian ξ, both �1 and �2 criteria yield the sub-
exponential concentration bound. Therefore, there is no significant gain in using
robust criteria in comparison to the �2 criterion in the presence of sub-gaussian
errors.

3. Estimation in multidimensional change-problems

Summary: This section deals with change point/plane problems in growing
dimension. In Subsection 3.1, we establish that in a parallel change point esti-
mation problem, where the number of parameters grows with the sample size, the
rate of convergence of the maximal estimation error of the least square estima-
tors is affected is by the tail of the error distribution, whereas the rate remains
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agnostic for the least absolute deviation estimator, which is further shown to
be minimax optimal. In Subsection 3.2, we analyze the change plane model in
growing dimension both when p/n → 0 and p � n. It is also established that,
the rate of convergence of the least square estimator is affected by the tail of
the error distribution, whereas any estimator obtained via minimizing H̃k with
0 ≤ k < ∞ achieves the minimax optimal rate regardless the tail of the error.

In the previous section, we have seen that with one-dimensional change point
estimation, the advantage of using the more robust �1 estimating function is ex-
pected to confer efficiency in terms of the spread of the limiting distribution (i.e.
the length of the asymptotic confidence interval), but the rate of convergence is
invariant to the estimating function used. In fact, this rate can be shown to be
minimax optimal, i.e. one cannot get a better rate without any further assump-
tions. However, the effect of using a robust estimating function is more striking
when the number of change points to be estimated grows with increasing sample
size.

In this section, we present two scenarios: one with many one-dimensional
change points and the other with a high dimensional change-boundary, in both
of which we estimate a diverging number of parameters and establish that it is
possible to achieve faster rates of convergence in these situations in the presence
of heavy-tailed errors using robust criteria, and in particular, the �1 criterion.

3.1. Parallel change point estimation

Suppose we have m parallel processes of one-dimensional change point mod-
els, with each process having n independent observations. Specifically, the ith

process carries n pairs of covariate-response pairs from the following model:

Yi,j = 1Xi,j>d0,i + ξi,j ,

for 1 ≤ j ≤ n and 1 ≤ i ≤ m. Here, as before, we assume that {(Xi,j , ξi,j)}i,j are
i.i.d., ξi,j ⊥⊥ Xi,j and ξi,j is symmetric around 0. Furthermore, we assume that
all nm pairs of observations are independent. The {d0,i}mi=1’s are free parameters
to be estimated from the data. Due to the independence among the samples,
d0,i is estimated only from the n observations for the ith problem. Define d̂�1i
and d̂�2i to be the smallest argmin estimators obtained for the i’th problem
by minimizing the �1 and �2 criteria respectively. We would like to control the
estimation errors across the different problems simultaneously, hence the natural
metric to consider is the maximal loss over them problems. Specifically, we want
to quantify the order of

max
1≤i≤m

∣∣∣d̂�ki − d0,i

∣∣∣ , k = 1, 2 .

We prove below that, for an appropriate growth rate of n relative to m, the
maximal error only inherits the slow factor logm for the robust estimators (i.e.

{d̂�1i }i=1,...,p) irrespective of the tail of the error, whereas a factor of m1/γ in
unavoidable with the �2 estimates when P (|ξ| ≥ t) ∼ t−γ .
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We now present our theorem. As before, the distribution of ξ is assumed to
be symmetric and |ξ| is distributed as:

P (|ξ| ≥ t) =
1

1 + tγ
,

for all t ≥ 0. Echoing Remark 2.5, the core arguments of our proof only require
the power tail structure of ξ, i.e. P(|ξ| > t) ∼ t−γ . The following theorem high-
lights the disparity between the rates of convergence of the maximal deviations
of the �2 and �1 based estimators.

Theorem 3.1. Suppose the change point estimator d̂�2i for the ith problem is
obtained by minimizing the squared error loss. If n/m1/γ → ∞, then for any
t > 0:

lim inf
n→∞

P

(
max

1≤i≤m

n

m1/γ

∣∣∣d̂�2i − d0,i

∣∣∣ > t

)
≥ c(t) > 0 ,

where c(t) is some positive constant depending on t and other model parameters.

On the other hand, if we obtain d̂�1i by minimizing the �1 estimating function,
then we have:

P

(
n

logm
max

1≤i≤m

∣∣∣d̂�1i − d0,i

∣∣∣ > t

)
≤ 2e−c

1− e−c
e
− logm

(
t
fX (d0)

2 (1−e−c)−1
)
,

as long as n/ logm → 0 for some constant c explicitly mentioned in the proof.

Proof idea: We document the main ideas behind the proof of Theorem 3.1. The
first part of the theorem establishes a lower bound on the rate of convergence
of the �∞ error of all estimated change points across all the problems. The
main idea of the proof is that, for a finite sample of size n, the distribution
of n(d̂�2i − di,0) (for any 1 ≤ i ≤ m), is given by that of the minimizer of a
compound binomial process defined as below:

n
(
d̂�2i − d0,i

)
d
= mid argmint

Ni
n,+(t)∑
k=1

(
εk +

1

2

)
1t≥0 +

Ni
n,−(t)∑
k=1

(
ε̃k +

1

2

)
1t<0 ,

where the binomial processes Nn,+ and Nn,− are defined as:

N i
n,+(t) =

n∑
i=1

1d0,i≤Xi,j≤d0,i+
t
n
∼ Bin

(
n, FX

(
d0,i +

t

n

)
− FX(t)

)
∀ t > 0 ,

N i
n,−(t) =

n∑
i=1

1d0,i+
t
n≤Xi,j≤d0,i

∼ Bin

(
n, FX(t)− FX

(
d0,i +

t

n

))
∀ t < 0 ,

and then {εk} are the ξi,j ’s corresponding to the Xi,j ’s satisfying d0 ≤ Xi,j ≤
d0+

t
n and the {ε̃k} are the −ξi,j ’s corresponding to theXi,j ’s satisfying d0+

t
n ≤

Xi,j ≤ d0.

The distribution of n(d̂�2i −di,0) is closely related to a random walk with step
distribution ξ + 1/2, where the number of steps is derived from the binomial
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processes. Therefore, we first establish a lower bound on the tail of the minimizer
of the random walk and then translate that lower bound to the tail of the
distribution of n|d̂�2i − d0,i| (see Lemma A.5). Finally, we use the fact for any
set of independent random variables Z1, . . . , Zm:

P

(
max

1≤i≤m
Zi > t

)
= 1−Πm

i=1FZi(t) = 1−Πm
i=1 (1− P(Zi > t)) .

Hence, any lower bound on the tail of Zi yields a lower bound on the tail of
max1≤i≤m Zi. Taking Zi = n|d̂�2i − di,0| and converting the lower bound on the

tail of n|d̂�2i − di,0| to the tail of max1≤i≤m n|d̂�2i − di,0| concludes the first part
of the proof.

The proof of the second part is similar to the first, where instead of the lower
bound we establish an upper bound on the tail of the n|d̂�1i − d0,i|. Note that,
in case of �1 criterion:

n
(
d̂�1i − d0,i

)
d
= mid argmint

⎡⎣Nn,+(t)∑
i=1

(|ξi + 1| − |ξi|)1t≥0

+

Nn,−(t)∑
i=1

(|ξi + 1| − |ξi|)1t<0

⎤⎦
The steps now are uniformly bounded and therefore sub-gaussian. Following
the same line of arguments as in the first part of the proof, we first establish
an upper bound on the tail of the minimizer of the random walk with bounded
steps which is then translated to an upper bound on the tail of the n|d̂�1i − di,0|
(see Lemma A.6) and finally to the tail of max1≤i≤m n|d̂�1i − d0,i| using a union
bound. The detailed proof can be found in Appendix A.

Remark 3.2. The above theorem shows the detrimental effect of the �2 esti-
mating funciton under heavy-tailed errors owing to the growing number of es-
timated parameters. The �1 based estimator is only marginally affected (by the
logm factor). While we don’t establish this in the paper, the HEF based estima-
tor used in the previous section will also yield the same rate of convergence as
the �1 based estimator. Further, the results are easily generalizable to the generic
stump model with unknown levels on either side of the change-point with some
standard technical modifications to our current proof.

Finally we show that the rate obtained above (i.e. n/ logm) cannot be im-
proved in general, even in the case of the zero error situation, i.e. this rate
is minimax optimal, provided that we don’t have any background information
about the spread of the change points {d0,i}1≤i≤m.

Theorem 3.3. Consider the above scenario of m independent change point
problems where for the i’th problem the observations are generated from the
following stump model:

Yi,j = 1Xi,j>d0,i + ξi,j .
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Denote by Pd0,i , the joint distribution of (X,Y ) or equivalently (X, ξ) of the
observations in ith problem which satisfies the conditions ξ ⊥⊥ X and ξ has
symmetric distribution around origin. Then we have:

lim inf
n→∞

n

logm
inf

{d̂i}
1≤i≤m

sup
⊗m

i=1Pdi0

E

[
max

1≤i≤m

∣∣∣d̂i − di,0

∣∣∣] ≥ C > 0 ,

for some universal constant C.

3.2. Estimation of a change plane in growing dimensions

As described in Section 1, a multi-dimensional version of the canonical stump
model is the so-called ‘change-plane’ problem:

Yi = α01X�
i d0≤0 + β01X�

i d0>0 + ξi . (3.1)

where Xi, d0 ∈ Rp and p is assumed growing with n. As d0 is only identifiable
up to its scale, we assume d0 ∈ Sp−1. As before, we assume that {(Xi, ξi)}ni=1

are i.i.d and that ξi is independent of Xi with a symmetric distribution around
the origin. We analyze the above canonical change plane model in two regimes:
(i) when p/n → 0 (Subsection 3.2.1) and (ii) when p � n (Subsection 3.2.2).
In both regimes, the dimension of d0 is increasing with sample size, but with
one fundamental difference: when p/n → 0, we have many more samples than
parameters and should therefore be able to estimate d0 consistently, whereas
when p � n, the problem is ill-posed and as is customary in the high dimensional
literature, we need to impose a sparsity assumption on d0: i.e. an upper bound
on the number of its non-null entries. Mathematically speaking, we assume that
‖d0‖0 ≤ s for some unknown s which satisfies (s log p) /n → 0. Our aim is
to recover the non-zero signals in d0 consistently. We show that the rate of
convergence of the change plane estimator obtained by minimizing the HEF
(apart from k = ∞, i.e. the squared error loss) is minimax optimal in both the
scenarios and is independent of the tail of the error distribution, whereas the �2
criterion based analysis (i.e. k = ∞) yields a slower convergence rate for heavy
tailed errors, which depends on the tail index of the error.

3.2.1. When p/n → 0

In the change plane estimation problem, we consider the semi-metric:

dist ((α1, β1, d1), (α2, β2, d2))

=
√

(α1 − α2)2 + (β1 − β2)2 + P (sign(X	d1) �= sign(X	d2)) ,

which is motivated by the one used by [23] (see Chapter 14), with the only
difference being that instead of considering the Euclidean distance between two
candidate change-plane vectors d1 and d2 we use the mass of the wedge bounded
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by the two corresponding corresponding hyperplanes to define a metric. This
particular metric is geometrically convenient to analyze in the change-plane
problem as will be seen in our subsequent computations and can be easily related
to the �2 distance under an additional condition which is satisfied under various
distributional assumptions on the covariate X.

Define θ = (α, β, d). In the growing dimension regime, the rates of conver-
gence of the estimates are affected by the underlying dimension. We show later
in this section (see Theorem 3.6) that for HEF with 0 ≤ k < ∞ (i.e. excluding
squared error loss), the corresponding Huber estimator satisfies:

n

p

(
log

n

p

)−1

dist2
(
θ̂, θ0

)
= Op(1) . (3.2)

The above rate can be converted to a rate of convergence of the �2 estimation
error ‖d̂−d0‖2 of the change plane parameter via Assumption 3.5 stated below.
In contrast, the rates for the least squares estimators are found to be slower and
are non-trivially affected by the tail of the error distribution. Although the rate
in equation (3.2) is shown to be minimax optimal for the change plane estima-
tor (Theorem 3.7), the rate of convergence of the one dimensional parameters
(α0, β0) can be further boosted to

√
n provided that the estimation error of the

change plane estimator is smaller than n−1/2 (i.e. p ≤ √
n/ log (n/p))using the

following two step procedure:

1. Get initial estimates of (α0, β0) and an estimate of d0 as follows:

(α̂k
init, β̂

k
init, d̂

k) = argmin
(α>β)∈Ω,d∈Sp−1

∑
i

H̃k

(
Yi − α1X�

i d≤0 − β1X�
i d>0

)
.

2. Update the estimates of α0, β0 obtained in the previous step as follows:

(α̂k, β̂k) = argmin
(α>β)∈Ω

∑
i

H̃k

(
Yi − α1X�

i d̂k≤0 − β1X�
i d̂k>0

)
.

where as before, we assume that (α0, β0) ∈ Ω for a compact subset Ω ⊆ R2

for technical simplicity. The assumption α0 > β0 is for identifiably as one can
reverse their order simply by changing the sign of d. The intuition for this rate
acceleration is the following: if d̂k converges to d0 at a faster rate than

√
n, then

we can re-estimate (α0, β0) at
√
n - rate from the following surrogate model:

Yi = α01X�
i d̂k≤0 + β01X�

i d̂k>0 + ξi ,

where we simply replace d0 by its estimate d̂k. If the estimation error of d̂k is
larger than n−1/2, it is not possible to recover the parametric convergence rate
for estimates of (α0, β0).

We now state our assumptions and the theorems.:

Assumption 3.4. Our parameter space Ω for (α, β) is a compact subset of R2

such that for any (α, β) ∈ Ω, α > β. The hyperplane parameter d0 ∈ Sp−1.
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Our next assumption (henceforth referred as wedge assumption) relates the
probability of X lying in between two hyperplanes to the angle between those
two hyperplanes.

Assumption 3.5. We assume there exists some δ > 0 such that:

P
(
sign(X	d) �= sign(X	d0)

)
≥ c‖d− d0‖2

P
(
X	d ∧X	d0 ≥ 0

)
≥ C1

P
(
X	d ∨X	d0 ≤ 0

)
≥ C2

for all ‖d− d0‖2 ≤ δ, where the constants c, C1, C2, δ do not depend on n.

The first condition can be interpreted as saying that if we choose two hy-
perplanes X	d = 0 and X	d0 = 0 the probability of X falling in between
these hyperplanes is bounded below, up to a constant, by the angle between the
hyperplanes. This assumption can be thought as an analogue of the restricted
eigenvalue assumption frequently used in the analysis of the high dimensional
linear model (especially LASSO, see e.g. [6]) to obtain the estimation error
from the prediction error and was also used in earlier work by the authors [31],
where it was shown that the condition is satisfied by several classes of distri-
butions (e.g. under elliptical symmetry (Lemma B.1), log-concavity of densities
(Lemma C.9)). The second and third inequalities are weak assumptions, which
ensure that the support of X is not restricted to the one side of the hyperplane.

We next state our theorems for this regime:

Theorem 3.6 (Rate of convergence). Suppose we estimate θ0 = (α0, β0, d0)
using the two-shot approach described above, i.e. by minimizing the scaled HEF
and then re-estimating (α0, β0). Then, under Assumptions 3.4-3.5, we have for
0 ≤ k < ∞: (

√
n ∧ n

p

(
log

n

p

)−1
)(

α̂k − α0

)
= Op(1),(

√
n ∧ n

p

(
log

n

p

)−1
)(

β̂k − β0

)
= Op(1),

n

p

(
log

n

p

)−1

P

(
sign(X	d̂k) �= sign(X	d0)

)
= Op(1) ,

which along with Assumption 3.5 yields:

n

p

(
log

n

p

)−1 ∥∥∥d̂k − d0

∥∥∥
2
= Op(1) .

For k = ∞, i.e. under squared error loss we have under further assumption
E [max1≤i≤n |ξi|] < ∞:⎛⎝√

n ∧ n

p ‖ξ‖n,L1

(
log

n

p ‖ξ‖n,L1

)−1
⎞⎠(α̂�2 − α0

)
= Op(1)
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n ∧ n

p ‖ξ‖n,L1

(
log

n

p ‖ξ‖n,L1

)−1
⎞⎠(β̂�2 − β0

)
= Op(1)

n

p ‖ξ‖n,L1

(
log

n

p ‖ξ‖n,L1

)−1 ∥∥∥d̂�2 − d0

∥∥∥
2
= Op(1) .

where ‖ξ‖n,L1
= E [max1≤i≤n |ξi|].

Like the results of the previous subsection, Theorem 3.6 shows that in a
growing dimension setting the rate of convergence of the Huber estimator for
any 0 ≤ k < ∞ is faster than using the standard squared error loss: the rate of
the least squares estimator of d0 suffers from an additional factor ‖ξ‖n,L1

, which
depends on the tail of the distribution of ξ. We note that this is not that an
isolated phenomenon, e.g. in non-parametric regression, the rate of convergence
of the least square estimators is similarly affected by the tail of the error, e.g.
see [17]. Note that in the fixed p regime this factor can be ignored via a different
maximal inequality which, when used in growing dimensional regime, yields the
rate n/p2. More specifically, consider Lemma 2.14.1 of [38], which we state here
for the ease of our readers:

E

[
√
n sup

f∈F
|(Pn − P )f |

]
� E [J (θn,F)‖F‖2,n] � J (1,F)

√
E[F 2] ,

where F is the envelope of F and J quantifies the complexity of F as follows:

J (δ,F) = sup
Q

∫ δ

0

√
1 + logN(ε‖F‖Q,2,F , L2(Q)) dε .

and θn = supf∈F ‖f/F‖2,n (with the convention 0/0 = 0). The rate of conver-
gence of the least squares estimator in Theorem 3.6 is obtained via a modified
version of the first inequality (details can be found in the proof), whereas one
may also use the weaker second inequality which, in this case, yields the rate
(n/p2). Combining this with the rate obtained in Theorem 3.6 leads to the
following modified rate of convergence:

∥∥∥d̂�2 − d0

∥∥∥
2
= Op

(
p ‖ξ‖n,L1

n
log

n

p ‖ξ‖n,L1

∧ p2

n

)
.

When p is fixed, the second weaker inequality yields a better rate of convergence
as the factor p2 is a constant. In the growing dimension regime, the VC dimen-
sion of the underlying function class is growing with the sample size, hence the
interplay between the ambient dimension p and the tail of the error distribution
starts affecting the rate of convergence of the least squares estimator. However,
the tail factor ‖ξ‖n,L1 does not appear in the rate of the other Huber estimators,
as the criterion function becomes bounded irrespective of the thickness of tail
of the distribution.
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To summarize, we have established in Section 2 that the robust Huber es-
timators (for any 0 ≤ k < ∞) yield a more concentrated limiting distribution
than the squared error loss, whereas in the growing dimension regime, the effect
is more prominent: robust Huber estimators yield a faster rate of convergence,
which is also minimax optimal as shown in our next theorem. This underscores
the necessity of using robust estimators in high dimensional change plane prob-
lems, especially in presence of heavy tailed errors.

Theorem 3.7 (Minimax lower bound). Suppose P =
{
Pd : d ∈ Sp−1

}
is the

collection of all change plane models such that the distribution Pd of (X,Y ) or
equivalently the distribution of (X, ξ) satisfies the following:

Y = 1X�d>0 + ξ

where X is independent of ξ and ξ is symmetric around the origin. Then we
have:

inf
d̂
sup
Pd

Eθ

(
dist2(d̂, d)

)
≥ K

p

n

(
1 + log

p

n

)
,

where K is a universal constant and the semi-metric dist is defined as:

dist(d1, d2) =
√
P (sign(X	d1) �= sign(X	d2)) .

Hence, the change plane estimator obtained in Theorem 3.6 via the Huber esti-
mating equation H̃k for 0 ≤ k < ∞ (i.e. excluding squared error loss) is minimax
optimal.

Remark 3.8. Notice that we restrict our minimax calculation only to the change
plane parameter d0 assuming we know (α0, β0) (in fact, without loss of generality
we assume α0 = 0, β0 = 1), as the minimaxity of the rate of convergence of
(α0, β0) is immediate and not interesting. Theorem 3.7 indicates that any Huber
estimator for 0 ≤ k < ∞ is minimax optimal. The proof of this theorem relies
on a clever construction of the local alternatives and an application of Fano’s
inequality (e.g. see [42]).

3.2.2. When p � n

In this section, we present our analysis of the change plane estimator in the
regime p � n, i.e. the HDLSS (high dimension low sample size) setting. As is
true for any high dimensional model, consistent estimate of d0 is not information
theoretically possible without further restrictions on the parameter space. A
typical condition frequently imposed on the parameter space is that of sparsity:
there exists some (unknown) s such that only s many elements of d0 are non-
zero, where s may also increase with the sample size. We summarize this in the
following assumption:

Assumption 3.9. The true change plane direction d0 is sparse, i.e. there exists
s such that ‖d0‖0 ≤ s where s may slowly grow with n, satisfying (s log p)/n → 0.
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To estimate d0 under this sparsity constraint, we follow the structural risk
minimization method, an idea originally from [39] and later implemented in a
series of work (e.g. [29], [3], [4] and references therein). The key idea is to use
a penalty function to balance the bias-variance trade-off. To understand this,
consider our stump model:

Yi = α01X�
i d0≤0 + β01X�

i d0>0 + ξi .

Define Fm to be set of all hyperplanes with sparsity at-most m, i.e.:

Fm =
{
fθ(X) = α1X�d≤0 + β1X�d>0 : (α, β) ∈ Ω, ‖d‖0 ≤ m

}
,

for 1 ≤ m ≤ p, where as before, we denote by θ = (α, β, d), the collection of all

the parameters. Now for each m, we define the empirical minimizer θ̂km := θ̂km,n

as:

θ̂km = argmin
θ:fθ∈Fm

1

n

n∑
i=1

H̃k (Yi − fθ(Xi))

= argmin
θ:fθ∈Fm

1

n

n∑
i=1

[
H̃k (Yi − fθ(Xi))− H̃k (Yi − fθ0(Xi))

]
= argmin

θ:fθ∈Fm

1

n

n∑
i=1

[
H̃k (Yi − fθ(Xi))− H̃k (ξi)

]
for 0 ≤ k ≤ ∞. The corresponding population minimizer is defined as:

θkm = argmin
d:fd∈Fm

E

[
H̃k (Y − fθ(X))− H̃k (ξ)

]
.

Note that, the larger the m, the more complex is the function class Fm (as
Fm1 ⊆ Fm2 for any m1 ≤ m2), and consequently, the variance starts dominating

the bias for large values of m. In other words, θ̂km has smaller training error,
but larger generalization error for large values of m. Therefore, to choose an
optimal model m, we add a penalty pen(m) (which quantifies the complexity

of the model Fm and is increasing in m) to the training error of θ̂km and choose
the one which minimizes the penalized training error:

m̂k = argmin
1≤m≤p

1

n

n∑
i=1

[
H̃k

(
Yi − fθ̂k

m
(Xi)
)
− H̃k(ξi)

]
+ pen(m) .

and set the final estimator as θ̂km̂k . The penalty function should be chosen care-
fully depending on the complexity of the underlying function class to balance
the bias-variance tradeoff. We quantify the complexity of Fm using its VC di-
mension. It follows from Lemma 1 of [1] that the VC dimension of Fm is,

Vm = V C (Fm) � m log
ep

m
. (3.3)
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Based on the above notion of complexity, we use the following penalty function:

pen(m) = κ

(
Vm log (n/Vm)

n

)
. (3.4)

for some constant κ independent of n, while using HEF H̃k for 0 ≤ k < ∞. For
k = ∞, i.e. while using the least squares estimator, we use a slightly different
penalty (see Theorem 3.14 for more details). Therefore, our pen function is
the VC dimension of the model under consideration (up to a constant and a log
factor). Finally, we can accelerate the rate of convergence of (α0, β0) by following
the same procedure as prescribed in Subsection 3.2.1): i.e., first estimate d0 by

minimizing the penalized criterion function, then re-estimate (α0, β0) using d̂km̂k

as a proxy for d0. Henceforth, we denote by (α̂
k, β̂k, d̂m̂k) as these final estimators

obtained via the two-shot procedure.
Our next theorem presents the rate of convergence of the above estimates for

0 ≤ k < ∞:

Theorem 3.10. Under Assumptions 3.4, 3.5 and 3.9 and using the penalty
introduced in (3.4) we have:(

√
n ∧ n

Vs log
n
Vs

)(
α̂k − α0

)
= Op(1),(

√
n ∧ n

Vs log
n
Vs

)(
β̂k − β0

)
= Op(1),

n

Vs log
n
Vs

∥∥∥d̂km̂k − d0

∥∥∥
2
= Op(1) .

Remark 3.11. From equation (3.3), it is readily seen that the rate of conver-

gence of the change plane estimator d̂ is:∥∥∥d̂km̂k − d0

∥∥∥
2
= Op

(
s log (ep/s)

n
log

(
n

s log (ep/s)

))
i.e. upto a log factor, the rate if s log p/n, which can be thought as the high
dimensional analogue of 1/n (the rate obtained for the change point estimator
in finite dimension) in presence of sparsity.

We now present our results regarding the minimax lower bound for this
change plane problem in this HDLSS scenario under the sparsity constraint.
As before, we restrict our attention to the parameter of interest d0 and assume
we know α0, β0, in particular setting α0 = 0, β0 = 1.

Theorem 3.12. Assume P =
{
Pd : d ∈ Sp−1

s

}
is the collection of all change

plane models with Sp−1
s being the set of all unit vectors in dimension p with

sparsity at-most s, where the distribution Pd of (X,Y ) or equivalently the dis-
tribution of (X, ξ) satisfies the following:

Y = 1X�d>0 + ξ ,
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where X is independent of ξ and ξ is symmetric around the origin. Then we
have:

inf
d̂
sup
Pd

Eθ

(
‖d̂− d0‖2

)
≥ K

(
s log (ep/s)

n

)2

.

Squared error loss: The rate of convergence of the least squares estimator
for this regime is also compromised by the tail of the error distribution, which is
in agreement with our findings in Subsection 3.2.1. To establish the theoretical
properties of the LSE, we slightly strengthen our sparsity assumption below:

Assumption 3.13. The true change plane direction d0 is sparse, i.e. there
exists s such that ‖d0‖0 ≤ s where s may slowly grow with n, satisfying

s(log p)(1+δ)‖ξ‖n,2
n

→ 0

where ‖ξ‖n,2 =
√
E[max1≤i≤n ξ2i ], which is assumed to be finite.

Two comments on this modified sparsity assumption are in order: first note
that, we need a slightly higher power of log p in comparison to its counterpart
in Assumption 3.9. This is likely a technical artifact and possibly avoidable
with more tedious analysis. Next, we also have an additional term ‖ξ‖n,2 which
captures the effect of the tail of the error distribution in the rate of the LSE,
similar to what we see in Theorem 3.6. This modified assumption necessitates
changing our penalty to:

pen(m) =
Vm(log p)δ‖ξ‖n,2

n
log

n

Vm
(3.5)

where, as before, Vm is the VC dimension of Fm. The following theorem estab-
lishes the rate of convergence of the LSE.

Theorem 3.14. Suppose we estimate θ0 = (α0, β0, d0) using the two-shot pro-
cedure under squared error loss. Then under Assumptions 3.4, 3.5 and 3.13 we
obtain: (

√
n ∧ n

s(log p)(1+δ)‖ξ‖n,2

(
log

n

s log p

)−1
)
(α̂− α0) = Op(1),(

√
n ∧ n

s(log p)(1+δ)‖ξ‖n,2

(
log

n

s log p

)−1
)(

β̂ − β0

)
= Op(1),

n

s(log p)(1+δ)‖ξ‖n,2

(
log

n

s log p

)−1 ∥∥∥d̂�2m̂k − d0

∥∥∥
2
= Op(1) .

Remark 3.15. A remark similar to Remark 3.8 is in order: Theorem 3.12
conveys a similar message as Theorem 3.7, i.e. any Huber-estimator for 0 ≤ k <
∞ is minimax optimal up to a log factor, whereas the least squares estimator
is not (as seen above), especially when the distribution of ξ has a heavy tail.
Therefore, as in the previous subsection, robust Huber-estimators are preferable
to the least squares estimator in this high dimensional regime.
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Remark 3.16. In this paper we only dealt with the cases where p/n → 0 and
p � n, not when p/n → α ∈ (0,∞). The primary reason why the latter requires
different techniques is as follows: analysis of both the regimes p/n → 0 and
p � n are similar to fixed dimensional problem to some extent. When p/n → 0,
although the dimension is growing, but is much less than the sample size, per-
mitting the number of observations per co-ordinate of the underlying parameter
(here d0) goes to ∞, which leads us to use similar techniques employed to deal
with finite dimensional problem, but with some important technical changes to
take care of the growing dimension. Similarly for p � n, a typical assumption
is that of sparsity, which essentially dictates that the number of non-zero co-
ordinates of d0 is much less than the sample size. The extra difficulty here is
to detect which parameters are non-zero, for which we use a penalty based on
the complexity of the underlying function class (e.g. �1 penalty in LASSO) to
prevent overfitting and consequently identify the support of the parameter. In a
nutshell, the number samples per co-ordinate of the underlying parameter to be
estimated diverges in both the regimes.

However, when p < n and p/n → α (say with α = 1/2), then there is a-priori
no reason to assume sparsity and therefore the number of effective sample per
coordinate of the the unknown parameter to be estimated is 2 asymptotically.
In this case, all traditional statistical analysis for finite dimension or for high
dimension with sparsity assumption fails and often either a bias creeps in, or
variance of the asymptotic distribution is inflated. Problems in this regime are
extremely hard to analyze, require a completely different set of tools (e.g. AMP
introduced in [12] or the techniques used in [14]) and till date the regime has
been investigated only for the linear regression model and certain kinds of GLMS,
albeit under strong assumptions (e.g. gaussianity or subgaussianity). We believe
that a non-standard problem like the canonical change plane estimator in this
regime is currently insolvable in the p/n converging to a constant regime.

4. An empirical study of the quantiles of the limiting distributions

In this section we present tables of quantiles of the limit distributions of change
point estimator under both the �1 and �2 criteria. In Section 2, we established
theoretically (Theorem 2.2 and 2.3) that in the presence of heavy tailed errors,
the limiting distribution of the change point estimator under �1 criterion has
a thinner tail (i.e. more concentrated asymptotic confidence interval) than the
change point estimator under �2 criterion. We provide some illustrations of this
phenomenon in our simulations below.

We generate data from the following stump model:

Yi = μ1Xi≥d0 + ξi .

where we have assumed d0 = 0, Xi ∼ N (0, 1). Recall that the limiting distribu-

tion of d̂�1 is (see Theorem 2.2):

n(d̂�1 − d0)
L
=⇒ mid argmint∈RCPP (|ξ + μ| − |ξ|, fX(d0))
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and the limiting distribution of d̂�2 is (see Theorem 2.3):

n(d̂�2 − d0)
L
=⇒ mid argmint∈RCPP

(
ξ +

μ

2
, fX(d0)

)
For ξ, we consider seven different distributions: standardized T3, T4, T5, T6, T10,
T15 (i.e. var = 1) and N (0, 1), while for the signal μ we consider four different
values μ = 0.1, 0.5, 1, 2. We present here 8 different tables: two tables (�1 and �2
quantiles) for each value of μ. Each table consists of five different one sided quan-
tiles (90%, 95%, 97.5%, 99%, 99.5%) for each of the five different distributions of
ξ (calculated using 106 monte-carlo iterations). Recall that as we compute the
mid argminchange-point estimator, the limit distributions are symmetric and
it suffices to report the upper quantiles. The percentages presented inside the
brackets following the quantiles in the even-numbered tables show the relative
change in the �2 based quantile as compared to the �1 based counterpart.

Table 1

Quantiles of asymptotic distribution under �1 criterion using μ = 0.1

Distributions 90% 95% 97.50% 99% 99.50%

T3 717.0 1152.3 1600.1 2100.3 2324.8
T4 943.7 1470.5 1924.0 2308.9 2432.3
T5 1062.0 1611.0 2045.6 2366.8 2460.7
T6 1133.6 1690.1 2110.6 2389.5 2475.5
T10 1247.8 1808.5 2196.3 2419.7 2489.5
T15 1294.4 1859.2 2229.8 2433.0 2499.5
Normal 1381.6 1944.1 2278.8 2449.6 2509.1

Table 2

Quantiles of asymptotic distribution under �2 criterion using μ = 0.1

Distributions 90% 95% 97.50% 99% 99.50%

T3 1045.7(+45.8%) 1584.7(+37.5%) 2029.7(+26.8%) 2358.3(+12.3%) 2457.6(+5.7%)
T4 1050.1(+11.3%) 1598.2(+8.7%) 2034.3(+5.7%) 2355.6(+2%) 2456.3(+1%)
T5 1055.6(-0.6%) 1600.9(-0.6%) 2040.0(-0.3%) 2364.6(-0.1%) 2461.0(+0.01%)
T6 1056.2(-5.1%) 1601.2(-5.3%) 2043.0(-3.2%) 2366.0(-1%) 2461.1(-0.6%)
T10 1052.5(-15.6%) 1593.9(-11.9%) 2038.0(-7.2%) 2363.0(-2.3%) 2460.05(-1.2%)
T15 1054.8(-18.5%) 1601.0(-13.9%) 2046.2(-8.2%) 2366.1(-2.75%) 2461.0(-1.5%)
Normal 1051.4(-24%) 1600.9(-17.6%) 2044.5(-10.3%) 2363.9(-3.49%) 2460.0(-2%)

Table 3

Quantiles of asymptotic distribution under �1 criterion using μ = 0.5

Distributions 90% 95% 97.50% 99% 99.50%

T3 28.5 46.8 67.7 98.1 122.5
T4 38.2 62.7 89.9 129.7 162.2
T5 44.5 73.1 104.8 150.7 188.1
T6 48.3 78.9 113.5 163.3 203.6
T10 55.7 90.7 130.6 187.4 233.4
T15 59.0 97.0 139.7 200.5 250.0
Normal 66.1 108.3 155.7 224.8 279.9
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Table 4

Quantiles of asymptotic distribution under �2 criterion using μ = 0.5

Distributions 90% 95% 97.50% 99% 99.50%

T3 45.8(+60.7%) 77.3(+65.2%) 113.5(+67.6%) 166.9(+70.1%) 207.7(69.5%)
T4 47.3(+23.8%) 78.3(+24.9%) 113.3(+26%) 163.5(+26.1%) 204.5 (+26.1%)
T5 48.1(+8.1%) 78.9(+7.9%) 113.0(+7.8%) 163.3(+8.4%) 202.7(+7.8%)
T6 48.3(+0%) 79.0(+0.1%) 113.5(+0%) 162.8(-0.3%) 203.1(-0.25%)
T10 48.6(-12.7%) 79.1(-12.8%) 113.3(-13.2%) 162.6(-13.2%) 202.4(-13.3%)
T15 48.8(-17.3%) 79.3(-18.2%) 113.7(-18.6%) 162.8(-18.8%) 203.2(-18.72%)
Normal 48.8(-26.2%) 79.4(-26.7%) 113.8(-27%) 163.0(-27.5%) 202.7(-27.6%)

Table 5

Quantiles of asymptotic distribution under �1 criterion using μ = 1

Distributions 90% 95% 97.50% 99% 99.50%

T3 8.4 13.5 19.2 27.6 34.4
T4 10.5 16.9 24.0 34.3 42.7
T5 11.7 18.7 26.8 38.2 47.5
T6 12.5 20.2 28.9 41.2 51.3
T10 14 22.7 32.4 46.4 57.8
T15 14.7 23.9 34.1 48.9 60.9
Normal 16.1 26.2 37.2 53.7 66.7

Table 6

Quantiles of asymptotic distribution under �2 criterion using μ = 1

Distributions 90% 95% 97.50% 99% 99.50%

T3 11.8(+40.5%) 20.3(+50.4%) 30.7(+59.9%) 46.1(+67.0%) 59.3(+72.4%)
T4 12.7(+21%) 21.0(+24.3%) 30.5(+27.1%) 44.6(+30.1%) 56.0(+31.1%)
T5 13.0(+11.1%) 21.3(+14%) 30.5(+13.8%) 44.0(+15.2%) 55.0(+15.8%)
T6 13.1(+4.8%) 21.4(+5.9%) 30.6(+5.9%) 44.0(+6.8%) 55.0(+7.2%)
T10 13.4(-4.28%) 21.5(-5.29%) 30.7(-5.25%) 43.8(-5.6%) 54.1(-6.4%)
T15 13.4(-8.8%) 21.6(-9.6%) 30.7(-10%) 43.9(-10.2%) 54.0(-11.3%)
Normal 13.5(-16.1%) 21.7(-17.2%) 30.6(-17.1%) 43.5(-19%) 54.0(-19%)

Table 7

Quantiles of asymptotic distribution under �1 criterion using μ = 2

Distributions 90% 95% 97.50% 99% 99.50%

T3 1.7 4.8 7.5 11.1 13.8
T4 2.7 5.7 8.5 12.3 15.3
T5 3.1 6.1 9.0 13.0 16.0
T6 3.3 6.3 9.3 13.2 16.4
T10 3.6 6.7 9.8 14.0 17.2
T15 3.8 6.9 10.0 14.3 17.6
Normal 4.0 7.2 10.3 14.7 18.1

Table 8

Quantiles of asymptotic distribution under �2 criterion using μ = 2

Distributions 90% 95% 97.50% 99% 99.50%

T3 2.2(+29.4%) 5.9(+23%) 9.5(+26.7%) 15.0(+35.1%) 19.8(+43.5%)
T4 2.9(+7.4%) 6.2(+8.8%) 10.0(+17.6%) 14.3(+16.3%) 18.2(+19%)
T5 3.2(+3.2%) 6.4(+3.3%) 9.6(+6.7%) 14.2(+9.2%) 17.8(+11.25%)
T6 3.3(+0%) 6.4(+1.6%) 9.6(+3.2%) 14.0(+6.1%) 17.5(+6.7%)
T10 3.5(-2.8%) 6.6(-1.5%) 9.7(-1%) 14.0(+0%) 17.4(+1.2%)
T15 3.6(-5.3%) 6.6(-4.3%) 9.7(-3%) 13.9(-2.8%) 17.3(-1.7%)
Normal 3.7(-7.5%) 6.7(-7%) 9.7(-5.8%) 13.9(-5.4%) 17.1(-5.5%)
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From the above tables, it is immediate that if the error distribution has heavy
tails, say, T3, T4, it is preferable to use d̂

�1 to d̂�2 as the former has tighter limiting
confidence interval for any of the levels presented in our tables. On the other
hand, if the error distribution is normal, then the �2 estimator is more efficient
in terms of the width of the asymptotic confidence interval, as it is maximum
likelihood estimator of d0. In fact, the �2 estimator starts becoming efficient for
T distributions with higher degrees of freedom as is already evident from the
above tables where we see a reduction is some of the �2 quantiles for certain
values of μ with T6 error, and a systematic reduction with T10 and T15 errors.

Remark 4.1. We have added a section (Section C) to the supplementary doc-
ument, where we have extended the experiments for several intermediate values
of k ∈ {0.1, 0.5, 1, 2, 5, 10} and for the same four signals and same seven distri-
butions as in this main paper. The intermediate values of k exhibit an expected
monotone trend with respect to quantile behavior: for heavier tailed distribu-
tions e.g. T3, T4, smaller values of k correspond to smaller quantiles (narrower
confidence regions), whilst, for the light-tailed normal distribution, the quantiles
decrease with increasing k.

5. Conclusion

In this paper, we have analyzed various estimators in the standard change point
model and its multi-dimensional analogue by minimizing HEFs, especially in
the presence of heavy tailed errors. We note that the robust Huber-estimators
show varying degrees of advantage over the least squares estimator, depending
on the dimensionality of the problem.

1. In one dimension, all estimators achieve the same rate of convergence,
whereas the limiting distributions for the robust criteria based estimators
are more concentrated around 0 than that of the least squares estimator.
This effect diminishes as the tail of the error distribution becomes lighter:
in particular, for normal errors the least squares estimator has a narrower
asymptotic confidence interval in comparison to the robust estimators. We
believe a similar phenomenon will arise in the change-plane problem for
fixed p (where again, all the Huber estimators and the LSE will converge
at rate n), but the limit distributions in the multidimensional case are
expected to be multidimensional analogues of compound Poisson processes
with extremely involved characterizations. Almost nothing is known about
these objects and their study constitutes a highly non-trivial project in its
own right.

2. In growing dimensions, the robust estimators attain faster rates of conver-
gence than the least squares estimator, in particular attaining the minimax
rate which does not depend upon the tail of the error, whilst the rate of
convergence of the least squares estimator is dampened by the tail of the
error distribution.
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We now briefly discuss some variants of the problem considered above as well
as possible directions for future research.

5.1. Binary response model:

A natural variant of the change plane model analyzed in Subsection 3.2 is the
following binary response model:

X ∼ P, P(Y = 1 | X) = α01X�d0≤0 + β01X�d0>0 ,

where 0 < α0 �= β0 < 1. One may minimize the squared error loss to estimate
the unknown parameters:

(α̂, β̂, d̂) = argmin
α,β,d

1

n

n∑
i=1

(
Yi − α1X�

i d≤0 − β1X�
i d>0

)2
= argmin

α,β,d
Pnfα,β,d .

As in Subsection 3.2, the change plane parameter d0 here is also identified up to
its direction and the level parameters (α0, β0) are identified up to their order, so
we assume ‖d0‖ = 1 and α0 < β0. The loss function fα,β,d is uniformly bounded
by 1, hence the techniques used to prove the first part of Theorem 3.6 yield:(

√
n ∧ n

p

(
log

n

p

)−1
)
(α̂− α0) = Op(1)(

√
n ∧ n

p

(
log

n

p

)−1
)(

β̂ − β0

)
= Op(1),

n

p

(
log

n

p

)−1

P

(
sign(X	d̂) �= sign(X	d0)

)
= Op(1) .

Furthermore, the rate obtained above can be shown to be minimax optimal
(up to a log factor) by following a similar line argument as in the proof of
Theorem 3.7.

5.2. More general regression functions:

We have analyzed in this paper a stump based change point model: The model
analyzed in this paper can be easily generalized to one where the levels (α0, β0)
on either side of the boundary are replaced by some unknown functions of X.
As an example, one may fit the following non-parametric model:

Yi = f(Xi)1Xi≤d0 + g(Xi)1Xi>d0 + ξi

where both f, g are smooth and f(d0) �= g(d0). One may estimate f, g, d0 using
the following HEF:

(f̂k, ĝk, d̂k) = argmin
f,g,d

1

n

n∑
i=1

H̃k (Yi − f(Xi)1Xi≤d − g(Xi)1Xi>d) ,
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with (f, g) restricted to an appropriate class of functions (depending upon the
underlying application). This model is well investigated in the literature using
the squared error loss (e.g. see [28]), however the properties of the robust esti-
mators (i.e. estimators obtained by minimizing HEF) are still largely unknown
and worthy of investigation in the presence of heavy tailed errors.

5.3. Smoothed change plane problem:

The change plane estimators analyzed in Subsection 3.2 are NP-hard to compute
as HEF is discontinuous at the change boundary. One may replace the indicator
function involved in HEF by a smooth sigmoid function to estimate the unknown
parameters as follows:

(α̂k, β̂k, d̂k) = argmin
α,β,d

1

n

∑
i

H̃k

(
Yi − α− (β − α)

eX
�
i d0/σn

1 + eX
�
i d0/σn

)

for some bandwidth parameter σn → 0 as n → ∞. The sigmoid function con-
verges to the indicator function as n → ∞ and is differentiable with respect to
(α, β, d), therefore one may employ gradient descent to estimate the parameters
(e.g. similar to [19], [36] or [32]); however, as the loss function is non-convex,
there is no guarantee that gradient descent type techniques initiated from a
random point on the parameter surface will converge to a global minimum.
One way to address this issue is to replace the indicator function by a convex
surrogate (i.e. logit function as in logistic regression, exponential function as
in adaboost), but as the convex function does not converge to the indicator
function, it is unclear whether this method will lead to a consistent estimator
of d0. However, such methods merit deeper investigation as they may facilitate
efficient computation of the change plane estimator.

Appendix A: Proofs of selected Theorems

For all proofs below and in the supplement we will assume α0 > β0 for simplicity
of presentation. The derivations all go through for the reverse inequality upon
minor adjustments of the proofs presented in the paper.

A.1. Proof of Theorem 2.4

We divide the whole proofs into few supplementary lemmas, whose proofs can
be found in Supplementary document. Our first lemma provides a lower bound
on the the probability of a random walk staying always positive. We believe that
this lemma has been proved before, but we were unable to find a proper source
to cite. Hence we will provide our own proof in Supplementary document.
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Lemma A.1. Suppose {Si}i≥0 is a positively drifted random walk (i.e. Si =∑i
j=1(Xi + μ), E(X) = 0, μ > 0) with S0 = 0. Then we have:

P

(
max
1≤i≤n

Si < 0

)
≥ 1

n
P (Sn < 0) .

The compound Poisson process is essentially a two sided random walk where
are number of steps till time t follows a Poisson process. Therefore, we start by
establishing tail bound on the minimizer of the random walk and then relate
it to the tail of minimizer of the compound Poisson process. Our next lemma
establishes that if the step distribution of a random walk follows a Pareto dis-
tribution, then the minimizer of the random walk is also heavy-tailed:

Lemma A.2. Suppose ξ1, ξ2, . . . i.i.d. random variables with the following dis-
tribution:

P (|ξ| > t) =
1

1 + tγ

and P(ξ > t) = 1− P(ξ ≤ −t) for all t > 0. Define Xi = ξi + μ for some μ > 0
and a random walk based on Xi’s, i.e Sn =

∑n
i=1 Xi. Suppose M denotes the

minimizer of the random walk on Z+. Then we have:

P (M ≥ k) ≥ c1c2p
∗

γ
× 1

kγ
:= c0k

−γ ,

for all k ≥ k0 := 1 ∨ �μ−γ/(γ−1)�, where:

1. p∗ = P (Si > 0 ∀ i ∈ N) = P(M = 0).
2. c1 = 1

2(1+μ−γ)(1+μ)γ .

3. c2 = infx≥1

(
1− 1

1+x

)x−1

.

The previous lemma indicates that the minimizer of the random walk with
a heavy tailed step distribution is also heavy tailed. As the compound Poisson
process is a two sided process (i.e. supported on entire real line), we next extend
our lower bound on the tail of the minimizer of random walk obtained in previous
lemma for a two sided random walk in the following lemma:

Lemma A.3. Under the same structure as of Lemma A.2, we consider a two
sided random walk with independent component on the either side. Define by Mts

as the minimizer of the two sided random walk and by Mos as the minimizer of
one-sided random walk. Then we have:

P (|Mts| ≥ k) ≥ 2p∗c0k
−γ

for all k ≥ k0, where p∗, k0, c0 are same as defined in Lemma A.2.

Finally, we translate the lower bound on the tail of the minimizer of the two-
sided random walk to the two sided compound Poisson process in the following
lemma:
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Lemma A.4. Consider a two sided independent compound Poisson process with
increment independent of the steps. More specifically, let {Xi}i∈N be same as
defined in Lemma A.2. Suppose {X ′

i}i∈N be an independent copy of {Xi}i∈N.
Also suppose N1(t) and N2(t) are two independent Poisson process on R+ with
some intensity function Λ(t). The two sided independent compound Poisson
process on R is defined as:

X(t) =

⎧⎪⎨⎪⎩
∑N1(t)

i=1 Xi , if t > 0∑N2(−t)
i=1 X ′

i , if t < 0

0 , if t = 0 .

Let M be the mid-argmin of X(t) over R. Then we have for all x > (k0 + γ +
log 2)/fX(d0):

P (Mts,CPP > x) ≥ c0
2fγ

X(d0)
x−γ ,

where c0, k0 are same constants as defined in Lemma A.2.

Combining Lemma A.2, A.3 and A.4, we conclude the proof of of lower bound
on F�2 .

Now to prove the upper bound for F�1 we modify our arguments in the previ-
ous lemmas. Note that F�1 is the distribution of the minimizer of the following
compound Poisson process:

CPP (t) =

N+(t)∑
i=1

(ξ∗ + μ0)1t≥0 +

N−(−t)∑
i=1

(ξ∗ + μ0)1t<0

with CPP (t) = 0, N+ and N− are two independent Poisson processes as before
and:

ξ∗ ← {|ξ + (α0 − β0)| − |ξ|} − E [|ξ + (α0 − β0)| − |ξ|]
with μ0 = E [|ξ + (α0 − β0)| − |ξ|] > 0. Before going into the details of the proof,
we state Hoeffding’s inequality bound:

P (Sn < 0) = P

(
n∑

i=1

ξ∗i < −nμ0

)

= P
(
ξ̄∗n < −μ0

)
≤ e

− nμ2
0

8(α0−β0)2 .

Here we will highlight the steps where a modification is needed. First note that,
in case of one sided random walk (same situation as in Lemma A.2) we obtain
the upper bound as follows:

P (Mos ≥ k) =
∑
j≥k

P (Mos = j)

= p∗
∑
j≥k

P

(
max
1≤i≤j

Si < 0

)
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≤ p∗
∑
j≥k

P (Sj < 0)

≤ p∗
∑
j≥k

e
− jμ2

0
8(α0−β0)2

=
p∗

1− e
− μ2

0
8(α0−β0)2

e
− kμ2

0
8(α0−β0)2 (A.1)

We now translate the tail bound on the minimizer of the one sided random walk
to the minimizer of the two sided random walk as below:

P (Mts = k) = P (SK ≤ Si ∀ 0 ≤ i ≤ k − 1, Sk ≤ Si ∀ k + 1 ≤ i < ∞,

Sk ≤ inf
j≥1

S−j

)
≤ P (SK ≤ Si ∀ 0 ≤ i ≤ k − 1, Sk ≤ Si ∀ k + 1 ≤ i < ∞)

= P (Mos = k) .

This, along with the upper bound on the tail of the one-sided random walk
implies:

P (Mts ≥ k) ≤ p∗

1− e
− μ2

0
8(α0−β0)2

e
− kμ2

0
8(α0−β0)2 .

Next, we translate the bound for the minimizer of a one-sided random walk to
a one-sided compound Poisson process with steps ξ∗ + μ0:

P (Mos,CPP > x) =

∞∑
k=0

P (Mos,CPP > x | N1(x) = k)P (N1(x) = k)

=

∞∑
k=0

P

(
argmin

i≥0
Si > k

)
P (N1(x) = k)

≤ p∗

1− e
− μ2

0
8(α0−β0)2

∞∑
k=0

e
− (k+1)μ2

0
8(α0−β0)2 P (N1(x) = k)

=
p∗

1− e
− μ2

0
8(α0−β0)2

e
− μ2

0
8(α0−β0)2

∞∑
k=0

e
− kμ2

0
8(α0−β0)2

e−Λ(x)Λ(x)k

k!

=
p∗

1− e
− μ2

0
8(α0−β0)2

e
− μ2

0
8(α0−β0)2 e−Λ(x)

∞∑
k=0

(
e
− μ2

0
8(α0−β0)2 Λ(x)

)k

k!

=
p∗

e
μ2
0

8(α0−β0)2 − 1

exp

(
−Λ(x)

(
1− e

− μ2
0

8(α0−β0)2

))

=
p∗

e
μ2
0

8(α0−β0)2 − 1

exp

(
−xfX (d0)

(
1− e

− μ2
0

8(α0−β0)2

))
,
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and consequently for the two sided compound Poisson process:

F̄�1(x)=P (Mts,CPP > x)=

∞∑
k=0

P (Mts,CPP > x | N1(x) = k)P(N1(x) = k)

=

∞∑
k=0

P (Mts > k)P(N1(x) = k)

≤
∞∑
k=0

P (Mos > k)P(N1(x) = k)

=P (Mos,CPP > x)

≤ p∗

e
μ2
0

8(α0−β0)2 − 1

exp

(
−xfX (d0)

(
1− e

− μ2
0

8(α0−β0)2

))
.

A.2. Proof of Theorem 3.1

Proof of lower bound: The following lemma, which is a finite sample ana-
logue of the first conclusion of Theorem 2.4, is essential to establish the lower
bound of Theorem 3.1:

Lemma A.5. Suppose, for a fixed n, Fn,�2 denotes the distribution of n(d̂�2i −
d0,i). Then we have for all 2γ/fX(d0) ≤ |x| ≤ (δ1 ∧ δ2)n (for some constants
δ1, δ2 independent of n defined explicitly in the proof):

1− Fn,�2(x) = P

(∣∣∣n(d̂�2i − d0,i)
∣∣∣ ≥ x

)
≥ c1c2(p

∗)2

γ2γ+2
×
(

fX,max

1− FX(d0)

)−γ

× x−γ

where fX,max is the maximum value of the density of X and c1, c2, p
∗ are same

as defined in Lemma A.2.

The proof of the Lemma can be found in Appendix B. For notational sim-
plicity, set:

C =
c1c2(p

∗)2

γ2γ+2
×
(

fX,max

1− FX(d0)

)−γ

.

Using the above lemma we have:

P

(
max

1≤i≤m

n

m1/γ

∣∣∣d̂�2i − d0,i

∣∣∣ > t

)
= 1− P

(
max

1≤i≤m

n

m1/γ

∣∣∣d̂�2i − d0,i

∣∣∣ ≤ t

)
= 1−

(
Fn,�2(tm

1/γ)
)m

= 1−
(
1− F̄n,�2(tm

1/γ)
)m

≥ 1−
(
1− C(tm1/γ)−γ

)m
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= 1−
(
1− Cm−1t−γ

)m
−→ 1− e−Ct−γ

Note that Lemma A.5 is applicable here as for any fixed t, tm1/γ � n because
m1/γ � n and as m ↑ ∞, tm1/γ ≥ 2γ/fX(d0) for all large m. This completes
the proof.

Proof of upper bound: The proof of upper bound relies on the following
Lemma, which is a analogue of Lemma A.5, where we establish an upper bound
on the finite sample distribution of n(d̂i − di,0) with bounded supported error
distribution ξ:

Lemma A.6. Let Fn,�1 denotes the distribution of
∣∣∣n(d̂�1i − d0,i)

∣∣∣. Then we have

for 0 ≤ |x| ≤ nδ1 (for some constant δ1 defined explicitly in the proof):

1− Fn,�1(x) = P

(∣∣∣n(d̂�1i − d0,i)
∣∣∣ ≥ x

)
≤ 2e−c

1− e−c
e−x

fX (d0)

2 (1−e−c) ,

where c = μ2/4b2, μ = E[|ξ + (α0 − β0)| − |ξ|] and b is the range of the random
variable (|ξ + (α0 − β0)| − |ξ|)− μ.

Using the above lemma we have:

P

(
max

1≤i≤m

n

logm

∣∣∣d̂�1i − d0,i

∣∣∣ > t

)
≤

m∑
i=1

P

(
n
∣∣∣d̂�1i − d0,i

∣∣∣ > t logm
)

≤ 2e−c

1− e−c
me−t logm

fX (d0)

2 (1−e−c)

≤ 2e−c

1− e−c
e
− logm

(
t
fX (d0)

2 (1−e−c)−1
)
.

This completes the proof.

A.3. Proof of Theorem 3.3

To prove the lower bound, we consider a simple model: Assume that, for each
problem, the true change point is 0 (i.e. di,0 = 0 for all i), the covariates X ′

i,js
are all i.i.d. Uniform (−1, 1) and error distribution is normal. We first observe

that for any estimator d̂i of di,0 we have:∣∣∣d̂i − di,0

∣∣∣ ≥ min
1≤j≤n

|Xi,j − di,0| ,

i.e. we can’t estimate a change point better than its closest order statistic. Note
that when di,0 = 0, we have:∣∣∣d̂i∣∣∣ ≥ min

1≤j≤n
|Xi,j | = min

1≤i≤n
Ui
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where U1, . . . , Un
i.i.d.∼ U(0, 1). Hence to prove the theorem, all we need to show

is that:

lim inf
n,m→∞

1

logm
E

[
max

1≤i≤m
nZi:n

]
≥ C > 0

where Zi:n are i.i.d with the common distribution being that of the minimum
of n uniform (0, 1) random variables. Note that for any 0 ≤ t ≤ n:

P (nZi:n ≥ t) = P

(
min

1≤i≤n
Ui ≥

t

n

)
=

(
1− t

n

)n

=⇒ P (nZi:n ≤ t) = 1−
(
1− t

n

)n

:= FnZ1:n(t) .

Therefore we have:

1

logm
E

[
max

1≤i≤m
nZi:n

]
=

1

logm

∫ n

0

P

(
max

1≤i≤m
nZi:n ≥ t

)
dt

=
1

logm

∫ n

0

[
1− P

(
max

1≤i≤m
nZi:n ≤ t

)]
dt

=
1

logm

∫ n

0

[
1− Fm

nZ1:n
(t)
]
dt

=
1

logm

∫ n

0

[
1−
(
1−
(
1− t

n

)n)m]
dt (A.2)

Next using the following inequality:(
1 +

t

n

)n

≥ et
(
1− t2

n

)
∀ |t| ≤ n ,

we obtain from equation (A.2):

1

logm
E

[
max

1≤i≤m
nZi:n

]
≥ 1

logm

∫ n

0

[
1−
(
1− e−t + e−t t

2

n

)m]
dt

=
1

logm

∫ n

0

[
1−

m∑
i=0

(
m

i

)(
e−t t

2

n

)i (
1− e−t

)m−i

]

=
1

logm

∫ n

0

[
1−
(
1− e−t

)m]
dt

− 1

logm

∫ n

0

m∑
i=1

(
m

i

)(
e−t t

2

n

)i (
1− e−t

)m−i
dt

=
1

logm

∫ ∞

0

[
1−
(
1− e−t

)m]
dt

− 1

logm

∫ ∞

n

[
1−
(
1− e−t

)m]
dt
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− 1

logm

∫ n

0

m∑
i=1

(
m

i

)(
e−t t

2

n

)i (
1− e−t

)m−i
dt

:= am,1 − am,2 − am,3 (A.3)

We next show that am,2, am,3 −→ 0 and am,1 −→ 1 as m → ∞, as long as
n ≥ 2m. We start with am,3:

am,3 =
1

logm

∫ n

0

m∑
i=1

(
m

i

)(
e−t t

2

n

)i (
1− e−t

)m−i
dt

≤ 1

logm

∫ n

0

m∑
i=1

(
m

i

)(
e−t t

2

n

)i

dt

=
1

logm

m∑
i=1

(
m

i

)∫ n

0

(
e−t t

2

n

)i

dt

=
1

logm

m∑
i=1

(
m

i

)
1

ini

∫ n

0

t2i ie−it dt

≤ 1

logm

m∑
i=1

(
m

i

)
1

ini

∫ ∞

0

t2i ie−it dt

=
1

logm

m∑
i=1

(
m

i

)
1

ini

(2i)!

i2i

=
1

logm

m∑
i=1

(m− i+ 1) · · ·m
iniii

(i+ 1) · · · (i+ i)

ii

≤ 1

logm

m∑
i=1

(m− i+ 1) · · ·m
i
(
n
2

)i
ii

≤ 1

logm

m∑
i=1

(
2m

n

)i
1

ii+1
≤ 1

logm

m∑
i=1

1

ii+1
−→ 0 .

For the other term an,2:

|an,2| =
∣∣∣∣ 1

logm

∫ ∞

n

[
1−
(
1− e−t

)m]
dt

∣∣∣∣
=

∣∣∣∣∣ 1

logm

∫ ∞

n

[
1−

m∑
i=0

(
m

i

)
e−it(−1)i

]
dt

∣∣∣∣∣
=

∣∣∣∣∣ 1

logm

∫ ∞

n

m∑
i=1

(
m

i

)
e−it(−1)i+1 dt

∣∣∣∣∣
≤ 1

logm

m∑
i=1

(
m

i

)∫ ∞

n

e−it dt
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=
1

logm

m∑
i=1

(
m

i

)
e−ni

i

=
2m

logm
E

[
e−nX

X
1X≥1

]
[X ∼ Bin(n, p)]

≤ 2m

logm
E

[
e−2mX

X
1X≥1

]
[∵ n ≥ 2m]

≤ 2m

logm
E
[
e−2mX

]
[∵ n ≥ 2m]

=
2m

logm

(
1

2
e−2m +

1

2

)m

=
1

logm

(
e−2m + 1

)m −→ 0 .

Now the calculation of an,1 is similar by replacing n with 0. We have:

an,1 =
1

logm

∫ ∞

0

[
1−
(
1− e−t

)m]
dt

=
1

logm

∫ ∞

0

m∑
i=1

(
m

i

)
e−it(−1)i+1 dt

=
1

logm

m∑
i=1

(
m

i

)
(−1)i+1

i

=
1

logm

m∑
i=1

1

i

m→∞−→ 1 .

where the last equality follows from the representation of Harmonic number.
Therefore from equation (A.3) we conclude:

lim inf
m,n→∞

1

logm
E

[
max

1≤i≤m
nZi:n

]
≥ 1 .

This concludes the proof.

A.4. Proof of Theorem 3.6

A.4.1. Case 1: 0 ≤ k < ∞

We first establish the rate of convergence of (α̂init, β̂init, d̂). Towards that direc-
tion, we use the following semi-metric over the parameter space Θ:

dist(θ1, θ2) =

√
(α1 − α2)

2
+ (β1 − β2)

2
+ P (sign(X	d) �= sign(X	d0))

The curvature of the population score function M(θ) around the its value at
minimizer M(θ0) is obtained via the similar calculation as in in the proof of
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Theorem 2.1 (specifically equation (A.16) in the supplement). Consider all θ ∈ Θ
such that dist(θ, θ0) ≤ δ where δ is such that |α0 − β0| > 2δ. For such that θ we
have:

M(θ)−M(θ0) = E

[(
H̃k (ξi + α0 − α)− H̃k(ξi)

)]
P
(
X	d ∨X	d0 ≤ 0

)
+ E

[(
H̃k (ξi + α0 − β)− H̃k(ξi)

)]
P
(
X	d0 < 0 < X	d

)
+ E

[(
H̃k (ξi + β0 − α)− H̃k(ξi)

)]
P
(
X	d < 0 < X	d0

)
+ E

[(
H̃k (ξi + β0 − β)− H̃k(ξi)

)]
P
(
X	d ∧X	d0 > 0

)
≥ Ck

2

[
(α0 − α)2P

(
X	d ∨X	d0 ≤ 0

)
)

+ (β0 − β)2P
(
X	d ∧X	d0 > 0

)
+P
(
sign(X	d) �= sign(X	d0)

) {
2(α0 − β0 − δ)2

}]
≥ Ck

[
(α0 − α)2 + (β0 − β)2 + P

(
sign(X	d) �= sign(X	d0)

)
|
]

= Ckdist
2(θ, θ0) . (A.4)

Consistency: We use argmin continuous mapping theorem (Theorem 3.2.2 of
[38]) to establish the consistency of the initial estimator. As the parameter space
is bounded, our estimates are by default tight. As the process M(θ)−M(θ0) is
continuous with respect to θ and has a clear minima at θ = θ0 all we need to
show for any compact subset K ⊆ Θ:

sup
θ∈K

|(Mn(θ)−Mn(θ0))− (M(θ)−M(θ0))| = op(1) .

Consider a collection of functions F = {fθ : θ ∈ Θ} where the individual func-
tions fθ(X, ξ) is defined as:

fθ(X, ξ) =
(
H̃k (ξ + α0 − α)− H̃k(ξ)

)
1X�d∨X�d0≤0(

H̃k (ξ + α0 − β)− H̃k(ξ)
)
1X�d0≤0<X�d

+
(
H̃k (ξ + β0 − α)− H̃k(ξ)

)
1X�d≤0<X�d0

+
(
H̃k (ξ + β0 − β)− H̃k(ξ)

)
1X�d∧X�d0>0

:=

4∑
i=1

giθ(ξ)h
i
θ(X)

with:

g1θ(ξ) =
(
H̃k (ξ + α0 − α)− H̃k(ξ)

)
, h1

θ(X) = 1X�d∨X�d0≤0 ,

g2θ(ξ) =
(
Hk (ξ + α0 − β)− H̃k(ξ)

)
, h2

θ(X) = 1X�d0≤0<X�d ,
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g3θ(ξ) =
(
H̃k (ξ + β0 − α)− H̃k(ξ)

)
, h3

θ(X) = 1X�d≤0<X�d0
,

g4θ(ξ) =
(
H̃k (ξ + β0 − β)− H̃k(ξ)

)
, h4

θ(X) = 1X�d∧X�d0>0 .

As the Huber function Hk is Lipschitz with Lipschitz constant k, our criterion
function H̃k is Lipschitz with Lipschitz constant (k+1). As our parameter space
is compact, the functions {giθ, hi

θ}1≤i≤4 are uniformly bounded, and has constant
envelope, say F . That the functions {giθ}θ∈Θ for i = 1, 2, 3, 4 has finite VC
dimension v (i.e. does not grow with n or p) is immediate. On the other hands,
as all the p-dimensional hyperplanes passing through origin has VC dimension
p. Hence the functions {hi

θ}θ∈Θ has VC dimension p. Define Fg,i = {giθ : θ ∈ Θ}
for 1 ≤ i ≤ 4 and Fh,i = {hi

θ : θ ∈ Θ} for 1 ≤ i ≤ 4. Combining these we obtain:

sup
Q

N(ε‖F‖Q,1,F , L1(Q)) ≤ sup
Q

N

(
ε‖F‖Q,1,

4∑
i=1

Fg,iFh,i, L1(Q)

)
≤ Π4

i=1 sup
Q

N(ε‖F‖Q,1,Fg,iFh,i, L1(Q))

≤ Π4
i=1KV C(Fg,i)V C(Fh,i)(16e)

V C(Fg,i)+V C(Fh,i)

×
(
1

ε

)(V C(Fg,i)+V C(Fh,i)−2)

≤ Π4
i=1Kvp(16e)v+p

(
1

ε

)(v+p−2)

= K4(16e)4(v+p)

(
1

ε

)4(v+p−2)

= K4

(
16e

ε

)4(v+p)

This along with the fact p/n → 0 implies:

1

n
log

(
sup
Q

N(ε‖F‖Q,1,F , L1(Q)))

)
→ 0 .

Therefore F is Glivenko-Cantelli class of functions and using Theorem 2.4.3 of
[38] we conclude that:

sup
θ∈K

|(Mn(θ)−Mn(θ0))− (M(θ)−M(θ0))| = ‖(Pn − P )‖F = op(1) .

This establishes the consistency of (α̂init, β̂init, d̂).

Rate of convergence of initial estimators: So far we have established
the quadratic curvature of M(θ) around its unique minimizer θ0 and also the

consistency of θ̂init = (α̂init, β̂init, d̂). In this section we show that:√
n

p

(
log

n

p

)− 1
2

dist(θ̂init, θ0) = Op(1)
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which (along with Assumption 3.5) implies:

n

p

(
log

n

p

)−1 [
(α̂init − α0)

2
+
(
β̂init − β0

)2
+
∥∥∥d̂− d0

∥∥∥] = Op(1) .

To establish the rate, all is left to do is to find a bound on the modulus of
continuity of the empirical process Mn(θ), i.e we need to find φn(δ) such that:

E

[
sup

d(θ,θ0)≤δ

|(Mn −M)(θ0)− (Mn −M)(θ)|
]
≤ φn(δ)√

n
. (A.5)

Towards that end, define a local collection of functions Fδ = {fθ : d(θ, θ0) ≤ δ}.
Note that when d(θ, θ0) ≤ δ we have:

max

{
|α− α0|, |β − β0|,

√
P (sign(X	d) �= sign(X	d0))

}
≤ δ .

For any such θ we have:

E
[
fθ(X, ξ)2

]
= E

(
H̃k (ξ + α0 − α)− H̃k(ξ)

)2
P
(
X	d ∨X	d0 ≤ 0

)
E

(
H̃k (ξ + α0 − β)− H̃k(ξ)

)2
P
(
X	d0 ≤ 0 < X	d

)
+ E

(
H̃k (ξ + β0 − α)− H̃k(ξ)

)2
P
(
X	d ≤ 0 < X	d0

)
+ E

(
H̃k (ξ + β0 − β)− H̃k(ξ)

)2
P
(
X	d ∧X	d0 > 0

)
� Ck

[
δ2 + P

(
sign(X	d) �= sign(X	d0)

)]
� Ckδ

2 (A.6)

Hence applying Theorem 8.7 of [35] we conclude:

E

[
sup

d(θ,θ0)≤δ

|(Mn −M)(θ0)− (Mn −M)(θ)|
]
�
√

p

n
δ

√
log

1

δ
∨ p

n
log

1

δ

Therefore a valid choice of φn in equation (A.5) is:

φn(δ) =
√
pδ

√
log

1

δ
∨ p√

n
log

1

δ
.

Using this φn in Theorem 3.4.1 of [38] we conclude that:√
n

p

(
log

n

p

)− 1
2

d(θ̂init, θ0) = Op(1) .

Finally, as the function class under consideration F = {fθ : θ ∈ Ω × Sp−1} is
uniformly bounded, an application of Theorem 2 of [30] yields:

P

(
n

p

(
log

n

p

)−1

d(θ̂init, θ0) ≥ t

)
≤ Cke

−ckt (A.7)
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for some constants Ck, ck > 0 which depends on k. This in particular implies
that:

E

[
n

p

(
log

n

p

)−1

P

(
sign(X	d̂) �= sign(X	d0)

)]
≤ Ck (A.8)

for some constant Ck > 0 depends on k.

Rate of convergence of the final estimators: We now present the proof
that the rate of convergence of the final estimator. The proof for α̂ and β̂ are
similar and therefore we only the present the proof for α̂. Before delving into
the technical details, we introduce some notation:

Mn(α, d) =
1

n

n∑
i=1

H̃k(Yi − α)1X�
i d≤0

Rn(α, d1, d2) =
1

n

n∑
i=1

H̃k(Yi − α)
(
1X�

i d1≤0 − 1X�
i d2≤0

)
M(α, d) = E[Mn(α, d)] = E

[
H̃k(Y − α)1X�d≤0

]
.

From Lemma A.8 we have for all |α− α0| ≤ η (for some small enough η > 0):

M(α, d0)−M(α0, d0) ≥ Ck(α− α0)
2

In terms of the processes introduced above, we can write our final estimator α̂
as:

α̂ = argmin
α

1

n

n∑
i=1

H̃k(Yi − α)1X�
i d̂≤0

= argmin
α

Mn(α, d̂)

= argmin
α

[
Mn(α, d0) + Rn(α, d̂, d0)

]
(A.9)

Consistency of the above estimator follows from the similar calculation as of its
previous incarnation, hence we skip it here for brevity. The remainder term Rn

can be bounded as:

sup
α:|α−α0|≤δ

∣∣∣Rn(α, d̂, d0)− Rn(α0, d̂, d0)
∣∣∣ ≤ kδ

n

n∑
i=1

1sign(X�
i d̂) 
=sign(X�

i d0)

= kδPnfd̂

= kδ
[
(Pn − P )fd̂ + Pfd̂

]
Fix ε > 0. Previously, we have established that:

Pfd̂ = Op

(
p

n
log

n

p

)
.
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Therefore we can find t0 such that for all t > t0:

P

(
Pfd̂ > t0

p

n
log

n

p

)
≤ ε .

Next we bound the fluctuation of the centered empirical process.

P

(
n

p

(
log

n

p

)−1

(Pn − P )fd̂ > t

)

≤ P

(
n

p

(
log

n

p

)−1

(Pn − P )fd̂ > t, Pfd̂ ≤ t0
p

n
log

n

p

)
+ P

(
Pfd̂ > t0

p

n
log

n

p

)

≤ P

(
sup

d:Pfd≤t0
p
n log n

p

n

p

(
log

n

p

)−1

‖(Pn − P )fd‖ > t

)
+ ε

≤ n

p

(
log

n

p

)−1

× 1

t
E

[
sup

d:Pfd≤t0
p
n log n

p

‖(Pn − P )fd‖
]
+ ε

≤ n

p

(
log

n

p

)−1

×

√
t0

p
n

√
log n

p log n
t0p log (n/p) ∨

p
n log n

t0p log (n/p)

t
+ ε

=

√
t0
t

√
log (n/p)− log (t0 log (n/p))

log (n/p)
∨ 1

t

log (n/p)− log (t0 log (n/p))

log (n/p)
+ ε

where the second last inequality follows from Theorem 8.7 of [35]. Therefore we
have:

lim sup
n→∞

P

(
n

p

(
log

n

p

)−1

(Pn − P )fd̂ > t

)
≤

√
t0
t

∨ 1

t
+ ε ,

which implies that for any fixed ε > 0, we can t large enough to ensure that:

lim sup
n→∞

P

(
n

p

(
log

n

p

)−1

(Pn − P )fd̂ > t

)
≤ 2ε

Hence we have:

sup
|α−α0|≤δ

∣∣∣Rn(α, d̂, d0)− Rn(α0, d̂, d0)
∣∣∣ = δ ×Op

(
p

n
log

n

p

)
.

Again fix ε > 0 and choose t0 > 0 such that:

lim sup
n→∞

P

(
n

p

(
log

n

p

)−1

sup
|α−α0|≤δ

∣∣∣Rn(α, d̂, d0)− Rn(α0, d̂, d0)
∣∣∣ ≥ δt0

)
≤ ε .

Also note that this t0 only depends on ε, not δ. Henceforth define rn =
√
n ∧

(n/p)(log (n/p))−1, the desired rate of convergence for the second stage estima-
tor for notational simplicity. Further, by an application of Lemma 2.14.1 of [38]
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we have for any δ > 0:

E

[
sup

|α−α0|≤δ

|(Mn −M)(α, d0)− (Mn −M)(α0, d0)|
]
� δ√

n
. (A.10)

Using a shelling type of argument, we have for any t > 0:

P (rn|α̂− α0| > t)

≤ P (rn|α̂− α0| > t, |α̂− α0| ≤ η) + P (|α̂− α0| > η)

≤ P (rn|α̂− α0| > t, |α̂− α0| ≤ η) + ε

≤ P

(
sup

α:tr−1
n <|α−α0|≤η

{
Mn(α0, d0) + Rn(α0, d̂, d0)

−Mn(α, d0)− Rn(α, d̂, d0)
}
≥ 0
)
+ ε

≤ P

(
sup

α:tr−1
n <|α−α0|≤η

{
Mn(α0, d0) + Rn(α0, d̂, d0)

−Mn(α, d0)− Rn(α, d̂, d0)
}
≥ 0,Pnfd̂ ≤ t0

p

n
log

n

p

)
+ P

(
Pnfd̂ > t0

p

n
log

n

p

)
+ ε

≤ P

(
sup

α:tr−1
n <|α−α0|≤η

{
Mn(α0, d0) + Rn(α0, d̂, d0)

−Mn(α, d0)− Rn(α, d̂, d0)
}
≥ 0,Pnfd̂ ≤ t0

p

n
log

n

p

)
+ 2ε

≤
log2 (ηrn/t)∑

j=1

P

(
sup

α:2j−1tr−1
n <|α−α0|≤2jtr−1

n

{
Mn(α0, d0) + Rn(α0, d̂, d0)

−Mn(α, d0)− Rn(α, d̂, d0)
}
≥ 0,Pnfd̂ ≤ t0

p

n
log

n

p

)
+ 2ε

≤
log2 (ηrn/t)∑

j=1

P

(
sup

α:2j−1tr−1
n <|α−α0|≤2jtr−1

n

{Mn(α0, d0)−Mn(α, d0)}

+ sup
2j−1tr−1

n <|α−α0|≤2jtr−1
n

∣∣∣Rn(α, d̂, d0)− Rn(α0, d̂, d0)
∣∣∣ ≥ 0,Pnfd̂ ≤ t0

p

n
log

n

p

)
+ 2ε

≤
log2 (ηrn/t)∑

j=1

P

(
sup

α:2j−1tr−1
n <|α−α0|≤2jtr−1

n

{Mn(α0, d0)−Mn(α, d0)}

+2jtr−1
n t0

p

n
log

n

p
≥ 0

)
+ 2ε

≤
log2 (ηrn/t)∑

j=1

P

(
sup

α:2j−1tr−1
n <|α−α0|≤2jtr−1

n

{Mn(α0, d0)−Mn(α, d0)}

+2jtr−1
n t0

p

n
log

n

p
≥ 0

)
+ 2ε
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≤
log2 (ηrn/t)∑

j=1

P

(
sup

α:2j−1tr−1
n <|α−α0|≤2jtr−1

n

{(Mn −M)(α0, d0)− (Mn −M)(α, d0)}

+2jtr−1
n t0

p

n
log

n

p
≥ inf

α:2j−1tr−1
n <|α−α0|≤2jtr−1

n

(M(α)−M(α0))

)
+ 2ε

≤
log2 (ηrn/t)∑

j=1

⎡⎣E
[
sup

2j−1tr−1
n <|α−α0|≤2jtr−1

n
{(Mn −M)(α0, d0)− (Mn −M)(α, d0)}

]
inf

α:2j−1tr−1
n <|α−α0|≤2jtr−1

n
(M(α)−M(α0))

+
2jtr−1

n t0
p
n
log n

p

inf
α:2j−1tr−1

n <|α−α0|≤2jtr−1
n

(M(α)−M(α0))

]
+ 2ε

≤
log2 (ηrn/t)∑

j=1

⎡⎣E
[
sup|α−α0|≤2jtr−1

n
{(Mn −M)(α0, d0)− (Mn −M)(α, d0)}

]
inf

α:|α−α0|≥2j−1tr−1
n

(M(α)−M(α0))

+
2jtr−1

n t0
p
n
log n

p

inf
α:|α−α0|≥2j−1tr−1

n
(M(α)−M(α0))

]
+ 2ε

≤
log2 (ηrn/t)∑

j=1

⎡⎣E
[
sup|α−α0|≤2jtr−1

n
{(Mn −M)(α0, d0)− (Mn −M)(α, d0)}

]
inf

α:|α−α0|≥2j−1tr−1
n

(M(α)−M(α0))

+
2jtt0r

−2
n

inf
α:|α−α0|≥2j−1tr−1

n
(M(α)−M(α0))

]
+ 2ε

≤
log2 (ηrn/t)∑

j=1

⎡⎣E
[
sup|α−α0|≤2jtr−1

n
{(Mn −M)(α0, d0)− (Mn −M)(α, d0)}

]
22(j−1)t2r−2

n

+
2jtt0r

−2
n

22(j−1)t2r−2
n

]
+ 2ε

≤
log2 (ηrn/t)∑

j=1

E

[
sup|α−α0|≤2jtr−1

n
{(Mn −M)(α0, d0)− (Mn −M)(α, d0)}

]
22(j−1)t2r−2

n

+
t0
t
+ 2ε

≤
log2 (ηrn/t)∑

j=1

2jtr−1
n√

n22(j−1)t2r−2
n

+
t0
t
+ 2ε [From equation (A.10)]

≤ 1

t
+

t0
t
+ 2ε .

Taking t large enough we conclude:

lim sup
n→∞

P (rn|α̂− α0| > t) ≤ 3ε

This completes the proof.

A.4.2. Case 2: k = ∞, i.e. squared error loss

The proof for k = ∞ is similar to that of 0 ≤ k < ∞, the only difference is
that the collection of functions F defined in the proof of the previous part is no
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longer bounded. Hence we need to modify some parts of the proof carefully to
take care of that.

Consistency: Consider the same function class F as in paragraph A.4.1. Note
that now any individual function fθ is:

fθ(X, ξ) =

(
ξ(α0 − α) +

1

2
(α0 − α)2

)
1X�d∨X�d0≤0(

ξ(α0 − β) +
1

2
(α0 − β)2

)
1X�d0≤0<X�d

+

(
ξ(β0 − α) +

1

2
(β0 − α)2

)
1X�d≤0<X�d0

+

(
ξ(β0 − β) +

1

2
(β0 − β)2

)
1X�d∧X�d0>0

The envelope function F of F is as follows:

sup
θ∈Θ

|fθ(X, ξ)| ≤ sup
(α,β)∈Ω

[|ξ|max {|α− α0| , |α− β0| , |β − α0| , |β − β0|}

+
1

2
(max {|α− α0| , |α− β0| , |β − α0| , |β − β0|})2

]
≤ C|ξ|+ C2

2
:= F (X, ξ)

The envelope function is integrable and following same analysis as of para-
graph A.4.1 we conclude:

sup
Q

N
(
ε ‖F‖Q,1 ,F , L1(Q)

)
≤ K4

(
16e

ε

)v+p

.

Hence F is a Glivenko-Cantelli class of functions and consistency follows from
Theorem 2.4.3 of [38].

Rate of convergence of the initial estimate: To control the modulus
of continuity, we can no longer apply Theorem 8.7 of [35] directly here as the
functions are not uniformly bounded. Here we use the following modified version
of Theorem 1 of [17]:

Proposition A.7. Suppose {ξ1, . . . , ξn} are independent of random variables of
{X1, . . . , Xn} and moreover {X1, . . . , Xn} are permutation invariant. Assume
further that there exists a non-decreasing concave function ϕn : R+ → R+ with
ϕn(0) = 0 and constant bn > 0 such that for 1 ≤ k ≤ n:

E

∥∥∥∥∥
k∑

i=1

εif(Xi)

∥∥∥∥∥
F

≤ ϕn(k) + bn
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for some i.i.d Rademacher random variables ε1, . . . , εn. Then we have:

E

∥∥∥∥∥
n∑

i=1

ξif(Xi)

∥∥∥∥∥
F

≤ 4

∫ ∞

0

ϕn

(
n∑

i=1

P (|ξi| > t)

)
dt+ 2bnE

[
max
1≤i≤n

|ξi|
]
.

The proof of this proposition can be found in the Section B of the supple-
mentary document. To apply the above proposition, we define

fθ(Xi, ξi) = ξifθ,1(Xi) + fθ,2(Xi)

where:

fθ,1(Xi) = (α0 − α)1X�d∨X�d0≤0 + (α0 − β)1X�d0≤0<X�d

+ (β0 − α)1X�d≤0<X�d0
+ (β0 − β)1X�d∧X�d0>0

fθ2(Xi) =
1

2
(α0 − α)21X�d∨X�d0≤0 +

1

2
(α0 − β)21X�d0≤0<X�d

+
1

2
(β0 − α)21X�d≤0<X�d0

+
1

2
(β0 − β)21X�d∧X�d0>0

Both the collections F1 = {fθ,1 : d(θ, θ0) ≤ δ} and F2 = {fθ,2 : d(θ, θ0) ≤ δ} are
uniformly bounded with VC dimension of the order p. It is also immediate that
Pf2

θ,j � δ2 for all θ : d(θ, θ0) ≤ δ, for j ∈ {1, 2}. Hence we have from Theorem
8.7 of [35] for any 1 ≤ k ≤ n and ε1, . . . .εn i.i.d Rademacher random variables:

E

[
sup

d(θ,θ0)≤δ

∣∣∣∣∣
k∑

i=1

εifθ,j(Xi)

∣∣∣∣∣
]
≤ L

(
δ
√
k

√
p log

AU

δ
+ pU log

AU

δ

)
(A.11)

:= ϕn(k) + bn

for some constants L > 0, A > e2 and U is the uniform bounds on the individual
functions and ϕn(k) = Lδ

√
k
√
p log (AU/δ) and bn = pU log (AU/δ). Therefore

using Proposition A.7:

E

∥∥∥∥∥
k∑

i=1

ξif(Xi)

∥∥∥∥∥
F1

(A.12)

≤ 4

∫ ∞

0

ϕn (nP (|ξ1| > t)) dt+ 2bnE

[
max
1≤i≤n

|ξi|
]

≤ 4Lδ
√
n

√
p log

(
AU

δ

)∫ ∞

0

√
P(|ξ1| > t) dt+ 2pU log

(
AU

δ

)
E

[
max
1≤i≤n

|ξi|
]

= 4L ‖ξ‖2,1 δ
√
n

√
p log

(
AU

δ

)
+ 2pU log

(
AU

δ

)
E

[
max
1≤i≤n

|ξi|
]

(A.13)

For the collection F2 we can directly use equation (A.11) for k = n we obtain:

E

[
‖(Pn − P ) fθ,2‖F2

]
≤ L

(
δ√
n

√
p log

AU

δ
+

pU

n
log

AU

δ

)
(A.14)
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Therefore combining equation (A.12) and (A.14) we conclude:

E

[
sup

d(θ,θ0)≤δ

|(Pn − P ) fθ|
]
≤ L(4 ‖ξ‖2,1 + 1)

δ√
n

√
p log

AU

δ

+
pU

n
log

AU

δ

(
1 + 2E

[
max
1≤i≤n

|ξi|
])

(A.15)

Ignoring constants (as they won’t effect the rate of convergence) we can take
φn(δ) is Theorem 3.4.1 of [38] as:

φn(δ) = δ

√
p log

1

δ
∨ p√

n
log

1

δ
E

[
max
1≤i≤n

|ξi|
]
.

Finally solving the equation the equation r2nφn(1/rn) ≤ √
n we conclude the

rate of convergence.

Rate of convergence of the final estimators: The calculation is exactly
same as in Paragraph A.4.1 and hence skipped.

A.5. Proof of Theorem 2.1

To establish the rate of convergence and the asymptotic distribution of the
change point estimators obtained via Huber loss, we first need to establish a
curvature of the population loss function around its unique minimizer. The
following lemma is imperative to that end:

Lemma A.8. If ξ follows a symmetric distribution around the origin with with
continuous density fξ satisfying fξ(0) > 0, then for any k > 0, |μ| < 2k, we
have:

E

[
H̃k(ξ + μ)− H̃k(ξ)

]
≥ μ2

2
P (−k ≤ ξ ≤ k − μ) ≥ μ2

2
P (−k ≤ ξ ≤ 0) .

For k = 0, if we choose δ such that for all |x| ≤ δ, fξ(x) ≥ fξ(0)/2, then we
have for |μ| ≤ δ:

E

[
H̃k(ξ + μ)− H̃k(ξ)

]
≥ μ2

2
fξ(0) .

The proof of the above lemma can be found in Appendix B. Now set δ > 0
such that β0 + δ < α0. Define the empirical stochastic process Mn(θ) as:

Mn(θ) ≡ Mn(α, β, d)

=
1

n

n∑
i=1

H̃k (Yi − α1Xi≤d − β1Xi>d)

=
1

n

n∑
i=1

H̃k (ξi + α01Xi≤d0 + β01Xi>d0 − α1Xi≤d − β1Xi>d)
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=
1

n

n∑
i=1

H̃k (ξi + α0 − α)1Xi≤d0∧d +
1

n

n∑
i=1

H̃k (ξi + α0 − β)1d<Xi≤d0

+
1

n

n∑
i=1

H̃k (ξi + β0 − α)1d0<Xi≤d +
1

n

n∑
i=1

H̃k (ξi + β0 − β)1Xi>d∨d0

This implies the centred empirical stochastic process is:

Mn(θ)−Mn(θ0) = E [Mn(θ)−Mn(θ0)]

=
1

n

n∑
i=1

(
H̃k (ξi + α0 − α)− H̃k(ξi)

)
1Xi≤d0∧d

+
1

n

n∑
i=1

(
H̃k (ξi + α0 − β)− H̃k(ξi)

)
1d<Xi≤d0

+
1

n

n∑
i=1

(
H̃k (ξi + β0 − α)− H̃k(ξi)

)
1d0<Xi≤d

+
1

n

n∑
i=1

(
H̃k (ξi + β0 − β)− H̃k(ξi)

)
1Xi>d∨d0

and the corresponding population deterministic process:

M(θ)−M(θ0) = E

[(
H̃k (ξi + α0 − α)− H̃k(ξi)

)]
P (X ≤ d ∧ d0)

+ E

[(
H̃k (ξi + α0 − β)− H̃k(ξi)

)]
P (d < X < d0)

+ E

[(
H̃k (ξi + β0 − α)− H̃k(ξi)

)]
P (d0 < X < d)

+ E

[(
H̃k (ξi + β0 − β)− H̃k(ξi)

)]
P (X > d ∨ d0)

≥ Ck

2

[
(α0 − α)2P (X ≤ d ∧ d0) + (β0 − β)2P (X > d ∨ d0)

+|d− d0|
{
2(α0 − β0 − δ)2

}]
≥ Ck

[
(α0 − α)2 + (β0 − β)2 + |d− d0|

]
(A.16)

for all |α− α0| ≤ δ, |β − β0| ≤ δ, where the penultimate inequality follows from
Lemma A.8. Also note that the definition of Ck is different in the last two lines,
but as they are constant, we refrain ourselves from using different notations in
each line.

Consistency: We have established that M(θ) has local quadratic curvature
with respect to (α, β) in a δ− neighbourhood around the truth. Now to establish
the rate of convergence, we first need to establish the consistency of our estima-
tor. To that end, we use Theorem 3.2.2 of [38]. That the process M(θ)−M(θ0)
is continuous with respect to θ and has a clear minima at θ = θ0 is immediate
from the definition. Also the tightness of the minimizer θ̂ = (α̂, β̂, d̂) follows
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directly from our assumption of the compact parameter space Θ. Therefore, all
we need to show is that for any compact subset K ⊆ Θ:

sup
θ∈K

|(Mn(θ)−Mn(θ0))− (M(θ)−M(θ0))| = op(1) .

Towards that direction, define the function fθ(X, ξ) as:

fθ(X, ξ) =
(
H̃k (ξ + α0 − α)− H̃k(ξ)

)
1X≤d0∧d(

H̃k (ξ + α0 − β)− H̃k(ξ)
)
1d<X≤d0

+
(
H̃k (ξ + β0 − α)− H̃k(ξ)

)
1d0<X≤d

+
(
H̃k (ξ + β0 − β)− H̃k(ξ)

)
1X>d∨d0

It is immediate from the definition of fθ(X, ξ) that the collection of functions:

FK = {fθ : θ ∈ K}

has finite VC dimension. Furthermore, as K is compact, there exist c such that:

max
θ∈K

{|α| , |β| , |d|} ≤ c .

Note that the Huber function Hk is Lipschitz with the Lipschitz constant being
k. Therefore we have for any μ > 0:∣∣∣H̃k(ξ + μ)− H̃k(ξ)

∣∣∣ = k + 1

k
|Hk(ξ + μ)−Hk(ξ)| ≤ k|μ| . (A.17)

This implies that the function of F are uniformly bounded. Hence using Gli-
venko-Cantelli theorem (e.g. see Theorem 2.8.1 of [38]) we conclude that:

sup
θ∈K

|(Mn(θ)−Mn(θ0))− (M(θ)−M(θ0))| = ‖(Pn − P )‖F = op(1) .

This establishes the consistency.

Tightness upon proper scaling: We next show that:

max
{√

n (α̂− α0) ,
√
n
(
β̂ − β0

)
, n
(
d̂− d0

)}
= Op(1) .

Here we apply Theorem 3.2.5 of [38]. Define a semi-metric on Θ as:

d (θ1, θ2) =

√
(α1 − α2)

2
+ (β1 − β2)

2
+ |d1 − d2|

From (A.16) we have M(θ) − M(θ0) ≥ Ckd
2(θ, θ0). To establish asymptotic

equicontinuity of the process we need to bound:

E

[
sup

d(θ,θ0)≤δ

|Mn(θ)−Mn(θ0)− (M(θ)−M(θ0))|
]
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= E

[
sup

d(θ,θ0)≤δ

|(Pn − P ) fθ|
]

= E
[
‖Pn − P‖Fδ

]
where we define the collection Fδ as Fδ = {fθ : d(θ, θ0) ≤ δ}. The envelope
function of Fδ is defined as:

sup
θ:d(θ,θ0)≤δ

∣∣∣(H̃k (ξ + α0 − α)− H̃k(ξ)
)∣∣∣1X≤d0∧d∣∣∣(H̃k (ξ + α0 − β)− H̃k(ξ)
)∣∣∣1d<X≤d0

+
∣∣∣(H̃k (ξ + β0 − α)− H̃k(ξ)

)∣∣∣1d0<X≤d

+
∣∣∣(H̃k (ξ + β0 − β)− H̃k(ξ)

)∣∣∣1X>d∨d0

≤ Ck (2δ + 1d<X≤d0 + 1d0<X≤d)

≤ 2Ck (2δ ∨ 1d<X≤d0 + 1d0<X≤d) := Fδ(X, ξ)

Hence the L2(P ) norm of the envelope function:√
PF 2

δ ≤ 2Ck

(
2δ ∨

√
P (d0 < X < d) + P (d < X < d0)

)
≤ 4Ckδ := φn(δ) .

Hence an application of Theorem 3.2.5 of [38] yields
√
n d
(
θ̂, θ0

)
= Op(1),

which completes the proof.

Asymptotic distribution: In the final paragraph we establish the asymp-

totic distribution of
√
n (α̂− α0) ,

√
n
(
β̂ − β0

)
and n

(
d̂− d0

)
. Towards that

end, we largely follow the approach of Subsection 14.5.1 of [23]. For any h :=
(h1, h2, h3) ∈ R3 define a paramter vector θn,h = α0 + h1√

n
, β0 + h2√

n
, d0 + h3

n .

Define a stochastic process Qn on R3 as:

Qn(h1, h2, h3) = n× Pn

(
fθn,h

− fθ0
)

=

n∑
i=1

(
H̃k

(
ξi +

h1√
n

)
− H̃k(ξi)

)
1Xi≤d0∧d

+
n∑

i=1

(
H̃k

(
ξi + α0 − β0 −

h2√
n

)
− H̃k(ξi)

)
1
d0+

h3
n <Xi≤d0

+

n∑
i=1

(
H̃k

(
ξi + β0 − α0 −

h1√
n

)
− H̃k(ξi)

)
1
d0<Xi≤d0+

h3
n

+

n∑
i=1

(
H̃k

(
ξi +

h2√
n

)
− H̃k(ξi)

)
1Xi>d∨d0

:= Qn,1(h) +Qn,2(h) +Qn,3(h) +Qn,4(h) .
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It is immediate from the definition of Qn(h) that:

ĥn :=
(√

n (α̂− α0) ,
√
n
(
β̂ − β0

)
, n
(
d̂− d0

))
= mid argminh∈R3Qn(h) .

We next show that there exist a stochastic process Q on R3 such that for any
compact rectangle I = I1 × I2 × I3 ⊂ R3:

Qn|I L
=⇒ Q|I .

where the process Q is defined as:

Q(h) =

(
h1σk

√
FX(d0)× Z1 +

h2
1

2
μkFX(d0)

)
+

(
h2σk

√
F̄X(d0)× Z2 +

h2
2

2
μkF̄X(d0)

)
+CPP

(
H̃k (ξi + (α0 − β0))− H̃k(ξi), fX(θ0)

)
.

with Z1, Z2
i.i.d∼ N (0, 1) and CPP is (as defined in the main paper) compound

Poisson process. Note that the stochastic process Qn is continuous with respect
to its first two co-ordinates and cadlag (right continuous with left limit) with
respect to its third co-ordinate. Hence to establish the convergence of {Qn|I}n∈N

we need to use Skorohod topology. We mainly use Theorem 13.5 of [7] to estab-
lish the convergence result. Towards that end, define:

ξ̃i,h1 =

(
H̃k

(
ξi +

h1√
n

)
− H̃k(ξi)

)
− E

[(
H̃k

(
ξi +

h1√
n

)
− H̃k(ξi)

)]
ξ̃i,h2 =

(
H̃k

(
ξi +

h2√
n

)
− H̃k(ξi)

)
− E

[(
H̃k

(
ξi +

h2√
n

)
− H̃k(ξi)

)]
and another stochastic process Q̃n(h) as:

Q̃n(h) =

n∑
i=1

ξ̃i,h11Xi≤d0∧d0+
h3
n

+

n∑
i=1

(
H̃k (ξi + (α0 − β0))− H̃k(ξi)

)
1
d0+

h3
n <Xi≤d0

+

n∑
i=1

(
H̃k (ξi + (β0 − α0))− H̃k(ξi)

)
1
d0<Xi≤d0+

h3
n

+
n∑

i=1

ξ̃i,h21Xi>d0∨d0+
h3
n

:= Q̃n,+(h)1h3≥0 + Q̃n,−(h)1h3<0 .

Hence we have the following decomposition:

Qn(h) = Q̃n(h) + En(h) +Rn(h) (A.18)
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where:

Rn(h)=

n∑
i=1

(
H̃k

(
εi + (α0 − β0)−

h2√
n

)
− H̃k (εi + (α0 − β0))

)
1
d0+

h3
n <Xi≤d0

+

n∑
i=1

(
H̃k

(
εi + (β0 − α0)−

h1√
n

)
− H̃k (εi + (β0 − α0))

)
1
d0<Xi≤d0+

h3
n

and

En(h) = E

[(
H̃k

(
ξi +

h1√
n

)
− H̃k (ξi)

)] n∑
i=1

1
Xi≤d0∧d0+

h3
n

+ E

[(
H̃k

(
ξi +

h2√
n

)
− H̃k (ξi)

)] n∑
i=1

1
Xi>d0∨d0+

h3
n

We next show Rn(h) is op(1) uniformly over a compact set:

|Rn(h)|

=

∣∣∣∣∣
n∑

i=1

(
H̃k

(
ξi + (α0 − β0)−

h2√
n

)
− H̃k (ξi + (α0 − β0))

)
1
d0+

h3
n <Xi≤d0

+

n∑
i=1

(
H̃k

(
ξi + (β0 − α0)−

h1√
n

)
− H̃k (ξi + (β0 − α0))

)
1
d0<Xi≤d0+

h3
n

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣H̃k

(
ξi + (α0 − β0)−

h2√
n

)
− H̃k (ξi + (α0 − β0))

∣∣∣∣1d0+
h3
n <Xi≤d0

+

n∑
i=1

∣∣∣∣H̃k

(
ξi + (β0 − α0)−

h1√
n

)
− H̃k (ξi + (β0 − α0))

∣∣∣∣1d0<Xi≤d0+
h3
n

≤ (k + 1)h2√
n

n∑
i=1

1
d0+

h3
n <Xi≤d0

+
(k + 1)h1√

n

n∑
i=1

1
d0<Xi≤d0+

h3
n

Now suppose h ∈ I. There |h1|∨ |h2|∨ |h3| ≤ K for some K > 0. Hence we have:

sup
h∈I

|Rn(h)| ≤
(k + 1)K√

n

[
n∑

i=1

1d0−K
n <Xi≤d0

+

n∑
i=1

1d0<Xi≤d0+
K
n

]

=
(k + 1)K√

n

n∑
i=1

1d0−K
n <Xi≤d0+

K
n

as we know:
n∑

i=1

1d0−K
n <Xi≤d0+

K
n

L
=⇒ Pois (KfX(d0))

we conclude that:
sup
h∈I

|Rn(h)| = Op(n
−1/2) = op(1) . (A.19)
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We now establish the convergence of E(h):

En(h) = E

[(
H̃k

(
ξi +

h1√
n

)
− H̃k(ξi)

)] n∑
i=1

1
Xi≤d0∧d0+

h3
n

+ E

[(
H̃k

(
ξi +

h2√
n

)
− H̃k(ξi)

)] n∑
i=1

1
Xi>d0∨d0+

h3
n

=
k + 1

k

{
h2
1

2n
P

(
−k ≤ ξ ≤ k − h1√

n

)
+E

[(
h1√
n
k − h1√

n
ξ − 1

2
(ξ − k)

2

)
1
k− h1√

n
≤ξ≤k

]
+ E

[
1

2

(
ξ +

h1√
n
+ k

)2

1−k− h1√
n
≤ξ≤−k

]}
n∑

i=1

1
Xi≤d0∧d0+

h3
n

+
k + 1

k

{
h2
2

2n
P

(
−k ≤ ξ ≤ k − h2√

n

)
+E

[(
h2√
n
k − h2√

n
ξ − 1

2
(ξ − k)

2

)
1
k− h2√

n
≤ξ≤k

]
+ E

[
1

2

(
ξ +

h2√
n
+ k

)2

1−k− h2√
n
≤ξ≤−k

]}
n∑

i=1

1
Xi>d0∨d0+

h3
n

= n
k + 1

k

{
h2
1

2n
P

(
−k ≤ ξ ≤ k − h1√

n

)
+E

[(
h1√
n
k − h1√

n
ξ − 1

2
(ξ − k)

2

)
1
k− h1√

n
≤ξ≤k

]
+ E

[
1

2

(
ξ +

h1√
n
+ k

)2

1−k− h1√
n
≤ξ≤−k

]}
1

n

n∑
i=1

1
Xi≤d0∧d0+

h3
n

+ n
k + 1

k

{
h2
2

2n
P

(
−k ≤ ξ ≤ k − h2√

n

)
+E

[(
h2√
n
k − h2√

n
ξ − 1

2
(ξ − k)

2

)
1
k− h2√

n
≤ξ≤k

]
+ E

[
1

2

(
ξ +

h2√
n
+ k

)2

1−k− h2√
n
≤ξ≤−k

]}
1

n

n∑
i=1

1
Xi>d0∨d0+

h3
n

=
k + 1

k

{
h2
1

2
P

(
−k ≤ ξ ≤ k − h1√

n

)
+nE

[(
h1√
n
k − h1√

n
ξ − 1

2
(ξ − k)

2

)
1
k− h1√

n
≤ξ≤k

]
+ nE

[
1

2

(
ξ +

h1√
n
+ k

)2

1−k− h1√
n
≤ξ≤−k

]}
1

n

n∑
i=1

1
Xi≤d0∧d0+

h3
n
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+
k + 1

k

{
h2
2

2
P

(
−k ≤ ξ ≤ k − h2√

n

)
+nE

[(
h2√
n
k − h2√

n
ξ − 1

2
(ξ − k)

2

)
1
k− h2√

n
≤ξ≤k

]
+ nE

[
1

2

(
ξ +

h2√
n
+ k

)2

1−k− h2√
n
≤ξ≤−k

]}
1

n

n∑
i=1

1
Xi>d0∨d0+

h3
n

From strong law of large numbers we have:

1

n

n∑
i=1

1
Xi≤d0∧d0+

h3
n

p−→ P(X ≤ d0) , (A.20)

1

n

n∑
i=1

1
Xi>d0∨d0+

h3
n

p−→ P(X > d0) , (A.21)

For the other terms in the expectation:

h2
1

2
P

(
−k ≤ ξ ≤ k − h1√

n

)
−→ h2

1

2
P (−k ≤ ε ≤ k) , (A.22)

h2
2

2
P

(
−k ≤ ξ ≤ k − h2√

n

)
−→ h2

2

2
P (−k ≤ ε ≤ k) . (A.23)

For the other terms:

nE

[(
h2√
n
k − h2√

n
ξ − 1

2
(ξ − k)

2

)
1
k− h2√

n
≤ξ≤k

]
= n

∫ k

k− h2√
n

(
h2√
n
k − h2√

n
x− 1

2
(x− k)

2

)
fξ(x) dx

= n

[
h2√
n

∫ k

k− h2√
n

(k − x)fξ(x) dx− 1

2

∫ k

k− h2√
n

(x− k)
2
fξ(x) dx

]

= n

[
h2√
n

∫ h2√
n

0

zfξ(z − k) dx− 1

2

∫ 0

− h2√
n

z2 fξ(z + k) dx

]

≤ Cn

[
h2√
n

∫ h2√
n

0

z dz +
1

2

∫ 0

− h2√
n

z2 dz

]
[C = max

x
fξ(x)]

= n×O(n−3/2) = o(1) . (A.24)

and

nE

[
1

2

(
ξ +

h2√
n
+ k

)2

1−k− h2√
n
≤ξ≤−k

]

= n

∫ −k

−k− h2√
n

1

2

(
x+

h2√
n
+ k

)2

fξ(x) dx
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=
h3
2

6n1/2
fξ(k) + o(1) = o(1) . (A.25)

Similar calculation holds for the terms involving h1. Hence we conclude com-
bining equations (A.20) - (A.25) we conclude:

En(h)
P−→ k + 1

k

[
h2
1

2
P (−k ≤ ε ≤ k)FX(d0) +

h2
2

2
P (−k ≤ ε ≤ k) F̄X(d0)

]
.

(A.26)

Finally we show the weak convergence of Q̃n(h) to Q(h), for which we need
to show that the collection {Q̃n(h)}n∈N is tight with respect to appropriate
topology and every finite dimensional projection of Q̃n(h) converges to that of
Q(h). We embark on by showing that for any fixed h, Q̃n(h) converges to Q(h)
in distribution. Towards that direction, fix h3 > 0:

E

[
exp
(
itQ̃n(h)

)]
= E

[
E

[
exp
(
itQ̃n(h)

)
| X1, . . . , Xn

]]
:= E

[
EX

[
exp
(
itQ̃n(h)

)]]
We start with analyzing the inner expectation EX

[
exp
(
itQ̃n(h)

)]
:

EX

[
exp
(
itQ̃n(h)

)]
= EX

[
exp

{(
it

n∑
i=1

ξ̃i,h11Xi≤d0

+
n∑

i=1

(
H̃k (ξi + (α0 − β0))− H̃k(ξi)

)
1
d0<Xi≤d0+

h3
n

+

n∑
i=1

ξ̃i,h21Xi>d0+
h3
n

)}]

=
(
φξ̃h1

(t)
)∑n

i=1 1Xi≤d0 ×
(
φξ̃h2

(t)
)∑n

i=1 1
Xi>d0+

h3
n

×
(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)∑n

i=1 1
d0<Xi≤d0+

h3
n

=
(
φξ̃h1

(t)
)n× 1

n

∑n
i=1 1Xi≤d0 ×

(
φξ̃h2

(t)
)n× 1

n

∑n
i=1 1

Xi>d0+
h3
n

×
(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)∑n

i=1 1
d0<Xi≤d0+

h3
n

(A.27)

To show the convergence of the characteristic function of ξ̃h1 (and similarly for
ξ̃h2) we first note that the variance of ξ̃h1 for h1 > 0 is:

var
(
ξ̃
)
= var

(
H̃k

(
ξi +

h1√
n

)
− H̃k(ξi)

)
= E

[(
H̃k

(
ξi +

h1√
n

)
− H̃k(ξi)

)2
]
+O(n−2)
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=

(
k + 1

k

)2
{
E

[(
h1√
n
ξ +

h2
1

2n

)2

1−k≤ξ≤k− h1√
n

]

+ E

⎡⎣(1

2

(
ξ +

h1√
n
+ k

)2

− h1√
n
k

)2

1−k− h1√
n
≤ξ≤−k

⎤⎦
+ E

[(
−1

2
(ξ − k)

2
+ k

h1√
n

)2

1
k− h1√

n
≤ξ≤k

]

+
k2h2

1

n

{
P (ξ > k) + P

(
ξ < −k − h1√

n

)}
+O(n−2)

}
=

(
k + 1

k

)2(
h2
1

n
E
[
ξ21−k≤ξ≤k

]
+

k2h2
1

n
{P (ξ > k) + P (ξ < −k)}

)
+ o(n−1)

=

(
k + 1

k

)2(
h2
1

n
E
[
ξ21−k≤ξ≤k

]
+

2k2h2
1

n
P (ξ > k)

)
+ o(n−1)

:=
h2
1σ

2
k

n
+ o(n−1) .

where the variance parameter σ2
k is defined as:(

k + 1

k

)2 (
E
[
ξ21−k≤ξ≤k

]
+ 2k2P (ξ > k)

)
.

Similar calculation holds for h1 < 0 and for h2. Hence going back to equa-
tion (A.27) we have:

EX

[
exp
(
itQ̃n(h)

)]
=

(
1− t2

2

h2
1σ

2
k

n
+ o(n−1)

)n× 1
n

∑n
i=1 1Xi≤d0

×
(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)∑n

i=1 1
d0<Xi≤d0+

h3
n

×
(
1− t2

2

h2
2σ

2
k

n
+ o(n−1)

)n× 1
n

∑n
i=1 1

Xi>d0+
h3
n

As

1

n

n∑
i=1

1Xi≤d0

a.s.−→ FX(d0)

1

n

n∑
i=1

1
Xi>d0+

h3
n

a.s.−→ F̄X(d0)

we conclude:(
1− t2

2

h2
1σ

2
k

n
+ o(n−1)

)n× 1
n

∑n
i=1 1Xi≤d0

a.s.−→ e−
t2h2

1σ2
k

2 FX(d0)
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1− t2

2

h2
2σ

2
k

n
+ o(n−1)

)n× 1
n

∑n
i=1 1

Xi>d0+
h3
n a.s.−→ e−

t2h2
2σ2

k
2 F̄X(d0)

Also we know:
n∑

i=1

1
d0<Xi≤d0+

h3
n

L
=⇒ Pois (fX(d0)h3)

which further implies:(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)∑n

i=1 1
d0<Xi≤d0+

h3
n

L
=⇒

(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)Pois(fX(θ0)h3)

Hence combining these we conclude:

EX

[
exp
(
itQ̃n(h)

)]
=
(
φξ̃h1

(t)
)n× 1

n

∑n
i=1 1Xi≤d0 ×

(
φξ̃h2

(t)
)n× 1

n

∑n
i=1 1

Xi>d0+
h3
n

×
(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)∑n

i=1 1
d0<Xi≤d0+

h3
n

L
=⇒ e−

t2h2
1σ2

k
2 FX(d0) × e−

t2h2
2σ2

k
2 F̄X(d0)

×
(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)Pois(fX(d0)h3)

Applying DCT and taking expectation on the both side we conclude:

E

[
exp
(
itQ̃n(h)

)]
−→ e−

t2h2
1σ2

k
2 FX(d0) × e−

t2h2
2σ2

k
2 F̄X(d0)

× E

[(
φH̃k(ξi+(α0−β0))−H̃k(ξi)

(t)
)Pois(fX(d0)h3)

]
.

This concludes that Q̃n(h)
L
=⇒ Q(h). The proof of the fact that for any finite

collection (h1, . . . ,hl):(
Q̃n(h1), . . . , Q̃n(hl)

)
L
=⇒ (Q(h1), . . . ,Q(hl)) (A.28)

is similar (same analysis of characteristic function) and hence skipped for bre-
vity. Interested readers can take a look at the proof of Lemma 3.2 of [26] or the
proof of Theorem 5 of [24] for more details of this type of calculations. We next

establish the tightness of the process. Define another process
≈
Qn(h) as:

≈
Qn(h) =

n∑
i=1

ξ̃i,h11Xi≤d0

+
n∑

i=1

(
Hk (ξi + (α0 − β0))− H̃k(ξi)

)
1
d0+

h3
n <Xi≤d0
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+

n∑
i=1

(
Hk (ξi + (α0 − β0))− H̃k(ξi)

)
1
d0<Xi≤d0+

h3
n

+
n∑

i=1

ξ̃i,h21Xi>d0

:=
≈
Qn,1(h) +

≈
Qn,2(h) +

≈
Qn,3(h) +

≈
Qn,4(h) (A.29)

We now show that
≈
Qn(h) uniformly approximate Q̃n(h) over compact sets:

E

[
sup
h∈I

∣∣∣≈Qn(h)− Q̃n(h)
∣∣∣]

≤ E

[
sup
h∈I

{∣∣∣∣∣
n∑

i=1

ξ̃i,h1

[
1Xi≤d0 − 1

Xi≤d0∧d0+
h3
n

]∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

ξ̃i,h2

[
1Xi>d0 − 1

Xi>d0∨d0+
h3
n

]∣∣∣∣∣
}]

≤ 2E

[
sup
h∈I

∣∣∣∣∣
n∑

i=1

ξ̃i,h1

[
1Xi≤d0 − 1

Xi≤d0∧d0+
h3
n

]∣∣∣∣∣
]

+ 2E

[
sup
h∈I

∣∣∣∣∣
n∑

i=1

ξ̃i,h2

[
1Xi≤d0 − 1

Xi>d0∨d0+
h3
n

]∣∣∣∣∣
]

≤ 2E

[
n∑

i=1

|ξ̃i,h1 |1d0−K
n <Xi≤d0

]
+ 2E

[
n∑

i=1

|ξ̃i,h2 |1d0<Xi≤d0+
K
n

]

≤ 2nE
[
|ξ̃h1 |
]
P

(
d0 −

K

n
< X ≤ d0

)
+ 2nE

[
|ξ̃h2 |
]
P

(
d0 < X ≤ d0 +

K

n

)
≤ 2n×

[√
var
(
ξ̃h1

)
×
(
K

n
fX(d0) + o(n−1)

)
(A.30)

+

√
var
(
ξ̃h2

)
×
(
K

n
fX(d0) + o(n−1)

)]

= 2n×
[(

h1σk√
n

+ o(n−1/2)

)
×
(
K

n
fX(d0) + o(n−1)

)
+

(
h2σk√

n
+ o(n−1/2)

)
×
(
K

n
fX(d0) + o(n−1)

)]
= O(n−1/2) = o(1) . (A.31)

Hence from equation (A.31) we conclude:

sup
h∈I

∣∣∣≈Qn(h)− Q̃n(h)
∣∣∣ = op(1) . (A.32)

Therefore it is immediate from equation (A.28) that:(≈
Qn(h1), . . . ,

≈
Qn(hl)

)
L
=⇒ (Q(h1), . . . ,Q(hl)) . (A.33)
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Next, we show that tightness
{≈
Qn(h)

}
n∈N

. As evident from equation (A.29),

it is enough to show tightness of
{≈
Qn,i(h)

}
n∈N

for i = 1, 2, 3, 4. For i = 1, the

process
≈
Qn,1(h) only depends on h1 and hence have continuous paths. Therefore

to establish tightness, it is enough to show:

lim
δ↓0

lim sup
n→∞

E

⎡⎢⎣ sup
|h1,1|∨|h1,2|≤K
|h1,1−h1,2|≤δ

n∑
i=1

∣∣∣ξ̃i,h1,1 − ξ̃i,h1,2

∣∣∣1Xi≤d0

⎤⎥⎦ = 0

Towards that end, define a collection of functions:

F1,δ =
{
fh1,1,h1,2 : |h1,1| ∨ |h1,2| ≤ K, |h1,1 − h1,2| ≤ δ

}
,

where the individual functions fh1,1,h1,2 is defined as:

fh1,1,h1,2(X, ε) =

{(
H̃k

(
ξi +

h1√
n

)
− H̃k

(
ξi +

h2√
n

))
−E

[(
H̃k

(
ξi +

h1√
n

)
− H̃k

(
ξi +

h2√
n

))]}
1X≤d0 .

Clearly F1,δ has finite VC dimension. Also from equation (A.17) we have:∣∣∣∣H̃k

(
ξi +

h1,1√
n

)
− H̃k

(
ξi +

h1,2√
n

)∣∣∣∣
≤ k + 1

k

[
4k

|h1,1 − h1,2|√
n

+
1

2

(h1,1 − h1,2)
2

n
+

(
|h1,1 − h1,2|√

n
∧ 2k

)2
]

≤ Ck
δ√
n
.

Therefore, the envelope function can be taken as:

F1,δ(X, ε) =
2Ckδ√

n
.

Hence using Lemma 2.14.1 of [38] we conclude:

lim sup
n→∞

E

⎡⎢⎣ sup
|h1,1|∨|h1,2|≤K
|h1,1−h1,2|≤δ

n∑
i=1

∣∣∣ξ̃i,h1,1 − ξ̃i,h1,2

∣∣∣1Xi≤d0

⎤⎥⎦ � δ

which established tightness of
≈
Qn,1(h). The proof of tightness of

≈
Qn,4(h) is sim-

ilar and hence skipped. Finally we show the tightness of
≈
Qn,23(h) =

≈
Qn,2(h) +

≈
Qn,3(h). As these terms only depend on h3 which has cadlag paths, we use
equation (13.14) of Theorem 13.5 from [7] with β = 1/2, α = 1 and F (x) = Cx
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for some constant C. Fix h3,1 < 0 < h3,2 < h3,3. The other cases (i.e. say
0 < h3,1 < h3,2 < h3,3) are similar and hence skipped.

E

[∣∣∣≈Qn,23(h3,1)−
≈
Qn,23(h3,2)

∣∣∣ ∣∣∣≈Qn,23(h3,2)−
≈
Qn,23(h3,3)

∣∣∣]
= E

[∣∣∣∣∣
n∑

i=1

(
H̃k (ξi + (α0 − β0))− H̃k(ξi)

) [
1
d0+

h3,1
n ≤Xi<d0

− 1
d0≤Xi<d0+

h3,2
n

]∣∣∣∣∣
×
∣∣∣∣∣

n∑
i=1

(
H̃k (ξi + (α0 − β0))− H̃k(ξi)

) [
1
d0≤Xi<d0+

h3,2
n

− 1
d0≤Xi<d0+

h3,3
n

]∣∣∣∣∣
]

= E

[
n∑

i=1

∣∣∣H̃k (ξi + (α0 − β0))− H̃k(ξi)
∣∣∣ [1

d0+
h3,1
n ≤Xi<d0

+ 1
d0≤Xi<d0+

h3,2
n

]
×

n∑
i=1

∣∣∣H̃k (ξi + (α0 − β0))− H̃k(ξi)
∣∣∣ [1

d0≤Xi<d0+
h3,2
n

+ 1
d0≤Xi<d0+

h3,3
n

]]

≤ k + 1

k

(
4(α0 − β0)k +

1

2
(α0 − β0)

2 + ((α0 − β0) ∧ 2k)
2

)
×

E

[(
n∑

i=1

1
d0+

h3,1√
n

≤Xi<d0+
h3,2
n

)
×
(

n∑
i=1

1
d0+

h3,2
n ≤Xi<d0+

h3,3
n

)]
= Ck,θ0

∑
i 
=j

E

[
1
d0+

h3,1
n ≤Xi<d0+

h3,2
n

× 1
d0+

h3,2
n ≤Xj<d0+

h3,3
n

]
≤ Ck,θ0 × n2 × P

(
d0 +

h3,1

n
≤ X < d0 +

h3,2

n

)
× P

(
d0 +

h3,2

n
≤ X < d0 +

h3,3

n

)
≤ Ck,θ0C

2 × (h3,2 − h3,1)× (h3,3 − h3,2) [C = max
x

fX(x)]

≤ Ck,θ0C
2 × (h3,3 − h3,1)

2

This completes the proof of tightness of
≈
Qn. Hence using equation (A.33) we

conclude:
≈
Qn|I L

=⇒ Q|I .
which, along with equation (A.32) implies:

Q̃n|I L
=⇒ Q|I . (A.34)

Finally, from the decomposition in equation (A.18) and combining our conclu-
sions from equation (A.19), (A.26) and equation (A.34) we have:

Qn|I L
=⇒ Q|I . (A.35)

Next and last step is to invoke argmin continuity mapping theorem to say that:

ĥn =
(√

n (α̂− α0) ,
√
n
(
β̂ − β0

)
, n
(
d̂− d0

))
L
=⇒ mid argminh∈R3Q(h) .
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This will complete the proof. Following the proof of Lemma 3.2 of [26], all we
need to establish the joint asymptotic tightness of {(Qn(h), Jn(h))}n∈N

where
Jn(h) is the jump process corresponding to Qn(h), i.e.

Jn(h) = sign(h3)

n∑
i=1

[
1
Xi≤d0+

h3
n

− 1Xi≤d0

]
.

As we have already established the tightness of {Qn(h)}, we only need to estab-
lish the tightness of {Jn(h)}. The proof is very similar to the proof of Lemma
3.2 of [26] and skipped here for the brevity.

A.6. Proofs of Theorem 2.2 and 2.3

The proofs of Theorem 2.2 and 2.3 are similar to that of Theorem 2.1 by re-
placing H̃k with �1 loss function and �2 loss function respectively and hence
skipped.

A.7. Proof of Theorem 3.7

Here we assume α0 = 0, β0 = 1 is known and derive the bound on the d̂. When
α0, β0 is not known, then the problem becomes harder and rate of convergence
obviously can not be faster. Our proof is based on the proof of Theorem 5 of
[30]. Consider A to be the set of all half-spaces, i.e.

A =
{
x	d > 0

}
d∈Sp−1 .

Our model is X ∼ P and:
Y = 1X�d>0 + ξ

where ξ ∼ N (0, 1). Now the class of hyperplanes A has VC dimension p. From
the properties of the hyperplane we know that, given any N > p (not to be
confused with sample size n) there exist x1, . . . , xN ∈ Rp such that A shatters
all subsets of {x1, . . . , xN} with cardinality k ≤ �p/2� := V (e.g. see [13]).
Define ΘN,V to be the collection of all such d ∈ Sp−1 which shatters all subsets
of length V of {x1, . . . , xN}. Hence we have:{(

1x�
1 d>0, . . . ,1x�

Nd>0

)}
d∈ΘN,V

:= B

where:

B = {0, 1}N,V =

{
b ∈ {0, 1}N :

N∑
i=1

bi = V

}
.

Henceforth for any d ∈ ΘN,V we denote by bd to be the corresponding unique
b ∈ B. Define μ to be the uniform measure on {x1, . . . , xN} and for any d ∈ ΘN,V

define:
Y = 1X�d>0 + ξ .
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The loss function we use here is the squared error loss defined as:

� (d, d0) = E
[
(Y − 1X�d>0)

2 − (Y − 1X�d0>0)
2
]

= EX [|1X�d>0 − 1X�d0>0|]
= ‖1X�d>0 − 1X�d0>0‖L1(P )

.

The minimax risk is defined as:

Rn = inf
d̂

sup
d∈Sp−1

Ed

[
�(d̂, d)

]
≥ inf

d̂
sup

d∈ΘN,V

Ed

[
�(d̂, d)

]
= inf

d̂
sup

d∈ΘN,V

Ed

[∥∥1X�d̂>0 − 1X�d>0

∥∥
L1(μ)

]
=

1

N
inf
d̂

sup
d∈ΘN,V

Ed

[
N∑
i=1

∣∣∣1x�
i d̂>0 − 1x�

i d>0

∣∣∣
L1(μ)

]
(A.36)

Now for any d̂ ∈ Sp−1, define d̂new as:

d̂new = argmin
d∗∈ΘN,V

∥∥1X�d̂>0 − 1X�d∗>0

∥∥
L1(μ)

.

Then we have for any d ∈ ΘN,V :∥∥∥1X�d̂new>0−1X�d>0

∥∥∥
L1(μ)

=
∥∥∥1X�d̂new>0−1X�d̂>0+1X�d̂>0−1X�d>0

∥∥∥
L1(μ)

≤
∥∥∥1X�d̂new>0−1X�d̂>0

∥∥∥
L1(μ)

+
∥∥1X�d̂>0−1X�d>0

∥∥
L1(μ)

≤2
∥∥1X�d̂>0−1X�d>0

∥∥
L1(μ)

.

Putting this bound in equation (A.36) we obtain:

Rn ≥ 1

N
inf
d̂

sup
d∈ΘN,V

Ed

[
N∑
i=1

∣∣∣1x�
i d̂>0 − 1x�

i d>0

∣∣∣
L1(μ)

]

≥ 1

2N
inf
d̂

sup
d∈ΘN,V

Ed

[
N∑
i=1

∣∣∣1x�
i d̂new>0 − 1x�

i d>0

∣∣∣
L1(μ)

]

=
1

2N
inf

d̂∈ΘN,V

sup
d∈ΘN,V

Ed

[
N∑
i=1

∣∣∣1x�
i d̂>0 − 1x�

i d>0

∣∣∣
L1(μ)

]
(A.37)

Next note that:
N∑
i=1

∣∣∣1x�
i d̂>0 − 1x�

i d>0

∣∣∣ = dH
(
bd̂, bd

)
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where dH is the Hamming distance. As ΘN,V has a bijection with B we can
write equation (A.37) as:

Rn ≥ 1

2N
inf
b̂
sup
b∈B

Eb

[
dH

(
b̂, b
)]

≥ 1

2N
inf
b̂∈D

sup
b∈D

Eb

[
dH

(
b̂, b
)]

(A.38)

for any subset D ⊆ B. We now choose D carefully. Note that for any N ≥ 4V
(i.e. N ≥ 2p), we can choose D such that (Lemma 8 of [34]):

1. dH (b, b′) > V
2 for all b �= b′ ∈ D.

2. log |D| ≥ ρV log
(
N
V

)
with ρ = 0.233.

Using this we modify equation (A.38) as follows:

Rn ≥ 1

2N
inf
b̂∈D

sup
b∈D

Eb

[
dH

(
b̂, b
)]

=
1

2N
inf
b̂∈D

sup
b∈D

Eb

[
dH

(
b̂, b
)
1b̂ 
=b

]
≥ V

4N
inf
b̂∈D

sup
b∈D

Pb

(
b̂ �= b

)
[From point 1. above]

=
V

4N
inf
b̂∈D

sup
b∈D

(
1− Pb

(
b̂ = b

))
=

V

4N
inf
b̂∈D

(
1−min

b∈D
Pb

(
b̂ = b

))
(A.39)

Now to further bound the above equation, we use the following lemma (see [8]):

Lemma A.9. Let m ≥ 1, (Pi)0≤i≤m be a family of probability distributions
and (Ai)0≤i≤m be a family of disjoint events. Let a = min0≤i≤m Pi(Ai). Then
setting:

K̄ =
1

m

m∑
i=1

K (Pi, P0)

where K is the Kullback-Liebler divergence, we have:

a ≤ α ∨
(

K̄

log (1 +m)

)
.

where α = 0.71.

We now use this bound in equation (A.39). Fix any b0 ∈ D. Define Ai ={
b̂ = bi

}
for all bi ∈ D which are disjoint events. Hence using Lemma A.9 we

obtain:

min
b∈D

Pb

(
b̂ = b

)
≤ α ∨

(
K̄

log |D|

)
(A.40)

where:

K̄ =
1

|D| − 1

∑
b∈D,b 
=b0

K
(
P⊗n
b , P⊗n

b0

)
=

n

|D| − 1

∑
b∈D,b 
=b0

K (Pb, Pb0) .
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Now note that for any d1, d2 we have:

K (Pd1 , Pd2) = EX [K (Pd1(Y | X), Pd2(Y | X))]

= EX

[
(1X�d1>0 − 1X�d2>0)

2
]

= EX [|1X�d1>0 − 1X�d2>0|]

=
1

N

N∑
i=1

∣∣∣1x�
i d1>0 − 1x�

i d2>0

∣∣∣
=

1

N
dH(bd1 , bd2) .

Also by definition for any two b, b′ ∈ D we have dH(b, b′) ≤ 2V . Hence we have:

K̄ ≤ 2V n

N
.

This bound along with equation (A.40) modifies the bound of equation (A.39)
as:

Rn ≥ V

4N
inf
b̂∈D

(
1−min

b∈D
Pb

(
b̂ = b

))
≥ V

4N

(
1−
(
α ∨ 2V n

N log |D|

))
=

V (1− α)

4N
(A.41)

when,

α ≥ 2V n

N log |D| .

which holds if:

α >
2V n

NρV log (N/V )

i.e. if:

N log

(
N

V

)
≥ 2n

αρ
. (A.42)

which is satisfied, if for example:

N =

⌊
4n

ρα
(
1 + log

(
n
V

))⌋ .
Using this in equation (A.41) we conclude:

Rn � V

n

(
1 + log

( n
V

))
� p

n

(
1 + log

(
n

p

))
.
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as V = �p/2�. We finally need to verify N > 4V and that it satisfies equa-
tion (A.42). The first one is obviously true for all large n as n/p → ∞. For the
second one, lets forget the �·� in the definition of N for the time being as it will
not affect asymptotically. Then:

N log

(
N

V

)
≥ 2n

αρ

⇐⇒ 4n

ρα
(
1 + log

(
n
V

)) log( 4n

V ρα
(
1 + log

(
n
V

))) ≥ 2n

αρ

⇐⇒ 1(
1 + log

(
n
V

)) log( 4n

V ρα
(
1 + log

(
n
V

))) ≥ 1

2

⇐⇒ 1(
1 + log

(
n
V

)) [log ( n
V

)
+ log

(
4

ρα

)
− log

(
1 + log

( n
V

))]
≥ 1

2

As n/V → ∞, LHS converges to 1 and eventually > 1/2. Therefore the choice
of N is valid for all large n.

A.8. Proof of Theorem 3.10

We first assume that Assumption 3.5 holds globally and our parameter space
Ω = Ωα × Ωβ for (α0, β0) is such that:

min
α∈Ωα

|α− β0| ∧ min
β∈Ωβ

|β − α0| ≥ δ > 0 .

This is just to avoid the issue of consistency. One can relax this assumption
with an additionally showing that the estimators are consistent. To prove Theo-
rem 3.10 we use Theorem A.3 of [31]. To match our notation with that theorem,
here our loss function γ(θ, ·) is:

γ(θ, (X, ξ)) = H̃k

(
ξ + α01X�d0≤0 + β01X�d0>0 − α1X�d≤0 − β1X�d>0

)
− H̃k(ξ)

=
(
H̃k (ξ + α0 − α)− H̃k(ξ)

)
1X�d∨X�d0≤0(

H̃k (ξ + α0 − β)− H̃k(ξ)
)
1X�d0≤0<X�d

+
(
H̃k (ξ + β0 − α)− H̃k(ξ)

)
1X�d≤0<X�d0

+
(
H̃k (ξ + β0 − β)− H̃k(ξ)

)
1X�d∧X�d0>0

It is immediate from the definition that γ(θ0, (X, ξ)) = 0. Also from equa-
tion (A.17) we know γ(θ, ·) is uniform bounded by some constant only depend-
ing on k and the width of Ω. Following similar arguments used in the proof of
Theorem 3.6, we obtain:

�(θ, θ0) = E[γ(θ, (X, ξ))] ≥ ck dist2(θ, θ0) , (A.43)
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for some constant ck (independent of n), where the dist function is:

dist(θ, θ0) =
√
(α− α0)2 + (β − β0)2 + P (sign(X	d) �= sign(X	d0)) .

Moreover, from equation (A.17) we have:

var (γ(θ, (X, ξ))) ≤ E[γ2(θ, (X, ξ))] ≤ Ck dist2(θ, θ0) .

Hence this semi-metric dist satisfies conditions of Theorem A.3 of [31] with
ω(x) = x. Next we need to bound the modulus of continuity:

√
nE

⎡⎢⎣ sup
θ:fθ∈Fm

dist(θ,θm)≤ε

|(Pn − P ) (γ(θ, (X, ξ))− γ(θm, (X, ξ)))|

⎤⎥⎦
Note that another application of equation (A.17) yields:

sup
θ:fθ∈Fm

dist(θ,θm)≤ε

E

[
(γ(θ, (X, ξ))− γ(θm, (X, ξ)))

2
]
� ε2 .

Hence applying Theorem 8.7 of [35] we have:

√
nE

⎡⎢⎣ sup
θ:fθ∈Fm

dist(θ,θm)≤ε

‖(Pn − P ) (γ(θ, (X, ξ))− γ(θm, (X, ξ)))‖

⎤⎥⎦ (A.44)

� ε

√
Vm log

1

ε
∨ Vm√

n
log

1

ε

:= ψm(ε) . (A.45)

So a value of εm that satisfies
√
nε2m ≥ φm(εm) is:

εm =
Vm

n
log

n

Vm
.

Therefore we can take xm = Vm log (n/Vm) and as ω(x) = x we have b(n) = 1
(see Theorem A.3 of [31] for the exact expression of ω(x), b(n)). Note that, as we
are assuming (s log p)/n → 0 (Assumption 3.9), it is sufficient to search among
the models with 1 ≤ m ≤ C�(n/ log p)� for any constant C. We take C = 1/4
here. With these choices, the value of Σ (as defined in Theorem A.3 of [31]) is:

Σ =

1
4 � n

log p �∑
i=1

e
−Vi log

n
Vi

≤ lim
n→∞

1
4 � n

log p �∑
i=1

e
−Vi log

n
Vi < ∞ .
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Hence, an application Theorem A.3 of [31] yields:

P

(
�(θ̂, θ0) > Cpen(s) + t

C1

n

)
≤ Σe−t .

This along with the value of pen(s) from equation (3.4) of the main paper and
the lower bound equation (A.43) completes the first part of the proof, i.e.

dist2
(
(α̂init, β̂init, d̂), (α0, β0, d0)

)
= Op

(
Vs

n
log

n

Vs

)
.

The acceleration of the rate of α̂, β̂ via replacing d0 by d̂ in the model equation
is exactly same as that of Theorem 3.6 and hence skipped.

A.9. Proof of Theorem 3.14

Here again we assume for technical simplicity that the wedge assumption (As-
sumption 3.5) is valid on entire Sp−1, although all our arguments can be ex-
tended to the case where the assumption is valid only locally along with a sep-
arate argument for the consistency of the estimator. We use the same notations
as of Theorem 3.10 through out the proof. Define

y2m = 2κ
Vm‖ξ‖n,2

n
log

n

Vm

for all m ∈ M, where Vm is the VC dimension of model m. For any such model
m we obtain θ̂m as:

θ̂m = argmin
θ∈Ω×Sp−1

m

Pn

{
(Y − α1X�d≤0 − β1X�d>0)

2 − ξ2
}

= argmin
θ∈Ω×Sp−1

m

Pn

{
ξ
(
α01X�d0≤0 + β01X�d0>0 − α1X�d≤0 − β1X�d>0

)
+
1

2

(
α01X�d0≤0 + β01X�d0>0 − α1X�d≤0 − β1X�d>0

)2}
:= argmin

θ∈Ω×Sp−1
m

Pnfθ

:= argmin
θ∈Ω×Sp−1

m

Pn (fθ,1 + fθ,2)

where the functions fd,1, fd,2 are defined as:

fθ,1 = ξ
(
α01X�d0≤0 + β01X�d0>0 − α1X�d≤0 − β1X�d>0

)
,

fθ,2 =
1

2

(
α01X�d0≤0 + β01X�d0>0 − α1X�d≤0 − β1X�d>0

)2
.

The loss function used here is:

�(θ, θ0) = Pfθ � dist2(θ, θ0) ,
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for all θ ∈ Ω ∈ Sp−1 via the global version of Assumption 3.5. From the definition
of m̂ we have:

Pnfθ̂m̂ + pen(m̂) ≤ Pnfθ̂s0
+ pen(s0)

≤ Pnfθs0 + pen(s0) := pen(s0) .

Using this we can bound the loss function:

�(θ̂m̂, θ0) = Pfθ̂m̂
= (P− Pn) fθ̂m̂ + Pnfθ̂m̂
= (P− Pn) fθ̂m̂ + Pnfθ̂m̂ + pen(m̂)− pen(m̂)

≤ (P− Pn) fθ̂m̂ + pen(s0)− pen(m̂)

=
(P− Pn) fθ̂m̂
�(θ̂m̂, θ0) + y2m̂

(
�(θ̂m̂, θ0) + y2m̂

)
+ pen(s0)− pen(m̂)

≤ sup
θ∈Ω×Sp−1

m̂

|(P− Pn) fθ|
�(θ, θ0) + y2m̂

(
�(θ̂m̂, d0) + y2m̂

)
+ pen(s0)− pen(m̂)

For the rest of the calculation, define:

Γm = sup
θ∈Ω×Sp−1

m

|(P− Pn) fθ|
�(θ, θ0) + y2m

= sup
θ∈Ω×Sp−1

m

|(P− Pn) (fθ,1 + fθ,2)|
�(θ, θ0) + y2m

≤ sup
θ∈Ω×Sp−1

m

|(P− Pn) fθ,1|
�(θ, θ0) + y2m

+ sup
θ∈Ω×Sp−1

m

|(P− Pn) fθ,2|
�(θ, θ0) + y2m

:= Γm,1 + Γm,2 .

Next we try to bound Γm̂. More specifically, we bound Γm for all m and then
use a union bound to bound Γm̂. Note that, as the function class under the
consideration of Γm,2 is bounded we can use similar as of the proof of Theorem
A.3 of [31] (i.e. applying Talagrand’s inequality and then bound the expectation
and variance) to conclude:

P (Γm̂,2 ≥ 1/4) = o(1) . (A.46)

For Γm,1, we first decompose it as follows:

Γm,1 ≤ sup
d∈Sp−1

m

|(P− Pn) (fθ,1 − fθm,1)|
�(θ, θ0) + y2m

+ sup
θ∈Ω×Sp−1

m

|(P− Pn) fθm,1|
�(θ, θ0) + y2m

≤ sup
θ∈Ω×Sp−1

m

|(P− Pn) (fθ,1 − fθm,1)|
�(θ, θ0) + y2m

+
|(P− Pn) fθm,1|
�(θm, θ0) + y2m

= Γm,11 + Γm,12 .
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Bounding E[Γm,12] is straight-forward:

E[Γm,12] ≤
√
var (fθm,1)√

n (�(θm, θ0) + y2m)

≤ ‖ξ‖2dist(θm, θ0)√
n
(
dist2(θm, θ0) + y2m

)
≤ ‖ξ‖2√

n
sup
x≥0

x

x2 + y2m
≤ ‖ξ‖2

2

1√
nym

.

To bound E[Γm,1] we use the maximal inequality of the weighted empirical
process (see Lemma A.5 of [30]), which is a variant of peeling argument. First
of all note that, by symmetrization and applying Theorem 8.7 of [35], we have
for any 1 ≤ k ≤ n:

E

⎡⎢⎢⎣ sup
θ∈Ω×Sp−1

m

dist(θ,θm)≤ε

∣∣∣∣∣
k∑

i=1

ξi

(
αm1X�

i dm≤0 + βm1X�
i dm>0 − α1X�

i d≤0 − β1X�
i d>0

)∣∣∣∣∣
⎤⎥⎥⎦

�
(
σε

√
kVm log

1

σε
∨ Vm log

1

σε

)
.

where the wimpy variance σ2
ε is defined as:

σ2
ε = sup

θ:fθ∈Fm

dist(θ,θm)≤ε

σ2
ξ E

[(
αm1X�

i dm≤0 + βm1X�
i dm>0 − α1X�

i d≤0 − β1X�
i d>0

)2]
� ε2 .

This, along with Proposition A.7 implies:

E

⎡⎢⎣ sup
θ:fθ∈Fm

dist(θ,θm)≤ε

|(P− Pn) (fθ,1 − fθm,1)|

⎤⎥⎦
= E

⎡⎢⎣ sup
θ:fθ∈Fm

dist(θ,θm)≤ε

∣∣∣∣∣
k∑

i=1

ξi

(
αm1X�

i dm≤0 + βm1X�
i dm>0

−α1X�
i d≤0 − β1X�

i d>0

)∣∣∣]
� ‖ξ‖2,1 ε

√
Vm

n
log

(
1

ε

)
+ 2

Vm

n
log

(
1

ε

)
E

[
max
1≤i≤n

|ξi|
]

:=
ψm(ε)√

n
.
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An application of Lemma A.5 of [30] yields:

E[Γm,1] �
ψm(2

√
2ym)√

ny2m

which, in turn, yields:

E(Γm,1) ≤
4φm(2

√
2ym)√

ny2m
+

‖ξ‖2
2
√
nym

≤ 4φm(2
√
2εm)√

nymεm
+

‖ξ‖2
2
√
nym

√
y2m
y2m

≤ 8
√
2φm(εm)√
nymεm

+
‖ξ‖2

2
√
nym

√
φ2
m (ym)

y2m

≤ 8
√
2εm
ym

+
2√
nym

√
φ2
m (εm)

ε2m

≤ 8√
κ
+

‖ξ‖2
2
√
nym

φm (εm)

εm

≤ 8√
κ
+

‖ξ‖2εm
2ym

≤ 8 +
√
2√

κ
(A.47)

which can be made arbitrarily small by making κ arbitrarily large. Next, we
bound the fluctuation of Vm,1 around its mean using Chebychev inequality:

P (|Γm,1 − E[Γm,1]| ≥ t) ≤ var(Γm,1)

t2
.

To bound the variance we use Theorem 11.17 along with Theorem 11.1 of [9].
To match with their notation for the ease of the readers, we have:

Xi,θ =
1

n

⎡⎣ξi
(
αm1X�

i dm≤0 + βm1X�
i dm>0 − α1X�

i d≤0 − β1X�
i d>0

)
�(θ, θ0) + y2m

−E

⎛⎝ξi

(
αm1X�

i dm≤0 + βm1X�
i dm>0 − α1X�

i d≤0 − β1X�
i d>0

)
�(θ, θ0) + y2m

⎞⎠⎤⎦
=

1

n

⎡⎣ξi
(
αm1X�

i dm≤0 + βm1X�
i dm>0 − α1X�

i d≤0 − β1X�
i d>0

)
�(θ, θ0) + y2m

⎤⎦
where the last equality follows from the fact that E(ξ) = 0. That Xi,θ is sym-
metric follows from the symmetry of ξ. We define M as:

max
1≤i≤n

sup
θ∈Ω×Sp−1

m

X2
i,θ � max1≤i≤n ξ

2
i

n2y4m
:= M
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and the wimpy variance:

sup
θ∈Ω×Sp−1

m

n∑
i=1

E(X2
i,θ) ≤

2σ2
ξ

n

�(θm, θ0)

(�(θm, θ0) + y2m)2

≤
2σ2

ξ

n
sup
x≥0

x

(x+ y2m)2

≤
2σ2

ξ

4ny2m
:= σ2

m .

An application of Theorem 11.17 and Theorem 11.1 of [9] yields:

var(Γm,1) ≤ σ2
m + 64

√
E[Mm]E[Γm,1] + 182E[Mm] . (A.48)

Note that we set Vm = m(log p)1+δ (which is slightly larger than the VC dimen-
sion) and choose y2m as:

y2m = 2
Vm‖ξ‖2,n

n
log

n

Vm
= 2pen(m) .

As per Assumption 3.13, we confine the model selection in

1 ≤ m ≤ (1/4)�n/(log p)2� .

To facilitate the union, we next show that
∑M

i=1 var(Vm,1) → 0 as n → ∞. We
bound each terms on RHS of equation (A.48):

M∑
i=1

σ2
m =

σ2
ξ

4

M∑
i=1

1

ny2m

=
σ2
ξ

4‖ξ‖n,2

n/(4(log p)2)∑
i=1

1

Vm log n
Vm

≤
σ2
ξ

4 log 4‖ξ‖n,2

n/4(log p)2∑
i=1

1

Vm

≤
σ2
ξ

4 log 4(log p)δ/2‖ξ‖n,2

n/(4(log p)2)∑
i=1

1

m(logm)1+δ/2

≤
σ2
ξ

4 log 4(log p)δ/2‖ξ‖n,2

∞∑
i=1

1

m(logm)1+δ/2

−→ 0 as n → ∞.

Now for the second summand:

64
M∑
i=1

√
E[Mm]E[Γm,1] ≤ 16

√
E[Mm]
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� 8

M∑
i=1

√
E[max1≤i≤n ξ2i ]

n2y4m

= 8

M∑
i=1

‖ξ‖n,2
ny2m

≤ 8

4 log 4(log p)δ/2

∞∑
i=1

1

m(logm)1+δ/2

−→ 0 as n → ∞.

And similarly for the third summand:

182
M∑
i=1

E[Mm] = 182
M∑
i=1

E[max1≤i≤n ξ
2
i ]

n2y4m

≤ 182

4 log 4(log p)δ

∞∑
i=1

1

m2(logm)2+δ

−→ 0 as n → ∞.

Hence taking t = 1/8 and using the fact that E[Γm,1] ≤ 1/8 for all m for our
choice of κ, we have:

P

(
Γm̂,1 >

1

4

)
−→ 0 . (A.49)

Therefore, combining equation (A.46) and (A.49) we conclude:

P

(
Γm̂ >

1

2

)
−→ 0

Hence, on its complement event, we have

�(θ̂m̂, θ0) ≤
1

2

(
�(θ̂m̂, d0) + y2m̂

)
+ pen(s0)− pen(m̂)

=
1

2
�(θ̂m̂, d0) + pen(s0) ,

which further implies,

�(θ̂m̂, θ0) ≤ 2pen(s0) .

This, along with equation (A.43) indicates:

dist2
(
(α̂init, β̂init, d̂), (α0, β0, d0)

)
= Op

(
s0(log p)

(1+δ)‖ξ‖n,2
n

(
log

n

s0 log p

))
.

The boosting of the rate of α̂, β̂ by replacing d0 by d̂ in the model equation is
exactly same as that of Theorem 3.6 and hence skipped.



Robust learning in change point problem 1223

A.10. Proof of Theorem 3.12

For the proof of this theorem we follow the techniques of proof of Theorem
2.18 of [31]. Recall Fano’s inequality: if Θ ⊆ Sp−1 is a finite 2ε packing set, i.e.
for any two di, dj ∈ Θ, we have ‖di − dj‖ ≥ 2ε with |Θ| < ∞, then based on
n i.i.d. observations z1, . . . , zn we have the following minimax lower bound in
estimating d0:

inf
d̂
sup
Pd

E

[∥∥∥d̂− d
∥∥∥2] ≥ ε2

(
1−

n
M2

∑
i,j:di,dj∈Θ KL(Pdi ||Pdj ) + log 2

log (|Θ| − 1)

)
Next recall Gilbert-Varshamov Lemma: if dH is the Hamming distance, i.e.
dH(x, y) =

∑d
i=1 1(xi �= yi) with d being the ambient dimension. Then given

any v with 1 ≤ v ≤ p/8, we can find ω1, . . . , ωM ∈ {0, 1}p which satisfy the
following:

1. dH(ωi, ωj) ≥ v
2 ∀ i �= j ∈ {1, . . . ,m}.

2. logM ≥ v
8 log

(
1 + d

2v

)
.

3. ‖ωj‖0 = v ∀ j ∈ {1, . . . ,M}.
We choose the appropriate ε later. First, for a fixed 0 < ε < 1, we construct the
set Θ as follows: applying Gilbert-Varshamov Lemma in dimension p − 1 with
sparsity v = s− 1, we choose Ω = {ω1, . . . , ωM} ∈ {0, 1}p−1 which satisfies the
above conditions (a) - (c). Then, for each ωj ∈ Ω set dj as:

dj =

(
1, ε√

s−1
ωj

)
√
1 + ε2

It is immediate that ‖dj‖2 = 1 and ‖dj‖0 = s. Set Θ = {dj : ωj ∈ Ω}. From
condition (c) above we have:

|Θ| := M ≥ s− 1

8
log

(
1 +

p− 1

s− 1

)
.

Further note that for any di �= dj ∈ Θ:

‖di − dj‖22 =
ε2

(s− 1)(1 + ε2)
‖ωi − ωj‖2

=
ε2

(s− 1)(1 + ε2)
dH(ωi, ωj)

=
ε2

2(1 + ε2)
≥ ε2

4
.

which proves that Θ is a ε/2 packing set of Sp−1. On the other hand, from
condition (c) above it is immediate that, for any ωi �= ωj ∈ Ω, we have
dH(ωi, ωj) ≤ 2s. This implies that for any di, dj ∈ Θ:

‖di − dj‖22 =
ε2

(s− 1)(1 + ε2)
dH(ωi, ωj) ≤ 2ε2 .
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Now for each di ∈ Θ define the distribution Pdi of (X,Y ) as: X ∼ N (0, Ip), ξ ∼
N (0, 1), X is independent of ξ and:

Y
d
= 1X�di>0 + ξ .

Hence for any di �= dj ∈ Θ, the Kullback-Liebler divergence between Pdi and
Pdj is:

KL(Pdi ||Pdj ) =
1

2
EX

[(
1X�di>0 − 1X�dj>0

)2]
= P
(
sign(X	di) �= sign(X	dj)

)
≤ C‖di − dj‖2 ≤ ε

√
2C2 .

for some universal constant C. Hence applying Fano’s inequality we obtain:

inf
d̂
sup
Pd

E

[∥∥∥d̂− d
∥∥∥2] ≥ ε2

16

(
1−

n
M2

∑
i,j:di,dj∈Θ KL(Pdi ||Pdj ) + log 2

log (|Θ| − 1)

)

≥ ε2

16

⎛⎝1− nε
√
2C2 + log 2

log
(

s−1
8 log

(
1 + p−1

s−1

)
− 1
)
⎞⎠ .

Taking ε = (s log (1 + p/s))/n we conclude the proof.

Appendix B: Proof of supplementary lemmas

B.1. Proof of Lemma A.8

As ξ has symmetric distribution around origin, without loss of generality we
can assume μ > 0. Hence we have to establish the result for 0 < μk. Note that
difference Hk(ξ + μ) − Hk(ξ) can be decomposed into five terms, depending
where ξ lies:

Hk(ξ + μ)−Hk(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

[
(ξ + μ)2 − ξ2

]
, if − k ≤ ξ ≤ k − μ

1
2 (ξ + μ)2 − k

(
|ξ| − k

2

)
, if − k − μ ≤ ξ ≤ −k

k
(
|ξ + μ| − k

2

)
− ξ2

2 , if k − μ ≤ ξ ≤ k

K (|ξ + μ| − |ξ|) , if ξ > k or ξ < −k − μ

(B.1)
Now we inspect the regions individually. Note that when −k − μ ≤ ξ ≤ −k, we
have:

Hk(ξ + μ)−Hk(ξ) =
1

2
(ξ + μ)2 − k

(
|ξ| − k

2

)
=

1

2
(ξ + μ)2 + k

(
ξ +

k

2

)
[∵ |ξ| = −ξ]
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=
ξ2

2
+ (μ+ k)ξ +

μ2 + k2

2

=
1

2
(ξ + μ+ k)

2 − μk

When k − μ ≤ ξ ≤ k:

Hk(ξ + μ)−Hk(ξ) = k

(
|ξ + μ| − k

2

)
− ξ2

2

= k

(
(ξ + μ)− k

2

)
− ξ2

2

= −ξ2

2
+ kξ − k2

2
+ kμ

= −1

2
(ξ − k)

2
+ kμ

Also, we have:

k (|ξ + μ| − |ξ|) =
{
kμ , if ξ > k

−kμ , if ξ < −k − μ .

Hence we can modify equation (B.1) as:

Hk(ξ + μ)−Hk(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μξ + μ2

2 , if − k ≤ ξ ≤ k − μ
1
2 (ξ + μ+ k)

2 − μk , if − k − μ ≤ ξ ≤ −k

−1
2 (ξ − k)

2
+ kμ , if k − μ ≤ ξ ≤ k

kμ , if ξ > k

−kμ , if ξ < −k − μ .

(B.2)

Note that the term −μk is active on the region ξ ≤ −k and μk is active on the
region ξ ≥ k−μ. From the symmetry of the distribution of ξ, this effect of −μk
and μk on the region (−∞,−k) and (k,∞) will cancel each other upon taking
expectation and the effect of μk on (k − μ, k) will remain. Hence we have:

E [Hk(ξ + μ)−Hk(ξ)]

=
μ2

2
P (−k ≤ ξ ≤ k − μ) + μE [ξ1−k≤ξ≤k−μ]

+ E

[
1

2
(ξ + μ+ k)

2
1−k−μ≤ξ≤−k

]
+ E

[
−1

2
(ξ − k)

2
1k−μ≤ξ≤k

]
=

μ2

2
P (−k ≤ ξ ≤ k − μ)− μE [ξ1k−μ≤ξ≤k]

+ E

[
1

2
(ξ + μ+ k)

2
1−k−μ≤ξ≤−k

]
+ E

[(
μk − 1

2
(ξ − k)

2

)
1k−μ≤ξ≤k

]
=

μ2

2
P (−k ≤ ξ ≤ k − μ) + E

[(
μk − μξ − 1

2
(ξ − k)

2

)
1k−μ≤ξ≤k

]
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+ E

[
1

2
(ξ + μ+ k)

2
1−k−μ≤ξ≤−k

]
≥ μ2

2
P (−k ≤ ξ ≤ k − μ) + E

[(
μk − μξ − 1

2
(ξ − k)

2

)
1k−μ≤ξ≤k

]
≥ μ2

2
P (−k ≤ ξ ≤ k − μ)

where the last inequality follows from the fact:

f(ξ) = μk − μξ − 1

2
(ξ − k)

2 ≥ 0 ∀ ξ ∈ [k − μ, k] .

observing the fact that:

E

[
H̃k(ξ + μ)− H̃k(ξ)

]
=

k + 1

k
E [Hk(ξ + μ)−Hk(ξ)]

≥ E [Hk(ξ + μ)−Hk(ξ)]

we complete the proof for all k > 0. Now for k = 0 for 0 < μ < δ,

E [|ξ + μ| − |ξ|]
= −μP(ξ ≤ −μ) + μP(ξ > 0) + E [(2ξ + μ)1−μ≤ξ≤0]

= μP(0 ≤ ξ ≤ μ) + E [(−2ξ + μ)10≤ξ≤μ]

= E [(−2ξ + 2μ)10≤ξ≤μ]

= 2

∫ μ

0

(μ− x)fξ(x) dx

≥ fξ(0)

∫ μ

0

(μ− x) dx

=
μ2

2
fξ(0) .

This completes the proof.

B.2. Proof of Lemma A.1

Proof. Although we assume continuous steps, our proof can be certainly ex-
tended to the case when Sn takes value 0 with positive probability. The proof
critically uses Theorem 4 of Chapter 12 of Volume 2 of [16]. To keep the nota-
tional similarity with the book, define:

qn = P

(
max
1≤i≤n

Si < 0

)
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and the corresponding generating function q(s) as:

q(s) = 1 +
∞∑

n=1

snqn .

Then from equation (7.22) of Theorem 4, Chapter 12, Vol. 2 of [16] we have:

log q(s) =
∞∑

n=1

sn

n
P (Sn < 0) := f(s) ⇐⇒ q(s) = ef(s) . (B.3)

Now we need a lower bound on qn. Note that from the property of the generating
function we have:

qn = n!q(n)(0) .

On the other hand from Faa di Bruno’s formula:

q(n)(0)

=
dn

dsn
ef(s)
∣∣∣∣
s=0

=

[
ef(s)

∑ n!

m1!1!m2m1!2!m2 · · ·mn!n!mn
Πn

j=1

(
f (j)(s)

)mj
]∣∣∣∣

s=0

=

[
ef(s)

∑ n!

m1!m2! · · ·mn!
Πn

j=1

(
f (j)(s)

j!

)mj
]∣∣∣∣∣

s=0

=
∑ n!

m1!m2! · · ·mn!
Πn

j=1

(
f (j)(0)

j!

)mj

(B.4)

where the sum runs over all the sequences {mj}nj=1 such that:

n∑
i=1

imi = n .

Note that f (j)(0) is non-negative for j. Hence using only one sequence with
m1 = · · · = mn−1 = 0 and mn = 1, equation (B.4) can lower bounded as:

dn

dsn
ef(s)
∣∣∣∣
s=0

≥ f (n)(0) .

On the from the expression of f(s) from equation (B.3) it is immediate that:

f (n)(0) = n!
1

n
P (Sn < 0) .

Combining our findings we have:

n!qn = q(n)(0) =
dn

dsn
ef(s)
∣∣∣∣
s=0

≥ f (n)(0)

= n!
1

n
P (Sn < 0) .

This immediately implies qn ≥ P (Sn > 0) /n which completes our proof.
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B.3. Proof of Lemma A.2

From the definition of distribution of ξ we have:

Fξ(t) =
1
2 + tγ

1 + tγ
t ≥ 0 .

and

Fξ(−t) = 1− Fξ(t) =
1

2(1 + tγ)
.

Hence it is immediate that for any t0 > 0:

1

2(1 + t−γ
0 )

≤ sup
t≥t0

tγF̄ξ(t) = sup
t≥t0

tγ

2(1 + tγ)
≤ 1

2
(B.5)

For any fixed k ≥ 1:

P (M ≥ k) =
∑
j≥k

P (M = j)

=
∑
j≥k

P (Si > Sj ∀ 0 ≤ i ≤ j − 1, Si > Sj ∀ i ≥ j + 1)

= P (S1 > 0, S2 > 0, . . . )
∑
j≥k

P

(
max
1≤i≤j

Si < 0

)

= p∗
∑
j≥k

P

(
max
1≤i≤j

Sj < 0

)
[p∗ = P (S1 > 0, S2 > 0, . . . )]

≥ p∗
∑
j≥k

1

j
P (Sj ≤ 0) (B.6)

where the last inequality uses Lemma A.1. From the symmetry of the distribu-
tion of ξ we have:

P (Sj ≤ 0) = P

(
j∑

i=1

ξj ≤ −jμ

)
= P

(
j∑

i=1

ξj > jμ

)
.

Set aj = j1/γ . Define the event Ai as:

Ai = {ξi > jμ+ (j − 1)aj , ξl ∈ [−aj , jμ) ∀ 1 ≤ l �= i ≤ j}

Clearly {Ai}′s are disjoint events and

P

(
j∑

i=1

ξj > jμ

)
≥ P

(
∪j
i=1Ai

)

=

j∑
i=1

P(Ai)
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= jF̄ (jμ+ (j − 1)aj) (F [−aj , jμ))
j−1

= jF̄ (jμ+ (j − 1)aj)
(
1− F̄ (aj)− F̄ (jμ)

)j−1
(B.7)

Next note that, jμ+ (j − 1)aj ≥ μ for all j ≥ 1. Therefore from equation (B.5)
we have for all j ≥ 1:

F̄ (jμ+ (j − 1)aj) ≥
(jμ+ (j − 1)aj)

−γ

2(1 + μ−γ)
,

which further implies:

j × F̄ (jμ+ (j − 1)aj) ≥
1

2(1 + μ−α)

j

(jμ+ (j − 1)aj)
γ

=
1

2(1 + μ−γ)

j(
jμ+ (j − 1)j1/α

)γ
=

1

2(1 + μ−γ)

j

jγ+1
(
j−1/γμ+

(
1− 1

j

))γ
=

1

jγ
1

2(1 + μ−γ)

1(
j−1/γμ+

(
1− 1

j

))γ
≥ 1

jγ
1

2(1 + μ−γ)

1

(μ+ 1)γ
:=

c1
jγ

.

Next observe that (jμ)γ ≥ j for all j ≥ 1 if μ > 1 or for all j ≥ μ−γ/(γ−1) if
μ ≤ 1. Using this in equation (B.24) we have for all j ≥ 1 ∨ �μ−γ/(γ−1)�:

P

(
j∑

i=1

ξj > jμ

)
≥ c1

jγ

[(
1− F̄ (aj)− F̄ (jμ)

)j−1
]

≥ c1
jγ

×
(
1− 1

2(1 + aαj )
− 1

2(1 + (jμ)α)

)j−1

=
c1
jγ

×
(
1− 1

2(1 + j)
− 1

2(1 + (jμ)α)

)j−1

≥ c1
jγ

×
(
1− 1

(1 + j)

)j−1

≥ c1
jγ

× inf
x≥1

(
1− 1

(1 + x)

)x−1

:=
c1c2
jγ

(B.8)

Using this in equation (B.23) we obtain:

P (M ≥ k) ≥ p∗
∑
j≥k

1

j
P (Sj ≤ 0)
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= p∗
∑
j≥k

1

j

(
j∑

i=1

ξj > jμ

)
≥ c1c2 × p∗ ×

∑
j≥k

j−(γ+1)

≥ c1c2 × p∗ ×
∫ ∞

k

x−(γ+1) dx

≥ c1c2 × p∗ × 1

γkγ
.

This completes the proof of lower bound.

B.4. Proof of Lemma A.3

We have, by symmetry:

P (|Mts| > k) = P (Mts > k) + P (Mts < −k) = 2P (Mts > k) .

Hence, by virtue of Lemma A.2, all we need to show is:

P (Mts = k) ≥ p∗P(Mos = k) .

Towards that end:

P (Mts = k) = P

(
SK ≤ Si ∀ 0 ≤ i ≤ k − 1, Sk ≤ Si ∀ i ≥ k + 1, Sk ≤ inf

j≥1
S−j

)
= P

(
SK ≤ Si ∀ 0 ≤ i ≤ k − 1, Sk ≤ inf

j≥1
S−j

)
P (Si ≥ 0 ∀ i ≥ 1)

= p∗P

(
SK ≤ Si ∀ 0 ≤ i ≤ k − 1, Sk ≤ inf

j≥1
S−j

)
≥ p∗P

(
SK ≤ Si ∀ 0 ≤ i ≤ k − 1, Sk ≤ inf

j≥1
S−j | inf

j≥1
S−j > 0

)
× P

(
inf
j≥1

S−j > 0

)
= p∗P

(
inf
j≥1

S−j > 0

)
P (SK ≤ Si ∀ 0 ≤ i ≤ k − 1)

= P

(
inf
j≥1

S−j > 0

)
P (Mos = k)

= p∗P (Mos = k) .

where the last equality follows from the fact:

P (Mos = k) = p∗P (SK ≤ Si ∀ 0 ≤ i ≤ k − 1)

This completes the proof.
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B.5. Proof of Lemma A.4

Using same line of arguments as in Corollary 1:

P (Mts,CPP = x)

=

∞∑
k=0

P (Mts,CPP = x | N1(x) = k)P(N1(x) = k)

=

∞∑
k=0

P (Mts = k)P(N1(x) = k)

≥ p∗
∞∑
k=0

P (Mos = k)P(N1(x) = k)

= P (Mos,CPP = x)

Hence to establish Corollary A.4, all we need show:

P (Mos,CPP > x) ≥ c0
2fγ

X(d0)
x−γ

for all large x, where M is the argmin of one sided compound Poisson process,
namely the minimizer of the following:

X+(t) =

N1(t)∑
i=1

Xi , t ∈ R+ .

Now we have:

P (Mos,CPP > x) =

∞∑
k=0

P (Mos,CPP > x | N1(x) = k)P (N1(x) = k)

=

∞∑
k=0

P

(
argmin

i≥0
Si > k

)
P (N1(x) = k)

≥
∞∑

k=k0

P

(
argmin

i≥0
Si > k

)
P (N1(x) = k)

≥ c0

∞∑
k=k0

k−γP (N1(x) = k)

= c0

∞∑
k=k0

e−Λ(x)Λ(x)k

k!kγ

≥ c0

∞∑
k=k0

e−Λ(x)Λ(x)k

k!(k + 1)(k + 2) . . . (k + γ)

= c0

∞∑
k=k0

e−Λ(x)Λ(x)k

(k + γ)!
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= c0Λ(x)
−γ

∞∑
k=k0+α

e−Λ(x)Λ(x)k

k!

= c0Λ(x)
−γP (N1(x) ≥ k0 + α)

≥ c0
2
Λ(x)−γ =

c0
2fγ

X(d0)
x−γ

where the last inequality is valid as long as med (N1(X)) ≥ k0 + γ. From [2], we
know as N1(x) ∼ Poisson(xfX(d0)), we have med (N1(x)) ≥ xfX(d0) − log 2.
Hence the inequality is valid as long as x ≥ (k0 + γ + log 2)/fX(d0). From This
completes the proof.

B.6. Proof of Lemma A.5

Proof. As per our model description, all the parallel change point processes are
i.i.d. Therefore n(d̂i − d0,i) has same distribution across 1 ≤ i ≤ m. Therefore,

we henceforth define Fn to be the distribution of n(d̂ − d0) and drop i from
subscript. From the definition of change point estimator, we have:

n(d̂− d0) = mid argmint

n∑
i=1

(
ξi +

1

2

){
1d0<Xi≤d0+

t
n

}
+mid argmint

n∑
i=1

(
−ξi +

1

2

){
1d0+

t
n<Xi≤d0

}

= mid argmint

Nn,+(t)∑
i=1

(
ξi +

1

2

)
1t≥0 +

Nn,−(t)∑
i=1

(
−ξi +

1

2

)
1t<0 .

Here the count processes Nn,+(t) and Nn,−(t) are defined as follows: For t ≥ 0,

Nn,+(t) =

n∑
i=0

1d0≤Xi≤d0+
t
n
∼ Bin

(
n, FX

(
d0 +

t

n

)
− FX(t)

)
and for t < 0,

Nn,−(t) =
n∑

i=0

1d0+
t
n≤Xi≤d0

∼ Bin

(
n, FX(t)− FX

(
d0 +

t

n

))
.

These processes can be though as finite sample approximation of Compound
Poisson Process, where we have approximated the Poisson random variables by
Binomial random variables. It is immediate that:

Nn,+(t)
L
=⇒ Pois (tf(d0)) ,

Nn,−(t)
L
=⇒ Pois (−tf(d0)) .
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We name the process as compound Binomial process and henceforth denote by
CBP:

CBP (t) =

Nn,+(t)∑
i=1

(
ξi +

1

2

)
1t≥0 +

Nn,−(t)∑
i=1

(
−ξi +

1

2

)
1t<0 (B.9)

Hence we work with the smallest argmin instead of mid-argmin just for some
technical simplicity, but all of the following analysis is valid for mid-argmin
also. As will be evident later, the thickness of the tail of the distribution Fn

(the distribution of n(d̂− d0)) is closely related to the tail of the minimizer of a
random walk with finitely many steps. Therefore, we start by establishing a lower
bound on the tail of a n-step random walk {Si}ni=0 with the usual convention

S0 = 0 and step distribution Xi
d
= ξi + 1/2. Let Zn be the minimizer of this

random walk. The random variable Zn is supported on {0, 1, . . . , n}. Then for
any 0 ≤ k ≤ n− 1:

P (Zn > k) =

n∑
j=k+1

P (Zn = j)

=

n∑
j=k+1

P (Si > Sj ∀ 0 ≤ i ≤ j − 1, Si > Sj ∀ j + 1 ≤ i ≤ n)

=

n∑
j=k+1

P (Si < 0 ∀ 1 ≤ i ≤ j)P (Si > 0 ∀ 1 ≤ i ≤ n− j)

≥ P (Si > 0 ∀ 1 ≤ i < ∞)

n∑
j=k+1

P

(
max
1≤i≤j

Si < 0

)

= p∗
n∑

j=k+1

P

(
max
1≤i≤j

Sj < 0

) [
p∗ = P

(
min

1≤i<∞
Si > 0

)]

≥ p∗
n∑

j=k+1

1

j
P (Sj ≤ 0) (B.10)

From equation (B.25) in the proof of Lemma A.2 we conclude for j ≥ 2γ/(γ−1) :=
k0:

P (Sj ≤ 0) ≥ c1c2
jγ

.

Using the above bound in equation (B.10) we conclude:

P (Zn > k) ≥ p∗
n∑

j=k+1

1

j
P (Sj ≤ 0)

≥ p∗
n∑

j=k+1

1

j

c1c2
jγ
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= c1c2p
∗

n∑
j=k+1

1

jγ+1

≥ c1c2p
∗
∫ n+1

k+1

x−(γ+1) dx [Riemann integral lower bound]

=
c1c2p

∗

γ

[
1

(k + 1)γ
− 1

(n+ 1)γ

]
(B.11)

Now we go back to the random variable of interest n(d̂−d0). LetX(i) denotes the

ith order statistics of {Xi}i≤n. If X(i) < d0 < X(i+1), then from the definition

of n(d̂ − d0), we have a random walk with i steps on the negative axis and a
random walk with n − i steps on the positive axis. Therefore the number of
steps of random walk on either side of origin is equal to the number of X ′

is on
the corresponding side of d0. Denote by Rn (and respectively Ln), the number
of X ′

is greater than d0 (respectively less than d0). Hence Rn ∼ Bin(n, F̄X(d0))
and Ln ∼ Bin(n, FX(d0)) with Rn + Ln = n. Then we have for any x > 0:

P

(
n(d̂− d0) > x

)
=

n∑
r=0

r∑
k=0

{
P

(
n(d̂− d0) > x | Rn = r,Nn,+(x) = k

)
P(Nn,+(x) = k | Rn = r)P(Rn = r)}

Given Rn = r, we have a two sided random walk, with r steps on the positive
real line n− r steps on the negative real line. Therefore, the event n(d̂−d0) > x
given Nn,+(x) = k and Rn = r is equivalent to the event that in a two sided
random walks with r steps on the right and n− r steps on the left, the argmin
is on the right and it happens after k steps. More precisely, if we denote by
S0 ≡ 0, S1, . . . , Sr to be the random walk on the right side with step distribution
(ξ + 1/2) and S′

0 ≡ 0, S′
1, . . . , S

′
n−r to be random walk on the left with step

distribution (−ξ + 1/2), then the above event corresponds that this two sided
random walk is minimized at Sj for some k + 1 ≤ j ≤ r. Therefore we write:

P

(
n(d̂− d0) > x

)
=

n∑
r=0

r∑
k=0

[
P

(
n(d̂− d0) > x | Rn = r,Nn,+(x) = k

)
(B.12)

×P(Nn,+(x) = k | Rn = r)P(Rn = r)]

=

n∑
r=0

r∑
k=0

[P (argmin of twosided RW > k) (B.13)

×P(Nn,+(x) = k | Rn = r)P(Rn = r)] (B.14)

Next, we obtain a lower bound on the tail of the minimizer of the two sided
random walk. Note that, we have already established a lower bound on the
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tail of the minimizer of a one sided random walk in equation (B.11), which we
exploit here to get a lower bound on the tail of the minimizer of this two-sided
incarnation:

P (argmin twosided RW > k)

=
r∑

j=k+1

P (argmin twosided RW = j)

=

r∑
j=k+1

P

(
Sj < S0, . . . , Sj < Sj−1, Sj < Sj+1, . . . , Sj < Sr, Sj < min

1≤i≤n−r
S′
i

)

=

r∑
j=k+1

P

(
Sj < S0, . . . , Sj < Sj−1, Sj < min

1≤i≤n−r
S′
i

)
P(S1 > 0, . . . , Sr−j > 0)

≥
r∑

j=k+1

P

(
Sj < S0, . . . , Sj < Sj−1, Sj < min

1≤i≤n−r
S′
i | min

1≤i≤n−r
S′
i > 0

)
×

P

(
min

1≤i≤n−r
S′
i > 0

)
P(S1 > 0, . . . , Sr−j > 0)

≥ p∗
r∑

j=k+1

P

(
Sj < S0, . . . , Sj < Sj−1, Sj < min

1≤i≤n−r
S′
i | min

1≤i≤n−r
S′
i > 0

)
×

P(S1 > 0, . . . , Sr−j > 0)

= p∗
r∑

j=k+1

P (Sj < S0, . . . , Sj < Sj−1)P(S1 > 0, . . . , Sr−j > 0)

= p∗P (argmin one-sided RW with length r > k)

≥ c1c2(p
∗)2

γ

[
1

(k + 1)γ
− 1

(r + 1)γ

]
[From equation (B.11)] .

For the rest of the calculation we assume γ (the number of finite moments of
the error distribution ξ) is an integer, as all our calculation is valid by replacing
γ by �γ�. Define a success probability px,n as:

px,n = P

(
X ∈

(
d0 +

x

n
, d0

)
| X > d0

)
=

FX

(
d0 +

x
n , d0

)
− FX(d0)

1− FX(d0)
.

Therefore it is immediate that:

Nn,+(x) | Rn = r ∼ Bin (r, px,n) .

As per our assumption FX has continuous density fX with fX(d0) > 0. There-
fore, there exists δ1 > 0 such that fX(t) > fX(d0)/2 for |t − d0| ≤ δ1. Hence,
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for any 0 ≤ x ≤ nδ1, we have:

px,n ≥ x

n
× fX(d0)

2(1− FX(d0))
. (B.15)

On the other, let fmax be the upper bound on fX on the entire R. Then, again
from the mean value theorem, we have:

px,n ≤ x

n
× fmax

2(1− FX(d0))
. (B.16)

Therefore combining equations (B.15) and (B.16), we have:

x

n
× fX(d0)

2(1− FX(d0))
≤ px,n ≤ x

n
× fmax

2(1− FX(d0))
. (B.17)

We will use the above relations in our rest of the calculation. Going back to
equation (B.13) we have:

P

(
n(d̂− d0) > x

)
=

n∑
r=1

r∑
k=0

[P (argmin twosided RW > k)

×P(Nn,+(x) = k | Rn = r)P(Rn = r)]

=
n∑

r=k0

r∑
k=k0

[P (argmin twosided RW > k)

×P(Nn,+(x) = k | Rn = r)P(Rn = r)]

≥ c1c2(p
∗)2

γ

n∑
r=1

r∑
k=0

{[
1

(k + 1)γ
− 1

(r + 1)γ

]
×P(Nn,+(x) = k | Rn = r)P(Rn = r)}

=
c1c2(p

∗)2

γ

[
n∑

r=k0

r∑
k=k0

1

(k + 1)γ
P(Nn,+(x) = k | Rn = r)P(Rn = r)

−
n∑

r=k0

1

(r + 1)γ
P(k0 ≤ Nn,+(x) < r | Rn = r)P(Rn = r)

]

=
c1c2(p

∗)2

γ

[
n∑

r=k0

r∑
k=k0

1

(k + 1)γ
P(Nn,+(x) = k | Rn = r)P(Rn = r)

−
n∑

r=1

1

(r + 1)γ
P(Rn = r)

]
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=
c1c2(p

∗)2

γ

[
n∑

r=k0

r∑
k=k0

1

(k + 1)γ

(
r

k

)
pkx,n(1− px,n)

r−kP(Rn = r)

−
n∑

r=1

1

(r + 1)γ
P(Rn = r)

]

≥ c1c2(p
∗)2

γ

[
n∑

r=k0

{
r∑

k=k0

1

(k + 1)γ

(
r

k

)
pkx,n(1− px,n)

r−k

}
P(Rn = r)

−
n∑

r=1

1

(r + 1)γ
P(Rn = r)

]
(B.18)

where the last inequality is obtained by replacing 1 − px,n by its upper bound
1. The inner sum of the above equation can be analyzed as follows:

r∑
k=k0

1

(k + 1)γ

(
r

k

)
pkx,n(1− px,n)

r−k

=

r∑
k=k0

1

(k + 1)γ
r!

k!(r − k)!
pkx,n(1− px,n)

r−k

≥
r∑

k=k0

1

(k + 1)(k + 2) . . . (k + γ)

r!

k!(r − k)!
pkx,n(1− px,n)

r−k

≥
p−γ
x,n

(r + 1)(r + 2) . . . (r + γ)

r∑
k=k0

(r + γ)!

(k + γ)!(r − k)!
pk+γ
x,n (1− px,n)

r−k

=
p−γ
x,n

(r + 1)(r + 2) . . . (r + γ)
P (Bin(r + γ, px,n) ≥ k0 + γ) .

Putting this back into equation (B.18) we obtain:

P

(
n(d̂− d0) > x

)

≥ c1c2(p
∗)2

γ
p−γ
x,n

[
n∑

r=k0

P (Bin(r + γ, px,n) ≥ k0 + γ)

(r + 1)(r + 2) . . . (r + γ)
P(Rn = r)

−pγx,n

n∑
r=1

1

(r + 1)γ
P(Rn = r)

]
(B.19)

Now from the properties of the inverse moments of the binomial distribution
(see e.g. [11]) we have:

n∑
r=1

1

(r + 1)γ
P(Rn = r) ≤ C

(
nF̄X(d0)

)−γ
[Recall Rn ∼ Bin(n, F̄X(d0))] .
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On the other hand we have for all r ≥ nF̄X(d0):

(r + γ)px,n ≥ (nF̄X(d0) + γ)× x

n
× fX(d0)

2(1− FX(d0))
[Equation (B.15)]

≥
(
F̄X(d0) +

γ

n

)
× x× fX(d0)

2(1− FX(d0))

≥ F̄X(d0)× x× fX(d0)

2(1− FX(d0))
> γ + k0

for all x > 2(γ+k0)/fX(d0). Now we know that the median of Bin(n, p) is �np�
or �np�. For simplicity, we will use the bound here P(Bin(n, p) ≥ np) ≥ 1/2 as
it will be valid simply replacing np by �np� and this will not alter any of our
subsequent analysis. Therefore we have:

n∑
r=k0

P (Bin(r + γ, px,n) ≥ γ + k0)

(r + 1)(r + 2) . . . (r + γ)
P(Rn = r)

≥
n∑

r=nF̄ (d0)

P (Bin(r + γ, px,n) ≥ γ + k0)

(r + 1)(r + 2) . . . (r + γ)
P(Rn = r)

≥
n∑

r=nF̄ (d0)

1

2(r + 1)(r + 2) . . . (r + γ)
P(Rn = r)

≥ 1

2(n+ 1)(n+ 2) . . . (n+ γ)

n∑
r=nF̄ (d0)

P(Rn = r)

≥ 1

4(n+ 1)(n+ 2) . . . (n+ γ)
.

Going back to equation (B.19) we have:

P

(
n(d̂− d0) > x

)
≥ c1c2(p

∗)2

γ
p−γ
x,n

[
n∑

r=k0

P (Bin(r + γ, px,n) ≥ γ)

(r + 1)(r + 2) . . . (r + γ)
P(Rn = r)

−pγx,n

n∑
r=1

1

(r + 1)γ
P(Rn = r)

]

≥ c1c2(p
∗)2

γ
p−γ
x,n

[
1

4(n+ 1)(n+ 2) . . . (n+ γ)
− pγx,n

C(F̄ (d0))
−γ

nγ

]
≥ c1c2(p

∗)2

γ
xγ ×

(
fX,max

1− FX(d0)

)−γ [
nγ

4(n+ 1)(n+ 2) . . . (n+ γ)

−(npx,n)
γ C(F̄ (d0))

−γ

nγ

]
≥ c1c2(p

∗)2

γ
xγ×
(

fX,max

1− FX(d0)

)−γ [
1

4(2γ)
− (npx,n)

γ C(F̄ (d0))
−γ

nγ

]
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≥ c1c2(p
∗)2

γ
xγ×
(

fX,max

1− FX(d0)

)−γ [
1

4(2γ)
−
(
x× fX,max

1− FX(d0)

)γ
C(F̄ (d0))

−γ

nγ

]
≥ c1c2(p

∗)2

γ
xγ×
(

fX,max

1− FX(d0)

)−γ [
1

4(2γ)
−
(

δ2fX,max

C(1− FX(d0))2

)γ]
[∀ x ≤ δ2n]

≥ c1c2(p
∗)2

γ
×
(

fX,max

1− FX(d0)

)−γ

× 1

2γ+3
× x−γ

=
c1c2(p

∗)2

γ2γ+3
×
(

fX,max

1− FX(d0)

)−γ

×x−γ .

where the last inequality is valid for small enough δ2, i.e. we choose δ2 which
satisfies:

1

2γ+2
−
(

δ2fX,max

C(1− FX(d0))2

)γ

≥ 1

2γ+3
.

Therefore we have established that for any 2γ/fX(d0) ≤ x ≤ (δ1 ∧ δ2)n:

P

(
n(d̂− d0) > x

)
≤ c1c2(p

∗)2

γ2γ+3
×
(

fX,max

1− FX(d0)

)−γ

× x−γ . (B.20)

The calculation for the negative x is similar. As introduced before, Ln denotes
the number of X ′

is on the left of d0 and Ln ∼ Bin(n, F (d0)). Given Ln = l,
define S0 ≡ 0, S′

1, . . . , S
′
l to be random walk on the left of origin and S0 =

0, S1, S2, . . . , Sn−l on the right of origin. Given Ln = l, Nn,−(x) = k′, the event

n(d̂− d0) < −x is equivalent to the event that in a two sided random walk with
l steps on the left and n − l steps on the right, the minima occurs on the left
and it occurs at one of the steps among

{
S′
k′+1, S

′
k′+2, . . . , S

′
l

}
. Using the similar

logic as above we obtain for any 2γ/fX(d0) ≤ x ≤ (δ1 ∧ δ2)n:

P

(
n(d̂− d0) < −x

)
≥ c1c2(p

∗)2

γ2γ+3
×
(

fX,max

1− FX(d0)

)−γ

× x−γ . (B.21)

Finally, from equation (B.20) and (B.21) we conclude for any 2γ/fX(d0) ≤ x ≤
(δ1 ∧ δ2)n:

P

(∣∣∣n(d̂− d0)
∣∣∣ > x

)
≥ c1c2(p

∗)2

γ2γ+2
×
(

fX,max

1− FX(d0)

)−γ

× x−γ .

This completes the proof.

B.7. Proof of Lemma A.6

We use the same notations as used in the proof of Lemma A.5. As ξi’s are
bounded by b with mean μ > 0, by applying Hoeffding’s inequality, we have for
any j ∈ N:

P
(
ξ̄j < −μ

)
≤ e−

jμ2

4b2 := e−cj ,
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with c = μ2/4b2. As in Lemma A.5, we start with establishing an upper bound
on the tail on the minimizer of random walk. Let {Sj}j=0,...,n denotes a n-step
random walk and let Zn denotes its minimizer supported on {0, 1, . . . , n}. We
then have:

P (Zn > k) =

n∑
j=k+1

P (Zn = j)

=
n∑

j=k+1

P (Sj < 0, . . . , Sj < Sj−1, Sj < Sj+1, . . . , Sj < Sn)

≤
n∑

j=k+1

P (Sj < 0)

=

n∑
j=k+1

P
(
ξ̄j < −μ

)
≤

n∑
j=k+1

e−cj =
e−c(k+1)

1− e−c
.

Going back to distribution of n(d̂− d0), as in the proof of Lemma A.5 we have:

P

(
n(d̂− d0) > x

)
=

n∑
r=0

r∑
k=0

[
P

(
n(d̂− d0) > x | Rn = r,Nn,+(x) = k

)
×P(Nn,+(x) = k | Rn = r)P(Rn = r)]

=

n∑
r=0

r∑
k=0

[P (argmin twosided RW > k | Rn = r,Nn,+(x) = k)

×P(Nn,+(x) = k | Rn = r)P(Rn = r)]

=

n∑
r=0

r∑
k=0

[P (argmin twosided RW > k | Rn = r)

×P(Nn,+(x) = k | Rn = r)P(Rn = r)] (B.22)

Upper bounding the argmin of two-sided random walk is relatively easier:

P (argmin twosided RW > k | Rn = r)

=

r∑
j=k+1

P (argmin twosided RW = j | Rn = r)

=

r∑
j=k+1

P

(
Sj < min

0≤i≤j−1
Si, Sj < min

j+1≤i≤r
Si, Sj < min

1≤i≤n−r
S′
i

)

≤
r∑

j=k+1

P (Sj < 0) ≤ e−c(k+1)

1− e−c
.
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Using this bound in equation (B.22) we obtain for any 0 ≤ x ≤ nδ1 (where δ1
is same as defined in the proof of Lemma A.5, i.e. we choose δ1 > 0 such that
fX(t) ≥ fX(d0)/2 for all |t− d0| ≤ δ1):

P

(
n(d̂− d0) > x

)
=

n∑
r=0

r∑
k=0

[P (argmin twosided RW > k | Rn = r)

×P(Nn,+(x) = k | Rn = r)P(Rn = r)]

≤
n∑

r=0

r∑
k=0

e−c(k+1)

1− e−c
P(Nn,+(x) = k | Rn = r)P(Rn = r)

≤ e−c

1− e−c

n∑
r=0

r∑
k=0

e−ck P(Nn,+(x) = k | Rn = r)P(Rn = r)

=
e−c

1− e−c

n∑
r=0

(
1− pn,x + pn,xe

−c
)r

P(Rn = r)

=
e−c

1− e−c

(
1− F̄ (d0) + F̄ (d0)

(
1− pn,x + pn,xe

−c
))n

=
e−c

1− e−c

(
1− F̄ (d0)pn,x(1− e−c)

)n
≤ e−c

1− e−c

(
1− (1− e−c)

xfX(d0)

2n

)n

≤ e−c

1− e−c
e−x

fX (d0)

2 (1−e−c) .

The calculation for P(n(d̂ − d0) < −x) for x > 0 is similar and hence skipped
for brevity. Therefore we obtain for 0 ≤ |x| ≤ nδ1:

P

(∣∣∣n(d̂− d0)
∣∣∣ > x

)
≤ 2e−c

1− e−c
e−x

fX (d0)

2 (1−e−c) .

This completes the proof.

B.8. Proof of Proposition A.7

From proposition 5 of [17] we have:

E

∥∥∥∥∥
n∑

i=1

ξf(Xi)

∥∥∥∥∥
F

≤ E

[
n∑

k=1

(∣∣η(k)∣∣− ∣∣η(k+1)

∣∣)E ∥∥∥∥∥
k∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
where

∣∣η(1)∣∣ ≥ ∣∣η(2)∣∣ ≥ . . .
∣∣η(n)∣∣ ≥ ∣∣η(n+1)

∣∣ = 0 are the decreasing order statis-
tics of {|ξi − ξ′i|}

n
i=1 where {ξ′i}1≤i≤n are i.i.d copy of {ξi}1≤i≤n. Hence we have:

E

∥∥∥∥∥
n∑

i=1

ξf(Xi)

∥∥∥∥∥
F
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≤E

[
n∑

k=1

(∣∣η(k)∣∣− ∣∣η(k+1)

∣∣)E ∥∥∥∥∥
k∑

i=1

εif(Xi)

∥∥∥∥∥
F

]

≤E

[
n∑

k=1

(∣∣η(k)∣∣− ∣∣η(k+1)

∣∣) (ϕn(k) + bn)

]

=E

[
n∑

i=1

∫ |η(k)|

|η(k+1)|
ϕn(k) dt

]
+ bnE

[∣∣η(1)∣∣]
≤E

[∫ ∞

0

ϕn (|{i : |ηi| ≥ t}|) dt

]
+ bnE

[
max
1≤i≤n

|ξi − ξ′i|
]

≤
∫ ∞

0

ϕn

(
n∑

i=1

P (|ξi − ξ′i| > t)

)
+ 2bnE

[
max
1≤i≤n

|ξi|
]

[By Jensen’s inequality]

≤
∫ ∞

0

ϕn

(
n∑

i=1

(P (|ξi| > t/2) + P (|ξ′i| > t/2))

)
+ 2bnE

[
max
1≤i≤n

|ξi|
]

=

∫ ∞

0

ϕn

(
2

n∑
i=1

P (|ξi| > t/2)

)
+ 2bnE

[
max
1≤i≤n

|ξi|
]

=2

∫ ∞

0

ϕn

(
2

n∑
i=1

P (|ξi| > t)

)
+ 2bnE

[
max
1≤i≤n

|ξi|
]

≤4

∫ ∞

0

ϕn

(
n∑

i=1

P (|ξi| > t)

)
+ 2bnE

[
max
1≤i≤n

|ξi|
]

where the last inequality follows from the fact that ϕn(0) = 0 and ϕn concave
which leads to ϕn(2x) ≤ 2ϕn(x).

B.9. Generalization of Theorem 2.4

In this subsection we prove a generalized version of Theorem 2.4 under the
following tail assumption on the error distribution:

P (|ξ| ≥ t) ∼ t−γ

as mentioned in Remark 2.5. More precisely, we assume the following:

1. supt∈[0,∞) t
γP (|ξ| ≥ t) ≤ CU ,

2. supt∈[t0,∞) t
γP (|ξ| ≥ t) ≥ CL(t0) > 0 for all t0 > 0 and CL(t0) ↓ 0 as

t0 ↓ 0.

As before, we are also assuming ξ is symmetric. The proof of theorem is similar
to Theorem 2.4. We will highlight the main differences here. Recall that the
proof of Theorem 2.4 is based on four lemmas: Lemma A.1 - Lemma A.4. The
proof of Lemma A.1 will not change, as it does not depend on the tail of the
distribution of ξ. The proof of Lemma A.2 will be changed: The new version of
that Lemma will be following:
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Lemma B.1. Suppose ξ1, ξ2, . . . i.i.d. random variables with distribution sym-
metric around origin and satisfies the above mentioned tail conditions for some
exponent γ. Define Xi = ξi + μ for some μ > 0 and a random walk based on
Xi’s, i.e Sn =

∑n
i=1 Xi. Suppose M denotes the minimizer of the random walk

on Z+. Then we have:

P (M ≥ k) ≥ c1c2p
∗

γ
× 1

kγ
:= c0k

−γ ,

for all k ≥ k0 := 1 ∨ �μ−γ/(γ−1)� ∨ �3CU�, where:
1. p∗ = P (Si > 0 ∀ i ∈ N) = P(M = 0) ,

2. c1 = CL(μ)
(μ+1)γ ,

3. c2 = infx≥�3CU�
(
1− 2CU

x

)x−1
.

Proof. For any fixed k ≥ 1 we have:

P (M ≥ k) =
∑
j≥k

P (M = j)

=
∑
j≥k

P (Si > Sj ∀ 0 ≤ i ≤ j − 1, Si > Sj ∀ i ≥ j + 1)

= P (S1 > 0, S2 > 0, . . . )
∑
j≥k

P

(
max
1≤i≤j

Si < 0

)

= p∗
∑
j≥k

P

(
max
1≤i≤j

Sj < 0

)
[p∗ = P (S1 > 0, S2 > 0, . . . )]

≥ p∗
∑
j≥k

1

j
P (Sj ≤ 0) (B.23)

where the last inequality uses Lemma A.1. From the symmetry of the distribu-
tion of ξ we have:

P (Sj ≤ 0) = P

(
j∑

i=1

ξj ≤ −jμ

)
= P

(
j∑

i=1

ξj > jμ

)
.

Set aj = j1/γ . Define the event Ai as:

Ai = {ξi > jμ+ (j − 1)aj , ξl ∈ [−aj , jμ) ∀ 1 ≤ l �= i ≤ j}

Clearly {Ai}′s are disjoint events and

P

(
j∑

i=1

ξj > jμ

)
≥ P

(
∪j
i=1Ai

)

=

j∑
i=1

P(Ai)
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= jF̄ (jμ+ (j − 1)aj) (F [−aj , jμ))
j−1

= jF̄ (jμ+ (j − 1)aj)
(
1− F̄ (aj)− F̄ (jμ)

)j−1
(B.24)

Next note that, jμ+ (j − 1)aj ≥ μ for all j ≥ 1. Therefore from equation (B.5)
we have for all j ≥ 1:

F̄ (jμ+ (j − 1)aj) ≥ CL(μ) (jμ+ (j − 1)aj)
−γ

,

which further implies:

j × F̄ (jμ+ (j − 1)aj) ≥ CL(μ)
j

(jμ+ (j − 1)aj)
γ

= CL(μ)
j(

jμ+ (j − 1)j1/γ
)γ

= CL(μ)
j

jγ+1
(
j−1/γμ+

(
1− 1

j

))γ
=

CL(μ)

jγ
1(

j−1/γμ+
(
1− 1

j

))γ
≥ CL(μ)

jγ
1

(μ+ 1)γ
:=

c1
jγ

.

Next observe that (jμ)γ ≥ j for all j ≥ 1 if μ > 1 or for all j ≥ μ−γ/(γ−1) if
μ ≤ 1. Using this in equation (B.24) we have for all j ≥ 1∨�μ−γ/(γ−1)�∨�3CU�:

P

(
j∑

i=1

ξj > jμ

)
≥ c1

jγ

[(
1− F̄ (aj)− F̄ (jμ)

)j−1
]

≥ c1
jγ

[(
1− CU

(
a−γ
j + (jμ)−γ

))j−1
]

≥ c1
jγ

[(
1− CU

(
1

j
+

1

(jμ)γ

))j−1
]

≥ c1
jγ

[
1− 2CU

j

]j−1

[∵ jμ ≥ j]

≥ c1
jγ

× inf
x≥�3CU�

(
1− 2CU

x

)x−1

:=
c1c2
jγ

(B.25)

Using this in equation (B.23) we obtain:

P (M ≥ k) ≥ p∗
∑
j≥k

1

j
P (Sj ≤ 0)
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= p∗
∑
j≥k

1

j

(
j∑

i=1

ξj > jμ

)
≥ c1c2 × p∗ ×

∑
j≥k

j−(γ+1)

≥ c1c2 × p∗ ×
∫ ∞

k

x−(γ+1) dx

≥ c1c2 × p∗ × 1

γkγ
.

This completes the proof of lower bound.

The proofs of Lemma A.3, Lemma A.4 as well as the rest of the argument
remain unchanged. This completes the proof of the generalized version of The-
orem 2.4.

Appendix C: More simulations

In this section we present elaborate simulation results for various values of
k ∈ {0.1, 0.5, 1, 2, 5, 10} to complement the simulation in Section 4 of main
paper, where simulations for �1 criterion (k = 0) and �2 criterion (k = ∞) are
presented. Here also we conducted experiments for four different signal levels
(μ ∈ {0.1, 0.5, 1, 2}).

Table 9

Quantiles of asymptotic distribution with μ = 1, k = 0.1

Distributions 90% 95% 97.50% 99% 99.50%

T3 8.3536987880812 13.5927682886652 19.3609171467853 27.6663592062195 34.5579382045799
T4 10.4788884372948 16.9486681760718 24.1027899555334 34.6517407531914 43.0321781340036
T5 11.6978692249975 18.8922281852943 26.8795756073259 38.5230842513588 48.094967379471
T6 12.4673379750485 20.1972893311096 28.8124291608022 41.3783772351445 51.6753216947574
T10 14.0000855492778 22.7095710062678 32.5473987595816 46.5409929468191 58.0397031493322
T15 14.6876914452795 23.8852566324027 34.0043421638412 48.6283574347637 60.4413437466999
Normal 15.9991878710632 26.1190617162937 37.3726341880332 53.5118731588664 66.5764957196666

Table 10

Quantiles of asymptotic distribution with μ = 1, k = 0.5

Distributions 90% 95% 97.50% 99% 99.50%

T3 8.32493407718205 13.5405276438179 19.3047074781908 27.5801370551298 34.3754080746644
T4 10.3475765957395 16.6841313019627 23.7966698462179 34.0389358097088 42.2652055393164
T5 11.4586343013648 18.5353104327393 26.3517929459007 37.7443111113224 46.7821424347838
T6 12.1908646105817 19.721295780556 28.0266082386693 40.127409557103 49.8162604852832
T10 13.5602636080797 21.9387825182329 31.2432135813082 44.5313945212685 55.5778874062068
T15 14.239221889277 23.0289587553665 32.8163191650782 46.9208960085874 58.2658889881086
Normal 15.403873209345 24.8700967052205 35.3620562213101 50.7334136469591 63.0498352682136
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Table 11

Quantiles of asymptotic distribution with μ = 1, k = 1

Distributions 90% 95% 97.50% 99% 99.50%

T3 8.62036825564386 14.0081909142818 19.9541673549796 28.5681359225452 35.524172881301
T4 10.2990926166834 16.6203209925997 23.5039309935524 33.7036724352976 41.9678567620591
T5 11.3276893731616 18.2469755527696 25.9557541469329 36.9843710045347 45.7497985547797
T6 11.9135214024096 19.1984271121553 27.2774369123353 39.0181625769645 48.3123893082825
T10 12.9998145790674 20.9518202195201 29.8029620277354 42.5882911278081 52.8099356616132
T15 13.5241418961661 21.7777549923007 30.9538813220154 44.1251345928093 54.6843626784368
Normal 14.4150444145811 23.242553834748 33.0062982814038 47.335611181757 58.8616621356656

Table 12

Quantiles of asymptotic distribution with μ = 1, k = 2

Distributions 90% 95% 97.50% 99% 99.50%

T3 9.67668771770413 15.965777602917 22.9582079555854 32.8033850250549 40.944891675974
T4 11.2541621802798 18.2141332407493 25.9528861199238 37.2196226574348 46.1626939615799
T5 11.9529499925983 19.3573628081287 27.5154521525252 39.3285576062721 48.9183687173307
T6 12.3009374477742 19.8598566733151 28.223223525972 40.3287408821538 49.9858703570862
T10 13.013835672381 20.9861287337384 29.8783671274062 42.3566419472444 52.3859467595871
T15 13.2017541203442 21.2354922665999 30.1620296088269 43.1616439990877 53.4856500437048
Normal 13.6328704116346 21.8011383314066 30.9358377012567 44.0613618414608 54.5118631397754

Table 13

Quantiles of asymptotic distribution with μ = 1, k = 5

Distributions 90% 95% 97.50% 99% 99.50%

T3 11.2272610783194 18.9816731937737 27.9037725374461 40.8689145728618 51.2147878961961
T4 12.4095320315674 20.4980446391945 29.6237376742403 42.7732713429297 53.338109787115
T5 12.8480963235841 21.0545979913169 30.2147632457062 43.4445264556501 53.6409869173766
T6 13.0869935601188 21.2716762920823 30.281581405516 43.2958191460236 53.9145395675979
T10 13.3285370910218 21.5350755916879 30.6627492515443 43.6970533424286 54.455095165621
T15 13.4417138370947 21.6328579001887 30.7494906092105 43.724874562948 54.2177605737277
Normal 13.5544750188985 21.7470304441407 30.7819392318713 43.6843110525953 53.8235614179449

Table 14

Quantiles of asymptotic distribution with μ = 1, k = 10

Distributions 90% 95% 97.50% 99% 99.50%

T3 11.6576668557376 20.0345314896088 29.7720008003837 44.4351920765485 55.8367073088179
T4 12.6160178306568 20.869684341797 30.2766780259759 44.2424316961008 55.4957320207511
T5 12.8851286373215 21.1813979715255 30.4191220480701 43.7844640867915 54.4545413832026
T6 13.0882957766607 21.3174888193934 30.5260570501067 43.8159728436371 54.3507431127391
T10 13.3530536086038 21.5328919607922 30.6639273685561 43.8038383653262 54.5911464163574
T15 13.4434745691714 21.6310161127235 30.7537719788635 43.7295501273868 54.2240963710686
Normal 13.5544750188985 21.7470304441407 30.7819392318713 43.6843110525953 53.8235614179449

Table 15

Quantiles of asymptotic distribution with μ = 0.5, k = 0.1

Distributions 90% 95% 97.50% 99% 99.50%

T3 28.532672412875 46.8706471694321 67.6041756789722 97.4930857962577 121.961700301769
T4 38.2819193124782 62.552045362741 89.7837169542353 129.145932269432 161.477146552752
T5 44.5091949682024 72.6717097294959 104.036589987155 149.905989438607 187.409833195342
T6 48.0901574047503 78.557305525532 112.843800505048 162.44555861772 201.816166904598
T10 55.8897061168498 91.0822988352974 130.395778088274 187.299604893212 233.505708387893
T15 59.306272284557 96.9668096977247 138.764385485374 198.429619389818 248.260823570918
Normal 65.8760109758601 107.818484039077 154.899858263991 223.055122634049 277.208421216919
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Table 16

Quantiles of asymptotic distribution with μ = 0.5, k = 0.5

Distributions 90% 95% 97.50% 99% 99.50%

T3 27.3750759298099 44.7722420183833 64.4808160016137 93.4515684758776 116.875208288023
T4 35.9675925299576 58.4302111069793 83.9852525535933 120.403426488691 149.756837388405
T5 41.1319246413426 67.0824127387807 95.9937750691976 138.233634035094 172.249968046942
T6 44.5722648865697 72.4761304495912 103.806356433929 148.70427114392 185.244152286579
T10 50.9981570910429 82.917143865562 118.96541900344 170.15068173747 212.360238214554
T15 54.0748000455022 88.2001830220234 126.317788452529 181.187230372619 224.580722486573
Normal 59.6053563347309 97.0407453665941 139.468447475864 201.296446721351 250.769440088992

Table 17

Quantiles of asymptotic distribution with μ = 0.5, k = 1

Distributions 90% 95% 97.50% 99% 99.50%

T3 28.9535753413177 47.2595220674185 67.9211327501115 97.6801405963068 122.198394032872
T4 35.7791257830564 58.2347028499178 83.8219937346199 119.892190456548 149.39017387062
T5 39.8634886345531 64.9443023944148 93.0527076134776 133.266607169204 165.659528999383
T6 42.310755074163 68.9720353361756 98.6544306915552 141.491380452853 176.840137099276
T10 47.110656565438 76.5991835723628 109.399889920527 156.7377007216 195.203793533811
T15 49.4154656052842 80.6729964074326 115.043039837822 164.671507525883 204.419235348596
Normal 53.414978588033 86.9810421233553 124.638214842517 178.620948305988 222.563969726123

Table 18

Quantiles of asymptotic distribution with μ = 0.5, k = 2

Distributions 90% 95% 97.50% 99% 99.50%

T3 34.3788217466515 56.2891673228673 81.0009868993164 117.25518597126 146.481873302119
T4 40.0528201827162 65.7183707599371 94.2308521020519 135.271780061382 167.889272979153
T5 42.8936146374266 70.09292397618 100.361912179339 143.917734529639 179.088695832393
T6 44.5217857123843 72.4655849071026 103.753547851116 148.785176765578 184.378255284364
T10 47.1852585876096 76.7860842088517 109.796238145931 156.734067877825 194.152986950608
T15 47.9408520452537 78.0650540743987 111.257576889225 159.010498171202 197.846312495383
Normal 49.5079582470008 80.5396888348225 115.188154986851 164.835820260727 204.931241705677

Table 19

Quantiles of asymptotic distribution with μ = 0.5, k = 5

Distributions 90% 95% 97.50% 99% 99.50%

T3 42.1220330307212 69.9598361767187 100.819915710102 146.102720595447 182.518546383375
T4 45.9610219900353 75.4575607721563 108.831713066518 156.963383423823 195.394653994033
T5 47.5979403918097 77.744069603015 111.308095761715 159.83139664115 198.68635726911
T6 48.0353440259296 78.4929265937533 112.706744708086 161.978436676216 201.50718406659
T10 48.7341339930379 79.2930128086947 113.404427574125 163.474496322987 202.546150712566
T15 48.8095450833039 79.3327055867973 113.344432217353 162.621338606352 201.969247675431
Normal 48.8633478609145 79.3772893502566 113.306088433024 162.350810999429 202.504161072626

Table 20

Quantiles of asymptotic distribution with μ = 0.5, k = 10

Distributions 90% 95% 97.50% 99% 99.50%

T3 45.224623872767 75.8003731357883 110.098123597561 158.793083024044 199.590840364891
T4 47.2992606048524 77.9991235132896 112.372671292715 162.096966234746 203.457561666718
T5 48.1957562353362 78.6848709763304 112.819291364713 162.453880135871 203.077921030432
T6 48.3308500398421 78.9263327959001 113.55342323937 162.65488272043 203.19345674427
T10 48.6314926249916 79.4221080617119 113.708496414293 163.530535124679 202.618434071806
T15 48.7490404141274 79.2849943678726 113.438820919391 163.023810987999 202.407042473259
Normal 48.8633478609145 79.3772893502566 113.306088433024 162.350810999429 202.504161072626
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Table 21

Quantiles of asymptotic distribution with μ = 0.1, k = 0.1

Distributions 90% 95% 97.50% 99% 99.50%

T3 691.585913275318 1116.80671170884 1551.34731818157 2060.33124492946 2297.91684597076
T4 913.490253643434 1428.32138237031 1888.58345590786 2287.69275540892 2421.72559976642
T5 1033.08671029929 1573.52184136739 2018.10390732023 2353.63360925043 2455.70422474729
T6 1100.461189421 1655.67567035186 2082.16598588138 2379.49750165915 2467.72884756757
T10 1226.93056184611 1792.60002082038 2184.5372973677 2418.6516997812 2491.82835831576
T15 1272.06492206848 1832.83196545174 2212.64945013956 2427.91992104435 2497.35717079279
Normal 1361.47359182986 1923.19294206175 2269.04708309755 2446.66140280472 2508.42377451608

Table 22

Quantiles of asymptotic distribution with μ = 0.1, k = 0.5

Distributions 90% 95% 97.50% 99% 99.50%

T3 623.417244213784 1013.2800943545 1422.65670625147 1925.48034984088 2212.23204432912
T4 817.27242623072 1292.72485278913 1741.37019765842 2196.23140048926 2378.24526951747
T5 924.151195765237 1441.31438841089 1898.02088348303 2293.00276856422 2427.15444034888
T6 988.749508377825 1515.6766410492 1966.56086889793 2332.38619298946 2442.80578417274
T10 1098.63668719227 1649.78210170229 2082.25266840223 2381.96067963126 2471.48125740886
T15 1151.17717379716 1709.43382876765 2122.86465647614 2395.42991168005 2478.2142350597
Normal 1231.93644908801 1794.26976272699 2187.6887314645 2420.59557912748 2493.24921520276

Table 23

Quantiles of asymptotic distribution with μ = 0.1, k = 1

Distributions 90% 95% 97.50% 99% 99.50%

T3 662.469748667074 1069.59641469967 1488.1893428298 1995.21729152715 2262.08257094163
T4 809.85559864959 1280.564679245 1734.41158922081 2192.7478522624 2376.19658522409
T5 889.329462387479 1390.84039160048 1853.67928413198 2273.44452384894 2415.50603357218
T6 939.825901600757 1458.15510511643 1914.91329602495 2303.9339532509 2430.83310329224
T10 1027.80326922858 1570.2907106716 2012.36886016401 2349.68903251833 2452.87904401359
T15 1064.18152223244 1610.61586497468 2049.3864131254 2364.70555005751 2460.68987663165
Normal 1126.89287133307 1681.4575792726 2109.81898470445 2390.77800765456 2475.7154315963

Table 24

Quantiles of asymptotic distribution with μ = 0.1, k = 2

Distributions 90% 95% 97.50% 99% 99.50%

T3 789.810105581448 1253.77149241333 1712.43147720877 2171.40442804131 2365.44782764469
T4 902.445389003925 1408.08154990501 1866.31675019539 2274.07881727991 2415.92629873592
T5 955.408443515265 1480.12080018515 1927.25293264727 2310.12102208929 2434.30120102033
T6 978.157326702502 1506.62737045575 1958.87019152396 2325.92566934938 2438.93246572574
T10 1022.21051199468 1559.49171459449 2002.88197334422 2347.65937521505 2452.51581183309
T15 1042.76433420544 1582.68094761371 2027.68775812454 2356.86928670928 2456.90382075004
Normal 1057.53733624309 1602.02718256746 2042.2215940587 2360.34876901845 2457.72725708744

Table 25

Quantiles of asymptotic distribution with μ = 0.1, k = 5

Distributions 90% 95% 97.50% 99% 99.50%

T3 957.276051207347 1479.73804966541 1938.14356167367 2319.27497095394 2439.70112898844
T4 1017.22085603425 1553.17756140914 2004.122746336 2346.99445905095 2451.51996412323
T5 1039.51740811484 1578.76768211778 2017.75474590447 2353.92775663355 2455.06432557587
T6 1051.26536625162 1591.81114185629 2030.73341953253 2359.67710552763 2458.99170195467
T10 1051.75513519349 1597.79865506523 2035.04944747562 2361.72996605265 2459.31613180123
T15 1051.25308472394 1597.54447455308 2036.91506373065 2360.98420003756 2460.0376094193
Normal 1052.56465100535 1600.15783374558 2039.04719379446 2364.68752110372 2461.63108637474
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Table 26

Quantiles of asymptotic distribution with μ = 0.1, k = 10

Distributions 90% 95% 97.50% 99% 99.50%

T3 1020.45712422267 1558.69123832535 2008.17176344346 2350.1143551918 2455.14935360474
T4 1045.17076588147 1590.18369073296 2033.37858852914 2357.32960146002 2458.80007064842
T5 1050.20319301615 1591.4427771334 2033.22781529606 2360.43552714178 2459.37158936661
T6 1054.27325275541 1594.86346079493 2033.57107565913 2358.17367243726 2458.13877824713
T10 1053.86050126658 1599.37633115038 2035.55626325774 2362.82927301231 2459.52821139428
T15 1050.67107411527 1597.29022112193 2036.88972466631 2360.59177260682 2460.01170680134
Normal 1052.59926213318 1600.20677260164 2039.11470855037 2364.76147570037 2461.66518805169

Table 27

Quantiles of asymptotic distribution with μ = 2, k = 0.1

Distributions 90% 95% 97.50% 99% 99.50%

T3 1.55427591730933 4.66329728625738 7.42349875218966 11.0539831418588 13.8497982832069
T4 2.54447478495746 5.5560288545974 8.40747031617402 12.1779954637349 15.2398715214712
T5 2.94182182123734 5.98112922689444 8.89651353275513 12.8663145685487 15.9074437543874
T6 3.17370680665086 6.21384601113391 9.17803654033794 13.2855327616803 16.4779710510846
T10 3.56632580724373 6.66844408727504 9.73996279978746 13.9221700001134 17.255837751101
T15 3.70412367859872 6.80613024346193 9.93788472919249 14.1934767329633 17.5376574761972
Normal 3.95801814591642 7.1204641408512 10.331048755716 14.7277759318252 18.2281531850659

Table 28

Quantiles of asymptotic distribution with μ = 2, k = 0.5

Distributions 90% 95% 97.50% 99% 99.50%

T3 1.58525426520645 4.70287937494892 7.43309614180873 11.0627373920382 13.8414193614277
T4 2.52645189287737 5.52864069023889 8.36326543103941 12.2670827262151 15.2616532940261
T5 2.90112257141207 5.92547388420335 8.86961063370793 12.8427354368825 15.9409529030012
T6 3.14416432686496 6.17855580565703 9.15447016594051 13.1184280093813 16.3851692047376
T10 3.51789575665061 6.59427235501635 9.65610554922482 13.8602174418393 17.1697151617247
T15 3.62870965392304 6.71961868535226 9.83979744369365 14.1153561564069 17.5288354049719
Normal 3.87141746721187 7.00529689242012 10.1504135851152 14.4969219956899 17.9268002826894

Table 29

Quantiles of asymptotic distribution with μ = 2, k = 1

Distributions 90% 95% 97.50% 99% 99.50%

T3 1.56454142997244 4.69269752541939 7.44074198257859 11.0986984415153 13.8477690144218
T4 2.5224111887514 5.5433839705459 8.41561535741103 12.2751341343976 15.2483299430723
T5 2.88738725150022 5.92189370153633 8.87436889185247 12.8584581744366 15.9838012674835
T6 3.09097803012668 6.13924522104549 9.10092522874141 13.1646658332534 16.36655599759
T10 3.46026135619142 6.52784341934985 9.55722648164952 13.6973730031202 16.9801254211912
T15 3.57516399900527 6.63944616656377 9.69556320407447 13.8832014179134 17.1606598058695
Normal 3.77564633142913 6.87011450797764 10.0348510106745 14.3186399200353 17.7781934348015

Table 30

Quantiles of asymptotic distribution with μ = 2, k = 2

Distributions 90% 95% 97.50% 99% 99.50%

T3 1.74098381758006 4.96666468324748 7.84942023979826 11.7060098572495 14.7270442018646
T4 2.5963730012743 5.70204336495744 8.64364221023573 12.6855503293643 15.776343897399
T5 2.95422548241382 6.04290885413885 9.07342365078278 13.1366020086245 16.3310970145165
T6 3.15175835835109 6.23709313589106 9.25018421651132 13.3698992407219 16.6389753242163
T10 3.42642481518157 6.48915398161272 9.52789378863859 13.6490634800389 16.8578922529491
T15 3.55829926352428 6.60756704454375 9.60803550932904 13.7149496871267 16.9792927148309
Normal 3.73251802650301 6.77197360515593 9.7939009218535 13.9170081065767 17.1809967262489
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Table 31

Quantiles of asymptotic distribution with μ = 2, k = 5

Distributions 90% 95% 97.50% 99% 99.50%

T3 2.1126833976562 5.58062708411904 8.93192713966539 13.6521891674556 17.3472144354772
T4 2.84957480202987 6.10157175982755 9.34800959375619 13.9547641402722 17.547950645855
T5 3.10733663833669 6.32679322717114 9.52031208078865 13.967142616375 17.4126757056361
T6 3.27307545220797 6.40815227181175 9.59182907385158 13.9425141513821 17.3794427574096
T10 3.51639124107138 6.623312824866 9.73507323840116 13.9896348468686 17.3521699189524
T15 3.581835769269 6.64932878743327 9.73100885700681 14.0103365846951 17.3162731750811
Normal 3.70041133579528 6.72991527356395 9.75483649073316 13.8292349748401 17.0074984099981

Table 32

Quantiles of asymptotic distribution with μ = 2, k = 10

Distributions 90% 95% 97.50% 99% 99.50%

T3 2.20826097242346 5.72123725896405 9.22079229374703 14.432918779651 18.7628631277345
T4 2.87197941748629 6.1875014516893 9.53836253474882 14.3273558002239 18.2739382343264
T5 3.13065012208848 6.37445273469656 9.61601462012811 14.1326437904448 17.7098321783359
T6 3.30976886070275 6.48543857844941 9.68472717330602 14.083300810493 17.6512026395697
T10 3.52374824364879 6.61361740990017 9.70135285982052 13.9793650927543 17.3477739282867
T15 3.581835769269 6.64978368371662 9.7316939616228 14.0100410832258 17.3162731750811
Normal 3.70041133579528 6.72991527356395 9.75483649073316 13.8292349748401 17.0074984099981

References

[1] Felix Abramovich and Vadim Grinshtein. High-dimensional classifica-
tion by sparse logistic regression. arXiv preprint arXiv:1706.08344, 2017.
MR3951383
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