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Abstract: The efficiency of a Markov sampler based on the underdamped
Langevin diffusion is studied for high dimensional targets with convex and
smooth potentials. We consider a classical second-order integrator which
requires only one gradient computation per iteration. Contrary to previ-
ous works on similar samplers, a dimension-free contraction of Wasserstein
distances and convergence rate for the total variance distance are proven
for the discrete time chain itself. Non-asymptotic Wasserstein and total
variation efficiency bounds and concentration inequalities are obtained for
both the Metropolis adjusted and unadjusted chains. In particular, for the
unadjusted chain, in terms of the dimension d and the desired accuracy ε,
the Wasserstein efficiency bounds are of order

√
d/ε in the general case,√

d/ε if the Hessian of the potential is Lipschitz, and d1/4/
√
ε in the case

of a separable target, in accordance with known results for other kinetic
Langevin or HMC schemes.
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1. Introduction

The Langevin diffusion (also called underdamped or kinetic Langevin diffusion)
is the Markov process on R

d × R
d that solves the SDE{

dXt = Vtdt
dVt = −∇U(Xt)dt− γVtdt+

√
2γdBt

(1)

where B is a standard d-dimensional Brownian motion, U ∈ C2(Rd) is called
the potential (or log-likelihood) and γ > 0 is a friction (or damping) parameter.
Under general assumptions, it is known to be ergodic with respect to the Gibbs
measure with Hamiltonian H(x, v) = U(x) + |v|2/2, namely the probability
measure π on R

2d with density proportional to exp(−H(x, v)). It is a central
subject of study in a wide variety of domains, at the intersection of probabilities,
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PDE and statistical physics, modeling e.g. plasmas or stellar systems. In this
work we focus on the use of the Langevin diffusion in Markov Chain Monte
Carlo (MCMC) algorithms in order to estimate expectations with respect to π.

This process has been used for decades in molecular dynamics (MD), in par-
ticular due to physical motivations related to the motion of particles in classical
physics (see [25, 38, 55, 30, 32, 31, 51, 8, 7, 6] and references within). In this
context, the objective is not necessarily to compute only statistical averages, but
also dynamical properties, like diffusion coefficients, transition times, reaction
paths, etc., so that it is crucial to sample a trajectory of (a discrete-time approx-
imation of) the Langevin diffusion, and not of another process with the same
statistical equilibrium. More recently, the Langevin diffusion has gained some in-
terest in the computational statistics and learning community [12, 11, 33, 14, 59],
in which case there is no preferred underlying dynamics and only statistical aver-
ages with respect to π matter. The present work follows this viewpoint. Besides,
in this context, the original question is to compute expectations with respect
to π1 ∝ exp(−U) the first d-dimensional marginal of π, and the velocity V is
added as an auxiliary variable in order to enhance the sampling. This is called
a lifted MCMC method.

We will focus on the case where U is m-convex and L-smooth (see Assump-
tions (∇Lip) and (Conv) below). These are usual conditions in the statistics
community to compare MCMCmethods, the objective being then to obtain non-
asymptotic explicit estimates in term of the dimension d, see e.g. [18, 12, 14].
These conditions are far from natural for MD applications where, except for
very particular harmonic toy models, the potentials are highly non-convex and
singular due to strong short-range repulsion of nuclei. On the other hand, and
contrary to the recent works in computational statistics, we will study a dis-
cretization scheme of (1) obtained by a splitting procedure, as commonly used
in MD [8, 30, 7, 6, 51] and implemented in all MD codes.

The study for MCMC purpose of a discretization of the Langevin diffusion
for a convex and smooth potential has recently been conducted in [12, 14,
33, 59]. Concerning Metropolis adjusted chains, some non-asymptotic results
have recently been established in [10, 20, 36, 37, 5] for HMC samplers or other
Metropolis-adjusted algorithms. Let us give an informal summary of our contri-
bution with respect to these works (a more detailed and quantitative discussion
is provided in Section 3.4 after our results have been rigorously stated).

• As far as non-asymptotic efficiency bounds are concerned, standard split-
ting discretisation schemes (such as the OBABO chain studied in the
present work, see Section 2.1) had not been studied yet. Contrary to the
first order scheme of [12, 14, 11, 59], the OBABO sampler is a second
order scheme (in the time-step). Like classical schemes, it only requires
one computation of ∇U per step, contrary to the second order scheme of
[14, 13] that also requires a computation of ∇2U . It belongs to the class
of splitting schemes considered in [30], but [30] only provides a formal
expansion of the invariant measure in the time-step, and only for two par-
ticular splitting (and not the one studied here). A second order scheme
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with the same computational complexity is also introduced in [33], and
we obtain similar results in term of efficiency. Contrary to the schemes
studied in [33, 30], the OBABO scheme is naturally connected to HMC
type samplers, and in particular the discretization bias at equilibrium is
only due to a deterministic approximation of the Hamiltonian dynamics
by a Verlet (or leapfrog) scheme, which has some nice consequences in the
analysis.

• Contrary to the previous works on other schemes based on the under-
damped Langevin diffusion, instead of establishing long-time convergence
estimates for the continuous-time process and then conducting an analysis
of the discretization error, we directly prove a Wasserstein contraction for
the discrete time Markov chain itself. This classically yields nice concentra-
tion results (and thus non-asymptotic confidence intervals) for empirical
averages, see Theorem 6, which is not the case in previous works. Then,
we study the bias at equilibrium separately. Notice that, ultimately, gath-
ering these two parts yields efficiency bounds that are similar to those
obtained with the method that relies only on the convergence rate of the
continuous-time process, nevertheless this work was initially motivated
by the theoretical question considered in [48] of obtaining convergence
rates for (discrete-time) MCMC samplers in high dimension. This issue
is not addressed with the basic method. Finally, with our method, we
obtain that empirical averages of the discrete-time chain have a (biased)
long-time limit (again, this is Theorem 6), which is a first step for using
Romberg interpolation techniques, see e.g. [19, 1] (this issue is postponed
to a future work, see [39]).

• We establish a Wasserstein/total variation regularization property. To our
knowledge, this is the first result of this kind for a Markov chain based
on an hypoelliptic non-elliptic diffusion. As a consequence, contrary to
[12, 14, 59], we obtain results for the total variation distance. However,
we acknowledge that schemes that are based on the exact solving of the
SDE (1) but with ∇U(Xt) replaced by ∇U(Xδ�t/δ�) where δ > 0 is the
time-step (which is the case in [12, 14, 33, 59] and not of our scheme)
have Gaussian transitions and thus enjoy a similar regularization prop-
erty, although it hasn’t been stated in previous works. In [33], bounds are
obtained for the Kullback-Leibler divergence, which is stronger, but with
hypocoercive PDE techniques, while we use an elementary coupling ap-
proach. Adapting their method to our case is not straightforward, as one
iteration of our scheme is not based on solving (1) with fixed forces.

• In order to see that second order schemes are more efficient than first order
ones, the gradient Lipschitz assumption is not sufficient, some information
is required on higher order derivatives of U . For this reason, in [14, 33], the
assumption that ∇2U is Lipschitz is enforced. We work under a weaker
condition (see Assumption (∇2pol(�)) below), that holds for instance if
‖∇(k)U‖∞ < +∞ for some k > 2. When ∇2U is Lipschitz, we obtain
efficiency bounds similar to [14, 33].

• We establish non-asymptotic efficiency bounds and confidence intervals for
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the Metropolis-adjusted OBABO scheme, which is an HMC sampler with
a particular choice of parameters. This is the first results of this kind for a
Metropolis-adjusted sampler based on the (kinetic) Langevin equation. By
comparison, the recent works [10, 36, 37, 5] are concerned with the classical
HMC sampler, with complete refreshment of velocities separated by long
run of the Hamiltonian dynamics (and do not provide confidence intervals).
Also, contrary to [10, 20, 36, 37], we do not study the case of so-called warm
start for the initial distribution, and we obtain non-asymptotic bounds
that involve only some moments of the initial distribution (similarly to
the unadjusted case).

We are mainly interested in the dependency in the dimension d, the time-step
δ and the accuracy ε of the explicit estimates. Concerning the dependency on
other parameters like m or L, in practice, all our estimates could be improved by
considering a preconditioned algorithm as in [59] and/or by taking into account
explicitly a Gaussian part of U , i.e. decomposing U(x) = x ·S−1x/2+ Ũ(x) with
some covariance matrix S and potential Ũ , see e.g. [47].

The article is organized as follows. The OBABO sampler and its Metropolis-
adjusted counterpart are presented in Section 2, together with some general
considerations on Wasserstein distances. Our main results are stated in Sec-
tion 3, decomposed as: results on the long-time behavior of the OBABO chain
(Section 3.1); on the equilibrium bias (Section 3.2); on the Metropolis-adjusted
sampler (Section 3.3). The results are discussed and related to other works in
Section 3.4. Section 4 contains the proofs for the long-time behaviour of the
OBABO sampler, Section 5 the proofs for the equilibrium bias and Section 6
the proofs for the Metropolis-adjusted chain.

2. Definitions

2.1. A second-order scheme for the Langevin diffusion

We present the Markov chain which is the main object of study of this work,
obtained as a time-discretization of the Langevin diffusion (already considered
by Horowitz in [25], see also [8] and references within). First, we simply define
the transition of the Markov chain, and the rest of the section is devoted to
the motivation and discussion of this definition. Let δ, γ > 0 be respectively
the time-step and friction coefficient, and denote η = e−δγ/2. We consider the
time-homogeneous Markov chain (xn, vn)n∈N on R

d ×R
d with transitions given

by {
x1 = x0 + δ

(
ηv0 +

√
1− η2G

)
− δ2

2 ∇U(x0)

v1 = η2v0 − δη
2 (∇U(x0) +∇U(x1)) +

√
1− η2 (ηG+G′) ,

(2)

where G and G′ are two independent d-dimensional standard (mean 0 variance
Id) Gaussian random variables. Denote by P the Markov transition operator as-
sociated to the chain, i.e. Pϕ(x0, v0) = E(ϕ(x1, v1)) for all measurable bounded
ϕ.
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A first very important remark is that, although it seems that in one iteration,
∇U has to be computed for two different values of x, this is in fact only true
for the first iteration, afterward ∇U(xn) is already known from the previous
iteration and only ∇U(xn+1) is computed. A second remark is that, contrary to
the schemes considered in e.g. [12, 14, 33, 59] (where the transition is obtained
by following for a time δ the continuous-time process (1) but with constant forces
∇U(xt) = ∇U(x0)), the law of (x1, v1) conditionally to (x0, v0) is not a Gaussian
distribution, because of the term ∇U(x1) in v1 (except in the particular case
where U is quadratic).

The scheme makes more sense when it is decomposed as the following suc-
cessive steps:

v′0 = ηv0 +
√
1− η2G (O)

v1/2 = v′0 − δ/2∇U(x0) (B)

x1 = x0 + δv1/2 (A)

v′1 = v1/2 − δ/2∇U(x1) (B)

v1 = ηv′1 +
√
1− η2G′ . (O)

Here, we use the notations O, B and A of [30], referring respectively to the
damping (or friction/dissipation, or partial resampling), the acceleration and
the free transport parts of the dynamics. So, in the rest of the article we will
refer to the Markov chain (xn, vn)n∈N as the OBABO sampler which, contrary
to some of its other names like second order Langevin or midpoint Euler-Verlet-
Midpoint Euler [8, 25, 31], has the advantage to give a compact yet explicit
description of the specific scheme (in particular by comparison with other second
order schemes for the underdamped Langevin diffusion).

Note that the parts BAB of the scheme is the classical velocity Verlet algo-
rithm for the Hamiltonian dynamics. More generally, the Verlet, OBABO, or
BAOAB (from [30]) algorithms all shares a common palindromic form since they
are obtained from a Strang/Trotter splitting of the generator of the Langevin
diffusion. We now give a brief and informal presentation of the latter, and refer
to [30, 31] or [44, Section 5] for more details. The transition semigroup Pt asso-
ciated to (1) is informally of the form etL where the infinitesimal generator L
can be decomposed as L = LA + LB + LO with

LA = v · ∇x LB = −∇U(x) · ∇v LO = −γv · ∇v + γΔv .

Using that eδ(a+b) = eδ/2aeδbeδ/2a + o(δ2), we get formally a second order ap-
proximation of Pδ by

Pδ = eδ/2LOeδ/2LBeδLAeδ/2LBeδ/2LO + o(δ2) .

The operator on the right-hand side is exactly the transition kernel of the OB-
ABO sampler. At least formally, the fact that the transition kernel of the chain
approximates the transition semi-group of the continuous process up to second
order in δ can be shown to yield a similar order for the error on the invariant
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measure, see [30, 44] for general discussions and more details and Proposition 12
below for a rigorous and quantitative statement in the particular OBABO case.
More precisely, in Proposition 12, we get an error term on the invariant mea-
sure of order δ2 for the Wasserstein and total variation distances, to compare
to e.g. [14, Theorem 2] or the proof of [12, Theorem 1] where the error is of
order δ for the Wasserstein distance (see Section 3.4 for the consequence of
this on the efficiency bounds). For convex and smooth potentials, for a suitable
choice of γ, the continuous-time process (1) converges to equilibrium at a rate
that is independent of the dimension, so that the error estimates obtained in
[12, 14, 33, 59] depends on the dimension only because of the error on the in-
variant measure (which requires the time-step to be small enough). By replacing
a first order discretization scheme by a second order one, we expect to improve
the estimates accordingly, which is indeed what is observed in [14, 33] where
other second-order schemes are considered, and in the present work (again, we
refer to Section 3.4).

The reason we chose to study the OBABO algorithm rather than the BAOAB
one or other similar scheme is the following. The OBABO scheme contains at its
core a (deterministic) Verlet part BAB, which is time reversible (in the physicist
sense, i.e. up to a reflection of the velocity). This fact classically leads to a nat-
ural Metropolized version of the algorithm, of Hamiltonian (or Hybrid) Monte
Carlo (HMC) type, presented below. This Metropolis-adjusted algorithm is in-
teresting in itself, and we use it as an auxiliary tool in the study of the bias of the
OBABO chain. Besides, an unintended benefit of our choice of integrator is that,
for the OBABO scheme, establishing a Wasserstein/total variation regulariza-
tion property (Proposition 3) is rather straightforward because of the particular
location of the noise in the scheme. That being said, it should be possible to
adapt most (if not all) of our arguments to the BAOAB or other similar second
order schemes like in [33]. Finally, remark that the BAOAB scheme is promoted
in [30] because, in the overdamped limit γ → +∞, the invariant measure is
correctly sampled at fourth order in the time-step. However, as γ → +∞, the
convergence rate of the chain goes to zero, so it is not clear that this argument
is decisive in the choice of the integrator (after a suitable scaling of time, the
BAOAB converges as γ → +∞ to a discretization scheme of the overdamped
Langevin diffusion which has a correct equilibrium up to second order).

Recall the goal of the algorithm is to compute averages with respect to π1

the first d-dimensional marginal of π. As such, we are not constrained for the
equilibrium of the velocities, and typically we could chose a symmetric Gaus-
sian distribution with variance different from 1. Considering the Hamiltonian
H(x, v) = U(x) + |v|2/(2σ2), we would have a new parameter σ to optimize,
which could improve the results. Nevertheless, in that case, we can always chose
σ = 1 by the change of variables v ← v/σ, δ ← δσ and γ ← γ/σ. As a conse-
quence, without loss of generality, we take σ = 1.

As mentioned above, the particular structure of the scheme has some nice
implications for the theoretical study. Of course, in practice, if we are only
interested in computing averages that only involve the position xn, then the
scheme is equivalent to alternate a Verlet step BAB and a partial refreshment
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O2 (which is simply O but with a full rather than half time-step, i.e. η is replaced
by e−δγ), since (OBABO)n =O(BABO2)n−1BABO and the first and last O have
no effect on the position.

Finally, let us mention that our analysis can be straightforwardly adapted to
get results on the O(BAB)kO scheme for some fixed k ∈ N∗ independent from δ
(i.e. k Verlet steps are performed between the partial refreshments). Indeed, as
δ vanishes, the corresponding chain still converges toward the continuous time
process (1), which is the main ingredient of our results concerning long-time
convergence, and similarly there is no particular difficulty to adapt the results
concerning discretization errors. For fixed parameters k and γ, this extension
does not yield any improvement in terms of scaling in δ and d (also, note that
one iteration of O(BAB)kO requires k computations of ∇U) and thus we don’t
consider it to avoid an unnecessary inflation of notations.

2.2. Metropolis-adjusted algorithm

The O parts of the scheme leaves invariant the standard Gaussian distribution
for the velocities, hence the target π. This is not the case of the Verlet part BAB
because of the numerical approximation. As a consequence, π is not invariant for
the OBABO chain. Nevertheless, this is classically fixed by adding a Metropolis
accept/reject step on this part of the dynamics, which gives an HMC algorithm
[25, 45]. We now detail this. In the following we denote

ΦV (x, v) =

(
x+ δv − 1

2δ
2∇U(x)

v − 1
2δ
(
∇U(x) +∇U

(
x+ δv − 1

2δ
2∇U(x)

))) ,

so that the steps BAB read (x1, v
′
1) = ΦV (x0, v

′
0). Denote also ΦR(x, v) =

(x,−v). It is then straightforward to check that the Verlet algorithm is time-
reversible, i.e. ΦRΦV ΦRΦV (x, v) = (x, v) for all x, v ∈ R

d. As a consequence,
the deterministic proposal kernel

q ((x, v), dydw) = δΦRΦV (x,v)(dydw)

is symmetric. Denote PMH the Markov transition operator of the Metropolis-
Hastings algorithm with proposal kernel q. Considering the acceptance prob-
ability α(x0, v0) := exp

(
− (H (ΦV (x0, v0))−H(x0, v0))+

)
, a transition of the

corresponding chain is given by:

(x′, v′) = ΦV (x0, v0)
(x1, v1) = (x′,−v′) if W � α(x0, v0)

= (x0, v0) otherwise,

whereW is uniformly distributed over [0, 1]. We used thatH(x′, v′) = H(x′,−v′).
By construction of the Metropolis-Hastings algorithm, PMH is reversible (in
the probabilistic sense) with respect to π. Moreover, π is also invariant by the
transformation v ↔ −v, namely πPR = π where PRϕ(x, v) = ϕ(x,−v). Denote
PMV = PRPMH , which is similar to a Verlet transition BAB of the previous
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section except for the accept/reject step. Remark that, in case of rejection, the
velocity is reflected. This is invisible in the classical HMC algorithm for which
the velocity is fully resampled after each accept/reject step (which will not be
the case here).

Denote by PO the Markov transition kernel on R
d ×R

d corresponding to the
O transition, i.e.

(x1, v1) =
(
x0, ηv0 +

√
1− η2G

)
with G ∼ N (0, Id) .

In other words, PO is given for any bounded observable ϕ by

POϕ(x, v) = (2π)−d/2

∫
Rd

ϕ
(
x, ηv +

√
1− η2w

)
e−|w|2/2dw .

The Metropolis-adjusted version of the OBABO algorithm, introduced in [25],
is the Markov chain with transition operator

PM = POPMV PO .

By construction, π is invariant for PM . Although π is reversible for PO, PR and
PMH , this property is not conserved by composition and π is not reversible with
respect to PM . Besides, using that PRPOPR = PO and P 2

R = Id, we see that that
the adjoint operator P ∗

M = POPMHPRPO in L2(π) is given by P ∗
M = PRPMPR,

i.e. the process is reversible in the physics sense, up to a reflection of the velocity.
We won’t use this property in the article but we note that it allows to get an L2

spectral gap from a contraction in an other distance, like a Wasserstein distance
or the H1 norm, as in the reversible case, see e.g. [15].

The operator PM corresponds to the following transition:

v′0 = ηv0 +
√
1− η2G

v1/2 = v′0 − δ/2∇U(x0)
x̃1 = x0 + δv1/2
ṽ1 = v1/2 − δ/2∇U(x̃1)

(x1, v
′
1) = (x̃1, ṽ1) if W � α(x0, v

′
0)

= (x0,−v′0) otherwise

v1 = ηv′1 +
√
1− η2G′ .

Remark that, in case of acceptation (namely if W � α(x0, v
′
0)) then this is

exactly the OBABO transition. Similar Metropolis-adjusted discretizations of
the Langevin diffusion have been studied in [51, 7, 6, 47], see also references
within.

Due to the particular scaling of the partial refreshment mechanism, this
HMC chain converges as δ vanishes to the Langevin diffusion rather than to
the continuous-time Randomized HMC (see [15] and references within) where
dissipativity in the velocity is ensured by a (possibly partial) resampling of the
velocities at constant rate, rather than an Ornstein-Uhlenbeck diffusion.

Following motivations similar to the unadjusted case, we call this specific
Metropolis-adjusted splitting scheme the OM(BAB)O chain (the M(·) standing
for Metropolis).
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2.3. Wasserstein distances

Let ρ be a distance on R
d. For p ∈ [1,∞), denote by Pp,ρ(R

d) the set of prob-
ability distributions on R

d having a finite p-th moment for ρ, i.e. ν ∈ Pp,ρ(R
d)

if ∫
Rd

ρp(0, x)ν(dx) < +∞ .

For p ∈ [1,∞] the Wasserstein distance Wp,ρ on Pp,ρ(R
d) is given for ν, μ ∈

Pp,ρ(R
d) by

Wp,ρ (ν, μ) = inf
η∈Γ(ν,μ)

‖ρ‖Lp(η) ,

where Γ(ν, μ) is the set of transference plan of ν and μ, namely is the set of
probability distributions on R

d ×R
d with first marginal ν and second marginal

μ. In other words,

Wp
p,ρ (ν, μ) = inf

X∼ν,Y∼μ
E (ρp(X,Y )) ,

although this is only a formal definition since the infimum is not taken on a
proper set. If (X,Y ) is a random variable with law η ∈ Γ(ν, μ), we say that
(X,Y ) is a coupling of ν and μ. Implicitly, Wρ means W1,ρ, and Wp means
Wp,ρ with ρ(x, y) = |x− y|. In fact, unless otherwise specified, in R

d, the name
Wasserstein distances usually refers to cases where ρ is equivalent to the Eu-
clidean metric.

Besides, another interesting case is the discrete metric ρ(x, y) = 21x 	=y, in
which case the associated W1 distance is the total variation norm

Wρ(ν, μ) = ‖ν − μ‖TV = inf
X∼ν,Y∼μ

2P (X 
= Y ) .

Given a Markov operator Q acting on Pp(R
d), it is easily seen by conditioning

on the initial condition that, for C > 0, the proposition

∀ν, μ ∈ Pp(R
d) , Wp,ρ(νQ, μQ) � CWp,ρ(ν, μ)

is equivalent to

∀x, y ∈ R
d , Wp,ρ(Q(x, ·), Q(y, ·)) � Cρ(x, y) .

Besides, the Jensen’s inequality implies that Wp,ρ � Wq,ρ whenever p � q,
which together with the previous remark implies that a contraction of the Wq,ρ

distance for some q induces a contraction of Wp,ρ for all p � q.
For a distance ρ on R

d that is equivalent to the Euclidean metric, from
[58, Corollary 5.22 and Theorem 6.18], there always exists an optimal coupling
for Wp,ρ, i.e. for ν, μ ∈ Pp(R

d) there exists a coupling (X,Y ) of μ on ν on
some probability space Ω such that Wp

p,ρ(ν, μ) = E (ρp(X,Y )), and moreover

(Pp(R
d),Wp,ρ) is a Banach space.
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3. Main results

As already mentioned, we are principally interested in the smooth and convex
case, corresponding to the following conditions.

Assumption (∇Lip). There exists L > 0 such that for all x, y ∈ R
d,

|∇U(x)−∇U(y)| � L|x− y| .

Assumption (Conv). There exists m > 0 such that for all x, y ∈ R
d,

(x− y) · (∇U(x)−∇U(y)) � m|x− y|2 .

Under Assumptions (∇Lip) and (Conv), U admits a unique global minimum
x� and for all x ∈ R

d,

|∇U(x)| � L|x− x�| and m|x− x�|2 � 2U(x) � L|x− x�|2 . (3)

The two conditions don’t have the same status. The condition (∇Lip) will be
enforced in all the article. It classically implies the stability of the OBABO
scheme for δ small enough (this will be a consequence of our results). Approxi-
mating diffusions with non-Lipschitz coefficient leads to various difficulties and
can lead to truncated algorithm, see e.g. [7] and references within. The condi-
tion (Conv) gives a simple condition to obtain nice explicit convergence rates,
and will not be used in most of the bias error analysis.

3.1. Dimension free convergence rates

Recall P is the Markov operator corresponding to the OBABO chain introduced
in Section 2.1. In this section, we state our results obtained on the long-time
behavior and regularization of this chain by itself, i.e. without referring to the
continuous-time limit.

Under the the convex/smooth assumption, and for a suitable choice of the
damping parameter, the Langevin diffusion is contractive, in the sense that
its deterministic drift contracts the distances [4, 12]. Hence, starting from two
different initial states, the parallel coupling (i.e. considering the same Brownian
noise) of two processes yields a deterministic contraction. The problem is quite
more involved in a non-convex case where one has to take advantage of the
noise to overcome potential barriers, in which case a combination of parallel
and mirror (using reflected Brownian noises) couplings and a suitable concave
transformation of the distance can give a contraction in some modified W1

distance, see [21, 11, 13]. An alternative argument in the non-convex case to get a
W2 hypocoercive contraction is to combine an entropic hypocoercive contraction
with a Wasserstein/entropy regularization, as in [22, Theorem 2] (this gives
sharper results than coupling arguments in the low temperature regime, see
[42]).

In the present convex case, the OBABO chain being an approximation of
the Langevin diffusion, a simple parallel coupling does the job, and we get the
following.



High-dimensional MCMC with a splitting scheme 4127

Theorem 1. Under Assumptions (∇Lip) and (Conv), suppose moreover that
γ � 2

√
L and that δ � m/(33γ3). Then, for all p � 1, n ∈ N and all ν, μ ∈

Pp(R
2d),

Wp (νP
n, μPn) � K1 (1− δκ)

n/2 Wp(ν, μ)

with

K1 =
√
3max

(
L1/2, L−1/2

)
, κ =

m

3γ
.

Moreover, P admits a unique invariant probability distribution πδ, and πδ ∈
Pp(R

2d) for all p � 1.

This is proven in Section 4.1, see Corollary 20.

Remark 2. The restriction on γ is consistent with all the works that studied the
contraction of the parallel coupling for the continuous-time Langevin diffusion
[4, 12, 14, 59] (see also [15] for the Randomized HMC algorithm, since this
is exactly the same computations after taking expectations). In fact, as proven
in [43, Proposition 4], for the continuous-time Langevin process, a Wasserstein
contraction as in the proof of Theorem 1 holds for all potentials U satisfying
(∇Lip) and (Conv)if and only if L − m < γ(

√
L +

√
m). When m � L our

condition γ � 2
√
L is thus similar to the optimal one up to a factor 2. In fact,

it is clear that combining the proof of [43, Proposition 4] and of Theorem 1, a
Wasserstein contraction holds for the OBABO chain under the same optimal
condition on γ as in the time-continuous case, but then κ and the condition on
δ are less nice and this doesn’t improve the convergence rate in terms of the
dependency on m and L.

The choice γ = 2
√
L maximizes our bound on the contraction rate. In [14],

the optimal rate for the continuous-time process is proven to be m/γ, obtained
with the choice γ =

√
m+ L, which means in the regime m � L we are simply

missing a factor 6 from the optimal bound. Again, this factor 6 can of course
be reduced to get arbitrarily close to the optimal bound simply by following the
proof and keeping sharper constants, to the cost of a stronger condition on δ,
and without changing the order in terms of m and L.

Besides, as γ → +∞, we get a convergence rate of order 1/γ, which is sharp
and well-known in the case of the continuous-time Langevin diffusion.

It is clear that a condition on δ is needed, since the process is not even stable
when δ is too large. Here the condition δ � m/(33γ3) is not sharp, it is used
to get a simple expression. Anyway, we have in mind the regime where m,L, γ
are independent from the dimension and, as we will see in the next section, δ
should vanish as d → +∞, so that the condition on δ is always satisfied in
high dimension, which is why we chose simplicity over sharpness to state this
condition.

As an hypoelliptic (non-elliptic) diffusion, the continuous-time Langevin dif-
fusion (1) enjoys many nice regularization properties. In particular, under As-
sumption (∇Lip), [23, Corollary 4.7(2) and Remark 4.1] implies an instan-
taneous W2/relative entropy regularization, which together with the Pinsker
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inequality implies that

‖νPt − μPt‖TV � C

min(1, t3/2)
W2(ν, μ)

for some C > 0 for all ν, μ ∈ P2(R
2d) and t > 0, where (Pt)t�0 is the transition

semigroup associated to (1). For elliptic diffusions the result would typically
hold with

√
t, but for the Langevin diffusion, there is no direct noise in the

position and thus tN+1/2 is to be expected where N is the number of times one
has to consider Lie brackets to fulfill Hörmander’s condition (here N = 1).

We now state a similar result, but at the level of the discrete time chain
P . Convexity is not assumed. We are not aware of any similar result for a
Markov chain based on the discretization of an hypoelliptic non-elliptic diffusion
(although, as mentioned in the introduction, it holds indeed in many cases).

Proposition 3. Under Assumption (∇Lip), for all ν, μ ∈ P1(R
2d),

‖νP − μP‖TV � K2

δ3/2
W1(ν, μ) ,

with

K2 =

√
δ

2π (1− η2)
max

(
2 + 3δ2L/2, 3δ

)
−→
δ→0

√
2

πγ
.

This is proven in Section 4.2, see Proposition 22.

Remark 4. We retrieve for δ → 0 the expected δ3/2. In fact, more precisely,
as can be seen in Proposition 22 below, we get the scaling δ3/2 for the positions
and

√
δ for the velocities.

Combining the two previous results naturally yields a convergence rate for
the total variation distance. Following [50, 48], we consider the total variation
convergence rate of P in the sense of:

r∗(P ) := exp

(
sup

z∈R2d

lim sup
n→+∞

ln ‖δzPn − πδ‖TV

n

)
.

An immediate consequence of Theorem 1 and of Proposition 3 is the following.

Corollary 5. Under the conditions of Theorem 1, for all ν, μ ∈ P1(R
2d) and

all n � 1,

‖νPn − μPn‖TV � K1K2

δ3/2
(1− δκ)

(n−1)/2 W1(ν, μ) ,

with K1, κ and K2 given in Theorem 1 and Proposition 3. In particular, r∗(P ) �
1− δκ/2.

The most classical settings to obtain bounds on the total variation conver-
gence rate of a Markov chain is the combination of a Lyapunov (drift) and a
local Doeblin (minoration) conditions. Nevertheless, the recent [48] rigorously
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establishes that, in a variety of cases, no drift/minoration condition can yield a
reasonable bound on r∗(P ) (here only one-step minoration conditions are con-
cerned, of the form infz∈C P (z, ·) � εν for some probability ν and some ε > 0).
More precisely, it is clear that the results of [48] apply to the OBABO sampler
(essentially adapting the proof of [48, Proposition 15] for the MALA sampler),
which proves that it is impossible to prove simply with a drift/minoration con-
dition that, if δ scales polynomially with the dimension, then r∗(P ) is bounded
away from 1 polynomially in the dimension. In Corollary 5, we have used the
combination of a Wasserstein convergence and a Wasserstein/total variation reg-
ularization, called in [48, 49, 34] a one-shot coupling, which is indeed presented
in [48] as an alternative to drift/minoration arguments.

We finish this section with a concentration result implied by the Wasserstein
contraction of Theorem 1, or more precisely by the deterministic contraction
at the core of the proof of this result (see Proposition 17 below). We say that
a probability distribution ν on R

d satisfies a logarithmic Sobolev (or simply
log-Sobolev) inequality with constant C if, for all bounded Lipschitz ϕ,∫

Rd

ϕ2 ln
(
ϕ2
)
dν −

(∫
Rd

ϕ2dν

)
ln

(∫
Rd

ϕ2dν

)
� C

∫
Rd

|∇ϕ|2dν .

Such inequality yields many useful information, in particular related to con-
centration of measure, see e.g. [2, 28]. As a consequence of the Brascamp-Lieb
inequality or of the Bakry-Emery curvature criterion [2], it is well known that,
under the condition (Conv), the Gibbs measure π satisfies such an inequality
with constant 2max(1, 1/m). However, the invariant measure of P is not ex-
plicit. Nevertheless, the positive Wasserstein curvature (in the sense of [46, 26])
obtained in Theorem 1 (or more precisely in Proposition 17) yields a discrete-
time Bakry-Emery condition, which in turn yields the following.

Theorem 6. Under the conditions of Theorem 1, πδ satisfies a log-Sobolev
inequality with constant

ClS =
6

m
K2

1γ
2
(
1 + δ + δ2L/2

)2
.

Moreover, if μ0 ∈ P(R2d) satisfies a log-Sobolev inequality with constant C ′ >
0 and if (Zk)k∈N is an OBABO chain with Z0 ∼ μ0, then for all 1-Lipshitz
functions ϕ on R

2d, n � 1 and u � 0,

P

(∣∣∣∣∣ 1n
n∑

k=1

ϕ(Zk)− πδ(ϕ)

∣∣∣∣∣ � u+
2K1

nκδ
W1(μ0, πδ)

)

� 2 exp

(
− nu2κδ

4ClS + 4K2
1C

′/(nκδ)

)
.

Remark 7. If μ0 is a Dirac measure, it satisfies a log-Sobolev inequality with
constant C ′ = 0. In any cases, we can bound W1(μ0, πδ) by W1(μ0, π)+W1(π, πδ),
and then it is possible to chose μ0 = δ(x̃�,0) or δx̃� ⊗N (0, Id) (which satisfies a
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log-Sobolev inequality with constant 2), where x̃� is an approximation of x� ob-
tained through a deterministic optimization scheme. As can be seen for instance
in Lemma 30, this yields an initial distance W1(π, μ0) of order

√
d+ |x� − x̃�|.

The remaining term W1(π, πδ) (that also controls |πδ(ϕ) − π(ϕ)|) is studied in
the next section.

Remark 8. In fact, a W1 contraction (which does not necessarily implies a log-
Sobolev inequality) is sufficient to get a similar result, see [16, Corollary 2.6]
and [26].

3.2. Equilibrium bias and efficiency

The invariant measure πδ of P is not explicit. Since the OBABO sampler con-
verges to the Langevin diffusion as δ vanishes, we expect πδ to converge to π.
There are many classical ways to quantify this; in view of the previous long-time
convergence results, in this work we are naturally interested by an estimation
of the Wasserstein and total variation distances between πδ and π.

Recall the definition of the Verlet map ΦV in Section 2.2, and consider PV the
corresponding transition operator, i.e. PV ϕ(x, v) = ϕ(ΦV (x, v)) (equivalently,
νPV = ΦV �ν). From the contraction of Wasserstein distances and the Wasser-
stein/total variation distance regularization property, it is not difficult to get
the following.

Proposition 9. Under the conditions of Theorem 1, for all p � 1,

Wp (πδ, π) � 2K1

δκ
Wp (π, πPV )

and for all n ∈ N∗,

‖πδ − π‖TV � K1K2

δ3/2
(1− δκ)(n−1)/2W1(πδ, π) + n‖πPV − π‖TV

where K2 is given in Proposition 3.

This is proven in Section 5.

Remark 10. Using that (x′, v′) = ΦV (x, v) is a unitary change of coordinates
(see [56, Problem 1.5]) and that it is reversible up to a reflection of the velocity
(which preserves the Hamiltonian H) we see that∫

R2d

ϕ (ΦV (x, v)) e
−H(x,v)dxdv =

∫
R2d

ϕ(x, v)e−H(ΦV (x,−v))dxdv .

In other words, πPV is the probability law with density proportional to exp(−H ◦
ΦV ◦ ΦR).

This leads us to the study of the Verlet step. In order to control the distance
from πPV to π, a natural way is to consider a Markov operator Q that leaves π
invariant and to control the distance between πPV and πQ = π by constructing
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a coupling of a transition of PV with a transition of Q, starting from the same
initial condition distributed according to π. If Q is close to PV then we will be
able to do so while keeping the two chains close. Since PV has been obtained
as the discretization of the Hamiltonian dynamics, a natural candidate for Q is
Qδ where (Qt)t�0 is the transition semi-group of this deterministic flow, which
indeed leaves π invariant. Comparing the discrete-time Markov chain with its
continuous-time limit is indeed the main argument in similar works such as
[12, 11, 18, 14]. However, we remark that another candidate is given by the
Metropolis-adjusted Verlet transition PMV = PRPMH introduced in Section 2.2.
Indeed, π is invariant for PMV , and PV and PMV only differ by an accept/reject
step. Comparing PV with Qδ or with PMV leads to two different kind of results.
On the one hand, PV and Qδ are deterministic, so there is no real coupling here,
only a deterministic numerical error, in particular it behaves well withWp for all
p � 1. On the other hand, it is not suitable to bound the total variation distance
since the probably that the deterministic flow and the numerical integrator are
equal after one step is in general zero. On the contrary, by design, a transition of
PV and PMV gives exactly the same result provided the step is accepted in PMV ,
which enables to get information on the total variation distance. Nevertheless, in
case of rejection, because of the velocity reflection, although the initial condition
is the same for the two chains, the distance instantaneously get large. This makes
the comparison with PMV less and less efficient for bounding Wp as p increases.
In a word, when comparing PV with Qδ, we get two points that are very close
(but distinct) with probability 1 while, when comparing PV with PMV , we get
two points that are equal with large probability but distant otherwise.

This analysis is conducted in Section 5. We now present its results.
A first remark is that the main difference between the OBABO sampler

and the Markov chain studied in [12] is that the former is based on a second-
order integrator, at least formally. Nevertheless, a Taylor expansion of the Verlet
algorithm to an order larger than one requires informations on derivatives of U
higher than two. As a consequence, relying only on Assumption (∇Lip), we can
only get results similar to [12] for the Wasserstein distances.

Proposition 11. Under the conditions of Theorem 1, for all p � 1,

Wp (π, πδ) � δ
√

d+ (p− 2)+
2K1K3

κ

‖π − πδ‖TV � δd
(
2 + | ln

(
δ3d

)
|
)(2K2

1K2K3

κ
√
1− δκ

+
K4

κ

)

where K2,K3,K4 are given in Propositions 3 and 31 (in particular K3 and K4

converge to L as δ vanishes).

Proposition 11 is a corollary of Propositions 9 and 31, as proven at the end
of Section 5. The factor | ln

(
δ3d

)
| may seem surprising, but cannot be avoided

with our results.
In order to see the benefits of the second-order approximation, some con-

ditions on higher derivatives of U have to be enforced. Ideally, we would like
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conditions that are general, simple, and under which the OBABO sampler proves
to be efficient. Of course these three criteria are contradictory and, as a com-
promise, we study several conditions to get a partial picture of the behavior of
the algorithm. We could state a technical ad hoc condition containing exactly
what is used in the proof, but then such a condition would have to be checked
on particular cases. We will rather focus on two simple and general conditions,
which provides a simple proof that there exist situations for which the bias of the
chain is of second order in δ with possibly a nice dependence in the dimension.

The simplest condition one can think of, considered in other works like [18,
14, 33], is that the Hessian of U is Lipschitz:

∃L2 > 0 such that ∀x, y ∈ R
d , |∇2U(y)−∇2U(x)| � L2|x− y| .

In fact, we will work under a possibly weaker generalization of this condition:

Assumption (∇2pol(�)). There exist � � 2, L� > 0 and x� ∈ R
d such that,

for all x, y ∈ R
d,

|∇2U(y)−∇2U(x)| � L�|x− y|
(
2 + |x− x�|�−2 + |y − x�|�−2

)
/4 . (4)

Note that, up to a change of the constant L�, if Assumption (∇2pol(�))
holds for some x� then it holds with any other value of x�. As a consequence,
implicitly, whenever Assumptions (Conv) and (∇2pol(�)) are simultaneously
satisfied, then we chose x� in (∇2pol(�)) to be the global minimum of U given
by (Conv).

As can be seen through a Taylor expansion, (∇2pol(�)) holds in particular
if ‖∇(k)U‖∞ < +∞ for some k � 3.

As we will see, under Assumption (∇2pol(�)) for any � � 2, we still get a
second-order error in δ. Nevertheless, for � > 2, due to the presence of additional
moments, the dependence in the dimension worsen. However, as illustrated by
the next condition, there are cases where, even though the local Lipschitz con-
stant of ∇2U is polynomial, the OBABO sampler is super efficient.

Assumption (⊥⊥). There exist � ∈ N, L� > 0, x� = (x�,1, . . . , x�,d) ∈ R
d, an

orthogonal matrix Q ∈ O(d) and, for i ∈ �1, d�, potentials Ui ∈ C2(R) such that

U(Qx) =
∑d

i=1 Ui(xi) and for all i ∈ �1, d� and x, y ∈ R,

|U ′′
i (y)− U ′′

i (x)| � L�|x− y|
(
2 + |x− x�,i|�−2 + |y − x�,i|�−2

)
/4 .

Similarly to Assumption (∇2pol(�)), when Assumptions (⊥⊥) and (Conv) are
both satisfied, x� is implicitly the minimum of U . Assumption (⊥⊥) means that
the target distribution is separable, namely, in a suitable orthonormal basis, the
coordinates of a random variable distributed accorded to π are independent.
It is important to note that we do not need to know Q. Indeed, contrary to
e.g. the Zig-Zag sampler [3] or more generally Gibbs algorithms, in the OBABO
sampler, the basis does not play a particular role, i.e. if (xn, vn)n∈N is an OBABO
chain for some potential U then (Q−1xn,Q−1vn)n∈N is an OBABO chain with
potential x �→ U(Qx). As a particular case, Assumption (⊥⊥) is satisfied for all
Gaussian distributions (with � = 2 and L� = 0).
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Although the independence assumption is very restrictive, it is the classical
condition under which scaling limits are established for MCMC algorithms, see
e.g. [15] and references within. Non-asymptotic bounds for the HMC algorithm
for a separable target have been established in [36], and under a similar but
weaker condition in [37].

Proposition 12. Under the conditions of Theorem 1, and considering K5, K6,
K7, K8 as given by Proposition 31, (in particular

K5 → L

4
√
m

+
L

6
, K6 → 2�−2

(
1 +

1

m�/2

)
, K8 → 2�+1

(
1 +

1

m(�+1)/2

)

and K7 → L as δ → 0), the following holds:

1. If Assumption (∇2pol(�)) holds then, for all p � 1,

Wp (πδ, π) � δ2 (d+ �p− 2)
�/2 2K1 (K5 + L�K6)

κ

‖πδ − π‖TV � δ2
(
2 + | ln

(
δ3(d+ �− 1)

)
|
)
(d+ �− 1)

(�+1)/2

× 2K2
1K2 (K5 + L�K6) +K7 + L�K8

κ
.

2. If Assumption (⊥⊥) holds then, for all p � 2,

Wp (πδ, π) � δ2
√
d
2K1 (K5 + L�K6) (�p− 1)

�/2

κ

‖πδ − π‖TV � δ2d
(
2 + | ln

(
δ3�

)
|
)
�(�+1)/2

×2K2
1K2 (K5 + L�K6) +K7 + L�K8

κ
.

This is proven at the end of Section 5.

Remark 13. In the Gaussian case, πδ is an explicit Gaussian measure and thus
W2(π, πδ) is known. More precisely, in that case, we get W2(π, πδ) � δ2

√
dL/4

as δ → 0 (we refer to the upcoming work [39] for the detailed analysis of the
Gaussian case), which means the δ2

√
d dependency under Assumption (⊥⊥) is

sharp.
On the contrary, for the dependency in d of the total variation bound, the

results of [33] give a bound of order
√
d under the condition (∇2pol(�)) with

� = 2, while we only get d3/4. We discuss this in more details in Section 3.4.

Although one can design academic examples where (∇2pol(�)) holds for some
� > 2 but not for � = 2, while (∇Lip) holds, this does not correspond to prac-
tical cases of interest. The reason why we decided to work under a framework
with possibly � > 2 is the following. For potentials that behave like U(x) = |x|α
with α > 2 at infinity, (∇2pol(�)) holds with � > 2 but not � = 2. On the
other hands (∇Lip) doesn’t hold, but it can be replaced by a condition similar
to (∇2pol(�)) but on ∇U rather than ∇2U . Moreover the OBABO integrator
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becomes unstable and should be replaced by an adaptive time-step/tamed ver-
sion. Adapting our analysis to this case, similar but more involved, is out of the
scope of the present work, but we wanted to highlight that working with such
local Lipschitz-continuity conditions is possible and possibly leads to a higher
dependency in the dimension of the bias estimates due to additional moments,
but not necessarily, as illustrated by the separable case.

3.3. The Metropolis-adjusted chain

Since the continuous-time Langevin diffusion has, in the smooth and convex
case, a convergence rate that is independent from the dimension, and as seen
in Theorem 1, the OBABO chain has a convergence rate that depends on the
dimension only, possibly, through the time-step δ. Hence, the number of steps
of the chain required in order to sample the target measure is of order 1/δ (up
to some logarithmic terms). On the other hand, the rejection probability in the
OM(BAB)O scheme is of order δ2. This means that, as δ vanishes, there is a high
probability that no rejection occurs during the whole simulation. Consequently,
results obtained for the unadjusted OBABO chain are straightforwardly trans-
fered to the OM(BAB)O chain. For simplicity we focus on the total variation
distance and confidence intervals, but similar adaptations could be conducted
for Wasserstein distances.

In the following, under assumption (Conv), we denote z� = (x�, 0) (which
is the minimum of H(x, v) = U(x) + |v|2/2) and, for p � 1 and ν ∈ Pp(R

2d),
consider the moments

Mν,p = Eν (|Z − z�|p) .
Proposition 14. Under the conditions of Theorem 1, for all n ∈ N∗ and ν, μ ∈
P2(R

2d),

‖νPn
M − μPn

M‖TV � ‖νPn − μPn‖TV + E(ν, δ, n, d) + E(μ, δ, n, d) ,

where E is such that:

1. For all ν ∈ P2(R
2d), considering K9 as in Corollary 35,

E(ν, δ, n, d) � δK9 (Mν,2 + δnd) .

2. If condition (∇2pol(�)) holds and ν ∈ P�+1(R
2d), considering K10 as in

Corollary 35,

E(ν, δ, n, d) � δ2K10

(
Mν,�+1 + δn (d+ �− 1)

(�+1)/2
)
.

3. If condition (⊥⊥) holds, and ν ∈ P�+1(R
2d), considering K10 as in Corol-

lary 35 and, for i ∈ �1, d�, denoting by νi the law of Yi where Y = Q−1X
with X ∼ ν,

E(ν, δ, n, d) � δ2K10

(
d∑

i=1

Mνi,�+1 + δnd�(�+1)/2

)
.
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This is proven at the end of Section 6. To fix ideas, taking first the limit as
δ → 0 and then the leading terms as L,L� → +∞ and m → 0 (with L� � L2),
we get

K9 � 18L2γ

m2
, K10 � 9× 12(�−1)/2L(�+5)/2γ

m(�+3)/2
.

Applied with μ = π (so that μPn
M = π) and in combination with Corollary 5,

this gives a non-asymptotic bound on ‖νPn
M − π‖TV .

Remark 15. Contrary to Corollary 5 for the OBABO chain, Proposition 14
does not provide for the OM(BAB)O chain a bound on the total variation con-
vergence rate. Nevertheless, combining Proposition 14 with Corollary 5 yields
local coupling estimates, i.e. for all R > 0, a suitable choice of δ and n ensures
that

∀z, z′ ∈ {y ∈ R
2d, |y − z�| � R} , ‖Pn

M (z, ·)− Pn
M (z′, ·)‖TV � 1

2
.

Contrary to the one-step Doeblin condition considered in [48], these n-steps
coupling bounds have a reasonably nice scaling with δ and d.

Similarly, the non-asymptotic confidence intervals of Theorem 6 can be trans-
fered to the Metropolis-adjusted chain:

Theorem 16. Under the conditions of Theorem 1, if μ0 ∈ P(R2d) satisfies a
log-Sobolev inequality with constant C ′ > 0 and if (Zk)k∈N is an OM(BAB)O
chain with Z0 ∼ μ0, then for all 1-Lipschitz functions ϕ on R

2d, n � 1 and
u � 0,

P

(∣∣∣∣∣ 1n
n∑

k=1

ϕ(Zk)− π(ϕ)

∣∣∣∣∣ � u+
2K1

nκδ
W1(μ0, πδ) +W1(π, πδ)

)

� 2 exp

(
− nu2κδ

4ClS + 4K2
1C

′/(nκδ)

)
+ E(μ0, δ, n, d) .

where ClS is given in Theorem 6 and E(ν, δ, n, d) is as in Proposition 14.

This is proven at then end of Section 6.

3.4. Conclusion and related works

Let us summarize the previous results, focusing on the behavior as δ → 0 and
d → +∞ for fixed values of p,m,L, L�, � and γ = 2

√
L. We suppose that the

initial condition μ0 is such that, for p � 1, Wp(μ0, π)+M
1/p
μ0,p � K̃p

√
d for some

K̃p that does not depend on d, which is feasible in practice (see Remark 7 and
Lemma 30). For the dependency on L,m,L�, we only write the leading terms
when L,L� → +∞ and m → 0.

For a desired accuracy ε > 0, we denote

nε,p = inf{n ∈ N, Wp(μ0P
n, π) � ε}
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nε,TV = inf{n ∈ N, ‖μ0P
n − π‖TV � ε}

nε,M = inf{n ∈ N, ‖μ0P
n
M − π‖TV � ε} .

Choosing those as non-asymptotic criteria for efficiency is debatable, see the dis-
cussion in [13] in particular for a different scaling for the Wasserstein distances,
nevertheless we stick to these definitions for comparison with previous works.
Table 1 gathers the results on the discretization bias and Table 2 the efficiency
bounds that are obtained from our various results. For simplicity, in Table 2,
concerning the dependency on L,m and L�, we only consider the case where
the term with L� is negligible with respect to the other one (as in the Gaussian
case where L� = 0) and we don’t write the logarithmic terms in these variables.

Table 1

Leading terms of the bounds on the equilibrium bias respectively obtained in Propositions 11
and 12.

(∇Lip), (Conv) (∇Lip), (Conv), (∇2pol(�)) (∇Lip), (Conv), (⊥⊥)

Wp(π, πδ) δ
√
dL2

m
δ2d�/2

(
L2

m3/2 +
√
LL�

m1+�/2

)
δ2

√
d
(

L2

m3/2 +
√

LL�

m1+�/2

)

‖π − πδ‖TV δd| ln
(
δ3d

)
| δ2d(�+1)/2| ln

(
δ3d

)
| δ2d| ln δ|

×L9/4

m
×
(

L9/4

m3/2 + L5/4L�

m(�+3)/2

)
×
(

L9/4

m3/2 + L5/4L�

m(�+3)/2

)

Let us now compare our results to previous works.
First, we mention that, starting back at least to the work of Talay [54] (who

was also already concerned with the discretized chain), there has been a substan-
tial amount of works in the last two decades on obtaining quantitative conver-
gence rates for the continuous-time (underdamped) Langevin diffusion (1), lead-
ing to the theory of hypocoercivity [57, 17, 24]. In the convex and smooth case,
the dimension-free convergence is established by the author in [40] for mean-field
particles using entropic hypocoercivity techniques (implying the Wasserstein
convergence, see e.g. [22] for details), and later by [12, 14, 59] by direct coupling
arguments in the context of MCMC. The Wasserstein contraction induced by
the parallel coupling in the smooth and convex case was first established in [4]
(but without the explicit dependency on the dimension). In the non-convex case,
quantitative results are obtained through an explicit combination of reflection
and parallel coupling in [21, 13, 11]. Using hypocoercive techniques, one of the
first result on the underdamped Langevin algorithms motivated by stochastic
algorithms (MCMC and simulated annealing) is established in [42], focusing on
low-temperature rather than high-dimensional estimates. In the recent [33], a
similar result is established, focusing on high-dimensional MCMC (in both [33]
and [42], the convergence is obtained in term of the log-Sobolev constant of
the target distribution; the main difference is thus how the dependency on the
parameters of interest is presented).
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Table 2

Leading terms of the efficiency bounds obtained with a suitable choice of δ, based on
Propositions 11 and 12 (for the equilibrium bias in the unadjusted case), Theorem 1 and
Corollary 5 (for the convergence of the OBABO chain to equilibrium) and Proposition 14

(for the OM(BAB)O chain).

(∇Lip), (Conv) (∇Lip), (Conv), (∇2pol(�)) (∇Lip), (Conv), (⊥⊥)

nε,p

√
d

ε
ln

(
d

ε

)
L5/2

m2

d�/4√
ε

ln

(
d

ε

)
L3/2

m7/4

d1/4√
ε

ln

(
d

ε

)
L3/2

m7/4

nε,TV
d

ε
ln2

(
d

ε

)
L11/4

m2

d(�+1)/4

√
ε

ln2
(
d

ε

)
L13/8

m7/4

√
d√
ε
ln2

(
d

ε

)
L13/8

m7/4

nε,M
d

ε
ln4

(
d

ε

)
L7/2

m4

d(�+1)/4

√
ε

ln3
(
d

ε

)
L(�+9)/4

m(�+9)/4

√
d√
ε
ln3

(
d

ε

)
L(�+9)/4

m(�+9)/4

By contrast, Theorem 1 and Corollary 5 give explicit quantitative conver-
gence rates for a discrete-time Markov chain obtained as a discretization of
(1). As mentioned in the introduction, this leads to the concentration inequal-
ities of Theorem 6 and it was motivated by the work [48]. That being said, in
[12, 14, 59, 13, 11, 33, 59], a discretization error analysis is conducted which,
together with the convergence rate of the continuous-time process, provides
in fine non-asymptotic bounds for the discrete-time algorithm. In the smooth
and convex case, up to some logarithmic terms, W2 efficiency bounds of order√
d/ε are obtained in [12, 59] with a first-order approximation of (1) and of

order
√

d/ε in [14] with a second-order scheme (that requires the computation
of ∇2U at each iteration) under the Lipschitz Hessian condition (that corre-
sponds to (∇2pol(�)) with � = 2). These scalings are thus similar to our results
on the OBABO chain under similar conditions. In [33], using a second order
scheme with a similar complexity of the OBABO chain, efficiency bounds of
order

√
d/ε are obtained for the relative entropy (Kullback-Leibler divergence)

under the Lipschitz Hessian condition. Through Pinsker’s and Talagrand’s in-
equalities, this yields W2 and total variation efficiency bounds of order

√
d/ε

(since the results have to be applied with ε replaced by ε2), to compare to our
results respectively of

√
d/ε and d3/4/

√
ε for these distances under (∇2pol(�))

with � = 2. Thus, for the unadjusted process, under the same conditions as [33],
we see that we have a better dependency in term of ε for both Wasserstein and
total variation distances, the same dependency in the dimension for the Wasser-
stein distance but a worse dependency in the dimension (d3/4 versus

√
d) for

the total variation distance. In the separable case we recover the
√
d scaling for

the total variation distance, and improve the scaling to d1/4 for the Wasserstein
one. Our method is very different from the one of [33]. Comparing the discrete
scheme with the continuous process, they get a bound on the relative entropy
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that scales as d, which gives
√
d for the total variation. We get a bound on

the total variation by comparing the unadjusted process with the Metropolis-
adjusted one. We can see that the bad dependency in d for the total variation
in our case stems from the fact we bound the expected Metropolis rejection
probability by a cubic term (Lemma 28 with � = 2) whose expectation is of
order d3/2. The bounds of Lemma 28 seems to be sharp, so it is the method of
comparing the unadjusted and adjusted processes which leads to a non-optimal
scaling. In some sense, by requiring the two processes to stay equal, we do not
use the regularization properties of the process. By working with the relative
entropy, the law of the unadjusted process can be compared with the law of the
continuous time process: the processes (driven by the same Brownian motion)
do not stay equal but remain close which, with the regularization properties
of the process, is in fact sufficient to control the relative entropy of the laws
(roughly speaking), hence the total variation.

Similarly to the results on the convergence rate of the Langevin diffusion,
several works are concerned with the convergence rates of idealized HMC algo-
rithms, i.e. algorithms that rely on the exact simulation of the continuous-time
Hamiltonian dynamics, [52, 29, 15, 36, 5]. Non-asymptotic bounds on the un-
adjusted HMC are obtained in [36], of order

√
d/ε for the W1 distance in the

smooth and convex case with a first-order scheme, of order d1/4/
√
ε in the sep-

arable case (and later in [37] under a weaker condition), and similarly for the
Metropolis-adjusted algorithm. Again, this is similar to our rates for the OB-
ABO chain.

The works [20, 10] are concerned with Metropolis-adjusted algorithms (HMC
and Metropolis-adjusted overdamped Langevin algorithm – MALA), and estab-
lish total variation efficiency bounds that are logarithmic in the accuracy ε. The
method is quite different to ours, based on conductance bounds. In term of num-
ber of computations of gradients, the scalings are d for the MALA algorithm
and d11/12 for the HMC one in the smooth, convex, Lipschitz Hessian case. In
term of dependency in d, for the Metropolis-adjusted case, we only get d in this
case, and

√
d in the separable case. It would be interesting to use the methods

of [20, 10] for the OM(BAB)O chain (see also Remark 15).
For more considerations on the family of sampler based, like the HMC process

and Langevin diffusion, on the Hamiltonian dynamics, we also refer to the recent
preprint [53] and references therein.

4. Study of the OBABO chain

4.1. Wasserstein contraction in the convex case

For z = (x, v) ∈ R
2d, and a, b > 0 with b2 < a, we consider the Euclidean norm

‖z‖2a,b = |x|2 + 2bx · v + a|v|2 .

For x, v, g, g′ ∈ R
d, denote

Θ1(x, v, g, g
′) = x+ δ

(
ηv +

√
1− η2g

)
− δ2

2
∇U(x)
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Θ2(x, v, g, g
′) = η2v − δη

2
(∇U(x) +∇U (Θ1(x, v, g, g

′))) +
√

1− η2 (ηg + g′) ,

and Θ = (Θ1,Θ2). The transition (2) of the OBABO chain is thus given by
(x1, v1) = Θ(x0, v0, G,G′) with independent G,G′ ∼ N (0, Id). We consider
two initial conditions (x0, v0), (y0, w0) ∈ R

d×R
d, two independent sequences of

independent standard Gaussian variables (Gn)n∈N and (G′
n)n∈N, and the parallel

coupling of two OBABO chains given by, for all n ∈ N,

(xn+1, vn+1) = Θ(xn, vn, Gn, G
′
n) , (yn+1, wn+1) = Θ(yn, wn, Gn, G

′
n) . (5)

Proposition 17. Under Assumption (∇Lip)and (Conv), suppose moreover
that γ � 2

√
L and that δ � m/(33γ3). Set

a = 1/L , b = 1/γ , κ = m/(3γ) .

Then, b2 � a/4 and for all (x0, v0), (y0, w0) ∈ R
2d, the parallel coupling given

by (5) is such that almost surely, for all n ∈ N,

‖(xn, vn)− (yn, wn)‖2a,b � (1− δκ)
n ‖(x0, v0)− (y0, w0)‖2a,b .

Remark 18. It is possible to improve the condition on γ and the other estimates
by assuming that U(x) = x ·S−1x+ Ũ(x) for some symmetric positive matrix S
and then taking S into account in the definition of the modified norm with more
care. In particular in the Gaussian case (Ũ = 0) there is no condition on γ, it
is always possible to design a Euclidean norm that is contracted by the coupling
for sufficiently small δ, see e.g. [43]. Nevertheless, in this work we are mainly
concerned with the fact that κ is independent from the dimension.

Remark 19. The contraction is almost sure, and not only in expectation. In
fact, as will be clear in the proof, the particular law of (G,G′) does not intervene,
it is sufficient that it does not depend on the position (x, v).

Proof. Let us show that, for this choice of parameters, for all x, v, y, w, g, g′ ∈ R
d,

denoting (x′, v′) = Θ(x, v, g, g′) and (y′, w′) = Θ(y, w, g, g′),

‖(x′, v′)− (y′, w′)‖2a,b � (1− δκ) ‖(x, v)− (y, w)‖2a,b ,

which will immediately yield the result.
As a first step, we identify the leading terms (in term of δ) of the evolution

of the norm. The contraction will be proven only thanks to these terms, the
higher order ones being treated as a small perturbation. As a consequence, our
arguments works for other Markov chains that are an approximation of order
at least one (in δ) of the continuous-time Langevin diffusion. Denote x̄ = x− y,
x̄′ = x′ − y′, v̄ = v − w, v̄′ = v′ − w′ and Δx̄ = x̄′ − x̄. Let ξ, ξ′ ∈ R

d be
such that ∇U(x′) − ∇U(y′) = ∇2U(ξ′)x̄′ and ∇U(x) − ∇U(y) = ∇2U(ξ)x̄,
and let Q = ∇2U(ξ), Q′ = ∇2U(ξ′). Under Assumptions (∇Lip) and (Conv),
mId � Q � LId in the sense of symmetric matrices, and similarly for Q′. With
these notations,
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x̄′

v̄′

)
=

(
x̄
v̄

)
+

(
0 δηId

− δη
2 (Q+Q′) (η2 − 1)Id

)(
x̄
v̄

)
− δ

2

(
δQx̄

ηQ′Δx̄

)

= (I2d + δA)

(
x̄
v̄

)
+ h

with

A =

(
0 Id

−1
2 (Q+Q′) −γId

)
,

h =

(
0 δ(η − 1)Id

− δ(η−1)
2 (Q+Q′) (η2 − 1 + δγ)Id

)(
x̄
v̄

)
− δ

2

(
δQx̄

ηQ′Δx̄

)
.

Writing z̄ = (x̄, v̄), z̄′ = (x̄′, v̄′) and

M =

(
Id bId
bId aId

)
,

we get

‖z̄′‖2a,b = ‖z̄‖2a,b + δz̄ · (MA+ATM)z̄ + 2z̄ ·Mh+ ‖δAz̄ + h‖2a,b
� ‖z̄‖2a,b + δz̄ · (MA+ATM)z̄ + 2‖z̄‖a,b‖h‖a,b + 2δ2‖Az̄‖2a,b + 2‖h‖2a,b .

The choice a = 1/L and b = 1/γ with the condition γ � 2
√
L ensures that

b2 � a/4 and thus for all z ∈ R
d,

1

2
‖z‖2a,0 � ‖z‖2a,b � 3

2
‖z‖2a,0 . (6)

Using (6) and the bounds |Q|, |Q′| � L, |1− η| � δγ/2, |1− η2 − δγ| � δ2γ2/2
and

|Δx̄| = |δηv̄ − δ2/2Qx̄| � δ|v̄|+ δ2L/2|x̄|

we roughly bound

‖h‖2a,b � 3

2

∣∣∣∣δ(η − 1)v̄ − δ2

2
Qx̄

∣∣∣∣
2

+
3

2
a

∣∣∣∣−δ(η − 1)

2
(Q+Q′)x̄+ (η2 − 1 + δγ)v̄ − δη

2
Q′Δx̄

∣∣∣∣
2

� 3δ4γ2/4|v̄|2 + 3δ4L2/4|x̄|2 + 3a
(
δ2γL/2 + δ3L2/4

)2 |x̄|2
+ 3a

(
δ2γ2/2 + δ2L/2

)2 |v̄|2
� 6δ4 max

((
Lγ/2 + δL2/4

)2
L

+
3L2

4
,
Lγ2

4
+

(
γ2

2
+

L

2

)2
)
‖z̄‖2a,b

� 3δ4γ4‖z̄‖2a,b
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where we used that L � γ2/4 and δ2L � L3/γ6 � 1 to simply the expression,
and similarly

‖Az̄‖2a,b � 3

2
|v̄|2 + 3

2
a

∣∣∣∣−1

2
(Q+Q′)x̄− γv̄

∣∣∣∣
2

� 3L|x̄|2 + 3a

(
L

2
+ γ2

)
|v̄|2

� 27γ2

8
‖z̄‖2a,b ,

so that, using that 6δ2γ2 � 1/2,

2‖z̄‖a,b‖h‖a,b + 2δ2‖Az̄‖2a,b + 2‖h‖2a,b � 11δ2γ2‖z̄‖2a,b .

On the other hand,

MA+ATM =

(
−b(Q+Q′) −a(Q+Q′)/2

−a(Q+Q′)/2 2(b− aγ)Id

)
.

Bounding 2x̄ · (Q + Q′)v̄ � x̄ · (Q + Q′)x̄/θ + θv̄ · (Q + Q′)v̄ with θ = γ/L we
obtain

z̄ · (MA+ATM)z̄ � z̄

((
− 1

γ + 1
2Lθ

)
(Q+Q′) 0

0 2(b− aγ)Id +
aθ
2 (Q+Q′)

)
z̄

� −m

γ
|x̄|2 − aγ

(
1− 2L

γ2

)
|v̄|2

� −2m

3γ
‖z̄‖2a,b ,

where we used that γ/2 � L/γ � m/γ and (6). Finally, we have obtained that

‖z̄′‖2a,b �
(
1− 2m

3γ
δ + 11δ2γ2

)
‖z̄‖2a,b �

(
1− m

3γ
δ

)
‖z̄‖2a,b .

For p � 1 and a, b > 0 with b2 � a/4, denote by Wp,a,b the Wp Wasserstein
distance on Pp

(
R

2d
)
associated to the distance ‖ · ‖a,b, i.e.

Wp,a,b (ν1, ν2) = inf
π∈Γ(ν1,ν2)

(∫
R2d×R2d

‖z − z′‖pa,bπ(dzdz′)
)1/p

.

The equivalence of ‖ · ‖a,b with the Euclidean distance implies that

1

2
min(1, a)W2

p � 1

2
W2

p,a,0 � W2
p,a,b � 3

2
W2

p,a,0 � 3

2
max(1, a)W2

p . (7)

From this equivalence and Proposition 17, it is then straightforward to obtain
the following, which proves Theorem 1.

Corollary 20. Under the assumptions and with the notations of Proposition 17,
for all p � 1 and all ν, μ ∈ Pp(R

2d),

W2
p,a,b (νP, μP ) � (1− δκ)W2

p,a,b (ν, μ) , (8)
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and for all n ∈ N,

W2
p (νP

n, μPn) � 3max

(
L,

1

L

)
(1− δκ)nW2

p (ν, μ) .

Moreover, P admits a unique invariant probability distribution πδ, and πδ ∈
Pp(R

2d) for all p � 1.

Proof. Consider the parallel coupling (5) with ((x0, v0), (y0, w0)) a Wp-optimal
coupling of ν and μ (which exists from [58, Corollary 5.22]). Then zn = (xn, vn) ∼
νPn and z′n = (yn, wn) ∼ μPn, so that

Wp
p,a,b (νP

n, μPn) � E

(
‖zn − z′n‖pa,b

)
� (1− δκ)np/2E

(
‖z0 − z′0‖pa,b

)
= (1− δκ)np/2Wp

p,a,b (ν, μ) .

Conclusion follows from the distance equivalence (7) and the Banach fixed point
theorem (recall (Pp(R

2d),Wp) is a Banach space, [58, Theorem 6.18]).

Remark 21. The one-step contraction (8) implies that P has a positive Wasser-
stein curvature δκ/2 in the sense of [46, 26] with respect to the metric ‖ · ‖a,b.

4.2. Wasserstein/total variance regularization

While the proof of [23, Corollary 4.7] for the continuous-time process relies
on functional inequalities arguments, our proof will be a direct application of
optimal coupling for Gaussian variables, in the spirit of [18, 34].

As can be seen by conditioning with respect to the initial condition (dis-
tributed according to an optimal W1 coupling), Proposition 3 is an immediate
corollary of the following.

Proposition 22. Under Assumption (∇Lip), for all (x1, v1), (x2, v2) ∈ R
2d,

‖P ((x1, v1), ·)− P ((x2, v2), ·) ‖TV �
3δ|v1 − v2|+

(
2 + 3δ2L/2

)
|x1 − x2|

δ
√
2π(1− η2)

.

Proof. As already mentioned, for a fixed (x, v), (x′, v′) ∼ P ((x, v), ·) is not a
Gaussian variable. Nevertheless, we are going to use successively two Gaussian
couplings, coupling first the positions thanks to the random variable G and then
the velocities with the random variable G′. In particular, if the first coupling
is a success, then the non-Gaussian part ∇U(x′) − ∇U(y′) vanishes. This two
steps coupling (position first, then velocity) is natural in view of the hypoelliptic
structure of the Langevin diffusion. Note that the choice of the OBABO sampler
is particularly convenient here, since the damping part is splited in two half-
steps, contrary to e.g. the BAOAB scheme [30] (although one would just have
to consider two transitions of the Markov chain).
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Recall the following result for the optimal coupling of Gaussian distributions.
For x, y ∈ R

d and σ > 0,

‖N (x, σ2Id)−N (y, σ2Id)‖TV � |x− y|√
2πσ2

.

Indeed, orthogonal coordinates being independent, we just have to couple the
projections on x − y, so that the d dimensional case boils down to the one
dimensional case, which is [34, Lemma 15].

Let (x1, v1), (x2, v2) ∈ R
d × R

d. Denote

bi = xi + δηvi − δ2/2∇U(xi)

for i = 1, 2, and let (x′
1, x

′
2) be an optimal coupling of N (bi, δ

2(1 − η2)Id),

i = 1, 2. Set Gi = (x′
i − bi)/(δ

√
1− η2) for i = 1, 2. In other words, G1 and G2

are both standard Gaussian random variables and such that

x′
i = bi + δ

√
1− η2Gi , i = 1, 2 (9)

and

2P (x′
1 
= x′

2) � |b1 − b2|
δ
√
2π(1− η2)

. (10)

Conditionally to (x′
1, x

′
2), denote

ci = η2vi −
δη

2
(∇U(xi) +∇U(x′

i)) +
√
1− η2ηGi

and let (v′1, v
′
2) be an optimal coupling of N (ci, (1− η2)Id), i = 1, 2, so that

2P (v′1 
= v′2 | (x′
1, x

′
2)) � |c1 − c2|√

2π(1− η2)
. (11)

Set G′
i = (v′i − ci)/

√
1− η2 for i = 1, 2, so that G′

1 and G′
2 are both standard

Gaussian random variables such that

v′i = ci +
√
1− η2G′

i , i = 1, 2. (12)

The fact that, conditionally to (x′
1, v

′
1), G′

1 is a standard Gaussian random
variable, implies that G′

1 is independent from (G1, G2) (and similarly for G′
2).

As a consequence, (9) and (12) with G1 and G′
1 (resp. G2 and G′

2) that are two
independent standard Gaussian variables proves that (x′

i, v
′
i) ∼ P ((xi, vi), ·)

(recall the transition (2) corresponding to P ). In particular,

‖δ(x1,v1)P − δ(x2,v2)P‖TV � 2P ((x′
1, v

′
1) 
= (x′

2, v
′
2)) .

We now bound this probability. Remark that

x′
1 = x′

2 ⇔
√
1− η2(G1 −G2) =

b2 − b1
δ

.
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Hence, under the event {x′
1 = x′

2},

c1 − c2 = η2(v1 − v2)−
δη

2
(∇U(x1)−∇U(x2)) +

η

δ
(b2 − b1) .

Since
|b1 − b2| �

(
1 + δ2L/2

)
|x1 − x2|+ δ|v1 − v2| ,

then, under {x′
1 = x′

2},

|c1 − c2| � 2|v1 − v2|+ (1/δ + δL) |x1 − x2| .

As a conclusion, using (10) and (11),

2P ((x′
1, v

′
1) 
= (x′

2, v
′
2)) � 2P (x′

1 
= x′
2) + 2P (v′1 
= v′2 | x′

1 = x′
2)

�
3δ|v1 − v2|+

(
2 + 3δ2L/2

)
|x1 − x2|

δ
√
2π(1− η2)

.

4.3. Concentration inequality

We first state the following general result (proven in [35, Theorem 1] and [9,
Corollary 3.5] in particular cases, see also [41, Lemma 3.2]).

Theorem 23. Let R be a Markov operator on R
d with invariant measure ν.

Suppose that there exists r � 0 such that, for all bounded Lipschitz function ϕ
and all z ∈ R

d,
|∇Rϕ(z)| � rR|∇ϕ|(z).

Suppose moreover that there exists C > 0 such R(z, ·) satisfies a log Sobolev
inequality with constant C for all z ∈ R

d. Then:

1. If μ ∈ P(Rd) satisfies a log Sobolev with constant C ′, then μR satisfies a
log Sobolev inequality with constant r2C ′ + C.

2. If r < 1, then for all n ∈ N and all z ∈ R
d, Rn(z, ·) satisfies a log Sobolev

inequality with constant C(1− r2n)/(1− r2), and ν satisfies a log Sobolev
inequality with constant C/(1− r2).

3. If r < 1, μ ∈ P(Rd) satisfies a log Sobolev with constant C ′ and (Zn)n∈N

is a Markov chain associated to R with initial condition Z0 ∼ μ, then for
all n ∈ N∗, all u � 0, and all 1-Lipschitz functions ϕ,

P

(
1

n

n∑
k=1

(ϕ(Zk)− E (ϕ(Zk))) � u

)
� exp

(
−nu2(1− r)2

C + rC ′/n

)

and ∣∣∣∣∣ 1n
n∑

k=1

E (ϕ(Zk))− ν(ϕ)

∣∣∣∣∣ � r

n(1− r)
W1 (ν, μ) .
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Remark 24. The first point generalizes the fact that log-Sobolev inequalities are
transported by Lipschitz transformations, which corresponds to the case Rϕ =
ϕ ◦Ψ with Ψ an r-Lipschitz function (in that case, C = 0).

Proof. By density, we can consider a smooth positive Lipschitz f . Denoting
g =

√
Rf2, we decompose

μR
(
f2 ln f2

)
− μR(f2) lnμR(f2) = μ

(
R(f2 ln f2)−R(f2) lnR(f2)

)
+ μ(g2 ln g2)− μ(g2) lnμ(g2)

� CμR
(
|∇f |2

)
+ C ′μ

(
|∇g|2

)
.

Now, by the Cauchy-Schwarz inequality,

|∇g|2 =
|∇R(f2)|2
4R(f2)

�
r2
(
R|∇(f2)|

)2
4R(f2)

� r2

4
R

(
|∇(f2)|2

f2

)
= r2R

(
|∇f |2

)
,

which concludes the proof of the first claim. The second claim immediately fol-
lows by induction and the weak convergence of Rn toward ν, which follows from
the Wasserstein contraction implied by the gradient/operator subcommutation,
see [27, Theorem 2.2].

Concerning the third claim, if μ ∈ P(Rd) satisfies a log-Sobolev inequality
with constant C ′ > 0 then, for all β-Lipschitz ϕ and all λ,

μ
(
eλϕ

)
� eC

′β2λ2/4eμ(ϕ) , (13)

see e.g. [28]. Using successively Chernov’s inequality, the Markov property and
(13) together with the local log-Sobolev inequality satisfied by R, given any
1-Lipschitz ϕ, λ > 0 and t ∈ R,

P

(
1

n

n∑
k=1

ϕ(Zk) � t

)
� e−ntλ

E

(
eλ

∑n
k=1 ϕ(Zk)

)

= e−ntλ
E

(
eλ

∑n−1
k=1 ϕ(Zk)R

(
eλϕ

)
(Zn−1)

)
� e−ntλ+Cλ2/4

E

(
eλ

∑n−2
k=1 ϕ(Zk)eλ(ϕ+Rϕ)(Zn−1)

)
= e−ntλ+Cλ2/4

E

(
eλ

∑n−2
k=1 ϕ(Zk)R

(
eλ(ϕ+Rϕ)

)
(Zn−2)

)
Using that ϕ+Rϕ is (1+r)-Lipschitz, (13) and then a straightforward induction,
we get

P

(
1

n

n∑
k=1

ϕ(Zk) � t

)

� e−nrλ+Cλ2[1+(1+r)2]/4
E

(
eλ

∑n−2
k=1 ϕ(Zk)eλ(Rϕ+R2ϕ)(Zn−2)

)
� e−ntλ+nCλ2/(4(1−r)2)

E

(
eλ

∑n
k=1 Rkϕ(Z0)

)
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� e−ntλ+(nC+rC′)λ2/(4(1−r)2)eλ
∑n

k=1 μRkϕ.

Applying this with t =
∑n

k=1 μR
kϕ+ u with u � 0 reads

P

(
1

n

n∑
k=1

ϕ(Zk)−
1

n

n∑
k=1

μRkϕ � u

)
� inf

λ>0
exp

(
−nuλ+

nC + rC ′

4(1− r)2
λ2

)

= exp

(
−nu2(1− r)2

C + rC ′/n

)
.

Using that ν is invariant by R, that
∑n

k=1 R
kϕ is a r/(1− r)-Lipschitz function

for all n � 1 and that the dual representation of W1 (see e.g. [58]),∣∣∣∣∣ 1n
n∑

k=1

μRkϕ− νϕ

∣∣∣∣∣ =
1

n

∣∣∣∣∣(μ− ν)

(
n∑

k=1

Rkϕ

)∣∣∣∣∣ � r

n(1− r)
W1(ν, μ) .

In the rest of this section, considering a, b given by Proposition 17, we con-
sider the matrix S such that S(x, v) = (x+ bv,

√
a− b2v). Hence, ‖(x, v)‖a,b =

|S(x, v)|. We also denote Pa,b the transition operator of (S(xn, vn))n∈N where
(xn, vn)n∈N is an OBABO chain. This change of variable is meant for simplic-
ity, in order to work with the classical Euclidean metric and gradient in the
following.

Lemma 25. Under the conditions of Proposition 17, for all Lipschitz functions
ϕ on R

2d and all z ∈ R
2d,

|∇Pa,bϕ(z)| �
√
1− δκPa,b|∇ϕ|(z) .

Moreover, for all z ∈ R
2d, Pa,b(z, ·) satisfies a log-Sobolev inequality with con-

stant
C = 2|S|2(1− η2)

(
1 + δ + δ2L/2

)2
.

Proof. Using the notations of Proposition 17, the latter means that, setting
zn = (xn, vn) and z′n = (yn, wn),

|Sz1 − Sz′1| �
√
1− δκ|Sz0 − Sz′0|

almost surely for all z0, z
′
0. This implies that Pa,b contracts theW∞ distances (for

the classical Euclidean metric) by a factor
√
1− δκ, which implies the claimed

gradient/Markov operator subcommuation as proven in [27, Theorem 2.2].
For z = (x, v) ∈ R

2d, Pa,b(z, ·) is the image of N (0, I2d) by the transformation
Ψ : (G,G′) �→ SΘ(S−1z,G,G′). For (g, g′), (h, h′) ∈ R

2d,

|Θ1(z, g, g
′)−Θ1(z, h, h

′)| = δ
√

1− η2|g − h|

and thus

|Θ2(z, g, g
′)−Θ2(z, h, h

′)|
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� δη

2
L|Θ1(z, g, g

′)−Θ1(z, h, h
′)|+

√
2(1− η2) (η|g − h|+ |g′ − h′|)

� δη

2
Lδ
√
1− η2|g − h|+

√
1− η2 (η|g − h|+ |g′ − h′|) .

As a consequence, Ψ is Lipschitz with constant |S|
(
1 + δ + δ2L/2

)√
1− η2.

Since the standard Gaussian distribution satisfies a log-Sobolev inequality with
constant 2, conclusion follows from Remark 24.

Proof of Theorem 6. From Theorem 1, π̃ = S�πδ is the unique invariant measure
of Pa,b. From Lemma 25 and Theorem 23, π̃ satisfies a log-Sobolev inequality
with constant C/(δκ). From Remark 24, πδ = S−1�π̃ then satisfies a log-Sobolev
inequality with constant |S−1|2C/(δκ). Besides, |S||S−1| = K1 and (1−η2)/δ �
γ, which gives the claimed expression for the log-Sobolev constant of πδ.

For ϕ a 1-Lipschitz function, ϕ̃ := (ϕ ◦ S−1)/|S−1| is 1-Lipschitz. If μ ∈
P(R2d) satisfies a log-Sobolev inequality with constant C ′ then μ ◦ S satisfies
an inequality with constant |S|2C ′. Hence, with Z0 ∼ μ, Theorem 23 applied to
Pa,b reads

P

(
1

n

n∑
k=1

(ϕ(Zk)− E (ϕ(Zk))) � u

)

= P

(
1

n

n∑
k=1

(ϕ̃(SZk)− E (ϕ̃(SZk))) � u

|S−1|

)

� exp

(
− nu2(1− r)2

|S−1|2 (C + r|S|2C ′/n)

)
,

with r =
√
1− δκ � 1− δκ/2. Applying this to ϕ and −ϕ gives

P

(∣∣∣∣∣ 1n
n∑

k=1

(ϕ(Zk)− E (ϕ(Zk)))

∣∣∣∣∣ � u

)
� 2 exp

(
− nu2δ2κ2

4|S−1|2 (C + |S|2C ′/n)

)
.

Applying the last proposition of Theorem 23 to Pa,b, conclusion follows from

∣∣∣∣∣ 1n
n∑

k=1

E (ϕ(Zk))− πδ(ϕ)

∣∣∣∣∣ = |S−1|
∣∣∣∣∣ 1n

n∑
k=1

E (ϕ̃(SZk))− πδ(ϕ̃ ◦ S)
∣∣∣∣∣

� 2|S−1|
nκδ

W1(S�μ, S�πδ) � 2|S−1||S|
nκδ

W1(μ, πδ) .

5. Bias analysis

First, we prove Proposition 9, which relates the equilibrium error between π and
πδ to the one-step error between π and πPV .
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Proof of Proposition 9. We use the notations of Proposition 17. Using the in-
variance of πδ by P and Corollary 20,

Wp,a,b (πδ, π) � Wp,a,b (πδP, πP ) +Wp,a,b (πP, π)

� (1− δκ/2)Wp,a,b (πδ, π) +Wp,a,b (πP, π)

where we used that
√
1− x � 1− x/2 for x ∈ [0, 1]. As a consequence,

Wp,a,b (πδ, π) � 2

δκ
Wp,a,b (πP, π)

which together with the equivalence of | · | and ‖ · ‖a,b (see (7)) gives

Wp (πδ, π) � 2K1

δκ
Wp (πP, π)

where K1 is given in Theorem 1. Now, decomposing P = POPV PO, where PO

has been introduced in Section 2.2, we remark that PO does not increase Wp,
as can be seen with a parallel coupling. Indeed, let (xi, vi) ∈ R

2d, i = 1, 2,

and G ∼ N (0, Id). Set x′
i = xi and v′i = ηvi +

√
1− η2G for i = 1, 2. Then

(x′
i, v

′
i) ∼ δ(xi,vi)PO and

|x′
1 − x′

2|2 + |v′1 − v′2|2 � |x1 − x2|2 + |v1 − v2|2

almost surely. Considering νi ∈ Pp(R
d) for i = 1, 2, sampling (xi, vi) ∼ νi, using

the previous coupling, taking the power p/2 and the expectation yields

Wp(ν1PO, ν2PO) � Wp(ν1, ν2) .

Moreover, π is invariant by PO, so that

Wp (πP, π) = Wp (πPOPV PO, πPO) � Wp (πPV , π) .

For the total variation distance, similarly, for n � 1,

‖πδ − π‖TV � ‖πδP
n − πPn‖TV +

n∑
k=1

‖(πP − π)P k−1‖TV

� K1K2

δ3/2
(1− δκ)(n−1)/2W1(πδ, π) + n‖πP − π‖TV ,

where we used Corollary 5 and the fact the total variation is decreased by any
Markov operator. Using again that π is invariant by PO,

‖πP − π‖TV = ‖πPOPV PO − πPO‖TV � ‖πPV − π‖TV ,

which concludes.

As mentioned in Section 3.2, in the following, we compare PV to two reference
transitions: the first one is PMV , the Metropolis-adjusted Verlet transition in-
troduced in Section 2.2, with acceptance probability α. The second is Qδ where
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(Qt)t�0 is the deterministic transition operator of the Hamiltonian dynamics:
given (x, v) ∈ R

2d and considering (x̂t, v̂t)t�0 the solution of

x̂′
t = v̂t , v̂′t = −∇U(x̂t) , x̂0 = x , v̂0 = v , (14)

denote ΦHD(x, v) = (xδ, vδ) and Qδϕ(x, v) = ϕ(xδ, vδ).

Lemma 26. For ν ∈ P(R2d) and (X,V ) ∼ ν,

‖νPV − νPMV ‖TV � 2E (1− α(X,V )) .

If, moreover, ν ∈ Pp(R
2d) for some p � 1, then

Wp (νPV , νPMV ) � (E [|(X,−V )− ΦV (X,V )|p (1− α(X,V ))])
1/p

and

Wp (νPV , νQδ) � (E [|ΦV (X,V )− ΦHD(X,V )|p])1/p

Proof. The only difference between PV and PMV is the accept/reject step. Con-
sidering (X,V ) ∼ ν and, independently, W a random variable uniformly dis-
tributed over [0, 1], set

(X ′, V ′) = (X,−V )1W>α(X,V ) +ΦV (X,V )1W�α(X,V )

Then, (X ′, V ′) ∼ νPMV , while ΦV (X,V ) ∼ νPV , so that

‖νPV − νPMV ‖TV � 2P ((X ′, V ′) 
= ΦV (X,V )) = 2E (1− α(X,V )) .

Similarly,

Wp
p (νPV , νPMV ) � E (|(X ′, V ′)− ΦV (X,V )|p)

= 2pE (|(X,−V )− ΦV (X,V )|p (1− α(X,V ))) .

Finally, the last claim follows from the fact (ΦV (X,V ),ΦHD(X,V )) is a coupling
of νPV and νQδ.

Remark 27. As δ → 0, |(x,−v) − ΦV (x, v)| → 2|v|. When comparing a
Metropolis adjusted Verlet step and an unadjusted one, in case of rejection,
the distance is not small with δ.

Lemma 28.

1. Under Assumption (∇Lip), for all x, v ∈ R
d, writing Z = |v|+δ/2|∇U(x)|,

1− α(x, v) � δ3
1

8
|∇U(x)|2 + δ2L

(
1

2
+ δ

1

8
+ δ2

L

8

)
Z2 .

2. Under Assumptions (∇Lip) and (∇2pol(�)), for all (x, v) ∈ R
2d, writing

Z = |v|+ δ/2|∇U(x)|,

1− α(x, v) �
δ3

8

[
|∇U(x)|2 + (L+ δL2)Z2 + L�Z

3
(
1 + (|x− x�|+ δZ)

�−2
)]

.
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Proof. Since 1− e−s � s for all s > 0,

1− α � (H ◦ ΦV −H)+ � |H ◦ ΦV −H| .

For x, v ∈ R
d, denoting ξ = δv−δ2/2∇U(x) and ∇U = (∇U(x)+∇U(x+ξ))/2,

H(ΦV (x, v))−H(x, v)

= U(x+ ξ)− U(x) +
1

2
|v − δ∇U |2 − 1

2
|v|2

= ξ ·
∫ 1

0

∇U(x+ sξ)ds− δv · ∇U + δ2/2|∇U |2

= ξ ·
(∫ 1

0

∇U(x+ sξ)ds−∇U

)
+ δ2/2∇U ·

(
∇U −∇U(x)

)
= ξ ·

∫ 1

0

(2g(s)− g(0)− g(1))ds+ δ2/2g(1) · (g(1)− g(0))

with g(s) = (∇U(x) +∇U(x+ sξ))/2 for s ∈ [0, 1]. Under Assumption (∇Lip),

|g(1) · (g(1)− g(0))| � 1

2
L|g(0)||ξ|+ 1

4
L2|ξ|2

� δ
L

4

(
|∇U(x)|2 + (1 + Lδ)|ξ/δ|2

)
,

and similarly, for all s ∈ [0, 1],

|2g(s)− g(0)− g(1)| � 1

2
L|ξ| .

We have finally obtained, in the case where Assumption (∇Lip) alone is as-
sumed,

|H(ΦV (x, v))−H(x, v)| � δ3
L

8

(
|∇U(x)|2 + (1 + Lδ)|ξ/δ|2

)
+

1

2
L|ξ|2

and bounding |ξ| � δ|v|+ δ2/2|∇U(x)| concludes the proof of the first claim.
However, under additional assumptions, we can treat more carefully the term

2

∫ 1

0

g(s)ds− g(0)− g(1) = 2

∫ 1

0

∫ s

0

g′(u)duds−
∫ 1

0

g′(s)ds

=

∫ 1

0

(1− 2s)g′(s)ds

=

∫ 1

0

(1− 2s) (g′(s)− g′(0)) ds . (15)

Under Assumption (∇2pol(�)), as
∫ 1

0
|1− 2s|sds � 1/2,∣∣∣∣

∫ 1

0

(1− 2s) (g′(s)− g′(0)) ds

∣∣∣∣
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� 1

16
L�|ξ|2

(
2 + |x− x�|�−2 + (|x− x�|+ |ξ|)�−2

)
� 1

8
L�|ξ|2

(
1 + (|x− x�|+ |ξ|)�−2

)
.

Lemma 29.

1. Under Assumption (∇Lip), for all (x, v)∈R
2d, writing Z= |v|+δ/2|∇U(x)|,

|ΦV (x, v)− ΦHD(x, v)| � Lδ2
[
1 + eLδ2

(
δ/6 + δ2L/24

)]
Z .

2. Under Assumptions (∇Lip) and (∇2pol(�)), for all (x, v) ∈ R
2d, writing

Z = |v|+ δ/2|∇U(x)|,

|ΦV (x, v)−ΦHD(x, v)| � δ3

4
|∇U(x)|+Lδ3

6

[
1 + δ

L+ 1

2
+ δ3

L

40

]
eLδ2Z

+ δ3
L�

8

(
1 + eLδ2 δ

2

12

)
Z2

(
1 +

[
|x− x�|+

(
δ + eLδ2 δ

3

6

)
Z

]�−2
)

.

Proof. Fix x, v ∈ R
2d. Assumption (∇Lip) holds in the whole proof. Consider

(x̂t, v̂t)t�0 given by (14) and (yt, wt)t�0 the solution of

y′t = wt , w′
t = −∇U(x) , y0 = x , w0 = v .

In other words,

yt = x+ tv − t2

2
∇U(x) , wt = v − t∇U(x) ,

so that ΦV (x, v) = (yδ, w̃δ) with w̃δ = wδ + δ/2(∇U(yδ)−∇U(x)). Then,

|x̂t − yt| =

∣∣∣∣
∫ t

0

∫ s

0

(∇U(x̂u)−∇U(x))duds

∣∣∣∣
� L

∫ t

0

∫ s

0

(|x̂u − yu|+ |yu − x|) duds

� L

∫ t

0

∫ t

u

(
|x̂u − yu|+ u|v|+ u2/2|∇U(x)|

)
dsdu

� L

∫ t

0

(t− u)|x̂u − yu|du+
Lt3

6
|v|+ Lt4

24
|∇U(x)| .

Bounding (t− u) � t and applying Gronwall’s Lemma, we get for all t ∈ [0, δ]

|x̂t − yt| � eLt2
(
Lt3

6
|v|+ Lt4

24
|∇U(x)|

)
� eLt2 Lt

3

6
Z .

Similarly, for all t ∈ [0, δ],

|v̂t − wt| =

∣∣∣∣
∫ t

0

(∇U(x̂s)−∇U(x))du

∣∣∣∣
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� L

∫ t

0

(|x̂s − ys|+ |ys − x|) ds

� eLt2 L
2t4

24
Z +

Lt2

2
Z .

As a consequence,

|v̂δ − w̃δ| � |v̂δ − wδ|+
δL

2
|yδ − x|

� eLδ2 L
2δ4

24
Z + Lδ2Z .

The conclusion of the proof of the first claim follows from the previous estimates
and

|ΦV (x, v)− ΦHD(x, v)| � |x̂δ − yδ|+ |v̂δ − w̃δ| .
Note that |v̂δ − wδ| yields a first order error (in δ). Now, if an additional

assumption is available, in order to see that the Verlet scheme is in fact a second
order integrator, we should rather directly bound

|v̂δ − w̃δ| =

∣∣∣∣∣
∫ δ

0

∇U(x̂s)ds− δ
∇U(x) +∇U(yδ)

2

∣∣∣∣∣
�

∣∣∣∣∣
∫ δ

0

∇U(x̂s)ds− δ
∇U(x) +∇U(x̂δ)

2

∣∣∣∣∣+ Lδ

2
|yδ − x̂δ| .

As in the proof of Lemma 28 (more precisely, (15)), denoting g(s) = ∇U(x̂s),∣∣∣∣∣
∫ δ

0

g(s)ds− δ
g(0) + g(δ)

2

∣∣∣∣∣ =

∣∣∣∣∣
∫ δ

0

(
δ

2
− u

)
(g′(s)− g′(0)) ds

∣∣∣∣∣ ,
and

|g′(s)− g′(0)| � |
(
∇2U(x̂s)−∇2U(x)

)
v|+ |∇2U(x) (v̂s − v) |

� |∇2U(x̂s)−∇2U(x)||v|+ L (|v̂s − ws|+ |ws − v|) .

Under Assumption (∇2pol(�)),

|∇2U(x̂s)−∇2U(x)| � L�

2
(|ys − x|+ |x̂s − ys|)

×
(
1 + (|x− x�|+ |ys − x|+ |x̂s − ys|)�−2

)
� L�

2

(
s+ eLδ2 s

3

6

)
ZA� ,

with

A� = 1 +

[
|x− x�|+

(
δ + eLδ2 δ

3

6

)
Z

]�−2

,
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so that

δ

2

∫ δ

0

|v||∇2U(x̂s)−∇2U(x)|ds � δ3
L�

8

(
1 + eLδ2 δ

2

12

)
Z2A� .

Gathering the previous bounds,

|yδ − x̂δ|+ |v̂δ − w̃δ| � δ

2

∫ δ

0

|g′(s)− g′(0)|ds+
(
1 +

Lδ

2

)
|yδ − x̂δ|

� δ3
L�

8

(
1 + eLδ2 δ

2

12

)
Z2A�

+
δ

2

∫ δ

0

(
eLs2 L

2s4

24
Z +

Ls2

2
Z + s|∇U(x)|

)
dt

+

(
1 +

Lδ

2

)
eLδ2 Lδ

3

6
Z

� δ3
L�

8

(
1 + eLδ2 δ

2

12

)
Z2A� +

δ3

4
|∇U(x)|

+

[
1 + δ

L+ 1

2
+ δ3

L

40

]
eLδ2 Lδ

3

6
Z .

Recall that π1 denotes the first marginal of π, namely the probability law on
R

d with density ∝ exp(−U). Similarly, denote by π2 the second marginal of π,
which is simply the standard Gaussian distribution on R

d.

Lemma 30. Under Assumption (∇Lip) and (Conv), for all β � 0,

∫
R2d

|∇U(x)|βπ1(dx) � Lβ

∫
R2d

|x− x�|βπ1(dx) � Lβ

(
d+ (β − 2)+

m

)β/2

and ∫
R2d

|v|βπ2(dv) � (d+ (β − 2)+)
β/2

.

Proof. Consider L = −∇U + Δ the generator of the overdamped Langevin
diffusion, which leaves invariant π1. For ζ � 1 and ϕ(x) = |x|2ζ ,

Lϕ(x) = −2ζ|x|2(ζ−1)∇U(x) · x+ |x|2(ζ−1) (2ζd+ 4ζ(ζ − 1))

� −2mζ|x|2ζ + |x|2(ζ−1) (2ζd+ 4ζ(ζ − 1)) .

The invariance of π1 implies that Eπ1(Lϕ) = 0, so that

0 � −2mζEπ1 (ϕ) + (2ζd+ 4ζ(ζ − 1))Eπ1

(
ϕ(ζ−1)/ζ

)
� −2mζEπ1 (ϕ) + (2ζd+ 4ζ(ζ − 1)) (Eπ1 (ϕ))

(ζ−1)/ζ

from Jensen’s inequality, and thus

(Eπ1 (ϕ))
1/ζ � d+ 2(ζ − 1)

m
.
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This concludes the case of β = 2ζ � 2. The case β ∈ [0, 2) is obtained by
Jensen’s inequality. Applying this result to the potential U(x) = |x|2/2 (so that
m = 1) bounds the moments for the velocity.

We can now gather the results of the last four lemmas to get the following.

Proposition 31.

1. Under Assumptions (∇Lip) and (Conv), for all p � 1,

Wp (π, πPV ) � δ2K3

√
d+ (p− 2)+

‖π − πPV ‖TV � δ2K4d

with

K3 = L

[
1 + eLδ2

(
δ

6
+

δ2L

24

)](
1 +

δL

2
√
m

)

K4 = L

(
1 + δ

1

4
+ δ2

L

4

)(
1 + δ

L√
m

+
δ2L2

4m

)
+ δ

L2

m
.

2. Under Assumptions (∇Lip), (Conv) and (∇2pol(�)), for all p � 1,

Wp (π, πPV ) � δ3
(
K5

√
d+ (p− 2)+ + L�K6 (d+ �p− 2)

�/2
)

‖π − πPV ‖TV � δ3
(
K7d+ L�K8 (d+ �− 1)

(�+1)/2
)

with

K5 =
L

4
√
m

+
L

6

[
1 + δ

L+ 1

2
+ δ3

L

40

]
eLδ2

(
1 + δ

L

2
√
m

)

K6 = 2�−2

(
1 + eLδ2 δ

2

12

)(
1 + δ + eLδ2 δ

3

6

)�−2(
1 +

δL

2

)�(
1 +

1

m�/2

)

K7 = L(1 + δL)

(
1 +

δ2L2

4m

)

K8 = 2�+1

(
1 + δ +

δ2L

2

)�−2(
1 +

δL

2

)3(
1 +

1

m(�+1)/2

)
.

Proof. Both cases are similar so we only detail the first one. For h � 1, denote

mx,h =

∫
R2d

|∇U(x)|hπ1(dx) and mv,h =

∫
R2d

|v|hπ2(dv) .

For p � 1, using Lemmas 26 and 29 and the invariance of π by Qδ,

Wp (π, πPV ) = Wp (πQδ, πPV )

� Lδ2
[
1 + eLδ2

(
δ/6 + δ2L/24

)]
(Eπ [(|V |+ δ/2|∇U(X)|)p])1/p

� Lδ2
[
1 + eLδ2

(
δ/6 + δ2L/24

)] [
(mv,p)

1/p
+ δ/2 (mx,p)

1/p
]
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� δ2K3

√
d+ (p− 2)+ ,

where we used Lemma 30. Similarly, from Lemmas 26, 28 and 30,

‖π − πPV ‖TV

� δ3
1

4
Eπ

(
|∇U(X)|2

)
+ δ2L

(
1 + δ

1

4
+ δ2

L

4

)
Eπ

(
(|V |+ δ/2|∇U(X)|)2

)

= δ3
1

4
mx,2 + δ2L

(
1 + δ

1

4
+ δ2

L

4

)(
mv,2 + δmv,1mx,1 +

δ2

4
mx,2

)
� δ2dK4 .

Remark that in the computations of the second case, to simplify the last term
involved in the bound on |ΦV − ΦHD| in Lemma 29, we use that

A′
� := 1 +

[
|X − x�|+

(
δ + eLδ2 δ

3

6

)(
|V |+ δ

2
|∇U(X)|

)]�−2

� 1 +

(
1 + δ + eLδ2 δ

3

6

)�−2 [
|X − x�|

(
1 +

δL

2

)
+ |V |

]�−2

�
(
1 + δ + eLδ2 δ

3

6

)�−2(
1 +

δL

2

)�−2

2�−3
(
2 + |X − x�|�−2 + |V |�−2

)
and then(

|V |+ δ

2
|∇U(X)|

)2

A′
� � 2

(
1 +

δL

2

)2 (
|V |2 + |X − x�|2

)
A′

� .

Using then Lemma 30 to bound

(
Eπ

[(
|V |2 + |X − x�|2

)p (
2 + |X − x�|�−2 + |V |�−2

)p])1/p

� 2
(
E
(
|V |2p

))1/p
+ 2

(
E
(
|X − x�|2p

))1/p
+ 3

(
E
(
|V |�p

))1/p
+ 3

(
E
(
|X − x�|�p

))1/p
� 5 (d+ �p− 2)

�/2

(
1 +

1

m�/2

)

yields the claimed expression for K6. Similarly, to bound the last term given in
Lemma 28, we use that

1 +

(
|X − x�|+ δ

(
|V |+ δ

2
|∇U(X)|

))�−2

�
(
1 + δ +

δ2L

2

)�−2 (
1 + (|V |+ |X − x�|)�−2

)

� 2�−3

(
1 + δ +

δ2L

2

)�−2 (
2 + |V |�−2 + |X − x�|�−2

)
,
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then (
|V |+ δ

2
|∇U(X)|

)3

� 4

(
1 +

δL

2

)3 (
|V |3 + |X − x�|3

)
,

and proceed similarly to K6 to get the expression of K8.

The case of a separable target ensues from the following result.

Lemma 32. Let p � 2 and, for i ∈ �1, d�, let νi, μi ∈ Pp(R) and ν = ⊗d
i=1νi

and μ = ⊗d
i=1μi. Then

W2
p (ν, μ) �

d∑
i=1

W2
p (νi, μi)

‖ν − μ‖TV �
d∑

i=1

‖νi − μi‖TV .

Proof. For all i ∈ �1, d�, let (Xi, Yi) optimal Wp coupling of νi and μi, with
(Xi, Yi) independent from (Xj , Yj) for j 
= i. Then X = (Xi, . . . , Xd) and Y =
(Yi, . . . , Yd) are respectively distributed according to ν and μ so that, for p � 2,

W2
p (ν, μ) �

⎛
⎝E

⎡
⎣( d∑

i=1

|Xi − Yi|2
)p/2

⎤
⎦
⎞
⎠

2/p

�
d∑

i=1

(E [|Xi − Yi|p])2/p =
d∑

i=1

W2
p (νi, μi) .

Alternatively, if the (Xi, Yi)’s are optimal couplings of νi and μi for the total
variation distance, then

‖ν − μ‖TV � 2P (∃i ∈ �1, d�, Xi 
= Yi) � 2
d∑

i=1

P (Xi 
= Yi)

=
d∑

i=1

‖νi − μi‖TV .

As a conclusion of the analysis of the equilibrium bias:

Proof of Propositions 11 and 12. Simply combine Propositions 9 and 31. More
precisely, for the total variation, to prove Proposition 11, apply Proposition 9
with

n := 1 +

⌈
| ln

(
δ3d

)
|

| ln(1− δκ)|

⌉
� 2 +

| ln
(
δ3d

)
|

δκ
,

so that

(1− δκ)(n−1)/2 � δ3/2
√
d .
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This choice of n � 1 has been motivated by the fact we want to minimize a
bound of the order of

(1− δκ)n
√

d/δ + nδ2d =
√
d/δ

(
(1− δκ)n + (nδ)

√
δ3d

)
.

Remark that there is no way to deduce from this a bound that goes to zero
if e−1/(dδ)

√
d/δ doesn’t go to zero (which is not implied by the fact dδ → 0,

since even in that case e−1/(dδ)
√
dδ may not be negligible with respect to δ).

We chose n so that the terms (1− δκ)n and (nδ)
√
δ3d are equal; in fact taking

into account the nδ factor in the second term only leads to a ln ln correction so
we simply take (1− δκ)n =

√
δ3d.

Similarly, to prove Proposition 12, apply Proposition 9 with

n := 1 +

⌈
| ln

(
δ3/2

√
d+ �− 1

)
|

| ln(1− δκ)|

⌉
� 2 +

| ln
(
δ3/2

√
d+ �− 1

)
|

δκ
,

so that

(1− δκ)(n−1)/2 � δ3/2
√
d+ �− 1 .

Finally, under the additional condition (⊥⊥), notice that necessarily each of
the potentials Ui for i ∈ �1, d� satisfies the conditions (∇Lip) and (Conv) with
the same constants L and m than U . Moreover, the Wp and total variation
distances are unchanged by an orthonormal change of coordinates, so without
loss of generality we suppose that U(x) =

∑d
i=1 Ui(xi). In particular, π = ⊗d

i=1νi
where νi is the law of (Xi, Vi) where (X,V ) ∼ π. Moreover, the coordinates of
the OBABO chain are independent one-dimensional OBABO chains associated
to the potentials Ui, i ∈ �1, d�, and thus similarly πδ = ⊗d

i=1νi,δ where νi,δ is
the equilibrium of the one-dimensional OBABO chain with potential Ui. The
first part of Proposition 12 applies to νi,δ (with d = 1) for all i ∈ �1, d�, which
together with Lemma 32 concludes.

6. Analysis of the Metropolis-adjusted algorithm

The results on the OBABO transition P are transfered to the OM(BAB)O
transition PM thanks to the following lemma.

Lemma 33. For all ν, μ ∈ P(R2d) and n ∈ N,

‖νPn
M − μPn

M‖TV � ‖νPn − μPn‖TV + 2

n−1∑
k=0

(ν + μ)P kPO(1− α) .

Moreover, for ν ∈ P(R2d), let (Zk)k∈N and (Z̃k)k∈N be respectively an OBABO
and OM(BAB)O chain with initial condition Z0 = Z̃0 ∼ ν. Then, for all u � 0
and all ϕ ∈ L1(π),
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P

(∣∣∣∣∣ 1n
n∑

k=1

ϕ(Z̃k)− π(ϕ)

∣∣∣∣∣ � u

)
� P

(∣∣∣∣∣ 1n
n∑

k=1

ϕ(Zk)− π(ϕ)

∣∣∣∣∣ � u

)

+

n−1∑
k=0

νP kPO(1− α) .

Proof. For the first claim, simply bound

‖νPn
M − μPn

M‖TV � ‖νPn − μPn‖TV + ‖νPn
M − νPn‖TV + ‖μPn − μPn

M‖TV .

The two last terms are similar, we bound

‖νPn
M − νPn‖TV �

n∑
k=1

‖νP kPn−k
M − νP k−1Pn−k+1

M ‖TV

�
n∑

k=1

‖νP k−1(P − PM )‖TV

�
n∑

k=1

‖νP k−1PO(PV − PMV )‖TV

Conclusion follows from Lemma 26.
The second claim is obtained simply by saying that an OM(BAB)O and a

OBABO chains starting at the same point and sampled with the same random
variables remain equal up to the first rejection of the OM(BAB)O chain. More
precisely, let (Gn, G

′
n,Wn)n∈N be an i.i.d. sequence of random variables such

that, for all n ∈ N, Gn, G
′
n and Wn are independent, Gn, G

′
n ∼ N (0, Id) and

Wn is uniformly distributed over [0, 1]. Let Z0 ∼ ν be independent from these
variables. We construct (Zk)k∈N and (Z̃k)k∈N as the OBABO and OM(BAB)O
chains with initial condition Z0 and whose transitions at step n are given re-
spectively in Section 2.1 with variables Gn, G

′
n or in Section 2.2 with variables

Gn, G
′
n,Wn. In other words, the damping parts O in both chains use the same

Gaussian variables, and the only difference between Z = (X,V ) and Z̃ = (X̃, Ṽ )
is that the proposal given by the Verlet step BAB is always accepted for Z and
is accepted iff Wn � α(Z̃ ′

n) for Z̃, where Z̃ ′
n = (X̃n, ηṼn +

√
1− η2Gn). In par-

ticular, the two chains are equal up to the first rejection, in other words, for all
n � 1,

P

(
Zk = Z̃k ∀k ∈ �1, n�

)
= P

(
Wk � α

(
Xk, ηVk +

√
1− η2Gk

)
∀k ∈ �0, n− 1�

)
.

Bounding the probability of the union by the sum of the probabilities and using
that (Xk, ηVk +

√
1− η2Gk) ∼ νP kPO for all k ∈ N, we get that

A := P

(
∃k ∈ �1, n� , (Zk) 
= (Z̃k)

)
�

n−1∑
k=0

νP kPO(1− α) ,
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and for u � 0 we bound

P

(∣∣∣∣∣ 1n
n∑

k=1

ϕ(Z̃k)− π(ϕ)

∣∣∣∣∣ � u

)
� A+ P

(∣∣∣∣∣ 1n
n∑

k=1

ϕ(Zk)− π(ϕ)

∣∣∣∣∣ � u

)
.

In view of this result and of Lemma 28, in order to prove Proposition 14
and Theorem 16, it only remains to establish moment estimates for νP kPO for
ν ∈ Pp(R

2d), which is the subject of the following lemma. In the rest of this
section, denote z� = (x�, 0) and ϕ�(z) = |z − z�| for z ∈ R

2d.

Proposition 34. Under the conditions of Proposition 17, for all p � 2, ν ∈
Pp(R

2d) and n ∈ N,

(νPnPO (ϕp
�))

1/p � K1(1− δκ)n/2 (ν(ϕp
�))

1/p

+ (K1 + 3)

(
1 +

1√
m

+
2δK1K3

κ

)√
d+ p− 2 .

Proof. Using that PO does not increase the Wp distance (see the proof of Propo-
sition 9) and Theorem 1

(νPnPO(ϕ
p
�))

1/p � Wp(νP
nPO, πδP

nPO) + (πδP
nPO(ϕ

p
�))

1/p

� K1(1− δκ)n/2Wp(ν, πδ) + (πδPO(ϕ
p
�))

1/p

� K1(1− δκ)n/2 (ν(ϕp
�))

1/p
+K1 (πδ(ϕ

p
�))

1/p
+ (πδPO(ϕ

p
�))

1/p
.

Let (X,V )∼πδ and, independently, G∼N (0, Id), so that (X, ηV +
√

1− η2G)∼
πδPO. For p � 1,

(πδPO(ϕ
p
�))

1/p
=

(
E

(
|(X, ηV +

√
1− η2G)− z�|p

))1/p
� (E (|(X, ηV )− z�|p))1/p +

√
1− η2 (E (|G|p))1/p

� (E (|(X,V )− z�|p))1/p +
√
d+ p− 2 ,

so that

(νPnPO(ϕ
p
�))

1/p � K1(1− δκ)n/2 (ν(ϕp
�))

1/p

+ (K1 + 1) (πδ(ϕ
p
�))

1/p
+
√

d+ p− 2 .

The moments of πδ are bounded by combining Lemma 30 and Proposition 11,
as

(πδ(ϕ
p
�))

1/p � (π(ϕp
�))

1/p
+Wp (π, πδ)

�
(
1 +

1√
m

+
2δK1K3

κ

)√
d+ p− 2 .

Corollary 35. Under the conditions of Proposition 17:
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1. For all ν ∈ P2(R
2d) and n ∈ N,

n−1∑
k=0

νP kPO(1− α) � K9

(
δν(ϕ2

�) + δ2nd
)

with, considering K1 and K3 as in Theorem 1 and Proposition 31,

K9 = 2L(K1 + 3)2
(
1 +

1√
m

+
2δK1K3

κ

)2(
1 +

1

κ

)

×
[
δL

8
+

(
1 +

δ

4
+

δ2L

4

)(
1 + δ2

L2

4

)]
.

2. If (∇2pol(�)) holds then for all ν ∈ P�+1(R
2d) and n ∈ N,

n−1∑
k=0

νP kPO(1− α) � K10

(
δ2ν(ϕ�+1

� ) + δ3n(d+ �− 1)(�+1)/2
)

with, considering K1 and K3 as in Theorem 1 and Proposition 31,

K10 =

[
1 + 2�(K1 + 3)�+1

(
1 +

1√
m

+
2δK1K3

κ

)�+1(
1

κ
+ 1

)]

×
[
L+ 2L2

4

(
1 + δ2

L2

4

)
+ 2(�−3)/2L�

(
1 +

Lδ

2

)3(
1 + δ +

δ2L

2

)�−2
]
.

3. If (⊥⊥) holds then for all ν ∈ P�+1(R
2d) and n ∈ N, denoting ϕ�,i(z) =

|Q−1(zi − z�,i)| for z ∈ R
2d,

n−1∑
k=0

νP kPO(1− α) � K10

(
δ2

d∑
i=1

ν(ϕ�+1
�,i ) + δ3nd�(�+1)/2

)

with K10 given above.

Proof. The first two claims are straightforward consequences of the control of
1−α given by Lemma 28 and of the moment estimates of Proposition 34. Indeed,
under Assumptions (∇Lip) and (Conv), |∇U(x)| � L|x − x�| for all x ∈ R

d,
so that Lemma 28 implies

1− α(x, v) � δ2L

[
δL

8
+

(
1 +

δ

4
+

δ2L

4

)(
1 + δ2

L2

4

)] (
|v|2 + |x− x�|2

)
.

(16)
Similarly, under the additional condition (∇2pol(�)), using that

1 +

(
|x− x�|+ δ

(
|v|+ δ

2
|∇U(x)|

))�−2
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�
(
1 + δ +

δ2L

2

)�−2 (
1 + (|v|+ |x− x�|)�−2

)

and that (
|v|+ δ

2
|∇U(x)|

)3

�
(
1 +

δL

2

)3

(|v|+ |x− x�|)3 ,

we see that Lemma 28 implies

1− α(x, v) � δ3L

[
L

8
+

1 + L

4

(
1 + δ2

L2

4

)] (
|v|2 + |x− x�|2

)

+
δ3

8
L�

(
1 +

Lδ

2

)3(
1 + δ +

δ2L

2

)�−2 (
(|x− x�|+ |v|)3 + (|x− x�|+ |v|)�+1

)

� δ3
[L+ 2L2

4

(
1 + δ2

L2

4

)

+
L�

8

(
1 +

Lδ

2

)3(
1 + δ +

δ2L

2

)�−2 (
23/2 + 2(�+1)/2

) ] (
1 + |z − z�|�+1

)
(17)

where we bounded (|x−x�|+|v|)k by 2k/2|z−z�|k for k = 3 and �+1 and |z−z�|k
by 1+ |z− z�|�+1 for k = 2 and 3. Moreover, using that (s+ t)p � 2p−1(sp + tp)
for s, t > 0, we see that Proposition 34 implies that for all p � 2,

νPnPO (ϕp
�) � 2p−1Kp

1 (1− δκ)np/2ν(ϕp
�)

+ 2p−1(K1 + 3)p
(
1 +

1√
m

+
2δK1K3

κ

)p

(d+ p− 2)p/2 ,

so that

n−1∑
k=0

νP kPO (ϕp
�) � 2p−1(K1 + 3)p

(
1 +

1√
m

+
2δK1K3

κ

)p

×
(

1

δκ
ν(ϕp

�) + n(d+ p− 2)p/2
)

Combining this with (16) (with p = 2) gives the expression of K9, and with (17)
(with p = �+ 1) gives K10.

In the separable case (condition (⊥⊥)), denoting (y, v) = (Q−1x,Q−1v) and

Hi(yi, wi) = Ui(yi)+ |wi|2/2 for i ∈ �1, d�, using that H(x, v) =
∑d

i=1 Hi(yi, wi)
and that Q−1ΦV = ΦV Q−1, we get that

1− α(x, v) � 1− e−
∑d

i=1(Hi◦ΦV (yi,wi)−Hi(yi,wi))+ := 1−
d∏

i=1

αi(yi, wi) ,
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where αi is the acceptance probability of a one-dimensional OM(BAB)O chain
with potential Ui. Bounding the probability of the union by the sum of the
probability we get that

1− α(x, v) �
d∑

i=1

(1− αi(yi, wi)) .

Moreover, the OBABO transition P is such that, up to the orthonormal change
of variables (y, w) = (Q−1x,Q−1v), the coordinates (position/velocities) of the
chain are independent one-dimensional OBABO chains. Similarly the transition
PO preserves this independence. Applying the second claim of Corollary 35 (with
d = 1) to the ith one-dimensional chain gives

n−1∑
k=0

νP kPO(1− αi) � K10

(
δ2ν(ϕ�+1

�,i ) + δ3n�(�+1)/2
)

for i ∈ �1, d�. Summing these d inequalities concludes.

Proof of Proposition 14. Simply combine Lemma 33 and Corollary 35.

Proof of Theorem 16. This follows from the concentration bound for the un-
adjusted chain (Theorem 6), the bound between the adjusted and unadjusted
process obtained by combining Lemma 33 and Corollary 35, and the dual rep-
resentation of the W1 distance (see e.g. [58]) that implies that |π(ϕ)− πδ(ϕ)| �
W1(π, πδ) for all 1-Lipschitz function ϕ.
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[19] Alain Durmus, Umut Simsekli, Éric Moulines, Roland Badeau, and Gael

https://www.ams.org/mathscinet-getitem?mr=4133372
https://www.ams.org/mathscinet-getitem?mr=2583309
https://www.ams.org/mathscinet-getitem?mr=2881033
https://www.ams.org/mathscinet-getitem?mr=2653264
https://www.ams.org/mathscinet-getitem?mr=4119160
https://arxiv.org/abs/1805.01648
https://arxiv.org/abs/abs/1906.08530
https://www.ams.org/mathscinet-getitem?mr=4091098
https://arxiv.org/abs/1808.04299
https://www.ams.org/mathscinet-getitem?mr=3911112
https://www.ams.org/mathscinet-getitem?mr=2078555
https://www.ams.org/mathscinet-getitem?mr=2576899
https://www.ams.org/mathscinet-getitem?mr=4003567


4164 P. Monmarché
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