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Abstract: Statistical depths have been well studied for multivariate and
functional data over the past few decades, but remain under-explored for
point processes. A first attempt on the notion of point process depth was
conducted recently where the depth was defined as a weighted product of
two terms: (1) the probability of the number of events in each process and
(2) the depth of the event times conditioned on the number of events by
using a Mahalanobis depth. We point out that multivariate depths such as
the Mahalanobis depth cannot be directly used because they often neglect
the important ordering property in the point process events. To deal with
this problem, we propose a model-based approach for point process system-
atically. In particular, we develop a Dirichlet-distribution-based framework
on the conditional depth term, where the new methods are referred to as
Dirichlet depths. We examine mathematical properties of the new depths
and conduct asymptotic analysis. In addition, we illustrate the new meth-
ods using various simulated and real experiment data. It is found that the
proposed framework provides a reasonable center-outward rank and the
new methods have accurate decoding in one neural spike train dataset.

Keywords and phrases: Point process, Dirichlet depth, Poisson process,
time warping, neural spike trains.
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1. Introduction

Point process models have been well studied for many decades and widely ap-
plied in various disciplines, such as geography, seismology, astronomy, neuro-
science, and so on. Those models are mainly focused on representing observa-
tions at each given time/location and have limited capability to measure the
center-outward ranks of data. The center-outward rank, often referred to as sta-
tistical depth (depth for short), is a powerful tool to understand the features
of underlying distribution such as spread and shape (Liu, Parelius and Singh,
1999). The study on depth has been focused on multivariate data and functional
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data (Zuo and Serfling, 2000a; Lopez-Pintado and Romo, 2009; Mosler and
Polyakova, 2012). In practice, depth has been successfully applied to address var-
ious practical problems such as classification (Lange, Mosler and Mozharovskyi,
2014), outlier detection (Chen et al., 2009), and diagnostics of nonnormality
(Liu, Parelius and Singh, 1999).

The notion of statistical depth was first introduced and systematically studied
on multivariate data by Tukey (1975). Since then, various definitions of multi-
variate depth have been proposed such as the convex hull peeling depth (Bar-
nett, 1976), Oja depth (Oja, 1983), simplicial depth (Liu, 1990), Mahalanobis
depth (Liu and Singh, 1993), and likelihood depth (Fraiman et al., 1999). As
an axiomatic approach, a more general notion of depth for multivariate data
was proposed by Zuo and Serfling (2000a), in which they summarized four de-
sirable properties for multivariate depths, namely affine invariance, maximality
at the center, monotonicity relative to the deepest point, and vanishing at in-
finity. In addition to multivariate data, depth for functional observations has
received extensive attention in recent years (Lopez-Pintado and Romo, 2009;
Mosler and Polyakova, 2012). Similar to the axiomatic approach in (Zuo and
Serfling, 2000a), Nieto-Reyes and Battey (2016) provided a general definition of
functional depth through six desirable properties, namely distance invariance,
maximality at the center, decreasing with respect to the deepest point, upper
semi-continuity in the function space, receptivity to convex hull with across the
domain, and continuity in the probability measure.

Mathematical theories have also been extensively studied in majority of depth
methods. For example, Nolan (1992) and Massé (2004) studied the convergence
behavior of the halfspace depth and depth trimmed regions, and Koshevoy and
Mosler (1997) studied the convergence behavior of the Zonoid depth. Further-
more, Dyckerhoff (2016) discussed the connections between different types of
convergence for multivariate depths. Zuo and Serfling (2000b) studied the struc-
tural properties of trimmed regions, such as affine equivariance, nestedness, con-
nectedness, and compactness.

Our goal in this paper is to study the notion of statistical depth in temporal
point process data. This is an under-explored area. The only previous work is
given in (Liu and Wu, 2017), where the authors introduced the notion of depth
in point process using a generalized Mahalanobis depth. Note that given the
number of the events in a point process, the distribution of these events follow
a multivariate framework. However, we point out that the multivariate depths
cannot be directly used for point process data. This is because i) the number of
events is a random variable, which is not described by the multivariate depths;
ii) the events in a point process are an ordered sequence in a given (often finite)
time domain. To the best of our knowledge, none of the multivariate depths
studied the center-outward rank on ordered data.

Using mathematical notation, let S denotes the set of all point processes in
a time domain [T1, T2]. Then an observed realization s = (s1, s2, · · · , sk) ∈ S

can be treated as a vector in R
k, where |s| = k is the cardinality of s. This

cardinality k can be any nonnegative integer. By the nature of temporal point
process, the events (s1, s2, · · · , sk) are ordered in a natural way as T1 ≤ s1 <
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s2 < · · · < sk ≤ T2. Traditional depths defined on multivariate data neglect
the importance of this order and will not be suitable for point process events.
For example, suppose we inter-change the position of s2 with s1 and let s′ =
(s2, s1, s3, · · · , sk), traditional depth functions may still assign some positive
depth values to s′. However, s′ appears to be an outlier with zero probability,
which is expected to have a zero depth value.

A depth function needs to take into account two types of randomness in a
temporal point process S:(1) the number of events, or cardinality, in the process,
denoted as |S|, and (2) the conditional distribution of these events given |S|. The
notion of depth for point process was first studied by Liu and Wu (2017), where
the authors defined a new depth framework as a weighted product of two terms:
(1) the normalized probability of the number of events in each process and (2)
the depth of the event times conditioned on the number of events by using the
Mahalanobis depth. This weighted product is an appropriate way to address
the two types of randomness. However, the Gaussian-kernel-based Mahalanobis
conditional depth neglects the bounded and ordered property of the events. Here
we use one example to illustrate how Gaussian-kernel-based conditional depth is
inappropriate for the point process. The detailed simulation procedure is given
in the Methods Section.

Basically, for a homogeneous Poisson process that only has two ordered events
s1 and s2 in the time interval [0, 1], the three inter-event times are: s1, s2 − s1
and 1 − s2. These three intervals are nonnegative with the sum being 1, and
therefore form a 2-dimensional simplex (i.e. a triangle) as shown in Figure 1.

Fig 1: Example of the Mahalanobis depth and propose depth for HPP condi-
tioned on 2 events in [0, 1]. The contours from outside to the center are with
depth values 0.2, 0.3, 0.5, 0.7, 0.9, and 0.99, respectively. (a) Depth contours on
inter-event times using the Mahalanobis Depth. (b) Same as (a) except using
the proposed depth.

For the Mahalanobis depth, a Gaussian kernel is applied on the events, and
therefore the inter-event times will also be represented by a Gaussian model.
Typical Mahalanobis depth contours on the inter-event times are elliptical, as
shown in Figure 1(a). We can see that such contours are not appropriate for
the center-outward tendency since (1) the elliptical contours do not match the
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triangular domain, and (2) the points on the border of simplex will be still
assigned positive depth values by the Mahalanobis depth. A more reasonable
contour plot is shown in Figure 1(b), where the proposed depth contours are
triangle-like and resemble the triangular shape of the domain. In this paper, we
will focus on explicit forms of point process depths with such contours.

Defining center-outward ranks for point process observations is a timely and
important research topic. The goal of this paper is to develop a new depth
framework for point processes systematically. Based on Liu and Wu (2017), our
proposed framework of depth function for point processes is also defined as a
weighted product of two terms aforementioned. In this paper, we focus on intro-
ducing new conditional depth functions based on the Dirichlet distribution. We
will then discuss the desired mathematical properties and asymptotic behaviors.

The rest of this paper is organized as follows: In Sec. 2, we elaborate on the
definitions of the new depths and provide computational procedures to effec-
tively estimate them. The properties of the proposed depths are discussed in
this section as well, followed by a thorough analysis with simulations. We then
study the asymptotics of the new depths in Sec. 3. In Sec 4, we apply the new
depths to classification problems in a real neural spike train dataset. Finally, we
discuss and summarize the work in Sec. 5. All mathematical details are given
in the Supplementary Materials.

2. Methods

In this section, we will at first review basic notation and then propose our
new conditional depths for temporal point process. Since the new conditional
depth functions are based on the Dirichlet distribution, we refer to them as the
Dirichlet depths.

2.1. Notation and depth definition

Let S denote the set of all point processes in the time domain [T1, T2]. For any
non-negative integer k, let Sk = {s ∈ S | |s| = k} = {(s1, · · · , sk) ∈ R

k|T1 ≤
s1 ≤ · · · ≤ sk ≤ T2} denote the set of all point processes in S with cardinality
|s| = k. Hence, S =

⋃∞
k=0 Sk. For any s ∈ S, a depth function for point process is

a map D : S → R+ (set of nonnegative real numbers), s → D(s). Although our
study in this paper focuses on the simple point process in which any two events
cannot occur simultaneously, we allow the “=” sign in the domain to better
derive important mathematical properties. This boundary set of Sk is denoted
as Bk = {(s1, · · · , sk) ∈ Sk| at least one equality holds in T1 ≤ s1 ≤ · · · ≤ sk ≤
T2}.

As we have emphasized in Introduction, there are two types of randomness in
a point process: (1) the number of events in each process, and (2) the conditional
distribution of these event times. In (Liu and Wu, 2017), the number of events is
modeled by a normalized Poisson mass function and the event times are modeled
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by a multivariate Gaussian distribution. The depth framework of a point process
s is then defined as a weighted product of two terms – the normalized probability
of having |s| events and the conditional depth using the Mahalanobis depth.

To better characterize the center-outward rank in a point process, we modify
this framework by defining the depth as a weighted product of the following two
terms: (1) a normalized one dimensional depth of the number of events in each
process, and (2) a multivariate depth on the ordered event times conditioned on
the number of events. The formal definition is given as follows:

Definition 2.1. Given a random point process S ∈ S on [T1, T2] with respect to
a probability measure P , denote P|S| as a probability measure on the cardinality
|S| and PS||S| as the probability measure on the ordered events S (conditioned
on |S|). For a realization s ∈ S, if P|S|(|S| = |s|) > 0, then we define its depth
D(s;P ) as:

D(s;P ) = w(|s|;P|S|)
rDc(s;PS||S|) (2.1)

where w(|s|;P|S|) =
D1(|s|;P|S|)

maxk D1(|s|=k;P|S|)
is the normalized one dimensional depth

base on the cardinality |s|. r > 0 is the weight parameter and Dc(s;PS||S|) is
the depth of s conditioned on |s|. If P|S|(|S| = |s|) = 0, then we directly define
D(s;P ) = 0.

The first term w(|s|;P|S|) only depends on the distribution of |S|, with r as a
tuning (weight) hyperparameter to balance its importance relative to the second
term Dc(s;PS||S|). As r gets larger, w(|s|;P|S|) becomes a more dominant factor
in the depth value D(s;P ). Various parametric or non-parametric methods can
be adopted to estimate w(|s|;P|S|). In this paper, we adopt the one dimensional
half-space depth D1(·) in the first term w(|s|;P|S|). That is,

D1(|s|;P|S|) = min{P|S|(|S| ≤ |s|), P|S|(|S| ≥ |s|)}. (2.2)

In practical use, D1(|s|;P|S|) and w(|s|;P|S|) can be easily estimated from sam-
ples.

Our study in this paper focuses on the second term Dc(s;PS||S|), which de-
scribes the conditional depth when the number of events |s| is given. In principle,
any multivariate depth can be used as the conditional depth for point process if
we treat s ∈ S|s| as an |s| dimensional vector. However, we point out that
such an approach neglects two important conditions of point process
on [T1, T2]: (1) the event times are constrained on [T1, T2], and (2) there
exists a natural order in the event time sequence. To address this issue,
rather than defining the conditional depth function on the original point process
space, we propose to define the conditional depth using inter-event times.

2.2. Equivalent representation and desirable properties

The point processes we discussed are bounded and ordered, i.e. T1 ≤ s1 ≤
s2 ≤ · · · ≤ sk ≤ T2. Applying multivariate depth functions directly on Sk

as conditional depths will tend to neglect the boundedness and orderedness
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conditions. We propose to use inter-event times to represent a point process
such that these important conditions are naturally satisfied.

2.2.1. Representation using inter-event times

It is well known that the point process can be equivalently represented by the
inter-event times (IET). Here the IET of a point process s1, s2, · · · , sk on [T1, T2]
are given as u1 = s1 − T1, u2 = s2 − s1, · · · , uk = sk − sk−1, uk+1 = T2 − sk.
The IET sequence u = (u1, u2, · · · , uk+1) has k degrees of freedom and in fact
forms a k-dimensional simplex (scaled standard simplex) as:

Xk = {(u1, u2, · · · , uk+1) ∈ R
k+1 : u1 + u2 + · · ·+ uk+1 = T2 − T1,

ui ≥ 0, i = 1, 2, · · · , k + 1}.

Xk is bounded by the IET boundary set Yk = {(u1, u2, · · · , uk+1) ∈ Xk : ui = 0
for at least one i ∈ {1, 2, · · · , k+1}}. Consistent to the point process boundary
set Bk, the points in Yk indicate a realization which has either two events hap-
pening simultaneously or one event happening at time T1 or T2. Both situations
indicate extreme realizations (often with zero probability density) of a point
process.

Based on this IET representation, we look for a conditional depth defined
on the Xk simplex. Notice that the normalized IET sequence ( u1

T2−T1
, u2

T2−T1
,

· · · , uk+1

T2−T1
) has the constant sum of 1. Therefore, one apparent option for the

depth is the density function of Dirichlet distribution, which is commonly used
as a prior in Bayesian statistics. Here we review the Dirichlet distribution which
will be used to derive our conditional depth function: The Dirichlet proba-
bility density function of order m ≥ 2 with concentration parameter vector
a = (a1, a2, · · · , am) ∈ R

m with ai > 0, i = 1, · · · ,m, is given as:

f(x1, x2, · · · , xm; a1, a2, · · · , am) =
Γ(

∑m
i=1 ai)∏m

i=1 Γ(ai)

m∏
i=1

xai−1
i . (2.3)

where (x1, x2, · · · , xm) is in the standard m − 1 simplex, i.e.
∑m

i=1 xi = 1 and
xi ≥ 0, i = 1, 2, · · · ,m. This density function is denoted as Dirichlet(a,m).

2.2.2. Desirable properties of the conditional depth for point process

In statistical depth literature, Zuo and Serfling (2000a) and Nieto-Reyes and
Battey (2016) proposed important and desirable properties for depth on multi-
variate and functional data, respectively. They further claim that a depth func-
tion should be defined through desirable properties. Motivated by this claim,
we list and discuss four desirable properties for a conditional depth function for
point process as follow.

• P-1, Continuity and vanishing at the boundary: A conditional depth for
point process is a map from the simplex Xk to R

+. Since event times
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are continuous on the time domain, a minimal requirement for a proper
conditional depth should be continuity. In addition, an ideal conditional
depth for point process should vanish at the boundary of the simplex
domain.

• P-2, Maximality at the central point: This may be the most logical one
among all properties since the “center” (the central point given measures
of centrality) must have a maximal depth in a center-outward rank. In gen-
eral, the notion of “center” is either a point of symmetry or the population
mean (a.k.a. center of mass).

• P-3, Monotonicity relative to the deepest point: This property is also
intuitive as depth value should decrease from the central point in a center-
outward trend.

• P-4, Scale and shift invariance: The scale and shift invariance is a special
case of the affine invariance in multivariate depth. Basically, a good depth
is expected to be invariant with respect to scaling and translation on the
time domain.

Let Pk denote the collection of all conditional probability measures on Sk and
PS||S|=k denote the conditional probability measure of a given random point
process S ∈ Sk. We formally define the conditional statistical depth function
as:

Definition 2.2. Let the mapping Dc(·; ·) : Sk × Pk → R
+ be bounded, nonneg-

ative, and satisfy P-1 to P-4; that is, assume:

(i) Dc(s;PS||S|=k) is a continuous map from Sk to R
+ and Dc(s;PS||S|=k) = 0

for any s ∈ Bk;

(ii) Dc(θk;PS||S|=k) = sups∈Sk
Dc(s;PS||S|=k) holds for any PS||S|=k ∈ Pk

having central point θk given a measure of centrality;

(iii) For any PS||S|=k ∈ Pk having deepest point θk, Dc(s;PS||S|=k) ≤ Dc(θk+
α(s− θk);PS||S|=k) for any s ∈ Sk, α ∈ [0, 1]; and

(iv) For any scaling coefficient a ∈ R+and translation b ∈ R, Dc(s;PS||S|=k)=
Dc(as+ b;PaS+b||S|=k).

Then Dc(·;PS||S|=k) is called a conditional statistical depth for point process
in Sk.

In addition to the above four properties, we note that the variation of a
point process must satisfy two conditions: 1) the events are in the domain
[T1, T2], and 2) the events remain the temporal order. Such variation can be
properly described by the set of time warping functions, defined as a boundary-
preserving diffeomorphism Γ = {γ : [T1, T2] → [T1, T2] | γ(T1) = T1, γ(T2) =
T2, γ̇ > 0}, where the dot indicates the first order derivative (Srivastava and
Klassen, 2016). Similar to the affine invariance in the multivariate depth, the
following time warping invariance is also a desirable property for a conditional
depth.

P-5*, Time warping invariance: For a point process S with cumulative in-
tensity function ΛS(·), Dc(s;PS||S|=k,ΛS) = Dc(γ(s);PS||S|=k,Λ

γ
S) holds for all
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time warping γ ∈ Γ, where Λγ
S = ΛS ◦ γ−1 is the cumulative intensity after the

time warping transformation.
The time warping essentially allows any order-preserving nonlinear transfor-

mation of events in the given time domain. One might view P-5* as rather too
strict (in contrast to the linear variance in P-4). Hence, the property P-5* is
not listed in Definition 2.2. In the following sections, we will discuss all above
properties in proposed conditional depths.

2.3. Dirichlet depth for homogeneous Poisson process

We at first develop a Dirichlet depth for the most classical temporal point pro-
cess – homogeneous Poisson process (HPP).

2.3.1. Definition

For an HPP with constant rate λ on [T1, T2], the first term w(|s|;P|S|) in Equa-
tion (2.1) is simply the normalized depth on the number of events, which follows
a Poisson distribution with mean λ(T2 − T1). The challenge therefore stays on
the conditional depth Dc(s;PS||S|). As we have discussed, defining conditional
depth for HPP on its IET representation will address the natural order issue,
and ideally, the conditional depth should satisfy P-1 to P-4.

Before we step into the formal definition of the Dirichlet depth, we first look
at the connection between HPP and Dirichlet distribution. For an HPP, we have
defined IET (ui , i = 1, · · · , k + 1) as mentioned earlier. Conditioned on the
number of events k, the normalized IET ( ui

T2−T1
, i = 1, 2, · · · , k+1) will satisfy

two conditions: (1) They share the same support, a k-dimensional standard
simplex, as the Dirichlet distribution (also true for any point process). (2) They
follow a flat Dirichlet({1, · · · , 1}, k+1) distribution, which is in fact a uniform
distribution over the standard k-dimensional simplex. The detail proof is given
in Part A of the Supplementary Materials.

With a slight modification on Equation (2.3), we formally propose the Dirich-
let depth for an HPP when the number of events is given as follows:

Definition 2.3. Let s = (s1, s2, · · · , sk) in [T1, T2] be an observed homogeneous
Poisson process. Denote s0 = T1, sk+1 = T2. The Dirichlet depth of s (given
|s| = k) is defined as:

Dc(s;PS||S|=k) = (k + 1)

k+1∏
i=1

(
si − si−1

T2 − T1
)

1
k+1 (2.4)

In particular, we have Dc(s;PS||S|=0) = 1.

Remark 1 (Alternative motivation): The Dirichlet depth has been moti-
vated by a more natural depth contour in Introduction. Alternatively, we here
provide an information-theoretic motivation for Equation (2.4): To simplify no-
tation, we let [T1, T2] = [0, 1]. For an HPP, conditioned on k events, we know
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E(ui) = 1/(k + 1), i = 1, · · · , k + 1. Let q = (q1, · · · , qk+1) be the IET rep-
resentation of any given HPP with k event. Treating u and q as two discrete
distributions, the Kullback-Leibler (K-L) Divergence of q from u is

dKL(u||q) =
k+1∑
i=1

ui log
ui

qi
.

Taking the expectation based on the distribution of u, we have

E(dKL(u||q)) = E(

k+1∑
i=1

ui log ui −
k+1∑
i=1

ui log qi) = c− 1

k + 1

k+1∑
i=1

log qi,

where c is a constant. If we define a depth function of q as

H(q) ∝ exp(−E(dKL(u||q))) = exp(−c) ·
k+1∏
i=1

q
1

k+1

i ,

then this is in the same form as in Eqn. (2.4). By letting the maximum being
1, we have

H(q) = (k + 1)

k+1∏
i=1

q
1

k+1

i .

Therefore, the defined Dirichlet depth in Eqn. (2.4) can actually be built from
this information-theoretic derivation.

Remark 2: In Equation (2.4), we have set the concentration parameters of the
Dirichlet distribution ai as 1 +

1
k+1 for i = 1, 2, · · · , k + 1. This constant value

makes the Dirichlet depth a concave function with maximum at the conditional
mean. The scale constant (k + 1) ensures Dc(s;PS||S|=k) has an onto map to
[0, 1]. This normalization makes conditional depths comparable for observations
across different number of events.

Remark 3: The definition of conditional depth is not unique – any increasing
function on Dc in Definition 2.3 can lead to another form of depth. For example,
we can take a power α > 0 on the Dirichlet depth in Equation (2.4) in the
following form:

Dc(s;PS||S|=k, α) = [(k + 1)

k+1∏
i=1

(
si − si−1

T2 − T1
)

1
k+1 ]α.

The value of α decides the concentration level of the depth – a large α leads to
a concentrated depth values around the deepest point, whereas a small α leads
to a more evenly distributed depth values in the domain. For example, we can
let α be proportional to the inverse of the total variance of the data.
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2.3.2. Properties

By the IET representation, the conditional Dirichlet depth is defined on a sim-
plex Xk. For this compact domain, traditional centers in the notion of com-
monly used symmetries (such as A-symmetry, C-symmetry, or H-symmetry in
(Zuo and Serfling, 2000a)) cannot be directly applied. For example, when k = 2,
the standard simplex X2 is shown in Fig. 2 and the IET sequence is uniformly
distributed in this simplex. We can see that the most natural “center” should be
(1/3, 1/3, 1/3). However, we point out that none of the above mentioned sym-
metries can be directly applied. Even for the most relaxed H-symmetry, there
are only three half-space separation lines that can have probability 1/2 at each
side.

Fig 2: The 2-dimensional simplex with the IET representation on cardinality
|S| = 2. The red lines denote the three median lines in the triangle where their
intersection point is the center of mass (1/3, 1/3, 1/3).

Hence, conditioned on |S| = k, we take the most “central point” as the
common mathematical expectation. That is, the “central point” is:

θk = E(S | |S| = k) = (E(S1 | |S| = k), · · · ,E(Sk | |S| = k)).

Using the derivation in Part A of the Supplementary Materials, the conditional
expectation for HPP has the following closed-form:

θk = (
T2 − T1

k + 1
+ T1,

2(T2 − T1)

k + 1
+ T1, · · · ,

k(T2 − T1)

k + 1
+ T1).

The corresponding IET vector of conditional expectation is (T2−T1

k+1 , T2−T1

k+1 ,

· · · , T2−T1

k+1 ). On a k-dimensional simplex, this point is the same as the geo-
metric center. For general point process other than the HPP, we will adopt the
similar notion of “central point”.

Theorem 2.1. If the conditional mean is adopted as measurement of central-
ity, then Dc(·;PS||S|=k) in Definition 2.3 is a conditional statistical depth for
homogeneous Poisson process in sense of Definition 2.2.

The proof of Theorem 2.1 is given in Part B of the Supplementary Materials.
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2.3.3. Illustration

In this subsection, we will at first examine the ranking performance of the
Dirichlet depth on S2. We will then utilize the Dirichlet depth as the condi-
tional depth in Equation (2.1) to study the ranking performance on 100 HPP
realizations.

Conditioned on the cardinality |S| = 2, the inter-event times are uniformly
distributed on a 2-dimensional simplex. Here we simulate 100 realizations from
HPP conditional on |S| = 2 in time interval [0, 1], and then apply both Dirichlet
Depth for HPP (Equation (2.4)) and Mahalanobis depth for comparison. The
result is shown in Figure 1 in the Introduction Section. We can see that compared
with the (truncated) elliptic contours by the Mahalanobis depth, Dirichlet depth
has smooth, triangle-like contours that are more compatible with the triangular
IET domain. Moreover, the Mahalanobis depth assigns positive depth values to
the points on the boundary. In contrast, the depth values on the boundary are
all zero in the Dirichlet depth.

Next, we will apply Dirichlet depth for HPP (Equation (2.4)) as the condi-
tional depth of the proposed depth framework (Equation (2.1)) on 100 HPP
realizations in the interval [0, 10]. The detailed procedure is: (1) Randomly gen-
erate 100 HPP realizations in [0, 10] with intensity rate λ = 0.4. (2) Compute
the depth of cardinality |s| of sampled realizations and normalize it as the first
term w(|s|;P|S|) in Equation (2.1). (3) Apply the Dirichlet depth for HPP as
the conditional depth of Equation (2.1) for each realization. The result is shown
in Figure 3.

Fig 3: Ranking HPP realizations. (a) 100 HPP realizations on [0, 10] with rate
0.4, where each row is one realization. (b) The top 5 and bottom 5 ranked
realizations using the Dirichlet depth and r = 1. (c) Same as (b) except that
r = 10.

We can see that the depth values depend on both w(|s|;P|S|) and the con-
ditional depth Dc(s;PS||S|), and the ranks vary with different choice of r. The
deepest realization is the one with the typical number of events (|s| = 4) and
evenly distributed events (close to the center). When the value of r changes from
1 to 10, the first term w(|s|;P|S|) becomes more dominant, so that realizations
with cardinality close to 4 are more likely to be ranked on the top. Note that
r is a hyperparameter in the depth definition. In practice, one can adjust r to
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balance the w term and Dc term for different purposes. For example, as we
illustrate in Appendix I, a cross-validation procedure may be applied to find an
optimal value.

2.4. Dirichlet depth for general point process

Based on Definition 2.3 for the HPP, we can now define the Dirichlet depth for
general point process.

2.4.1. Definition

Defining Dirichlet depth for general point process is more challenging since
there is no direct connection between Dirichlet distribution and point process
(other than the HPP). In this paper, we propose two different approaches for
the definition: (1) naturally extend Equation (2.4) to general point process, and
(2) transform the process to an HPP and then adopt Equation (2.4). At first,
we extend the Dirichlet depth in Equation (2.4) to a general point process in
[T1, T2] by defining the center of IET as the conditional mean of the process.
The formal definition is given as follows.

Definition 2.4. Given the cardinality k, assume the conditional mean vector
of a point process in time [T1, T2] is μk = (μ1,k, μ2,k, · · · , μk,k). For an observed
realization s = (s1, s2, · · · , sk), set s0 = μ0,k = T1 and sk+1 = μk+1,k = T2. If
μi,k > μi−1,k, i = 1, · · · , k + 1, then the Dirichlet depth of s is defined as:

Dc(s;PS||S|=k) =

k+1∏
i=1

(
si − si−1

μi,k − μi−1,k
)

μi,k−μi−1,k
T2−T1 . (2.5)

For an HPP S in [T1, T2] conditioned on cardinality |S| = k, we have showed

that its conditional mean is: (T2−T1

k+1 + T1,
2(T2−T1)

k+1 + T1, · · · , k(T2−T1)
k+1 + T1). In

this case, it is easy to verify that Equation (2.5) is simplified to Equation (2.4).
Therefore, Dirichlet depth for HPP is a special case of Equation (2.5). Note that
the conditional depth value in Equation (2.5) only depends on the conditional
expectation of the process with the same cardinality, which can be estimated
by the conditional sample mean given a collection of realizations. Hence, the
sample version of Dirichlet depth can be obtained by replacing its conditional
means with sample means. That is, we can write the sample Dirichlet depth
as:

Dc(s;P
(nk)
S||S|=k) =

k+1∏
i=1

(
si − si−1

s
(nk)
i,k − s

(nk)
i−1,k

)
s
(nk)
i,k

−s
(nk)
i−1,k

T2−T1 , (2.6)

where s
(nk)
k = (s

(nk)
1,k , s

(nk)
2,k , · · · , s(nk)

k,k ) are the estimated sample means condi-

tioned on the cardinality k of nk observed realizations and P
(nk)
S||S|=k denotes the

empirical conditional probability measure.

Remark 4: Similar information-theoretic motivation in Remark 1 can be built
for the definition of depth in Equation (2.5): Letting [T1, T2] = [0, 1], the K-L
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Divergence of any IET sequence q from u is still dKL(u||q) =
∑k+1

i=1 ui log
ui

qi
. As

E(ui) = μi,k − μi−1,k,

E(dKL(u||q)) = E(
k+1∑
i=1

ui log ui −
k+1∑
i=1

ui log qi) = c−
k+1∑
i=1

(μi,k − μi−1,k) log qi,

where c is a constant. If we define a depth function of q as

H(q) ∝ exp(−E(dKL(u||q))) = exp(−c) ·
k+1∏
i=1

q
μi,k−μi−1,k

i

This is in the same form as in Equation (2.5). By letting the maximum being
1, we have

H(q) =

k+1∏
i=1

(
qi

μi,k − μi−1,k
)μi,k−μi−1,k .

Remark 5: The same α-power transformation on the Dirichlet depth for HPP
(shown in Remark 3) can be applied to the Dirichlet depth in Equation (2.5)
and sample Dirichlet depth in Equation (2.6).

2.4.2. Properties

For point processes in general, we also adopt the “central point” as the condi-
tional mean given cardinality |S| = k. That is, θk = E(S | |S| = k).

Theorem 2.2. If the conditional mean is adopted as measurement of centrality,
then Dc(s;PS||S|=k) in Definition 2.5 is a conditional statistical depth for general
point process in sense of Definition 2.2.

The detailed proof of Theorem 2.2 is omitted due to its similarity to the
HPP case. Now we examine the property P-5* of the Dirichlet depth. Let S =
(S1, · · · , Sk) be a random point process realization with k events. Then the
conditional mean is E(S | |S| = k) = (E(S1 | |S| = k), · · · ,E(Sk | |S| = k)).
Under the time warping γ ∈ Γ, a point process s = (s1, · · · , sk) will become
γ(s) = (γ(s1), · · · , γ(sk)). Similarly, the conditional mean will become E(γ(S) |
|S| = k) = (E(γ(S1) | |S| = k), · · · ,E(γ(Sk) | |S| = k)). To simplify the
notation on the conditional means, we let μi,k = E(Si | |S| = k) and μi,k,γ =
E(γ(Si) | |S| = k), i = 1, · · · , k and μ0,k = μ0,k,γ = T1, μk+1,k = μk+1,k,γ = T2.
If we include the conditional means in the definition, the Dirichlet depth on the
transformed point process is:

Dc(γ(s);PS||S|=k) =
k+1∏
i=1

(
γ(si)− γ(si−1)

μi,k,γ − μi−1,k,γ

)μi,k,γ−μi−1,k,γ
γ(T2)−γ(T1)

�=
k+1∏
i=1

(
si − si−1

μi,k − μi−1,k
)

μi,k−μi−1,k
T2−T1 = Dc(s;PS||S|=k).
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The inequality holds because the time warping in general is a nonlinear trans-
formation. Therefore, P-5* does not hold for the Dirichlet depth in Definition
2.4.

2.4.3. Bootstrapping estimation

Dirichlet depth in Equation (2.5) relies heavily on the conditional means. For
point process in general, there are no closed-forms for the conditional means
if conditional intensity function is unknown. In practice, given a set of point
process realizations, we can apply the sample version Equation (2.6) to estimate
the Dirichlet depth. However, for a given training data set, the sample size
usually is not sufficiently large to properly estimate the conditional mean for
each cardinality. Here we propose a bootstrapping approach to address this
issue.

Given a data set of point process realizations p1, p2, · · · , pn, where pi is a
vector in R

|pi| for i = 1, 2, · · · , n. In general, those vectors do not have the
same dimension, and therefore it is not possible to take an average to compute
the conditional sample mean as we need in sample Dirichlet depth. We propose
a bootstrap method to resample each realization pi such that the resampled
realizations p′i has the desired dimension k. Then we can effectively estimate
the conditional sample mean given cardinality |S| = k by simply taking an
average. The detailed steps are listed in Algorithm 1.

Basically, for each point process, we either remove events from it or add events
via resampling from the overall data (excluding the given process) such that it
has k events at the end. Then the conditional means can be easily estimated
via all processes with k events. This procedure is under a basic assumption
that the temporal events are history-independent (such as the commonly used
Poisson process). The effectiveness of this algorithm is illustrated via simula-
tion examples in Part C of the Supplementary Materials. Although this algo-
rithm is based on a significant simplification, it performs reasonably well in
practice. We will show the use of Algorithm 1 in a real experimental data in
Section 4.

2.5. Alternative Dirichlet depth for general point process

The time warping transformation allows all events in a point process move within
the given domain, while remaining the order of them. Ideally, the center-outward
ranks of a set of point processes will be invariant if the same transformation is
applied on all of them. However, we have shown that the Dirichlet depth in
Equation (2.5) does not hold such invariance. In this subsection, we seek for an
alternative definition to satisfy this property.

2.5.1. Definition

Note that we have defined the depth for HPP. For any point process, if we can
find a way to transform it to an HPP, then the notion of Dirichlet depth can
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Algorithm 1 Bootstrapping method to estimate conditional means

Require: Given a sequence of realizations of point process p1, p2, · · · , pn
Combine all events of p1, p2, · · · , pn together, pcom = {p1, p2, · · · , pn}
for k = 1 to max(|pi|) do

for i = 1 to n do
if |pi| ≥ k, then uniformly randomly delete |pi| − k events in pi
Otherwise, add k−|pi| by uniformly re-sampling from other realizations (in pcom−pi)

end for
Denote n resampled realizations as p′1,k, p

′
2,k, · · · , p′n,k, and then the estimated condi-

tional mean is:

s
(n)
k =

1

n

n∑
i=1

p′i,k

end for
return [s

(n)
k ]

max(|pi|)
k=1

be directly applied. Actually, such transformation can be done using the well-
known time re-scaling theorem (Brown et al., 2001). Basically, assuming the
conditional probability of more than one event in (t, t + Δt] given the history
dependence Ht is 0 (this is also referred to as orderliness assumption), the
theorem states that any point process with an integrable conditional intensity
function can be converted into an HPP (Papangelou, 1972; Karr, 1991): Let
T1 < s1 < s2 < · · · < sk ≤ T2 be a realization from a point process with a
conditional intensity function λ(t|Ht) > 0 for all t ∈ (T1, T2]. Then, the sequence
ΛS(si) =

∫ si
T1

λ(t|Ht)dt, i = 1, · · · , k is a Poisson process with the unit rate in

(0,Λ(T2)].
By applying this theorem, the notion of Dirichlet depth can be extended to

general point processes. For a point process with known conditional intensity
function, we can apply the time re-scaling theorem to convert it into an HPP
in [0, 1], and then use Equation (2.4) to compute its Dirichlet depth. Here we
propose an alternative definition of the Dirichlet depth, referred to as time-
rescaling-based (or TR-based) Dirichlet depth, as follows:

Definition 2.5. For a point process S satisfying orderliness assumption in
[T1, T2] with conditional intensity function λ(t | Ht) > 0 and ΛS(t) =

∫ t

T1
λ(u |

Hu)du, we define a time-rescaling-based Dirichlet depth of a realization s =
(s1, s2, ...., sk) as:

Dc−TR(s;PS||S|=k,ΛS) = (k + 1)

k+1∏
i=1

(
ΛS(si)− ΛS(si−1)

ΛS(T2)
)

1
k+1 , (2.7)

where s0 = T1 and sk+1 = T2,

Remark 6: The same α-power transformation on Dirichlet depth for HPP
(shown in Remark 3) can be applied to the TR-based Dirichlet depth in Equation
(2.7).

We can verify that the sequence (ΛS(S1)
ΛS(T2)

, · · · , ΛS(Sk)
ΛS(T2)

) follows an HPP in [0, 1]

with intensity ΛS(T2). For point processes without history dependence such as
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an inhomogeneous Poisson process (IPP), the time re-scaled HPP realization
will be distributed in a deterministic time interval (0,ΛS(T2)]. However, for
point processes with history dependence, the re-scaled HPP realizations have
different time lengths. A normalization to the interval [0, 1] by dividing ΛS(T2)
will help make comparison across realizations. Note that Definition 2.5 is not
IET-based with respect to the original point process, and therefore there is no
notion of simplex. This is fundamentally different from Definitions 2.3 and 2.4.

Moreover, for an HPP in [T1, T2] with constant rate λ, ΛS(t) = λ(t − T1).
Then Equation (2.7) is simplified to

(k + 1)

k+1∏
i=1

(
λ(si − si−1)

λ(T2 − T1)
)

1
k+1 = (k + 1)

k+1∏
i=1

(
si − si−1

T2 − T1
)

1
k+1 .

Therefore, the TR-based Dirichlet depth also generalizes Definition 2.3 for HPP.
Comparing Definitions 2.5 and 2.4, we can see that the depth in Definition 2.4

seems easier to use in practice as its depth value only depends on the conditional
means. In contrast, in Definition 2.5 the randomness of a point process is due
to the shape of its conditional intensity function, and TR-based Dirichlet depth
entirely depends on this function. Hence, if the conditional intensity function is
known, the proposed TR-based definition is expected to have an effective center-
outward ranking. However, the conditional intensity function is often unknown
in practical use. Indeed, perhaps the most challenging part of the TR-based
Dirichlet depth is to properly estimate the conditional intensity.

Under different assumptions, various approaches for conditional intensity es-
timation have been proposed such as Peristimulus Time Histogram, Spline,
and Inhomogeneous Markov Interval (Brown et al., 2001). The former two ap-
proaches assume that the underlying process is history-independent. The last
one introduces a certain degree of history dependency (Markovian transition)
in the model.

2.5.2. Properties

We will now examine the five properties for the TR-based Dirichlet depth
Dc−TR(s;PS||S|=k,ΛS) in Equation (2.7). We can easily verify that this depth
satisfies P-1 (see proof in Part D of Supplementary Materials). In addition, this
depth will be preserved under scale and shift transformation as defined in P-4
(the proof is trivial).

The function ΛS(·) varies with respect to each point process. Hence, in gen-
eral, there could be multiple maxima in the TR-based Dirichlet depth and a
unique center will not exist (see one example in Part E of Supplementary Mate-
rials). Therefore, P-2 (and therefore P-3) will not be satisfied by the TR-based
Dirichlet depth.

Under the time warping γ ∈ Γ, a point process s = (s1, s2, · · · , sk) will
become γ(s) = (γ(s1), γ(s2), · · · , γ(sk)). Similarly, we find that the transformed
cumulative conditional intensity function Λγ

S = ΛS ◦ γ−1. If we include the
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cumulative conditional intensity function in the definition of Dirichlet depth,
we have

Dc−TR(γ(s);PS||S|=k,Λ
γ
S) = (k + 1)

k+1∏
i=1

(
Λγ
S(γ(si))− Λγ

S(γ(si−1))

Λγ
S(γ(T2))

)
1

k+1 ,

= (k + 1)

k+1∏
i=1

(
ΛS(si)− ΛS(si−1)

ΛS(T2)
)

1
k+1 = Dc−TR(s;PS||S|=k,ΛS).

The detailed proof is given in Part F of the Supplementary Materials.
As a summary, we list the properties of all proposed Dirichlet depths in Table

1, where “T” denotes “true” and “F” denotes “false”. For comparative purpose,
we also include the properties of the Mahalanobis depth Liu and Wu (2017).

Table 1

Properties of the Proposed Dirichlet depths

Method P-1 P-2 P-3 P-4 P-5*

Dirichlet Depth on HPP T T T T F
Dirichlet Depth on Point Process T T T T F

TR-based Dirichlet Depth on Point Process T F F T T
Mahalanobis Depth on Point Process F T T T F

2.5.3. Illustration

In this subsection, we at first examine the ranking performance of the Dirichlet
depths on S2. We will then utilize the Dirichlet depth and TR-based Dirichlet
depth as the conditional depth in Equation (2.1) to study the ranking perfor-
mance on 100 inhomogeneous Poisson process (IPP) realizations.

Conditioned on the cardinality |S| = 2, we simulate 100 realizations from
IPP with intensity function λ(t) = t3 in time interval [0, 1], and then apply the
sample Dirichlet Depth (Equation (2.6)) and Mahalanobis depth for comparison.
The result is shown in Figure 4. Again, we can see that the Dirichlet depth
contours fit the domain more reasonably.

We now illustrate the ranking performance using the proposed Dirichlet
depths. 100 random IPP realizations are generated on [0, 2π] with intensity
function λ(t) = 1 − cos(t). This intensity and the 100 realizations are shown

in Figure 5(a). The total intensity is ΛS =
∫ 2π

0
λ(t)dt = 2π, and therefore the

depth of the cardinality D1(|s|;P|S|) reaches its maximum at |S| = 6.
Given a set of a point processes, we need to estimate the conditional means

in order to apply the sample Dirichlet depth and need to estimate the intensity
function for TR-based Dirichlet depth. In this example, we use Algorithm 1 to
estimate the conditional means. Under the Poisson assumption, the intensity
function can be easily estimated with training samples. In this example, we use
Equation (2.2) to compute depth on the number of events w(|s|;P|S|). We set
weight coefficient r to two different values of 1 and 0.01. The ranking result is
shown in Figure 5.



Dirichlet depths for point process 3591

Fig 4: Example of Dirichlet depth and Mahalanobis depth for IPP conditioned
on 2 events in [0, 1]. The contours from outside to the center are with depth
values 0.08, 0.18, 0.28, 0.38, 0.48, 0.58, 0.68, 0.78, 0.88, and 0.98, respectively.
(a) Depth contours and IETs using the Dirichlet Depth. (b) Depth contours and
IETs using the Mahalanobis Depth.

Fig 5: Dirichlet depth for an IPP. (a) 100 IPP realizations (bottom) on [0, 2π]
with the intensity function λ(t) = 1 − cos(t) (top). (b) The top 5 and bottom
5 ranked realizations with the sample Dirichlet depth and r = 1. (c) Same as
(b) except for r = 0.01. (d) TR-based transferred realizations (bottom) and
its intensity function (top). (e) Same as (b) except for the TR-based Dirichlet
depth. (f) Same as (e) except for r = 0.01.

Comparing Panels (b) and (e) (where r = 1), we can see that the ranking
results based on sample Dirichlet depth function and TR-based Dirichlet depth
function are very similar – four out of five top-ranked realizations are the same.
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Four out of five bottom-ranked realizations are the same as well. We also com-
pare Panels (c) and (f) where r = 0.01. Although the overall ranks changed
dramatically from where r = 1, both methods agree on four out of five deepest,
and four out of five shallowest realizations.

3. Asymptotic theory

In this section, we will investigate the asymptotic behavior of the sample depth
function for point process based on our proposed framework (Equation (2.1)),
where the sample and population conditional depths are given in Equations (2.6)
and (2.5), respectively. For s ∈ Sk, we need to estimate the first term w(|s| =
k;P|S|) and Dirichlet depthDc(s;PS||S|=k). r is a pre-set hyperparameter. Given

a sample set S(n) that contains n realizations from a point process on interval
[T1, T2], w(|s| = k;P|S|) can be estimated by empirical probability measure

P
(n)
|S| :

D1(|s| = k;P
(n)
|S| ) = min(

#{|S(n)| ≤ k}
n

,
#{|S(n)| ≥ k}

n
),

where #{|S(n)| ≤ (≥)k} denotes the number of processes in S(n) with less
(more) than or equal to k events. Hence,

w(|s| = k;P
(n)
|S| ) =

D1(|s| = k;P
(n)
|S| )

max0≤g≤K D1(|s| = g;P
(n)
|S| )

with a pre-determined K ∈ N. Basically, w(|s| = k;P
(n)
|S| ) is the halfspace depth

base on empirical probability mass function, normalized with maximum being
1. The conditional Dirichlet depth proposed in Equation (2.5) can be estimated
by the sample Dirichlet depth in Equation (2.6). Then we have a sample version
of Equation (2.1) D(s;P (n)) in the following form:

D(s;P (n)) = w(|s| = k;P
(n)
|S| )

rDc(s;P
(n)
S||S|=k) (3.1)

To simplify the theoretical derivation, we make the following two assump-
tions.

1. The number of events in each process has a constant upper bound K ∈ N,
which can be arbitrarily large.

2. If P|S|(|S| = k) > 0, then the conditional means satisfy μi,k > μi−1,k, i =
1, · · · , k + 1, k = 0, 1, · · · ,K.

We have defined Sk = {s = (s1, · · · , sk) ∈ R
k|T1 ≤ s1 ≤ · · · ≤ sk ≤ T2}. Let

E(K) =
⋃K

k=0 Sk. The depth function in Equation (2.1) is a function D : E(K) →
[0, 1]. Our main asymptotic result is given as follows:
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Theorem 3.1. For arbitrarily large K ∈ N, let s ∈ E(K) be a point process
realization in the time domain [T1, T2]. If the two assumptions given above are
satisfied, then

sup
s∈E(K)

|D(s;P (n))−D(s;P )| → 0 a.s. (as n → ∞) (3.2)

Furthermore, for α ∈ (0, 1), denote Dα ≡ {s ∈ E(K) | D(s;P ) ≥ α} and
Dα

n ≡ {s ∈ E(K) | D(s;P (n)) ≥ α} as α − trimmed regions. Then for any
ε ∈ (0,min{α, 1− α}),

1. Dα+ε
n ⊂ Dα ⊂ Dα−ε

n for n sufficiently large.
2. Dα

n → Dα a.s. as n → ∞ if P ({s ∈ E(K) | D(s;P ) = α}) = 0.

The proof of Theorem 3.1 is given in Part G of the Supplementary Materials.

4. Real data: Geniculate ganglion spike trains

For application of the proposed depth framework, one may use the depth values
to classify point processes. In this section, we will illustrate such use in decoding
of neural spike train data. More in-depth simulation studies can be found in
Part H in the Supplementary Materials.

Basically, we will use a spike train dataset to demonstrate the classification
performance of the proposed framework, where spike trains can be naturally
treated as a temporal point process. This dataset was previously used in Lawh-
ern et al. (2011). In the experiment, adult male Sprague-Dawley rat’s geniculate
ganglion tongue neurons were stimulated by 6 different solutions: KCI (salty),
CA (sour), NaCl (salty), QHCI (bitter), MSG (umami) and Sucr (sweet) for 10
times each. The experiment consists of three time periods: 2-second pre-stimulus
period, 2.5-second stimulus application period and 2-second post-stimulus pe-
riod.

For illustrative purposes, we only use spike trains in the stimulus application
period and the post-stimulus period, and only select two typical neurons cells:
one electrolyte generalist cell and one acid generalist cell. For each cell, we
take 5 spike trains for each of 6 different tastes to train parameters in the
depth functions (i.e. as the training set), and another 5 spike trains to perform
classification task (i.e. as the test set). That is, 60 spike trains are been selected
for each cell. The spike trains of the training set with respect to the 6 different
solutions from those two cells are shown in Figure 6.

For comparative purpose, we also study the classification rates for the gen-
eralized Mahalanobis depth and likelihood method Liu and Wu (2017). To use
the likelihood method and TR-based Dirichlet depth, one needs to estimate
the conditional intensity functions. Here we take a common assumption that
the underlying processes for spike train observations are Poisson processes, and
therefore the intensity functions can be obtained via conventional kernel smooth-
ing methods. For the Dirichlet depth and generalized Mahalanobis depth, their
parameters can be estimated via the bootstrapping in Algorithm 1. Once the
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Fig 6: Sample spike trains for different cells. (a) Sample spike trains of an elec-
trolyte generalist cell. Time interval before the vertical dashed line is the stim-
ulus application period and that after is the post-stimulus period. (b) Same as
(a) except for an acid generalist cell.

models are fit, we can then classify a test spike train to one of the six tastes in
which the depth value or likelihood is the highest.

In addition, one can smooth the point process observations using kernel func-
tions, and then adopt multivariate depth to conduct the center-outward rank-
ing. In this dataset, we use a Gaussian kernel function and the classical mod-
ified bandwidth to estimate the depths. We then conduct classification with
these depth values. The classification (or decoding) accuracy rates of all the five
methods are summarized in Table 2.

Table 2

Comparison of decoding performance

Method electrolyte generalist cell acid generalist cell

Dirichlet depth 0.73 0.83
TR-based Dirichlet depth 0.73 0.86
Generalized Mahalanobis depth 0.70 0.76

Modified Bandwidth depth 0.50 0.63
Likelihood method 0.47 0.33

We can see that the proposed Dirichlet depth and TR-based Dirichlet depth
have very good accuracies (between 0.73 and 0.86 for the two cells) in classifying
test spike trains to one of the six types of tastes (a random guess only results
in 1

6 = .17 accuracy). Such accuracies are better than those by the likelihood
method, the modified bandwidth depth, and Mahalanobis depth (between 0.33
and 0.76). In particular, given the extremely small sample size (5 in each taste),
the classification performance of the proposed methods is highly successful. We
point out that the TR-based Dirichlet depth depends largely on the estimated
intensity function and the sample size in this example is too small to have a
robust estimate. Nevertheless, this TR-based Dirichlet method still has accurate
classification with respect to the noisy intensity estimation. In contrast, the
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other intensity-based approach, the likelihood method, results in much lower
classification rate.

5. Summary

In this paper, we have proposed a new framework to measure depth for point
process observations. The proposed depths include three components: 1) nor-
malized depth on the number of events, 2) conditional depth given the number
of events, and 3) the weight parameter. Our study focuses on the definitions
of these new depths and examines their mathematical properties. The depth
is at first defined for the classical homogeneous Poisson process by using the
equivalent inter-event time representation. For general point process, we pro-
pose two different definitions: one is a direct generalization on the homogeneous
Poisson case, and the other is based on the well-known time re-scaling theorem.
We examine the mathematical properties for each of these depths and provide a
theoretical investigation on the asymptotic of the sample Dirichlet depth. More-
over, we apply the proposed depth functions to a neural decoding problem. The
result indicates that the proposed framework provides a proper center-outward
rank and the new methods have accurate classification performance.

Fig 7: The Mahalanobis depth on the ILR transformed inter-event times for
HPP conditioned on 2 events in [0, 1]. The contours from outside to the center
are with depth values 0.2, 0.3, 0.5, 0.7, 0.9, and 0.99, respectively.

We have compared the proposed depths with the recently developed Maha-
lanobis depth on point process and demonstrated the superiority of the new
methods. However, we point out that the Mahalanobis depth is directly used on
the IET simplex, which naturally produces inappropriate center-outward ranks
on the observations. Based on the classical theory on compositional data analy-
sis, observations on a multi-dimensional simplex can be bijectively transformed
to a Euclidean space via certain nonlinear transformations such as ALR (addi-
tive logratio transform), CLR (center logratio transform), and ILR (isometric
logratio transform) (Aitchison, 1986; Egozcue et al., 2003). In particular, ILR
is a preferred method because it is symmetric with respect to variables, and its
covariance is of full rank. For example, Figure 7 shows the contours of the Maha-
lanobis depth after the ILR transformation on a homogeneous Poisson process,
and the shape of contours are very similar to our proposed depth shown in Fig-
ure 1(b). These transformations provide a new paradigm of the notion of depth
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for point processes, and we will study this topic systematically and thoroughly
in our future work.

We point out that the Dirichlet depth is a new approach to define the condi-
tional depth for point process. To the best of our knowledge, no other methods
have been proposed to study this problem. More in-depth topics, such as the
shape of depth contours and trimmed regions in a high dimension, can be further
explored. For practical application, we have only investigated the classification
performance by the proposed depth framework. Other applied topics, such as
clustering and outliers detection, can also be studied in the future.
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Fraiman, R.,Meloche, J.,Garćıa-Escudero, L.,Gordaliza, A.,He, X.,
Maronna, R., Yohai, V., Sheather, S., Mckean, J., G. Small, C. and
Wood, A. (1999). Multivariate L-estimation. Test 8 255–317.

Karr, A. (1991). Point Processes and Their Statistical Inference, Second Edi-
tion,. Probability: Pure and Applied. Taylor & Francis. MR1113698

Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate dis-
tributions. The Annals of Statistics. 25 1998–2017. MR1474078

Lange, T., Mosler, K. and Mozharovskyi, P. (2014). Fast nonparametric
classification based on data depth. Statistical Papers 55 49–69. MR3152767

Lawhern, V., A. A, N., Wu, W. and Contrares, R. J. (2011). Spike rate
and spike timing contributions to coding taste quality information in rat pe-
riphery. Frontiers in Integrative Neuroscience 5 1–14.

Liu, R. (1990). On a notion of data depth based on random simplices. The
Annals of Statistics 18 405–414. MR1041400

Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis
by data depth: descriptive statistics, graphics and inference, (with discussion
and a rejoinder by Liu and Singh). The Annals of Statistics 27 783–858.
MR1724033

https://www.ams.org/mathscinet-getitem?mr=0865647
https://www.ams.org/mathscinet-getitem?mr=0445726
https://arxiv.org/abs/1611.08721
https://www.ams.org/mathscinet-getitem?mr=1986165
https://www.ams.org/mathscinet-getitem?mr=1113698
https://www.ams.org/mathscinet-getitem?mr=1474078
https://www.ams.org/mathscinet-getitem?mr=3152767
https://www.ams.org/mathscinet-getitem?mr=1041400
https://www.ams.org/mathscinet-getitem?mr=1724033


Dirichlet depths for point process 3597

Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and
multivariate rank tests. Journal of the American Statistical Association 88
252–260. MR1212489

Liu, S. and Wu, W. (2017). Generalized Mahalanobis depth in point process
and its application in neural coding. The Annals of Applied Statistics 11
992–1010. MR3693555

Lopez-Pintado, S. and Romo, J. (2009). On the concept of depth for
functional data. Journal of American Statistical Association 104 718–734.
MR2541590
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By the change of variables and the fact that uk+1 = 1 −
∑k

i=1 ui, the p.d.f. of
inter-event time vector (u1, u2, · · · , uk+1) is:

fu(u1, u2, · · · , uk+1) = k!, where

k+1∑
i=1

ui = 1, ui ≥ 0, i = 1, · · · , k + 1.

Therefore, conditioned on cardinality |s| = k, the vector (u1, u2, · · · , uk+1) fol-
lows a Dirichlet distribution (2.3) with concentration parameter (αi = 1, i =
1, 2, · · · , k + 1).

Furthermore, it is well known that the i−th order statistics of k uniformly
distributed event s(i) follows a Beta distribution in the form:

s(i) ∼ Beta(i, k + 1− i)

Hence, for i = 1, 2, · · · , k+1, the expectation of s(i) is Es(i) =
i

k+1 . The expec-
tation of i-th inter-event time ui is:

E(ui) = E(s(i) − s(i−1)) = E(s(i))− E(s(i−1)) =
i

k + 1
− i− 1

k + 1
=

1

k + 1
.

Appendix B: Proof of properties of Dirichlet depth for HPP

Suppose S = (S1, S2, · · · , Sk) is a homogeneous Poisson process with rate λ
in time interval [T1, T2]. Then conditional on cardinality |S| = k, the Dirichlet
depth in Equation (2.4) for s satisfy:

(1) continuity and vanishing at the boundary,
(2) maximality at the conditional mean (the center),
(3) monotonicity relative to the deepest point,
(4) scale and shift invariant

Proof: (1) By the definition of the boundary for a point process conditional on
cardinality |s| = k, we can formally write the vanishing at boundary property
of Dirichlet depth as:

Dc(s;PS||S|=k) = 0 iff ∃ i ∈ {1, 2, · · · , k + 1}, s.t. si = si−1,

where as s0 = T1 and sk+1 = T2. Based on the closed-form definition in Equation
(2.4), it is easy to see the continuity and vanishing at the boundary for the
defined Dirichlet depth.

(2) Conditioned on the cardinality |s| = k, finding the maximum for Dc(s;
PS||S|=k) in Equation (2.4) is equivalent to finding maximum for the function:

f(x) =

k+1∑
i=1

log(xi),

where x = (x1, · · · , xk+1), xi =
si−si−1

T2−T1
, and

∑k+1
i=1 xi = 1.



Dirichlet depths for point process 3599

Using the Lagrange multiplier, it is easy to obtain the unique, global maxi-
mum {xi =

1
k+1 , i = 1, 2, · · · , k+1}, which equals the conditional mean of IET

(the center).
(3) It is easy to find that the Hessian matrix of the function f(x) is negative

definite. This implies that Dc(s;PS||S|=k) is a log-concave function on the do-
main Sk. Combining this result with the global maximum in Property (2), we
can see that Dc(s;PS||S|=k) satisfies Property (3).

(4) The proof is trivial and omitted here.

Appendix C: Illustration of the proposed bootstrap method

In this section, we will illustrate the effectiveness of the proposed bootstrap
method (Algorithm 1) through two simulation examples. In the first simulation,
100 realizations are simulated from an HPP with constant rate λ = 5 in [0, 1].
The simulated realizations and the histogram of events over all realizations
are shown in Figure 8 (a). Given the cardinality k = 1, 2, · · · , or 16, the true
conditional means have a closed vector form ( 1

k+1 , · · · ,
k

k+1 ). We then apply
Algorithm 1 to estimate the conditional means. A comparison of the true and
estimated conditional means is shown in Figure 8 (b). We can see that the
estimation is accurate for the number of events k varying from 1 to 16 (average
errors are only around 0.01 in the time domain [0, 1]).

Fig 8: Simulation One to illustrate Algorithm 1. (a) Simulated HPP realizations
with λ = 5 in [0, 1] (top panel) and the histogram of all events (bottom panel).
(b) Plot of true (blue lines) and estimated (red lines) conditional means given
k varying from 1 to 16 (top panel) and plot of mean error (average of the errors
at all events) at different values of k (bottom panel).

Similarly, in the second simulation, we follow the same procedures as in the
first example except that the realizations are simulated from an IPP with condi-
tional distribution f(S = (s1, · · · , sk) | |S| = k) =

∏k
i=1 Beta(si;α = 2, β = 3).

In this case, there are no closed-form for the true means, but we can approximate
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them with conventional Monte-Carlo method (using additional ample simula-
tions from the true model). The result is shown in Figure 9, where the mean
errors are also around 0.01 in the time domain [0, 1].

Fig 9: Simulation Two to illustrate Algorithm 1. (a) Simulated IPP realizations

with conditional density f(s | |S| = k) =
∏k

i=1 Beta(si;α = 2, β = 3) (top
panel) and its histogram (bottom panel). (b) Plot of true (blue lines) and esti-
mated (red lines) conditional means given k varying from 1 to 16 (top panel)
and plot of mean error at different values of k (bottom panel).

Appendix D: Proof of continuity of TR-based Dirichlet depth

Proof: For a point process s = (s1, s2, · · · , sk) ∈ Sk with an integrable and
continuous intensity function λ(t | Ht) such that: 0 < λ(t | Ht) ≤ M for all
t ∈ [T1, T2] and for some finite M . Denote the re-scaled sequence after applying
time re-scaling theorem as {ΛS(si) : i = 1, 2, · · · , k}. Then

ΛS(s1) =

∫ s1

T1

λ(t)dt

ΛS(s2) = ΛS(s1) +

∫ s2

s1

λ(t | Hs1)dt

· · ·

ΛS(sk) = ΛS(sk−1) +

∫ sk

sk−1

λ(t | Hsk−1
)dt

In order to prove the TR-based Dirichlet depth is continuous, we only need to
show that Λ(·) is a continuous map. Consider another sequence s′=(s′1, s

′
2, ...s

′
k)∈

Sk near s. Based on the assumption on λ(t | Ht),

|ΛS(s1)− ΛS(s
′
1)| = |

∫ s1

s′1

λ(t)dt| ≤ M |s1 − s′1| → 0 (s′1 → s1)
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Moreover,

|ΛS(s2)− ΛS(s
′
2)| ≤ |

∫ s2

s1

λ(t|Hs1)dt−
∫ s′2

s′1

λ(t|Hs′1
)dt|+ |ΛS(s1)− ΛS(s

′
1)|

As λ(t | Ht) is a continuous map on s = (s1, ...sk), lims′1→s1 λ(t|Hs′1
) = λ(t|Hs1).

Therefore,

lim
(s′1,s

′
2)→(s1,s2)

|ΛS(s2)− ΛS(s
′
2)|

≤ lim
(s′1,s

′
2)→(s1,s2)

|
∫ s2

s1

λ(t|Hs1)dt−
∫ s′2

s′1

λ(t|Hs′1
)dt|+ |ΛS(s1)− ΛS(s

′
1)|

≤ lim
(s′1,s

′
2)→(s1,s2)

(M |s2 − s′2|+M |s1 − s′1|+M |s1 − s′1|) = 0

Similarly, we can prove the components function {ΛS(s1),ΛS(s2), · · · ,ΛS(sk)}
are all continuous functions on (s1, s2, · · · , sk), and therefore, the TR-based
Dirichlet Depth is also continuous on s.

Appendix E: Example of existence of multiple maximal points

It is easy to see that the TR-based Dirichlet depth reaches maximum when
ΛS(si)−ΛS(si−1)

ΛS(T2)
= 1

k+1 , i = 1, 2, · · · , k + 1. However, we point out that for

history-dependent point process, there could be multiple realizations s ∈ Sk

such thatΛs(si)−Λs(si−1)
Λs(T2)

= 1
k+1 , i = 1, 2, · · · , k+1. We will provide one example

as follows.
We consider a point process s on [0, 1] with cardinality |s| = 1. Denote

the unique event as τ . Given the conditional intensity function λ(u | Hu), the
cumulative intensity of s can be denoted as:

Λs(t) =

∫ t

0

λ(u)du, for t ≤ τ

Λs(t) =

∫ τ

0

λ(u)du+

∫ t

τ

λ(u | τ)du, for t > τ

Let s = (τ∗) denote the maximizer of the TR-based depth with cardinality 1.
That is,

Λs(τ
∗) =

1

2
Λ(1).

Then, ∫ τ∗

0

λ(u)du =

∫ 1

τ∗
λ(u | τ∗)du

If we further set its conditional intensity function as:

λ(t) = 1/c · t1/c−1, c > 0 for t ≤ τ, and
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λ(t | τ) = 16/9(1/2 + τ) for t > τ.

Then

∫ τ∗

0

λ(u)du = (τ∗)1/c, c > 0

∫ 1

τ∗
λ(u | τ∗)du =

16

9
(
1

2
+ τ∗)(1− τ∗)

The two functions f1(t) = t1/c, f2(t) = 16
9 ( 12 + t)(1 − t) are shown in Fig. 10

below. Note that f1(t) is in the range [0, 1] for t ∈ [0, 1] and the quadratic f2(t)
has maximum 1 when t = 1/4. We can see that when c is sufficiently large,
there are multiple solutions for the equation f1(t) = f2(t) (three solutions are
shown in Fig. 10(b)). Therefore, we have proven that there could be multiple
maximizers for the TR-based depth.

Fig 10: (a) Plot of functions f1(t) = t1/c, c = 100 (in blue) and f2(t) =
16
9 ( 12 +

t)(1− t) (in red) on [0, 1]. (b) Zoom-in of (a) for the three intersection points.

Appendix F: Proof of time warping invariance of time-rescaling
based Dirichlet depth

Consider a point process S ∈ Sk in [0, T ] (without loss of generality) with in-
tegrable function λ(t | Ht). Define a time warping map of S as γ ∈ Γ,Γ =
{γ : [0, T ] → [0, T ] | γ(0) = 0, γ(T ) = T, γ̇ > 0}. For a realization s =
(s1, s2, · · · , sk) ∈ S such that 0 ≤ s1 < s2 < · · · < sk ≤ T , the TR-based Dirich-
let depth on s is invariant under time warping, i.e. Dc−TR(s;PS||S|=k,ΛS) =
Dc−TR(γ(s);PS||S|=k,Λ

γ
S).

Proof: Note that the time warping function γ is a strictly increasing, bijec-
tive, and differentiable function. After the time warping, the corresponding pro-
cess becomes γ(s) = (γ(s1), γ(s2), · · · , γ(sk)) with 0 ≤ γ(s1) < γ(s2) < · · · <
γ(sk) ≤ T . To study the Dirichlet depth after the time warping, we at first
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examine the conditional intensity function in the warped process. By definition,
the transformed conditional intensity function is

λγ(t | Ht)

= lim
Δt→0

P(one event in [t, t+Δt] in the transformed process | Ht)

Δt

= lim
Δt→0

P(one event in [γ−1(t), γ−1(t+Δt)] in the original process | Hγ−1(t))

Δt

= lim
Δt→0

P(N(γ−1(t+Δt))− N(γ−1(t)) = 1 | Hγ−1(t))

Δt

= lim
Δt→0

P(N(γ−1(t+Δt))− N(γ−1(t)) = 1 | Hγ−1(t))

γ−1(t+Δt)− γ−1(t)
· γ

−1(t+Δt)− γ−1(t)

Δt

= λ(γ−1(t) | Hγ−1(t))γ̇
−1(t)

Then the cumulative conditional intensity function in the transformed process
is

Λγ
S(t) =

∫ t

0

λγ(t | Ht)dt

=

∫ t

0

λ(γ−1(t) | Hγ−1(t))γ̇
−1(t)dt

=

∫ γ−1(t)

0

λ(u | Hu)du (u = γ−1(t))

= ΛS(γ
−1(t))

Hence, Λγ
S = ΛS ◦ γ−1 and Λγ

S ◦ γ = ΛS . By the definition of TR-based
Dirichlet depth as Equation (2.7), we have

Dc−TR(γ(s);PS||S|=k,Λ
γ
S) = (k + 1)

k+1∏
i=1

(
Λγ
S(γ(si))− Λγ

S(γ(si−1))

Λγ
S(γ(T ))

)
1

k+1 ,

= (k + 1)

k+1∏
i=1

(
ΛS(si)− ΛS(si−1)

ΛS(T )
)

1
k+1 = Dc−TR(s;PS||S|=k,ΛS)

Appendix G: Proof of the asymptotic theorem

Proof: (Part I: proof of uniform convergence on the depth function):
First, we need to prove Equation (3.2) in Theorem 3.1. That is, the sample depth
D(s;P (n)) defined as Equation (3.1) uniformly converges to depth function in
Equation (2.1) almost surely. Given a set of independent point processes {sj}nj=1.

By Assumption 1, sj ∈ E(K), j = 1, · · · , n. Then the first term w(·) in Equation
(2.1) can be estimated as:

w(|s| = k;P
(n)
|S| ) =

D1(|s| = k;P
(n)
|S| )

max0≤g≤K D1(|s| = g;P
(n)
|S| )

,
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where

D1(|s| = k;P
(n)
|S| ) = min(

#{{|sj |}nj=1 ≤ k}
n

,
#{{|sj |}nj=1 ≥ k}

n
).

By the Strong Law of Large Numbers (SLLN), we can easily show that:

w(|s| = k;P
(n)
|S| ) → w(|s| = k;P|S|) a.s. (as n → ∞)

If P|S|(|S| = |s|) = 0, then apparently P
(n)
|S| (|S| = |s|) = 0. By Definition 2.1,

D(s;P (n)) = D(s;P ) = 0.

Then the uniform convergence naturally holds. Therefore, without loss of gen-
erality, we can further assume that for any k ∈ {0, · · · ,K}, P|S|(|S| = k) > 0.
We refer to this as Assumption 3.

Denote the processes sj = (sj,1, · · · , sj,|sj |), j = 1, · · · , n. Let nk denote the

number of processes in {sj}nj=1 with k events and s
(nk)
i,k denote their sample

mean (corresponding to μi,k), k = 0, 1, · · · ,K. By Assumption 3, nk → ∞ as
n → ∞. Then by the SLLN again, we have

s
(nk)
i,k → μi,k a.s. i = 1, · · · , k + 1.

Therefore, for any s ∈ E(K), as n → ∞,

D(s;P (n)) → D(s;P ) (a.s.)

Our goal is to show that this convergence is uniform on E(K). The proof has
two steps: at first, we will show that for any given dimension k ∈ {0, 1, · · · ,K},

sup
s∈Sk

|D(s;P (n))−D(s;P )| → 0 a.s. as n → ∞

As w(k;P
(n)
|S| ) → w(k;P|S|) (a.s.), we only need to show that Dc(s;P

(n)
S||S|=k)

uniformly converges to Dc(s;PS||S|=k) almost surely for s ∈ Sk. By Assumption
2, there exists ε > 0 such that μi,k − μi−1,k > ε for any i ∈ {1, · · · , k + 1}, k ∈
{1, · · · ,K}. We use C > 0 to denote a constant (independent of i, k and K). As
the time domain is a finite interval [T1, T2], we have

∣∣∣∣∣(
si − si−1

s
(n)
i,k − s

(n)
i−1,k

)
s
(n)
i,k

−s
(n)
i−1,k

T2−T1 − (
si − si−1

μi,k − μi−1,k
)

μi,d−μi−1,d
T2−T1

∣∣∣∣∣
≤

∣∣∣∣∣(
si − si−1

s
(n)
i,k − s

(n)
i−1,k

)
s
(n)
i,k

−s
(n)
i−1,k

T2−T1 − (
si − si−1

μi,k − μi−1,k
)

s
(n)
i,k

−s
(n)
i−1,k

T2−T1

∣∣∣∣∣
+

∣∣∣∣∣(
si − si−1

μi,k − μi−1,k
)

s
(n)
i,k

−s
(n)
i−1,k

T2−T1 − (
si − si−1

μi,k − μi−1,k
)

μi,d−μi−1,d
T2−T1

∣∣∣∣∣
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≤C

∣∣∣∣∣(
μi,k − μi−1,k

s
(n)
i,k − s

(n)
i−1,k

)
s
(n)
i,k

−s
(n)
i−1,k

T2−T1 − 1

∣∣∣∣∣
+

∣∣∣∣∣(
si − si−1

μi,k − μi−1,k
)

s
(n)
i,k

−s
(n)
i−1,k

T2−T1 − (
si − si−1

μi,k − μi−1,k
)

μi,d−μi−1,d
T2−T1

∣∣∣∣∣
⇒ 0 (a.s.)

The uniform convergence holds in the first term as it is independent of {si}. In
the second term, the base is the same in the two exponential expressions, and
the difference is at the exponent. We can simply use a Lagrange’s mean value
theorem, and the uniform convergence can be obtained.

Note that the above uniform convergence is true for any i ∈ {1, · · · , k + 1}.
As the Dirichlet depths Dc(s;P

(n)
S||S|=k) and Dc(s;PS||S|=k)) are just a product

of k + 1 terms in the above form. We can easily obtain that

sup
s∈Sk

|Dc(s;P
(n)
S||S|=k)−Dc(s;PS||S|=k))| → 0 a.s. as n → ∞

In the second step, we will show this uniform convergence also holds on E(K).
In fact, let Ω be the sample space and define the set:

A = {ω ∈ Ω : sup
s∈E(K)

|D(s, ω;P (n))−D(s, ω;P )| → 0}

= {ω ∈ Ω : sup
s∈

⋃K
k=0 Sk

|D(s, ω;P (n))−D(s, ω;P )| → 0}

= {ω ∈ Ω : sup
0≤k≤K

sup
s∈Sk

|D(s, ω;P (n))−D(s, ω;P )| → 0}

If we also let

Ak = {ω ∈ Ω : sup
s∈Sk

|D(s, ω;P (n))−D(s, ω;P )| → 0},

then Ac ⊂
⋃K

k=1 A
c
k. Using the result from Step 1, P (Ac

k) = 0, k = 0, · · · ,K.
Hence:

P (Ac) ≤ P (

K⋃
k=0

Ac
k) ≤

K∑
k=0

P (Ac
k) = 0

Finally, we have proven that

sup
s∈E(K)

|D(s;P (n))−D(s;P )| → 0 a.s. as n → ∞

(Part II: proof of convergence on the α-trimmed region): By the result
in Part I, for any ε > 0, there exists N ∈ N, when n > N , |D(s;P (n)) −
D(s;P )| < ε almost surely for any s ∈ E(K). That is, with probability 1, for
any n > N ,

{s ∈ E(K)|D(s;P (n)) ≥ α+ ε} ⊂ {s ∈ E(K)|D(s;P ) ≥ α}
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⊂ {s ∈ E(K)|D(s;P (n)) ≥ α− ε}

Therefore, Dα+ε
n ⊂ Dα ⊂ Dα−ε

n for n sufficiently large.
Taking upper limit on Dα+ε

n and lower limit on Dα−ε
n , we have that with

probability 1
lim sup
n→∞

Dα+ε
n ⊂ Dα ⊂ lim inf

n→∞
Dα−ε

n .

Letting ε → 0, we have that with probability 1

lim sup
n→∞

{s ∈ E(K)|D(s;P (n)) > α} ⊂ Dα ⊂ lim inf
n→∞

{s ∈ E(K)|D(s;P (n)) ≥ α}.

If P ({s ∈ E(K)|D(s;P (n)) = α}) = 0, then with probability 1,

lim sup
n→∞

Dα
n ⊂ Dα ⊂ lim inf

n→∞
Dα

n .

That is, Dα
n → Dα a.s. as n → ∞.

Appendix H: Simulations on classification study

In this appendix section, we will examine the classification performance of our
proposed depth framework based on simulated Poisson processes, the most com-
monly used point process models for neuronal spike trains Brown et al. (2001). In
this case, the intensity function is deterministic and can be effectively estimated
from given data. For comparison, we will also study classification using the like-
lihood method and Mahalanobis depth values Liu and Wu (2017). We explore
two examples in this study. In each example, we simulate multiple groups of
Poisson processes, and then we classify them by the likelihood or depth values.
The detailed procedures is given as follows:

1. Independently simulate 100 realizations for each group by its intensity
functions, and then partition data into training and test processes (train-
ing:test = 80:20 in Example 1. training:test=70:30 in Example 2).

2. Estimate parameters in all methods (Dirichlet depth, TR-based Dirichlet
depth, modified bandwidth depth, likelihood method, and Mahalanobis
depth) for each group using the training set. In this process, we adopt
Algorithm 1 to estimate the conditional means and covariances and apply
nonparametric smoothing methods to estimate the intensity functions;

3. Based on the trained model, estimate the depth (or likelihood) for each
test process, and assign the process to the group with largest depth (or
likelihood) value.

Example 1: Differing in the event time distribution

In the first example, there are three groups of simulations on [0, 2π]. Their inten-

sity functions are λ1(t) =
20
2π , λ2(t) =

20(2−sin(t))∫ 2π
0

2−sin(t)dt
, and λ3(t) =

20(2−sin(t−2))∫ 2π
0

2−sin(t−2)dt
,
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respectively. These intensity functions are normalized, so that the total intensity
Λ(2π) = 20 for all three groups. See Figure 11(a) for these three intensity func-
tions and 100 simulations based on them, respectively. Under this simulation
framework, the number of events in any process follows the same distribution
Poisson(20), and the first term w(|s|) should be the same across groups. How-
ever, as the models are estimated from the training data, w(|s|) may still slightly
vary across groups. The classification result, mainly based on the event distribu-
tions, is shown in Figure 11(b). We see that the rate only slightly varies in the
range of [0, 2] for the coefficient r in each of three depth methods. As there is no
such weight in the likelihood method and modified bandwidth depth method,
their rates remain invariant in the range.

Fig 11: Classification on simulations in Example 1: (a) Three intensity functions
λ1(t) (black), λ2(t) (blue), and λ3(t) (red) in the upper panel and 100 simulated
processes with these functions in the low panel. (b) The classification rate of
the likelihood method (green), Mahalanobis depth (red), Dirichlet depth (black),
modified bandwidth depth (yellow) and TR-based Dirichlet depth (blue), under
different weight coefficient r.

This example shows that the classification accuracy of the TR-based Dirichlet
depth and Dirichlet depth are slightly better than that of the Mahalanobis
depth, modified bandwidth depth, and likelihood. One basic problem for the
likelihood method is that it cannot properly distinguish realization from an
HPP as the likelihood will be a constant with respect to the event times. As
the Mahalanobis method depends on covariance estimation, whereas 80 training
processes may not provide sufficient samples for that purpose. This leads to the
relatively worst performance of this method in this example.

Example 2: Differing in the number of event distribution

In the second example, we will let the distributions of the number of events
vary across groups, whereas the distribution of the events will be the same.
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Fig 12: Classification on simulations in Example 2: (a) Four intensity functions
λ1(t) (black), λ2(t) (blue), λ3(t) (red), and λ4(t) (green) in the upper panel and
100 simulated processes with these functions in the low panel. (b) The classifi-
cation rate of the likelihood method (green), Mahalanobis depth (red), Dirichlet
depth (black), modified bandwidth depth (yellow) and TR-based Dirichlet depth
(blue), under different weight coefficient r.

In particular, let the baseline “shape” density being f(t) = 1−cos(2t)∫ 2π
0

1−cos(2t)dt
, t ∈

[0, 2π]. The four intensity functions are: λ1(t) = 6f(t), λ2(t) = 10f(t), λ3(t) =
15f(t), and λ4(t) = 20f(t), respectively. See Figure 12(a) for these four intensity
functions and 100 simulations based on them, respectively. Under this condition,
the first term w(|s|;P|S|) is more dominant as compared to the second term
Dc(s;PS||S|). The classification result is shown in Figure 12(b). We see that
the rate varies in the range of [0, 2] for the coefficient r in each of three depth
methods. The rates of the likelihood method and the modified bandwidth depth
are still constant in the range.

In this example, the two Dirichlet depths and Mahalanobis depth have similar
classification performance. When r is very small, the distribution of the events
will be the main factor. As this distribution is similar across different groups,
we see an unsatisfactory classification rate at around 0.3-0.4 only. When the
value of r gets larger, the accuracy improves. The peak is at around 0.75 for
the two Dirichlet methods and around 0.70 for the Mahalanobis method. Theses
accuracies remain stable for large values of r.

Appendix I: Illustration of choosing weight coefficient through
cross-validation

This section is designed to illustrate how to choose the weight coefficient r (in
Equation 2.1) for classification tasks through a K-Fold cross-validation. The
data generation method is the same as what we discussed in section H. Here,
we simulate four groups of Poisson processes on [0, 2π] with intensity func-
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tions: λ1(t) =
6(1−cos(2t))∫ 2π
0

1−cos(2t)dt
, λ2(t) =

20(2−sin(t))∫ 2π
0

2−sin(t)dt
, λ3(t) =

20(2−sin(t−2))∫ 2π
0

2−sin(t−2)dt
, and

λ4(t) =
20(1−cos(2t))∫ 2π
0

1−cos(2t)dt
.

The detailed procedure can be summarized as follows:

1. Independently simulate 100 realizations for each group, and then partition
data into K equal-sized folds (each fold contains 4× 100/K realizations).

2. Choose one fold as the validation set and the remaining K−1 folds as the
training set. On the training set, we adopt Algorithm 1 to estimate the
conditional means for Dirichlet depth and apply nonparametric smoothing
methods to approximate the intensity functions for the TR-based Dirichlet
depth.

3. For realizations in the validation set, estimate the first probability term
w(·), Dirichlet depth, and TR-based Dirichlet depth based on the trained
models (of 4 groups). Then, set r = 0, compute the depth as defined in
Equation 2.1, and assign the process to the group with the largest depth
value.

4. Sequentially increase r by 0.01 and record the classification accuracy of
the validation set for each r. Stop the process when r = 2.

5. Repeat Steps 2 − 4 for K times, with each of the K folds used as the
validation set.

6. The optimal value of weight coefficient r is the one that maximizes the
average classification accuracy over K runs.

Fig 13: (a) Four intensity functions λ1(t) (black), λ2(t) (blue), λ3(t) (red), and
λ4(t) (green) in the upper panel and 100 simulated processes with each of these
functions in the low panel. (b) The average classification accuracy on valida-
tion set of the Dirichlet depth (blue) and TR-based Dirichlet depth (red), as a
function of the weight coefficient r, and the optimal value/ranges of r (shaded
area).

Figure 13(a) shows the simulated realizations and its intensity functions of
the four Poisson processes we used in this example. By setting K = 5, i.e.,
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5-Fold cross-validation method, we report the average classification on the val-
idation set over five runs in Figure 13(b). As we can see from the plot, the
optimal value(range) for Dirichlet depth method is 0.1([0.05, 0.15]) with aver-
age accuracy of 0.8075, and for TR-based Dirichlet depth is 0.12([0.07, 0.17])
with average accuracy of 0.845. In practice, the optimal r decided by the cross-
validation method might not be unique, but many methods can help us to pick
one from the optimal values.
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