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Abstract: This paper develops a unified framework for deriving optimal
designs for hypothesis testing in the presence of several heteroscedastic
groups. In particular, the obtained optimal designs are generalized Neyman
allocations involving only two experimental groups. In order to account for
the ordering among the treatments, particularly relevant in the clinical
context for ethical reasons, we provide the optimal design for testing under
constraints reflecting their effectiveness. The advantages of the suggested
allocations are illustrated both theoretically and through several numerical
examples, also compared with other designs proposed in the literature,
showing a substantial gain in terms of both power and ethics.
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1. Introduction

This paper addresses the issue of designing experiments for comparing several
treatments when the principal inferential aim is testing the homogeneity of
the treatment effects. Starting from the classical one-way analysis of variance
(ANOVA) of Sir. R.A. Fisher, the problem of comparing the equality of several
means has a long history in the statistical literature and covers all the applied
fields. Over the past 50’s, there has been a growing stream of papers about
the design of experiments for treatment comparisons; however, they are almost
exclusively focused on estimation precision. In particular, having in mind the
linear homoscedastic model set-up, balancing the allocations among treatments
is often considered as desirable, since this strategy optimizes the usual alpha-
betical criteria for the estimation of the treatment effects. However, balance
could be highly inefficient in the case of heteroscedasticity, or when inference is
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focused on the treatment contrasts; moreover, it could be strongly inappropriate
for clinical trials, since the demand of individual care often induces to skew the
allocations to the best performing drugs.

Although the ability of detecting a significant treatment difference is a fun-
damental issue for statistical inference, in the design of experiment literature
very little attention has been devoted to hypothesis testing, also due to the
underlined complex mathematical structure. Only recently there has been a
growing interest on this topic, in particular in the clinical/pharmaceutical re-
search, also due to the encouragement of Health Authorities [5]. In the context
of binary trials, Tymofyeyev et al. [14] were among the first authors to derive
the design maximizing the non-centrality parameter (NCP) of the Wald test of
homogeneity. In general, this design is a degenerate allocation involving only
the best and the worst treatments, with no observations on the intermediate
ones: for this reason, a lower bound of each treatment allocation proportion is
superimposed and the related constrained optimal design is derived. By apply-
ing the same methodology to exponential outcomes, Zhu and Hu [17] derived
the corresponding optimal allocations, while Sverdlov et al. [13] extended their
results in the presence of censoring. In general, the ensuing designs are discon-
tinuous (non-degenerate) functions of the unknown model parameters (i.e., they
are locally optimal) and, by suitable smoothing transformations, they could be
implemented in a sequential fashion via response-adaptive randomization proce-
dures, namely sequential rules that change the treatment allocation probabilities
to approximate the chosen target (for a review, see [2, 11]).

Recently, Baldi Antognini et al. [3] derived the design maximizing the power
of the test of homogeneity for normal homoscedastic data, which is a balanced
allocation involving only the best and the worst treatments; moreover, by im-
posing the ethical constraint that the treatment allocation proportions should
reflect the a-priori unknown ordering among their effects, they also derived a
non-degenerate optimal target implementable via response-adaptive random-
ization. Under the same framework, assuming that the treatment ordering is
known, Singh and Davidov [12] discussed the optimal designs for restricted and
unrestricted statistical inference (which are equivalent for large samples) by
adopting a maxi-min approach, in order to overcome local optimality problems.

The aim of the present paper is to present a unified framework for deriving
optimal designs for hypothesis testing in the presence of several experimen-
tal groups, also encompassing the general ANOVA set-up with heteroscedastic
errors. In particular, the optimal designs are generalized Neyman allocations
involving only two treatments, not necessarily the best and the worst ones. In
order to account for the ordering among treatments (which could be particu-
larly relevant in the clinical context, for ethical reasons), we derive constrained
optimal designs, where the allocation proportions are themselves ordered as
the treatment efficacies. Since the ordering among the effects is generally a-
priori unknown, the ensuing allocations are locally optimal designs that can
be approached by response-adaptive randomization procedures after suitable
smoothing techniques. Several illustrative examples are provided for normal, bi-
nary, Poisson and exponential data (with and without censoring), also amending
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some previously obtained results. The properties of these designs are described
both theoretically and through numerical examples, showing a substantial gain
in terms of power and ethics as well.

The paper is structured as follows. Section 2 deals with optimal designs for
hypothesis testing, taking into account both unconstrained and constrained op-
timization. Section 3 discusses the performance of the proposed allocations both
analytically and numerically, also compared with other designs suggested in the
literature. Section 4 deals with a general discussion about our results, including
also their implementation via response-adaptive randomization methodology,
while Section 5 concludes the paper. The mathematical details are available in
the Appendix.

2. Main results

2.1. Preliminaries

Suppose we haveK ≥ 2 competing treatments and let δi = (δi1, . . . , δiK)t be the
indicator managing the allocation of the ith subject, namely δik = 1 if he/she is
assigned to treatment k (k = 1, . . . ,K) and 0 otherwise. Given the assignments,
the observations Yis are assumed to be independent and identically distributed
belonging to the exponential family parameterized in such a way that θk ∈ Θ ⊆
R denotes the mean effect of treatment k, while vk = v(θk) ∈ R+ represents
the corresponding variance (k = 1, . . . ,K) and we set θ = (θ1, . . . , θK)t and
v = (v1, . . . , vK)t. Under such a mean-value parameterization, the Maximum
Likelihood Estimators (MLEs) of the treatment effects are the sample means:
special cases of practical relevance are binary B(θk) (θk ∈ (0; 1), v(θk) = θk(1−
θk)) and Poisson P (θk) (θk ∈ R+, v(θk) = θk) trials for dichotomous and count
data, respectively, while normal model N(θk; vk) (with θk ∈ R and v(θk) = vk
independent from θk) is also encompassed for continuous responses as well as
the exponential one exp(θk) (θk ∈ R+, v(θk) = θ2k) for survival outcomes.

After n allocations, let Nn =
∑n

i=1 δi = (Nn1, . . . , NnK)t, where Nnk =∑n
i=1 δik denotes the number of assignments to treatment k and, clearly,N t

n1K =
n (here 1K is the K-dim vector of ones); while ρ = n−1Nn is the vector of the
treatment allocation proportions, where ρk = n−1Nnk ≥ 0 for k = 1, . . . ,K
and ρt1K = 1 for every n. Let θ̂n = (θ̂n1, . . . , θ̂nK)t be the MLE of θ (i.e.,

θ̂nk = N−1
nk

∑n
i=1 δikYi), under well-known regularity conditions θ̂n is strongly

consistent and asymptotically normal with
√
n(θ̂n−θ)

d−→ N(0K ,M−1), where
0K is the K-dim vector of zeros and M = M(ρ) = diag (ρk/vk)k=1,...,K is the
Fisher information associated with θ.

In this setting the inferential focus is on the contrasts Atθ where, consider-
ing without loss of generality (wlog) the first treatment as the reference one,
At = [1K−1| − IK−1] and IK−1 is the (K − 1)-dim identity matrix. The MLE

Atθ̂n is strongly consistent and asymptotically normal with
√
nAt(θ̂n − θ)

d−→
N(0K−1,A

tM−1A). Let v̂kns be consistent estimators of the treatment vari-

ances, then M̂n = diag (ρk/v̂kn)k=1,...,K and Wn = nθ̂t
nA[A

tM̂−1
n A]−1Atθ̂n is
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the Wald statistic usually employed for testing the hypothesis of homogeneity

of the effects H0 : Atθ = 0K−1 vs H1 : Atθ �= 0K−1. Under H0, Wn
d−→ χ2

K−1,
namely it converges to a (central) χ2 with K − 1 degrees of freedom (dof), pro-
vided that ρk > 0 for every k = 1, . . . ,K. Thus, the power of the α-level test is
Pr (Wn > qK−1,α), where qb,α be the (1− α)-percentile of a χ2

b .
Inspired by the central limit theorem, for large sample Wn can be regarded as

a quadratic form of a normal vector; therefore, several authors (see, e.g., [7, 10,
11, 13, 14, 17]) proposed to approximate the power by Pr

(
χ2
K−1(nφ) > qK−1,α

)
,

where χ2
K−1(nφ) is a non-central χ2 distribution with K − 1 dof and NCP nφ

with φ = φ(ρ) = θtA[AtM−1A]−1Atθ. As is well-known, for fixed dof the non-
central χ2 distribution is stochastically increasing in the NCP, so the approxi-
mate power is an increasing function of φ(ρ).

Remark 2.1. Albeit for normal data with known variances Wn ∼ χ2
K−1(nφ(ρ))

for any sample size n (by replacing M̂n with M in the Wald statistic), in gen-
eral the non-central chi-square approximation of the power could present some
limitations. Indeed, even if Wald [15] proved that the difference between the cu-
mulative distribution functions of Wn and χ2

K−1(nφ) vanishes uniformly as n
grows, both Wn and χ2

K−1(nφ) diverge, as well as their expectations. Therefore,
the quality of this approximation gets worse by moving progressively farther out
in the tails. However, this approximation could be effective for moderate-large
samples (more appealing in the context of phase-III clinical trials) and for alter-
natives close to H0. Indeed, as showed by many authors (see, e.g., [4, 9]), the
non-central chi-square distribution is asymptotically correct under the local al-
ternative approach. In this framework, the power is evaluated asymptotically by
taking into account a set of contiguous alternatives {Atθn} converging to 0K−1

at the rate n−1/2, under which Wn and χ2
K−1(θ

t
nA[A

tM−1A]−1Atθn) tend to
be asymptotically equivalent (namely, the difference between their cumulative
distribution functions vanishes uniformly as n grows).

Notice that both the likelihood ratio and score tests are asymptotically equiv-
alent to the Wald test and, for normal homoscedastic outcomes, likelihood ratio
and Wald’s tests coincide. Thus, from now on we take into account the NCP
as the inferential criterion to be maximized, since it represents an increasing
measure of the approximate power (and of the exact power for normal data).

2.2. Unconstrained optimal design for testing

In this section we derive the optimal design maximizing the NCP, namely the
allocation ρ̃, defined on the simplex ρ̃k ≥ 0 for every k = 1, . . . ,K with ρ̃t1K =
1, maximizing φ(·). As is well-known, for K = 2 the optimal design is the
so-called Neyman allocation ρ̃1 = (1 +

√
v2/v1)

−1 = 1− ρ̃2.
Assuming (wlog) that high responses are preferable, the treatment outcomes

are ordered on the basis of their effects and, for ease of notation, we assume
(wlog) that θ1 ≥ . . . ≥ θK (i.e., the best treatment will be labelled as the first
one, while theKth treatment as the worst, admitting also clusters with the same
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efficacy), with at least one strict inequality. We wish to stress that this is a sim-
ple label-coding intended to avoid more complex notation; clearly, the treatment
ranking is a-priori unknown, but it can be estimated sequentially, as we will dis-
cuss in Section 4. For Bernoulli, Poisson, exponential and normal homoscedastic
models, this ordering corresponds to the classical stochastic order, while it does
not imply a specific ordering for normal heteroscedastic data. For a given de-
sign ρ, let π = (π1, . . . , πK)t with πk = πk(ρ) = ρkv

−1
k /(

∑K
i=1 ρiv

−1
i ) ≥ 0

(k = 1, . . . ,K) then πt1K = 1 and, after straightforward calculation,

φ(ρ) =

(
K∑

k=1

ρkv
−1
k

)
Vπ(θ), (2.1)

where Vπ(θ) =
∑K

k=1(θk − θ̄π)
2πk and θ̄π =

∑K
k=1 θkπk are the variance and

the mean of θ (with K possibly different ordered support points θ1 ≥ . . . ≥ θK),
evaluated with respect to (wrt) the pdf π. Clearly, for homoscedastic treatment
groups vk = ν (k = 1, . . . ,K) and π = ρ.

Remark 2.2. This representation is quite general and covers the case of data
following the exponential distribution exp(θk) subject to an independent right
censoring scheme (which is a common feature of survival trials). Indeed, let
εk = ε(θk) : R+ → (0; 1) be the probability that a failure/death occurs before
censoring in the kth group (k = 1 . . . ,K), that are assumed to be constant for
every subject in each group, then ε is a decreasing function depending on the
particular censoring scheme adopted in the trial (one of the most general is de-
scribed in [16]). In such a case, φ(ρ) in (2.1) should be simply re-parametrized by
substituting each treatment variance vk = θ2k with v̇k = θ2k/ε(θk) (k = 1, . . . ,K).
However, we wish to stress that some models are not encompassed by our frame-
work like, e.g., the normal distribution where the variance vk is not independent
from the mean θk.

The next Lemma shows some general properties of the function φ(ρ).

Lemma 2.1. Let a = (a1, . . . , aK)t, with ak = v−1
k

(
θk − θ̄π

)2 ≥ 0 for k =
1, . . . ,K. Then, φ(ρ) = atρ is a concave super-harmonic function with non-
negative gradient ∇φ = a and Laplacian ∇2φ < 0.

Proof. See Appendix A.1.

From now on, we denote by e1, . . . , eK the canonical base of RK and we set

ςik =
(
1 +

√
vk/vi

)−1

= 1− ςki, for any i, k ∈ {1, . . . ,K}.

Theorem 2.1. The unconstrained optimal design ρ̃ maximizing the NCP of
Wald’s test is such that

φ(ρ̃) = max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

. (2.2)
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Thus, if the pair of treatments {̃i, k̃} maximizing the right-hand side (RHS) of
(2.2) is unique, then

ρ̃ = ρ̃ĩk̃ = eĩς̃ik̃+ek̃ςk̃ĩ =

(
0, . . . , 0,

√
vĩ√

vĩ +
√
vk̃

, 0, . . . , 0,

√
vk̃√

vĩ +
√
vk̃

, 0, . . . , 0

)t

,

i.e., ρ̃ corresponds to a Neyman allocation involving only this pair of treatments.
Moreover, if the pair {̃i, k̃} maximizing the RHS of (2.2) is not unique, but

there exists one (or more) other pair(s) of indexes {̃i′, k̃′} such that(
θĩ − θk̃√
vĩ +

√
vk̃

)2

=

(
θĩ′ − θk̃′√
vĩ′ +

√
vk̃′

)2

= max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

, (2.3)

then ρ̃ĩk̃ and ρ̃ĩ′k̃′ are both optimal as well as every mixture, namely

φ(ρ̃ĩk̃) = φ
(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
= φ(ρ̃ĩ′k̃′), ∀ω ∈ [0; 1].

Example 2.1. Let K = 3 be the treatments to be compared, with θ = (3, 2, 1)t

and v = (1, 4, 9)t. From (2.2), the maximum of φ is attained at the pair {1, 3},
so that the optimal design is ρ̃13 = (1/4, 0, 3/4), with φ (ρ̃13) = 1/4. Under the
same setting, if v3 = 25 (instead of v3 = 9) then ρ̃12 and ρ̃13 are both optimal
designs with φ(ρ̃12) = φ(ρ̃13) = 1/9; moreover, every convex combination of ρ̃12

and ρ̃13 is still optimal, i.e., every design ρ̃ = (ρ̃1, 4ρ̃1 − 2/3, 5/3 − 5ρ̃1)
t with

ρ̃1 ∈ [1/3; 1/6] is s.t. φ(ρ̃) = 1/9.

The presence of clusters of treatments is also accounted for as a special case,
as the following Corollary shows.

Corollary 2.1. If {̃i, k̃} is the pair of treatments maximizing the RHS of (2.2)
and there exists one (or more) other treatment(s) ĩ′ such that θĩ = θĩ′ and vĩ =
vĩ′ (i.e., there exists a cluster of equal treatments involved in the maximization),

then also {̃i′, k̃} maximizes the RHS of (2.2) and

φ(ρ̃ĩk̃) = φ(ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃) = φ(ρ̃ĩ′k̃), ∀ω ∈ [0; 1],

namely every design ρ̃ s.t. ρ̃ĩ + ρ̃ĩ′ = ς̃ik̃ = ς̃i′k̃ and ρ̃k̃ = ςk̃ĩ is optimal.
If the treatments are grouped in two clusters, namely ∃h ∈ {1, . . . ,K−1} s.t.

(θ1, v1) = (θi, vi) for i = 1, . . . , h and (θK , vK) = (θi, vi) for i = h + 1, . . . ,K,

with θ1 > θK , then every design ρ̃ s.t.
∑h

i=1 ρ̃i = ς1K and
∑K

i=h+1 ρ̃i = ςK1 is
optimal (namely, the Neyman allocation is spanned over the two clusters).

Proof. See Appendix A.3.

Remark 2.3. In general, the unconstrained optimal design ρ̃ is a (general-
ized) Neyman allocation involving just two treatments (or mixture of Neyman
targets in some special cases). Hence, adopting ρ̃, the power of Wald’s test
can be approximated by Pr

(
χ2
1(nφ(ρ̃)) > q1,α

)
. As correctly stated by Singh

and Davidov [12], although ρ̃ is a degenerate target, it is still optimal since
Pr

(
χ2
1(nφ(ρ̃)) > q1,α

)
≥ Pr

(
χ2
b(nφ(ρ̃)) > qb,α

)
, for b ≥ 1 (recalling that, for

every fixed dof, χ2-distributions are stochastically increasing in the NCP).
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As discussed in Remark 2.2, for exponential outcomes with censoring the
treatment variance should be re-scaled. Thus, from Theorem 2.1, the optimal de-
sign maximizing the NCP is the generalized Neyman allocation

ρ̃ĩk̃ = eĩς̃ik̃ + ek̃ςk̃ĩ, where now ς̃ik̃ =
(
1 + θk̃

√
ε(θĩ)/θĩ

√
ε(θk̃)

)−1
, on the pair

{̃i, k̃} s.t.

φ(ρ̃ĩk̃) = max
i,k∈{1,...,K}

⎛
⎝ θi − θk

θi√
ε(θi)

+ θk√
ε(θk)

⎞
⎠

2

. (2.4)

The maximization of the RHS in (2.4) depends on the specific form of the
adopted censoring through ε(·), and it could involve each pair of treatments,
not necessarily {1,K} (i.e., the one with the best and the worst treatments).
Thus, this result conflicts with the optimal design obtained in [13] where, setting
the minimum treatment allocation proportion equal to 0 leads to ρ̃{1K}, as the
following example shows.

Example 2.2. As in [13], we take into account the censoring scheme suggested
in [16] with duration D = 96 and recruitment period R = 55, for K = 3
treatments with θt = (150, 5, 1) we obtain ε(θ1) = 0.239, ε(θ2) = 0.948 and
ε(θ3) = 0.990. Thus, the maximum of the RHS in (2.4) is given by the pair {2, 3}
and therefore the optimal design is ρ̃23 = (0, 0.836, 0.164)t with φ(ρ̃23) = 0.424,
instead of ρ̃13 = (0.997, 0, 0.003)t for which φ(ρ̃13) = 0.234.

While the general cases of normal heteroscedastic outcomes and exponential
responses with censoring should be analysed by Theorem 2.1 and Corollary 2.1,
the next Corollary provides some useful simplifications for the most common
models, where the Neyman target ρ̃1K involving the best and the worst treat-
ments is optimal.

Corollary 2.2. Let θ1 = . . . = θh ≥ θh+1 ≥ . . . ≥ θK−s > θK−s+1 = . . . = θK ,
where h, s are positive integers with h+ s ≤ K, then

• for binary trials, every ρ̃ s.t.

h∑
i=1

ρ̃i =

√
θ1(1− θ1)√

θ1(1− θ1) +
√

θK(1− θK)
= ς1K = 1−

K∑
i=K−s+1

ρ̃i

is optimal with

φ(ρ̃) =

(
θ1 − θK√

θ1(1− θ1) +
√
θK(1− θK)

)2

;

• under Poisson outcomes, every ρ̃ s.t.
∑h

i=1 ρ̃i =
√
θ1/(

√
θ1 +

√
θK) =

ς1K = 1−
∑K

i=K−s+1 ρ̃i is optimal with φ(ρ̃) =
{
(θ1 − θK)/(

√
θ1 +

√
θK)

}2
;

• under exponential responses in the absence of censoring, every design ρ̃
s.t.

∑h
i=1 ρ̃i = θ1/(θ1 + θK) = ς1K = 1 −

∑K
i=K−s+1 ρ̃i is optimal with

φ(ρ̃) = {(θ1 − θK)/(θ1 + θK)}2;
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• under N(θk; v) for k = 1, . . . ,K, every ρ̃ s.t.
∑h

i=1 ρ̃i = 1/2 = ς1K =∑K
i=K−s+1 ρ̃i is optimal with φ(ρ̃) = (θ1 − θK)2/4v.

Moreover, when h = s = 1 (i.e., in the absence of clusters of best and worst
treatments) the optimal design ρ̃ = ρ̃1K = e1ς1K + eK(1− ς1K) is unique.

Proof. See Appendix A.4.

Remark 2.4. Theorem 2.1 and Corollary 2.2 complement the results in [14] and
[17], by covering every possible scenario of clusters of treatments. Indeed, in both
papers h and s are assumed to be positive integers with h+ s < K, therefore the
special case when all treatments are grouped into two clusters is excluded (e.g.,
for K = 3, h = 2 and s = 1 or h = 1 and s = 2), also showing that every
design spanning the Neyman target over the two clusters is optimal (instead of

assuming as unique solution ρ̃ = h−1ς1K
∑h

i=1 ei + s−1ςK1

∑K
i=K−s+1 ei as in

[13, 14, 17]).

2.3. Constrained optimal designs for testing

This section deals with the problem of finding the design ρ∗ = (ρ∗1, . . . , ρ
∗
K)t

maximizing the NCP of the Wald test of homogeneity under the (ethical) con-
straints ρ∗1 ≥ . . . ≥ ρ∗K , reflecting the (unknown) treatment ordering θ1 ≥ . . . ≥
θK . Due to the complexity induced by this general framework, we need to in-
troduce the following notation. Let

T =

[∑K
k=1 v

−1
k

] [∑K
k=1(θ1 − θk)

2v−1
k

]
[∑K

k=1(θ1 − θk)v
−1
k

]2 (2.5)

and, for i = 1, . . . ,K − 1,

σi =
1
i

∑i
k=1 v

−1
k

1
K

∑K
k=1 v

−1
k

, βi =
1
i

∑i
k=1(θ1 − θk)v

−1
k

1
K

∑K
k=1(θ1 − θk)v

−1
k

, γi =
1
i

∑i
k=1(θ1 − θk)

2v−1
k

1
K

∑K
k=1(θ1 − θk)2v

−1
k

where, clearly, β1 = γ1 = 0.

Lemma 2.2. For every i = 1, . . . ,K − 1, σi ≥ βi ≥ γi ≥ 0 and, if γi = 1, then
βi > 1. Moreover, T > 1.

Proof. See Appendix A.5.

Theorem 2.2. If there exists k̆ ∈ {1, . . . ,K − 1} such that:

P1a: βk̆

(
2σk̆ − βk̆ − βk̆σk̆

)
/σ2

k̆
< T (1− γk̆) ≤ 1 + σk̆ − 2βk̆,

P1b: A2
k̆
(1− σi)− 2Ak̆(1− βi) + T (1− γi) > 0, for every i �= k̆,

where

Ak̆ =

⎧⎨
⎩

T (1−γk̆)

1−βk̆+[(1−βk̆)
2−T (1−σk̆)(1−γk̆)]

1/2 , if γk̆ �= 1

2(βk̆ − 1)/(σk̆ − 1), if γk̆ = 1,
(2.6)
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then

ρ∗ = ρ∗
k̆
=

(
1− τ(K − k̆)

k̆

)
k̆∑

i=1

ei + τ

K∑
i=k̆+1

ei, (2.7)

with

τ =
σk̆Ak̆ − βk̆

K[1− βk̆ −Ak̆(1− σk̆)]
(2.8)

and

φ(ρ∗
k̆
) =

(
A2

k̆
− 2Ak̆ + T

TK

)
K∑

k=2

(θ1 − θk)
2v−1

k . (2.9)

If k̆ is not unique but there exists (one or more) ĭ satisfying P1 (namely P1a

and P1b, where now P1b should hold for every i �= {k̆, ĭ}), then Ak̆ = Aĭ and
ρ∗ can be obtained by any convex combination of the corresponding constrained
optimal designs ρ∗

k̆
and ρ∗

ĭ
in (2.7), so that the NCP in (2.9) still holds.

Whereas, if

P2: T (1− γi) > 1 + σi − 2βi, for i = 1, . . . ,K − 1,

the constrained optimal design is balanced, namely ρ∗ = ρB = K−11K , with

φ(ρB) =

(
T − 1

TK

) K∑
k=2

(θ1 − θk)
2v−1

k . (2.10)

In all the other scenarios ρ∗t =
(
ρ∗t
[K−ċ], 0

t
ċ

)
, where ċ ∈ {1, . . . ,K − 2} is

the minimum number of inferior treatments that should be omitted in order to
satisfy P1 or P2 and ρ∗

[K−ċ] is the previously defined constrained optimal design

evaluated by taking into account the remaining K − ċ (superior) treatments.

Proof. See Appendix A.6.

Remark 2.5. If ċ = K − 2, then P1b vanishes, while P1a and P2 identify two
exhaustive and disjoint sets, namely T ≤ 1 + σ1 (i.e., v1 ≥ v2) and T > 1 + σ1,
respectively. In such a case,

ρ∗t =

{(
ς12; ς21,0

t
K−2

)
, if v1 ≥ v2,(

2−11t
2,0

t
K−2

)
, if v1 < v2

and therefore the constrained optimal design is the Neyman or a balanced allo-
cation involving just the two superior treatments.

Example 2.3. Consider now the case of K = 3. When θ = (23, 22.5, 22)t

and v = (100, 10, 11)t, condition P2 holds and therefore the constrained opti-
mal design is the balanced one, i.e. ρ∗ = 3−113, with φ(ρ∗) = 0.0057. Under

the same setting, if v = (65, 10, 3.1)t then there exists a unique k̆ ∈ {1, 2} sat-

isfying P1a-P1b, namely k̆ = 1, so that ρ∗ = ρ∗
1 = (0.508, 0.246, 0.246)t with

φ(ρ∗
1) = 0.0104, whereas if v = (80, 10, 3.1)t then k̆ = 2 and therefore ρ∗ = ρ∗

2 =
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(0.361, 0.361, 0.278)t with φ(ρ∗
2) = 0.0096. When v = (65.37, 10, 3.1)t, then both

k̆ = 1 and k̆ = 2 satisfy P1a-P1b and A1 = A2 = 0.965; thus, every combina-
tion ρ∗ = ωρ∗

1 + (1 − ω)ρ∗
2 – where ω ∈ [0; 1], ρ∗

1 = (0.504, 0.248, 0.248)t and
ρ∗
2 = (0.360, 0.360, 0.280)t – is optimal with φ(ρ∗) = φ(ρ∗

1) = φ(ρ∗
2) = 0.0103. If

v = (5, 1, 65)t instead, neither P1a nor P2 are satisfied and ċ = 1; since v1 > v2,
then ρ∗t = (ς12, ς21, 0) = (0.691, 0.309, 0) with φ(ρ∗) = 0.0239; analogously,
ċ = 1 also when v = (1, 5, 65)t, but now ρ∗ = (0.5, 0.5, 0)t with φ(ρ∗) = 0.0208,
since v1 ≤ v2.

Despite the generality of Theorem 2.2, the next Corollary shows that in many
practical situations the constrained optimal design ρ∗ is a non-degenerate target
having a simple functional form.

Corollary 2.3. Assume that the variance v(·) is non-decreasing in θ and

σ1(1− γi) ≥ σi + γi − 2βi, for i = 2, . . . ,K − 1. (2.11)

Thus, when θ1 > θ2, the constrained optimal design is

ρ∗ =

{
ρ∗
1 if T ≤ 1 + σ1,

ρB if T > 1 + σ1.
(2.12)

Whereas, in the presence of a cluster of superior treatments θ1 = · · · = θj >
θj+1 ≥ · · · ≥ θK (j = 2, . . . ,K − 1), then ρ∗ = ρB when T > 1 + σ1, while for
T ≤ 1 + σ1 every convex combination of ρ∗

1, . . . ,ρ
∗
j is optimal.

In particular, normal homoscedastic, Poisson and exponential models satisfy
condition (2.11) and τ in (2.8) is given by

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑K
k=2(θ1−θk)

2

2[
∑K

k=2(θ1−θk)]
2 , for N(θk; ν);

θ1
[∑K

k=2

(
1
θk

− 1
θ1

)]1/2
−[

∑K
k=2(θ1−θk)]

1/2

[∑K
k=1

θ1
θk

−K
]
[
∑K

k=2(θ1−θk)]
1/2 , for P (θk);

1
θ1

∑K
k=2

(
1
θk

− 1
θ1

)2

[∑K
k=2

(
1
θk

− 1
θ1

)][∑K
k=2

(
1

θ2
k

− 1

θ21

)] , for exp(θk).

Proof. See Appendix A.7.

Although the hypothesis of Corollary 2.3 do not hold for binary outcomes, the
constrained optimal design has an analogous form, as the following proposition
shows.

Proposition 2.1. Under the binary model, when θ1 > θ2 the constrained opti-
mal design is ρ∗ in (2.12), where

τ =

∑K
k=1

(θ1−θk)

(1−θk)θk

R − 1∑K
k=1

(1−θ1)θ1
(1−θk)θk

−K
and R =

√√√√(
K∑

k=1

θ1 − θk
(1− θ1)(1− θk)

)(
K∑

k=1

θ1 − θk
θ1θk

)
.
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Whereas, if θ1 = · · · = θj (j = 2, . . . ,K−1), then ρ∗ = ρB when T > 1+σ1,
while for T ≤ 1 + σ1 every convex combination of ρ∗

1, . . . ,ρ
∗
j is optimal.

Proof. See Appendix A.8

3. Analytical and numerical comparisons

This section is dedicated to the performance assessment of the newly introduced
optimal designs. Starting with the normal model, ρ∗ and ρ̃ will be compared
with the balanced allocation ρB and the design ρM = (e1 + eK)/2 proposed
by Baldi Antognini et al. [3] and Singh and Davidov [12], which is the optimal
design for normal homoscedastic data (i.e., ρ̃ = ρM ) and it is also the target
maximizing the minimum power for both restricted and unrestricted likelihood
ratio tests under the simple order restriction θ1 ≥ . . . ≥ θK . Moreover, we will
also consider the design ρA provided in [6], which allocates observations to the
experimental groups proportionally to the absolute values of the Abelson and
Tukey [1] scores (note that, for K = 3, ρM = ρA). For binary and exponential
responses, we compare our proposals with ρB and the design ρH proposed by
Tymofyeyev et al. [14] and Zhu and Hu [17], that maximizes the NCP under the
constraint of a minimum prefixed threshold of allocations to each treatment.

In what follows, both inferential and ethical criteria will be assessed. For
every design ρ, besides the approximate power Pn(ρ) = Pr

(
χ2
b(nφ(ρ)) > qb,0.05

)
(where we set α = 0.05 and b is the appropriate dof), an alternative measure
of efficiency is simply provided by Λ(ρ) = φ(ρ)/φ(ρ̃), namely the ratio between
the NCP induced by ρ over its optimal value (i.e., the one corresponding to the
unconstrained optimal design ρ̃). Taking into account ρM , from (2.1) and (2.2)
it follows that

Λ(ρM ) =

(θ1−θK)2

2(v1+vK)

max
i,k∈{1,...,K}

(
θi−θk√
vi+

√
vk

)2 . (3.1)

From Theorem 2.1, when {1;K} is the pair of treatments maximizing the RHS

of (2.2), then Λ(ρM ) =
{
2[ς21K + (1− ς1K)

2
]
}−1

≥ 1/2, guaranteeing good

performance even in the presence of strong heteroscedasticity between the two
extreme treatment groups (namely when ς1K → {0; 1}). If {̃i, k̃} �= {1;K}, then
Λ(ρM ) tends to vanish; indeed, assuming for example the normal heteroscedastic
model with v1 = vK and vĩ = vk̃ (where, clearly, v1 > vĩ), then Λ(ρM ) → 0 as
vĩ/v1 → 0 (e.g., by letting θ = (15, 14, 13, 10, 9)t and v = (40, 1, 35, 1, 40)t, then
Λ(ρM ) = 0.056). Adopting ρB instead, from (2.1) and (2.10)

Λ(ρB) =

(
T−1
T

)
1
K

∑K
k=1

(θ1−θk)
2

vk

max
i,k∈{1,...,K}

(
θi−θk√
vi+

√
vk

)2 . (3.2)

For normal homoscedastic data, Λ(ρB) = 4 (θ1−θK)−2K−1
∑K

i=1(θi−θ̄)2, where

θ̄ = K−1
∑K

k=1 θk. By applying the Von Szokefalvi-Nagy inequality,
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Figure 1: Behaviour of Λ(ρB) for K = 3 and 5 treatments as θ2 varies. For
the normal homoscedastic, exponential and Poisson models θt = (11, θ2, 1)
and θt = (11, θ2, 2, 1.5, 1), while for binary data θt = (0.9, θ2, 0.1) and
θt = (0.9, θ2, 0.2, 0.15, 0.1). For the normal heteroscedastic case, scenario (a)
corresponds to vt = (12, 9, 2) and vt = (20, 16, 12, 9, 2) and scenario (b) to
vt = (2, 12, 9) and vt = (2, 12, 20, 16, 9).

Λ(ρB) ≥ 2K−1, namely ρB tends to exhibit poor performances as the number
of treatment groups grows. In this regard, Figure 1 displays the behaviour of
Λ(ρB) for different models with K = 3 and 5 treatments as θ2 varies. In particu-
lar, for the normal, exponential and Poisson models we consider θt = (11, θ2, 1)
for K = 3 and θt = (11, θ2, 2, 1.5, 1) for K = 5, where in both scenarios θ2 varies
between 2 and 10; whereas for the binary model we set θt = (0.9, θ2, 0.1) for
K = 3 and θt = (0.9, θ2, 0.2, 0.15, 0.1) for K = 5, with θ2 varying between 0.2
and 0.8. As regards normal responses we take into account both the homoscedas-
tic (with ν = 1) and the heteroscedastic cases. For all the considered models, the
performance of ρB considerably deteriorates for K = 5, especially for binary,
exponential, Poisson and normal – scenario (a) – models, whose efficiencies are
always lower than 61%. For normal homoscedastic and binary outcomes, Λ(ρB)
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Figure 2: Behaviour of Λ(ρB) for K = 3 and 5 treatments as θ1 varies. For
the normal homoscedastic, exponential and Poisson models θt = (θ1, 2, 1)
and θt = (θ1, 2.5, 2, 1.5, 1), while for binary data θt = (θ1, 0.2, 0.1) and
θt = (θ1, 0.25, 0.2, 0.15, 0.1). For the normal heteroscedastic case, scenario (a)
corresponds to vt = (12, 9, 2) and vt = (20, 16, 12, 9, 2) and scenario (b) to
vt = (2, 12, 9) and vt = (2, 12, 20, 16, 9).

tends to grow for values of θ2 close to θ3, with a maximum efficiency around
80%. This behaviour is even more pronounced in the normal heteroscedastic
scenario (a) for K = 3. Whereas, heteroscedastic scenario (b) exhibits decreas-
ing Λ(ρB) in θ2 for both K = 3 and 5. As regards Poisson and exponential
models the performances improve as θ2 → θ1, whereas for θ2 close to θ3 the
efficiency becomes even lower than 40%. The behaviour of Λ(ρB) for increas-
ing θ1 is reported in Figure 2, where θt = (θ1, 2, 1) and θt = (θ1, 2.5, 2, 1.5, 1)
for normal, exponential and Poisson models with θ1 ∈ [3, 11]; while for binary
outcomes θt = (θ1, 0.2, 0.1) and θt = (θ1, 0.25, 0.2, 0.15, 0.1) with θ1 ∈ [0.3, 0.9].
Similarly to Figure 1, when K = 5 poor performances in terms of Λ(ρB) are
observed. For the binary, exponential and Poisson models, the efficiency is below
75% for K = 3 and it is below 51% for K = 5. As regards the normal model,
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graphical evidence points out that the best performances in terms of efficiency
are achieved in the homoscedastic and heteroscedastic scenario (b), while in
scenario (a) Λ(ρB) < 57% and Λ(ρB) < 32% for K = 3 and 5, respectively.

As regards ethics, in the multi-treatment context several ethical measures
could be adopted, some of them are only model-specific. In our general set-
up, as a measure of ethics we take into account the total expected outcome
En(ρ) = nθtρ; the corresponding ethical efficiency (θtρ− θK)/(θ1− θK) ∈ [0; 1]
will be provided within brackets. Since E2n(ρ) = 2En(ρ), in the following tables
the ethical criterion will be provided only for n = 100.

As previously showed, the unconstrained optimal design ρ̃ maximizes the
NCP and the approximate power too; therefore, it does not exists a target with
better performances in terms of both ethics and inference wrt ρ̃, simultaneously.
Whereas, in some circumstances, ρ̃ dominates ρB and ρM , as discussed in the
following proposition.

Proposition 3.1. Let {̃i, k̃} be the pair of treatments maximizing the RHS of
(2.2) with ĩ < k̃. If ς̃ik̃ ≥ (θ̄−θk̃)/(θĩ−θk̃) then ρ̃ dominates ρB, namely En(ρ̃) ≥
En(ρB) and Pn(ρ̃) ≥ Pn(ρB), simultaneously, for every n. Analogously, if ς̃ik̃ ≥
(θ1+θK−2θk̃)/[2(θĩ−θk̃)], then ρ̃ dominates ρM . Moreover, if the variance v(·)
of a given statistical model is non-decreasing and θĩ + θk̃ ≥ max{2θ̄; θ1 + θK},
then ρ̃ dominates both ρM and ρB.

Proof. The proof follows easily from (2.1) after some algebra, by observing that
En(ρB) = nθ̄, En(ρM ) = n(θ1+θK)/2, while En(ρ̃) = n

[
θĩς̃ik̃ + θk̃(1− ς̃ik̃)

]
.

Starting from the case of normal responses, Tables 1 and 2 summarize the
performances in terms of Pn with n = 50 and 100 (within brackets the corre-
sponding efficiency evaluated wrt ρ̃) and En (with n = 100) of the considered
allocations for K = 3, 4 and 5 treatments, as θ and v vary. Whereas, Tables 3
and 4 show the results in the case of binary and exponential outcomes, respec-
tively, where the minimum proportion of subjects assigned to each treatment
group for ρH is set to 0.2 (K = 3, 4) and 0.15 (K = 5).

Let us first consider the results for normal responses: ρ̃ exhibits the highest
approximate power, with an ethical efficiency varying between 42.9% and 72.2%,
while ρ∗ substantially shows the highest ethical efficiency (between 51.8% and
70.2%), also guaranteeing valid inferential performances (for n = 100, its ef-
ficiency is always greater than 65.6%). Excluding the homoscedastic scenario,
the approximate power of ρM is strictly related to the treatment variances: for
unordered variances ρM exhibits poor performances (showing in some cases an
extremely low efficiency, equal to 39.3% for K = 4 and n = 50), while when
the variances are ordered as the treatment effects, then Pn tends to increase.
Moreover, the ethical efficiency of ρM is always equal to 0.5 and in several sce-
narios ρM is dominated by ρ∗, especially when the number of the treatment
groups increases. The balanced design ρB is always dominated by ρ∗ and it
often shows the worst performances in terms of precision and ethics in all the
considered scenarios. The approximate power provided by ρ̃ with n = 50 ob-
servations tends to be quite similar to the one of ρB with n = 100 subjects.
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Table 1

Pn and En (efficiencies within brackets) for normal responses with K = 3 and 4 treatments,
as θ and v vary.

θ = (1.5, 1.1, 1)t ρ P50(ρ) P100(ρ) E100(ρ)

v = (1, 1, 1)t
ρ∗ = (.494, .253, .253)t .283 (.667) .519 (.736) 127 (.544)
ρ̃ = ρM = ρA .424 (1) .705 (1) 125 (.500)
ρB .257 (.606) .475 (.674) 120 (.400)

v = (1, 2, 6)t

ρ∗ = (.5, .5, 0)t .211 (.977) .372 (.976) 130 (.600)
ρ̃ = (.414, .586, 0)t .216 (1) .381 (1) 127 (.531)
ρM = ρA .157 (.727) .267 (.701) 125 (.500)
ρB .153 (.708) .269 (.706) 120 (.400)

v = (6, 2, 1)t

ρ∗ = (.668, .166, .166)t .121 (.688) .200 (.656) 135 (.702)
ρ̃ = (.71, 0, .29)t .176 (1) .305 (1) 136 (.710)
ρM = ρA .157 (.892) .267 (.875) 125 (.500)
ρB .098 (.557) .151 (.495) 120 (.400)

v = (2, 1, 6)t
ρ∗ = ρ̃ = (.586, .414, 0)t .216 (1) .381 (1) 133 (.669)
ρM = ρA .143 (.662) .240 (.630) 125 (.500)
ρB .135 (.625) .230 (.604) 120 (.400)

θ = (2, 1.8, 1.1, 1)t ρ P50(ρ) P100(ρ) E100(ρ)

v = (1, 1, 1, 1)t
ρ∗ = (.37, .21, .21, .21)t .747 (.793) .971 (.972) 156 (.560)
ρ̃ = ρM .942 (1) .999 (1) 150 (.500)
ρB .729 (.774) .965 (.966) 148 (.475)
ρA = (.433, .067, .067, .433)t .829 (.880) .989 (.999) 149 (.493)

v = (1, 1.5, 2, 7)t

ρ∗ = (1/3, 1/3, 1/3, 0)t .467 (.622) .778 (.810) 163 (.633)
ρ̃ = (.414, 0, .586, 0)t .751 (1) .961 (1) 147 (.473)
ρM .424 (.565) .705 (.734) 150 (.500)
ρB .386 (.514) .692 (.720) 148 (.475)
ρA = (.433, .067, .067, .433)t .329 (.438) .610 (.635) 149 (.493)

v = (7, 2, 1.5, 1)t

ρ∗ = (.309, .309, .191, .191)t .364 (.561) .662 (.726) 158 (.575)
ρ̃ = (0, .586, 0, .414)t .649 (1) .912 (1) 147 (.469)
ρM .424 (.653) .705 (.773) 150 (.500)
ρB .347 (.535) .637 (.698) 148 (.475)
ρA = (.433, .067, .067, .433)t .311 (.479) .580 (.636) 149 (.493)

v = (12, 1.5, 9, 1)t
ρ∗ = (.275, .275, .225, .225)t .340 (.472) .627 (.661) 152 (.518)
ρ̃ = (0, .55, 0, .45)t .720 (1) .949 (1) 144 (.440)
ρM .284 (.393) .501 (.528) 150 (.500)
ρB .337 (.468) .622 (.655) 148 (.475)
ρA = (.433, .067, .067, .433)t .252 (.350) .477 (.503) 149 (.493)

Even if ρA = ρM when K = 3 regardless of the values of the model param-
eters, in the experimental scenarios of Table 1 with K = 4, ρA presents even
lower approximate power than ρM , with efficiencies between 35% and 48% in
the case of heteroscedasticity. Excluding the homoscedastic case, for K = 4 the
approximate power provided by ρA is always lower than the one by ρ∗. For
what concerns ethics, the performances of ρA are very similar to those of ρM

and ρB .
As regards binary trials in Table 3, the constrained optimal design ρ∗ and
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Table 2

Pn and En (efficiencies within brackets) for normal responses with K = 5 treatments and
θ = (3, 2.7, 2, 1.2, 1)t as v varies.

v ρ P50(ρ) P100(ρ) E100(ρ)

(1, 1, 1, 1, 1)t
ρ∗ = (.36, .16, .16, .16, .16)t .999 (.999) 1 (1) 218 (.592)
ρ̃ = ρM 1 (1) 1 (1) 200 (.500)
ρB .998 (.998) 1 (1) 198 (.490)
ρA = (.408, .092, 0, .092, .408)t 1 (1) 1 (1) 199 (.495)

(1, 1.5, 2, 3, 15)t

ρ∗ = (.277, .241, .241, .241, 0)t .843 (.846) .992 (.992) 225 (.626)
ρ̃ = (.366, 0, 0, .634, 0)t .997 (1) 1 (1) 186 (.429)
ρM .705 (.707) .942 (.942) 200 (.500)
ρB .765 (.767) .978 (.978) 198 (.490)
ρA = (.408, .092, 0, .092, .408)t .718 (.720) .961 (.961) 199 (.495)

(12, 3, 2, 1.5, 1)t

ρ∗ = (.287, .287, .142, .142, .142)t .794 (.800) .985 (.985) 223 (.616)
ρ̃ = (0, .634, 0, 0, .366)t .993 (1) 1 (1) 208 (.539)
ρM .792 (.798) .975 (.975) 200 (.500)
ρB .762 (.767) .978 (.978) 198 (.490)
ρA = (.408, .092, 0, .092, .408)t .747 (.725) .971 (.971) 199 (.495)

(5, 3, 10, 1, 15)t

ρ∗ = (.4, .2, .2, .2, 0)t .836 (.857) .991 (.991) 238 (.690)
ρ̃ = (.691, 0, 0, .309, 0)t .976 (1) 1 (1) 244 (.722)
ρM .609 (.624) .885 (.885) 200 (.500)
ρB .696 (.713) .957 (.957) 198 (.490)
ρA = (.408, .092, 0, .092, .408)t .718 (.736) .962 (.962) 199 (.495)

ρH tend to perform quite similarly in terms of inference, with an efficiency al-
ways higher than 68%, whereas ρB shows the lowest approximate power with
a maximum loss up to 44%. Taking into account the ethical criterion, that in
this case corresponds to the total expected successes, ρ∗ and ρ̃ guarantee the
highest ethical efficiency (with only one exception, where En(ρB) is slightly big-
ger wrt En(ρ̃)), with an ethical gain up to 8 and 12 successes wrt ρH and ρB ,
respectively. Similar considerations still hold for exponential responses reported
in Table 4, where the minimum inferential efficiency becomes 73% for ρ∗, 67%
for ρH and 58% for the balanced allocation. The ethical gain (i.e., the additional
total expected survival time in this context) induced by ρ∗ wrt ρH ranges from
36 to 90 (corresponding to a gain in efficiency between 5%−18%) and it is even
more evident for ρB (the additional expected survival is up to 250, with an eth-
ical gain up to 33% in terms of efficiency). The unconstrained optimal design
ρ̃ exhibits the highest approximate power and, at the same time, the greatest
ethical gain, therefore it dominates all the other designs. Similarly to the case
of normal responses, the approximate power induced by ρ̃ with n = 50 obser-
vations tends to be quite similar to those of ρB and ρH with n = 100 subjects.
In general, for all the considered models, both ρ̃ and ρ∗ present high values of
ethical efficiency. Moreover, for normal homoscedastic, binary and exponential
responses, it is evident that ρB is dominated by ρ∗ and also by ρ̃ (with the
exception of the second last scenario of Table 3). As further comparisons (omit-
ted here for brevity) showed, the results for Poisson outcomes are substantially
the same of those of the exponential model. The case of exponential responses
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Table 3

Pn and En (efficiencies within brackets) for binary responses with K = 3, 4 and 5
treatments, as θ varies.

θ ρ P50(ρ) P100(ρ) E100(ρ)

(.4, .1, .05)t

ρ∗ = (.658, .171, .171)t .827 (.882) .987 (.988) 29 (.682)
ρ̃ = (.692, 0, .308)t .938 (1) .999 (1) 29 (.692)
ρH = (.593, .2, .207)t .821 (.875) .986 (.987) 27 (.624)
ρB .663 (.707) .932 (.933) 18 (.381)

(.6, .4, .25)t

ρ∗ = (.480, .260, .260)t .516 (.675) .827 (.855) 46 (.591)
ρ̃ = (.531, 0, .469)t .765 (1) .967 (1) 44 (.531)
ρH = (.432, .2, .368)t .566 (.74) .869 (.899) 43 (.518)
ρB .485 (.634) .796 (.823) 42 (.476)

(.4, .3, .1, .05)t

ρ∗ = (.562, .146, .146, .146)t .725 (.773) .964 (.965) 29 (.688)
ρ̃ = (.692, 0, 0, .308)t .938 (1) .999 (1) 29 (.692)
ρH = (.4, .2, .2, .2)t .693 (.739) .952 (.953) 25 (.571)
ρB .611 (.651) .910 (.911) 21 (.464)

(.5, .2, .15, .1)t

ρ∗ = (.583, .139, .139, .139)t .729 (.774) .965 (.966) 35 (.635)
ρ̃ = (.625, 0, 0, .375)t .942 (1) .999 (1) 35 (.625)
ρH = (.4, .2, .2, .2)t .670 (.711) .942 (.943) 29 (.475)
ρB .525 (.557) .846 (.847) 24 (.344)

(.8, .7, .6, .5, .1)t

ρ∗ = (.316, .171, .171, .171, .171)t .992 (.992) 1 (1) 58 (.683)
ρ̃ = (.571, 0, 0, 0, .429)t 1 (1) 1 (1) 50 (.571)
ρH = (.246, .15, .15, .15, .304)t .998 (.998) 1 (1) 50 (.567)
ρB .990 (.990) 1 (1) 54 (.629)

(.55, .4, .3, .1, .05)t

ρ∗ = (.544, .114, .114, .114, .114)t .924 (.925) .999 (.999) 40 (.692)
ρ̃ = (.695, 0, 0, 0, .305)t .999 (1) 1 (1) 40 (.695)
ρH = (.378, .15, .15, .15, .172)t .909 (.910) .998 (.998) 34 (.573)
ρB .817 (.818) .989 (.989) 28 (.460)

with censoring tends to be similar to that of Normal heteroscedastic data with
variances ordered as the treatment effects, and it is strongly affected by the
chosen censoring scheme.

Finally, inspired by [12], it is interesting to compare the above-considered
designs when the values of the model parameters induce unfavorable configura-
tions. From (2.1), due to the heteroscedasticity, the NCP tends to vanish as the
variances of the treatment group grow, regardless of the chosen design; so, for
any fixed maximum difference between the treatment effects, there is no unique
least favorable configuration, but different scenarios that tend to degenerate as
the signal to noise ratio vanishes. In particular, Table 5 shows the performances
of the considered targets for normal and exponential responses, where the max-
imum distance θ1 − θK has been set equal to 1. The upper part of the table
summarizes the results for normal responses as the variances vary. In the first
scenario, ρ̃ shows the highest values of Pn and En, with a gain in terms of ap-
proximate power up to 10% wrt ρM = ρA and up to 9% wrt ρ∗ = ρB . In the
second and the third scenarios, the variances are at least ten times the value of
the treatment effects; this has the effect of vanishing the differences among the
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Table 4

Pn and En (efficiencies within brackets) for exponential data with K = 3, 4 and 5
treatments, as θ varies.

θ ρ P50(ρ) P100(ρ) E100(ρ)

(4, 2, 1)t

ρ∗ = (.722, .139, .139)t .950 (.961) .999 (.999) 331 (.769)
ρ̃ = (.8, 0, .2)t .989 (1) 1 (1) 340 (.800)
ρH = (.6, .2, .2)t .941 (.951) .999 (.999) 300 (.667)
ρB .856 (.866) .992 (.992) 233 (.444)

(10, 7, 3)t

ρ∗ = (.634, .183, .183)t .902 (.932) .997 (.997) 817 (.739)
ρ̃ = (.769, 0, .231)t .968 (1) 1 (1) 838 (.769)
ρH = (.574, .2, .226)t .902 (.932) .997 (.997) 782 (.688)
ρB .849 (.877) .991 (.991) 667 (.524)

(11, 9, 5, 3)t

ρ∗ = (.625, .125, .125, .125)t .875 (.892) .995 (.995) 899(.749)
ρ̃ = (.786, 0, 0, .214)t .981 (1) 1 (1) 929 (.786)
ρH = (.4, .2, .2, .2)t .843 (.859) .992 (.992) 780 (.600)
ρB .789 (.804) .982 (.982) 700 (.500)

(14, 10, 7, 5)t

ρ∗ = (.619, .127, .127, .127)t .672 (.732) .943 (.946) 1145 (.717)
ρ̃ = (.737, 0, 0, .263)t .918 (1) .997 (1) 1163 (.737)
ρH = (.4, .2, .2, .2)t .619 (.674) .915 (.918) 1000 (.556)
ρB .534 (.582) .854 (.857) 900 (.444)

(7, 5, 4, 3, 2)t

ρ∗ = (.624, .094, .094, .094, .094)t .759 (.778) .977 (.977) 569 (.737)
ρ̃ = (.778, 0, 0, 0, .222)t .975 (1) 1 (1) 589 (.778)
ρH = (.378, .15, .15, .15, .172)t .713 (.731) .963 (.963) 479 (.558)
ρB .603 (.618) .911 (.911) 420 (.440)

(14, 13, 10, 5, 4)t

ρ∗ = (.58, .105, .105, .105, .105)t .825 (.846) .990 (.990) 1148 (747)
ρ̃ = (.778, 0, 0, 0, .222)t .975 (1) 1 (1) 1178 (.778)
ρH = (.4, .15, .15, .15, .15)t .804 (.825) .987 (.987) 1040 (.640)
ρB .741 (.760) .972 (.972) 920 (.520)

treatment means, leading to a drastically reduced approximate power. In such
cases, the performances of ρ̃ and ρM tend to coincide (also due to the fact that
the treatment variances are quite similar), while ρ∗ behaves similarly to ρB .
The bottom part of Table 5 deals with the case of exponential responses. In the
first scenario, ρ̃ provides a considerable gain in terms of approximate power wrt
all the competitors; however, since the difference θ1 − θK is held constant, Pn

greatly decreases as the values of θ increase and all the considered targets tend
to perform quite similarly (in particular for n = 50).

4. Implementation via response-adaptive randomization and
discussion

The unconstrained optimal design ρ̃ in Theorem 2.1 and the constrained one
ρ∗ in Theorem 2.2 depend on the unknown model parameters and therefore
they are a-priori unknown (i.e., locally optimal). The dependence on the model
parameters acts in terms of both i) the a-priori unknown treatment ordering and
ii) the functional form of the optimal design itself, which is often a degenerate
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Table 5

Pn and En (efficiencies within brackets) for normal and exponential responses with K = 3
treatments.

θ = (2, 1.5, 1)t ρ P50(ρ) P100(ρ) E100(ρ)

v = (1, 4, 25)t

ρ∗ = ρB .165 (.757) .294 (.764) 150 (.500)
ρ̃ = (.333, .667, 0)t .218 (1) .384 (1) 167 (.667)
ρM = ρA .165 (.757) .283 (.737) 150 (.500)

v = (20, 15, 10)t

ρ∗ = (.5, .25, .25)t .1 (.656) .155 (.601) 163 (.625)
ρ̃ = (.586, 0, .414)t .152 (1) .258 (1) 159 (.586)
ρM = ρA .149 (.980) .252 (.977) 150 (.500)
ρB .096 (.629) .146 (.567) 150 (.500)

v = (25, 22, 20)t

ρ∗ = (.462, .269, .269)t .081 (.696) .114 (.617) 160 (.597)
ρ̃ = (.528, 0, .472)t .116 (1) .184 (1) 153 (.528)
ρM = ρA .116 (.998) .183 (.997) 150 (.500)
ρB .079 (.682) .110 (.598) 150 (.500)

Exponential responses ρ P50(ρ) P100(ρ) E100(ρ)

θ = (2, 1.5, 1)t
ρ∗ = (.558, .221, .221)t .445 (.670) .753 (.823) 167 (.669)
ρ̃ = (.667, .0, .333)t .654 (1) .915 (1) 167 (.667)
ρH = (.504, .0.2, .296)t .466 (.712) .777 (.849) 160 (.604)
ρB .399 (.610) .697 (.761) 150 (.500)

θ = (5, 4.5, 4)t
ρ∗ = (.48, .26, .26)t .085 (.688) .122 (.614) 461 (.61)
ρ̃ = (.556, .0, .444)t .123 (1) .199 (1) 456 (.556)
ρH = (.433, .0.2, .367)t .089 (.724) .132 (.663) 453 (.533)
ρB .082 (.669) .117 (.59) 450 (.500)

θ = (20, 19.5, 19)t
ρ∗ = (.453, .274, .274)t .052 (.962) .054 (.929) 1959 (.589)
ρ̃ = (.513, .0, .487)t .054 (1) .058 (1) 1951 (.513)
ρH = (.408, .0.2, .392)t .052(.963) .054 (.937) 1951 (.508)
ρB .052 (.960) .053 (.926) 1950 (.500)

allocation with no assignments to some treatment groups.
Unlike other alternative approaches suggested in the literature, which are in-

tended to mediate the design criterion onto the entire parameter space to obtain
good overall performances (such as, e.g., Bayesian or maxi-min approaches), in
this paper we consider response-adaptive randomization as the natural solution
to this local optimality problem. Under this framework, the exact optimal de-
signs are sequentially estimated step-by-step: on the basis of earlier responses
and past assignments, the unknown parameters are estimated along with the
treatment ordering (which could change as the trial progresses) and thus, the
next assignment is randomly forced to progressively approach the optimal target
(for instance, by applying the Doubly Adaptive Biased Coin Design of [8]).

Even if response-adaptive randomization methodology seems a natural choice
in order to implement the optimal proposed allocations, we wish to stress that
the optimal designs ρ̃ and ρ∗ cannot be targeted directly, due to the fact that
i) their functional forms are locally discontinuous around the subset of ΘK un-
der which the treatment ordering changes (namely, where θi tends to coincide
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Figure 3: Comparison of ρ̃1(θ) and ρ̃S1 (θ) as θ = (θ1, θ2, 0.15)
t vary.

with one or more θks) and ii) in several scenarios these optimal designs lay on
the boundary. To overcome these drawbacks, that prevent the applicability of
standard response-adaptive randomization methodology, a smoothing transfor-
mation (e.g., via a Gaussian kernel) can be applied to obtain a continuous and
non-degenerate version of these targets (see, e.g., [14]). In particular, for the
mono-parametric exponential family we take into account the convolution of
ρ̃ = ρ̃(θ) = (ρ̃1(θ), . . . , ρ̃K(θ))t (or, analogously, ρ∗), with a K-dim Gaussian
kernel

G(θ) = (2πσ2)−K/2 exp

(
−θ21 + · · ·+ θ2K

2σ2

)
,

(σ2 > 0 controls the degree of smoothing), namely we define the smoothed
version ρ̃S(θ) = (ρ̃S1 (θ), . . . , ρ̃

S
K(θ))t of ρ̃, by letting

ρ̃Sk (θ) = (ρ̃k ∗G)(θ) =

∫
ΘK

ρ̃k(x)G(θ − x)dx, k = 1, . . . ,K (4.1)

(which could be naturally extended to the case of heteroscedastic normal model
where ρ̃ = ρ̃(θ;v) : ΘK ×R+K → [0; 1]).

This smoothing transformation essentially impacts on the points of disconti-
nuity of ρ̃ and on its boundary, so that the smoothed optimal design ρ̃S obey
the classical regularity conditions of continuity, non-degeneracy and differentia-
bility (see, e.g., [7, 2]), that allows for the standard asymptotic inference for
response-adaptive randomization procedures (therefore, all the asymptotics in
Section 2.1 are still valid). For instance, taking into account binary trials with
K = 3 treatments, Figure 3 illustrates the behaviour of the first component of
ρ̃ and the one of its smoothed version ρ̃S , with θ = (θ1, θ2, 0.15)

t as θ1 and θ2
vary in [0; 1] (where now the treatment ordering is free to change on the basis
of the values of θ1 and θ2).

In order to show how the performances of ρ̃ and ρ̃S (as well as those of ρ∗

and ρ∗S) are quite similar, Table 6 presents the approximate power Pn and
total expected outcomes En under the same scenarios of Table 3 with K = 3
treatments.
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Table 6

Pn and En (efficiencies within brackets) for binary responses with K = 3 treatments, as θ
varies.

θ ρ P50(ρ) P100(ρ) E100(ρ)

(.4, .1, .05)t

ρ∗ = (.658, .171, .171)t .827 (.882) .987 (.988) 29 (.682)
ρ∗S = (.660, .170, .170)t .827 (.882) .987 (.988) 29 (.684)
ρ̃ = (.692, 0, .308)t .938 (1) .999 (1) 29 (.692)

ρ̃S = (.742, .031, .227)t .872 (.930) .994 (.995) 31 (.747)

(.6, .4, .25)t

ρ∗ = (.480, .260, .260)t .516 (.675) .827 (.855) 46 (.589)
ρ∗S = (.476, .262, .262)t .516 (.675) .827 (.855) 46 (.591)
ρ̃ = (.531, 0, .469)t .765 (1) .967 (1) 44 (.531)

ρ̃S = (.549, .041, .409)t .645 (.843) .923 (.954) 45 (.567)

5. Conclusions

This paper discusses optimal designs for hypothesis testing in the presence
of heterogeneous experimental groups, also encompassing the general one-way
ANOVA with heteroscedastic errors. In particular, we derive the allocation max-
imizing the NCP of the classical Wald test of homogeneity about the treatment
contrasts; this optimal design is a generalized Neyman allocation involving only
two treatments, not necessarily the best and the worst ones. Moreover, to ac-
count for the ordering among treatments, we derive the optimal design maximiz-
ing the NCP of the homogeneity test, subject to an ethical constraint reflecting
the efficacy of the competing treatments. Due to the dependence on the un-
known model parameters, these allocations are locally optimal and therefore
a-priori unknown. Moreover, these designs are degenerate allocations with pos-
sible local discontinuities. To avoid these drawbacks, a smoothing transforma-
tion via Gaussian kernel implemented via response-adaptive randomization has
been proposed. The suggested convolution avoids i) degeneracies by assigning a
non-null mass on each treatment and ii) potential discontinuities. Thus, these
smoothed optimal designs could be approached via standard response-adaptive
randomization procedures that, by estimating at each step the unknown param-
eters as well as the treatment ordering, change sequentially the probabilities of
treatment assignments in order to converge to the desired target. To provide a
flexible and easy to use tool for implementing the proposed optimal designs and
their smoothed versions, a fully documented R code is available in the GitHub
repository https://bit.ly/38ER2CD.

As showed in Section 3, the balanced allocation is strongly inappropriate
due to heteroscedasticity. Moreover, any deviation from the assumption of ho-
moscedasticity could also affect the inferential performances of ρM and ρA,
which tend to exhibit a very low approximate power, especially in the case of
unordered variances. In such scenarios, ρ̃S provides a remarkable gain in terms
of inferential efficiency wrt all the other designs, guaranteeing also high ethical
standards. Nevertheless, whenever the ethical dimension plays a crucial role,
ρ∗S could be preferable since, although it places more emphasis on the ethical
aspects, it still guarantees good inferential performances, also wrt ρH .

https://bit.ly/38ER2CD
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Appendix A: Proofs

A.1. Proof of Lemma 2.1

From (2.1), φ(ρ) =
(∑K

k=1 ρkv
−1
k

)
Vπ(θ) = atρ, where Vπ(θ) =

∑K
k=1(θk −

θ̄π)
2πk, θ̄π =

∑K
k=1 θkπk and πk = πk(ρ) = ρkv

−1
k /(

∑K
i=1 ρiv

−1
i ). Since for

every i = 1, . . . ,K,

∂Vπ(θ)

∂ρi
=

∂
∑K

k=1 θ
2
kπk

∂ρi
− ∂θ̄2π

∂ρi
,

where

∂
∑K

k=1 θ
2
kπk

∂ρi
=

(
vi

K∑
k=1

ρk
vk

)−1 (
θ2i −

K∑
k=1

θ2kπk

)

and

∂θ̄2π
∂ρi

=

(
vi

K∑
k=1

ρk
vk

)−1

2(θiθ̄π − θ̄2π),

then

∂Vπ(θ)

∂ρi
=

(
vi

K∑
k=1

ρk
vk

)−1

[(θi − θ̄π)
2 − Vπ(θ)]

and therefore
∂φ(ρ)

∂ρi
=

Vπ(θ)

vi
− Vπ(θ)− (θi − θ̄π)

2

vi
= ai.

Furthermore,

∂2φ(ρ)

∂ρi∂ρj
= −2

(
K∑

k=1

ρk
vk

)−1

(θi − θ̄π)

vi

(θj − θ̄π)

vj
,

so the Hessian matrix

H(φ) = −2

(
K∑

k=1

ρk
vk

)−1

⎡
⎢⎢⎣

(θ1−θ̄π)
v1
...

(θK−θ̄π)
vK

⎤
⎥⎥⎦ ·

[
(θ1−θ̄π)

v1
· · · (θK−θ̄π)

vK

]

is negative semi-definite, since it has K − 1 null eigenvalues and one eigenvalue
(that coincides with the Laplacian)

trH(φ) = ∇2φ = −2

(
K∑

k=1

ρk
vk

)−1 K∑
k=1

ak
vk

< 0,

provided that Atθ �= 0K−1.
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A.2. Proof of Theorem 2.1

Firstly, we will show that the unconstrained optimal design ρ̃ maximizing the
NCP of Wald test is of the form of (2.2). Let ρ(l) denote a generic target with
l components different from 0, then ρ(1) corresponds to one of the standard
basis ek (k = 1, . . . ,K) and clearly φ(ρ(1)) = 0, attaining the minimum of the
NCP. Taking now into account ρ(2) =

∑
k∈{i,j} ekρk, where ρj = 1−ρi ∈ (0; 1),

from (2.1) we have

φ
(
ρ(2)

)
=

⎛
⎝ ∑

k∈{i,j}

ρk
vk

⎞
⎠

−1

(θi − θj)
2

{
ρi
vi

1− ρi
vj

}
,

and

φ
(
ρ(2)

)
≤ max

i,j∈{1,2,...,K}
(θi − θj)

2

⎧⎪⎨
⎪⎩ max

ρi∈[0,1]

⎛
⎝ ∑

k∈{i,j}

ρk
vk

⎞
⎠

−1

ρi
vi

1− ρi
vj

⎫⎪⎬
⎪⎭ . (A.1)

First, observe that

max
ρi∈[0,1]

ρi(1−ρi)
vivj∑

k∈{i,j}
ρk

vk

= max
ρi∈[0,1]

{
vi
ρi

+
vj

1− ρi

}−1

= min
ρi∈[0,1]

vi
ρi

+
vj

1− ρi
,

which is clearly minimised by the Neyman allocation ρ̃i = ςij . Thus, from (A.1),

φ(ρ̃) = max
i,j∈{1,2,...,K}

(θi − θj)
2

{
ςij(1− ςij)

ςij(vj − vi) + vi

}
= max

i,j∈{1,2,...,K}

(
θj − θi√
vi +

√
vj

)2

,

so that if the pair of treatments {̃i, k̃} maximizing the RHS of the previous
equation is unique, then ρ̃ = ρ̃ĩk̃ = eĩς̃ik̃ + ek̃ςk̃ĩ. When the pairs {̃i, k̃} and

{̃i′, k̃′} satisfy (2.3), then both ρ̃ĩk̃ and ρ̃ĩ′k̃′ are optimal designs, namely

φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′) = max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

. (A.2)

Moreover, every mixture of ρ̃ĩk̃ and ρ̃ĩ′k̃′ is still optimal, since for every ω ∈ [0; 1]

φ
(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
≥ ωφ(ρ̃ĩk̃) + (1− ω)φ(ρ̃ĩ′k̃′) = φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′),

due to the concavity of φ(·) (see Lemma 2.1), but from (A.2), φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′) ≥
φ
(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
. Thus, φ

(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
= φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′).

In order to deal with other scenarios, namely φ(ρ(l)) with l > 2, assume wlog
i < j < t. For the case ρ(3) =

∑
k∈{i,j,t} ekρk, with ρt = 1 − ρi − ρj , note that

∇φ(ρ(3)) can be expressed as

∂φ(ρ(3))

∂ρk
=

(θk − θ̄π)
2

vk
− (θt − θ̄π)

2

vt
= ak − at, k = i, j.
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If ∃ k s.t. ak �= at, then ak > at implies that φ(ρ(3)) is increasing in ρk, namely
the NCP is maximized for ρ̃t = 0, and conversely, ak < at implies that φ(ρ(3))
is decreasing in ρk that is, it is maximized for ρ̃k = 0, so that in both cases
φ(ρ(3)) ≤ φ(ρ̃). If instead ∇φ(ρ(3)) = 0, namely ai = aj = at, from ai = at we
get θ̄π = (

√
vtθi +

√
viθt)/(

√
vt +

√
vi) and, from (2.1),

φ(ρ(3)) = at = v−1
t

(
θt −

√
vtθi +

√
viθt√

vt +
√
vi

)2

=

(
θi − θt√
vt +

√
vi

)2

≤ φ(ρ̃).

By applying the same reasoning, it follows that φ(ρ(l)) ≤ φ(ρ̃) for l = 4, . . . ,K.
Indeed, taking into account φ(ρ(K)), if ∇φ(ρ(K)) = 0 then a1 = . . . = aK ; from
a1 = aK we get θ̄π = (

√
vKθ1 +

√
v1θK)/(

√
vK +

√
v1), so that

φ(ρ̃(K)) =

(
θ1 − θK√
v1 +

√
vK

)2

≤ φ(ρ̃);

while if ∇φ(ρ(K)) �= 0, then φ(ρ(K)) could be maximized by some ρ(K−1) and,
recursively, it follows that φ(ρ(K)) ≤ φ(ρ̃), which concludes the proof.

A.3. Proof of Corollary 2.1

Since θĩ = θĩ′ and vĩ = vĩ′ , the pair {̃i, k̃} maximizes the RHS of (2.2) if and

only if {̃i′, k̃} maximizes the RHS of (2.2). Therefore, from Theorem 2.1, both
ρ̃ĩk̃ and ρ̃ĩ′k̃ are optimal designs as well as every mixture of them, where clearly
ς̃ik̃ = ς̃i′k̃.

The case of two clusters of treatments follows easily from the previous result
by noticing that

max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

=

(
θ1 − θK√
v1 +

√
vK

)2

,

namely the pair {1,K} surely maximizes the RHS of (2.2).

A.4. Proof of Corollary 2.2

Letting i < k, then θi ≥ θk and therefore the RHS of (2.2) becomes

max
i<k

(
θi − θk√
vi +

√
vk

)2

=

(
max
i<k

θi − θk√
vi +

√
vk

)2

. (A.3)

For binary trials, by letting

θi − θk√
vi +

√
vk

=
θi − θk√

θi(1− θi) +
√
θk(1− θk)

= F (θi, θk),
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then F (·) attains its minimum when θi = θk; moreover, F (θi, θk) is increasing
in θi ∈ (θk; θ1], since

∂F (θi, θk)

∂θi
=

θi(1− θk) + θk(1− θi) + 2
√

θiθk(1− θi)(1− θk)

2
√

(1− θi)θi

(√
(1− θi)θi +

√
(1− θk)θk

)2 > 0,

and decreasing in θk ∈ [θK ; θi), because

∂F (θi, θk)

∂θk
=

−θi(1− θk)− θk(1− θi)− 2
√
θiθk(1− θi)(1− θk)

2
√

(1− θk)θk

(√
(1− θi)θi +

√
(1− θk)θk

)2 < 0.

Thus,

max
i<k

(
θi − θk√

θi(1− θi) +
√
θk(1− θk)

)
=

θ1 − θK√
θ1(1− θ1) +

√
θK(1− θK)

,

namely, the optimal design is ρ̃1K with

ς1K =
√

θ1(1− θ1)/(
√
θ1(1− θ1) +

√
θK(1− θK))

and φ(ρ̃1K) =
{
(θ1 − θK)/(

√
θ1(1− θ1) +

√
θK(1− θK))

}2

.

Taking into account Poisson outcomes,

max
i<k

(
θi − θk√
θi +

√
θk

)
= max

i<k

(√
θi −

√
θk

)
=

√
θ1 −

√
θK

and therefore ρ̃1K is the optimal design with ς1K =
√
θ1/(

√
θ1 +

√
θK) and

φ(ρ̃1K) =
{
(θ1 − θK)/(

√
θ1 +

√
θK)

}2
. For exponential responses,

max
i<k

(
θi − θk
θi + θk

)
=

θ1 − θK
θ1 + θK

= max
x>1

(
x− 1

x+ 1

)
,

where x = θi/θk ∈ [1; θ1/θK ]; since the RHS is increasing in x, the optimal

design is ρ̃1K with ς1K = θ1/(θ1 + θK) and φ(ρ̃1K) = {(θ1 − θK)/(θ1 + θK)}2.
For normal homoscedastic outcomes, from (A.3),

max
i<k

(
θi − θk
2
√
v

)2

=
(θ1 − θK)2

4v

is attained at the optimal design ρ̃1K with ς1K = 1/2. In the presence of clusters
of best(worst) treatments, ς1K (ςK1) should be spanned over the corresponding
group of treatments.
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A.5. Proof of Lemma 2.2

From now on let ϑi = θ1 − θi for i = 1, . . . ,K, then 0 = ϑ1 ≤ . . . ≤ ϑK , with at
least one strict inequality holds. For every i = 1, . . . ,K − 1, σj ≥ βj ; indeed,(

K∑
i=1

ϑi

vi

)(
j∑

i=1

1

vi

)
≥

(
j∑

i=1

ϑi

vi

)(
K∑
i=1

1

vi

)
⇐⇒

⎛
⎝ K∑

i=j+1

ϑi

vi

⎞
⎠(

j∑
i=1

1

vi

)
≥

(
j∑

i=1

ϑi

vi

)⎛
⎝ K∑

i=j+1

1

vi

⎞
⎠

and therefore, by rearranging the terms in the summations,

σj − βj =

j∑
k=1

1

vk

⎧⎨
⎩

K∑
i=j+1

ϑi − ϑj

vi

⎫⎬
⎭ ≥ 0,

since ϑi ≥ ϑj for every i > j. Moreover, note that σj = βj if and only if
ϑj = . . . = ϑK . Analogously, βj ≥ γj , since

βj − γj =

j∑
k=1

ϑk

vk

⎧⎨
⎩

K∑
i=j+1

ϑi(ϑi − ϑj)

vi

⎫⎬
⎭ ≥ 0,

and the equality holds if i) 0 = ϑ1 = . . . = ϑj or ii) ϑj = . . . = ϑK . Case i)
corresponds to β1 = . . . = βj = γ1 = . . . = γj = 0, while under ii) σj = βj = γj .
If γj = 1, then βj = γj if and only if 0 = ϑ1 = . . . = ϑK ; indeed, under ii),

σj = βj = γj = 1, that implies (K − j)
∑j

i=1 v
−1
i = j

∑K
i=j+1 v

−1
i and

(K − j)

j∑
i=1

ϑi

vi
= jϑj

K∑
i=j+1

1

vi
= ϑj(K − j)

j∑
i=1

1

vi
,

namely
∑j

i=1(ϑi − ϑj)/vi = 0, i.e. 0 = ϑ1 = . . . = ϑj , which, combined with ii),
corresponds to ϑ1 = . . . = ϑK = 0 (i.e., θ1 = . . . = θK).

Furthermore, from (2.5), due to the Cauchy-Schwarz inequality

T =

[
K∑

k=1

(
v
−1/2
k

)2
][

K∑
k=1

(
ϑkv

−1/2
k

)2
][

K∑
k=1

ϑkv
−1
k

]−2

≥ 1,

where the equality holds if and only if ϑ1 = . . . = ϑK = 0.

A.6. Proof of Theorem 2.2

To avoid a cumbersome notation, we let ϑ̄π =
∑K

k=1 ϑkπk and

ϑ̄πB
= (

∑K
k=1 ϑkv

−1
k )/(

∑K
k=1 v

−1
k ) (namely assuming πB = π(ρB)). Recall-

ing that φ(ρ) = atρ, where clearly ai = v−1
i (θi − θ̄π)

2 = v−1
i (ϑi − ϑ̄π)

2.
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Moreover, from now on we let āk = k−1
∑k

i=1 ai for k = 1, . . . ,K − 1, while

ā = K−1
∑K

i=1 ai.
The constrained maximization problem of Theorem 2.2 can be address via

Lagrange multipliers, where L(ρ, λ1, . . . , λK) = φ(ρ) −
∑K−1

i=1 λi(ρi+1 − ρi) −
λK

(∑K
i=1 ρi − 1

)
. Setting ∂L(ρ, λ1, . . . , λK)/∂ρi = 0 for i = 1, . . . ,K, then⎧⎪⎨

⎪⎩
a1 + λ1 = λK

ai − λi−1 + λi = λK , i = 2, . . . ,K − 1,

aK − λK−1 = λK

namely, by summing all the equations, λK = ā > 0 (since ϑK > 0) and λi =
i(ā− āi) for i = 1, . . . ,K − 1.

Case 1: λi = 0 and λj > 0 for every j �= i. Under this scenario, the cor-

responding target is ρ∗
i = ξ

∑i
k=1 ek + τ

∑K
k=i+1 ek, where τ ∈ (0,K−1] and

ξ = [1− τ(K − i)]i−1 ≥ τ , since 1t
Kρ∗

i = 1. Under ρ∗
i ,

ϑ̄π = ϑ̄πB
·
{
τK + (1− τK)βi

τK + (1− τK)σi

}
, (A.4)

where [τK+(1−τK)βi]/[τK+(1−τK)σi] ∈ (βi/σi, 1]. Therefore, ρ
∗
i is optimal

iff ā = āi and ā > āj for every j �= i. Condition ā = āi can be restated as

ϑ̄2
π

(
1

K

K∑
k=1

1

vk

)
[1−σi]−2ϑ̄π

(
1

K

K∑
k=1

ϑk

vk

)
[1−βi]+

(
1

K

K∑
k=1

ϑ2
k

vk

)
[1−γi] = 0.

Clearly, if σi = 1 then ϑ̄π = ϑ̄πB
{T (1− γi)/[2(1− βi)]}. If σi �= 1 instead, this

is a quadratic function wrt ϑ̄π and the corresponding roots are ϑ̄π = ϑ̄πB
·A±

i ,
where A±

i = [1−βi±
√
Ri]/(1−σi) and Ri = (1−βi)

2−T (1−σi)(1−γi). Thus,
by (A.4), A±

i = [τK+(1− τK)βi]/[τK+(1− τK)σi] ∈ (βi/σi, 1]. However, A
+
i

is not an admissible solution since (unless the degenerate case θ1 = . . . = θK ,
which is clearly excluded):

• if σi < 1, A+
i ≤ 1 ⇐⇒

√
Ri ≤ βi − σi < 0;

• if σi > 1, A+
i > βi/σi ⇐⇒ σi

√
Ri < βi − σi < 0.

Taking into account A−
i , when γi �= 1 it can be rewritten as A−

i = T (1−γi)/[1−
βi+

√
Ri] (which also encompasses the case σi = 1), and therefore the definition

of Ai in (2.6) follows immediately. Now, Ai ∈ (βi/σi, 1] when P1a holds. Indeed,

• when γi < 1, Ai ≤ 1 ⇐⇒ T (1− γi) ≤ 1+σi− 2βi, which also guarantees
that Ri ≥ 0 (since (1 − βi)

2 ≥ T (1 − σi)(1 − γi) when σi ≥ 1, while for
σi < 1 then (1−βi)

2/(1−σi) ≥ 1+σi−2βi). In addition, Ai > βi/σi when
T (1 − γi) > βi(2σi − βi − βiσi)/σ

2
i (which also implies that T (1 − γi) >

(1− βi)βi/σi, since βi(1− βi)/σi < βi(2σi − βi − βiσi)/σ
2
i );

• when γi > 1, Ai > βi/σi ⇐⇒ T (1 − γi) > βi(2σi − βi − βiσi)/σ
2
i , also

ensuring that Ri ≥ 0 (since (1− βi)
2/(1− σi) ≤ βi(2σi − βi − βiσi)/σ

2
i ).

Moreover Ai ≤ 1 ⇐⇒ 1 − βi ≤ T (1 − γi) ≤ 1 + σi − 2βi (where
T (1− γi) ≥ 1− βi is trivially satisfied when Ai > βi/σi);
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• if γi = 1, condition P1a reduces to 2σi − βi − βiσi < 0 ≤ 1 + σi − 2βi.

Condition ā > āj for every j �= i corresponds to P1b; indeed, by combining

ϑ̄2
π

(
1

K

K∑
k=1

1

vk

)
[1−σj ]−2ϑ̄π

(
1

K

K∑
k=1

ϑk

vk

)
[1−βj ]+

(
1

K

K∑
k=1

ϑ2
k

vk

)
[1−γj ] > 0

(j = 1, . . . ,K − 1, j �= i) with ϑ̄π = ϑ̄πB
·Ai, then(∑K

k=1 ϑkv
−1
k

)2 [
A2

i (1− σj)− 2Ai(1− βj)
]

∑K
k=1 v

−1
k

+

(
K∑

k=1

ϑ2
k

vk

)
(1− γj) > 0,

namely T−1
(∑K

k=1 ϑ
2
kv

−1
k

) [
A2

i (1− σj)− 2Ai(1− βj) + T (1− γj)
]

> 0, i.e.,

fj(Ai) > 0, where fj(z) = z2(1 − σj) − 2z(1 − βj) + T (1 − γj). Thus, if there
exists a treatment i ∈ {1, . . . ,K − 1} s.t. P1 holds, then ρ∗

i is optimal with
τ = (σiAi − βi)/{K[1− βi −Ai(1− σi)]}. Moreover under ρ∗

i , since ā = āi,

φ(ρ∗
i ) = atρ∗

i = iā[1− τ(K − i)]i−1 + τ ā(K − i) = ā

and therefore (2.9) follows directly.
Case 2: λi = λj = 0 and λk > 0 for every k �= {i, j}. Assuming (wlog)

1 ≤ i < j ≤ K − 1, the corresponding target has the form

ρ∗ =

(
1− (j − i)η − (K − j)ν

i

) i∑
k=1

ek + η

j∑
k=i+1

ek + ν

K∑
k=j+1

ek, (A.5)

where η ≥ ν ∈ (0,K−1] and j(η − ν) ≤ 1 − Kν ≤ j(η − ν) + i(1 − η). Under
this scenario, ā = āi = āj and ā > āk for k �= {i, j}. Thus, if P1 holds for
both i and j, then Ai = Aj (namely, ϑ̄π = ϑ̄πB

· Ai = ϑ̄πB
· Aj) and P1b

should be satisfied for every k �= {i, j}. Indeed, if Ai �= Aj , from P1b it follows
that fj(Ai) > 0 but, at the same time, fi(Aj) > 0, which is impossible since
fj(Ai) > 0 ⇐⇒ fi(Aj) < 0. Adopting ρ∗ in (A.5), since ā = āi = āj ,

φ(ρ∗) = atρ∗ =

(
1− (j − i)η − (K − j)ν

i

) i∑
k=1

ak + η

j∑
k=i+1

ak + ν

K∑
k=j+1

ak

=

(
1− (j − i)η − (K − j)ν

i

)
iā+ ηā(j − i) + νā(K − j) = ā,

so that, combined with (2.9), φ(ρ∗) = φ(ρ∗
i ) = φ(ρ∗

j ). Moreover, every mixture
of ρ∗

i and ρ∗
j is optimal since, due to the concavity of φ(·),

φ(ρ∗
i ) = φ(ρ∗

j ) ≥ φ
(
ωρ∗

i + (1− ω)ρ∗
j

)
≥ ωφ(ρ∗

i )+(1−ω)φ(ρ∗
j ) = φ(ρ∗

i ) = φ(ρ∗
j ).

Case 3: λi > 0 for every i = 1, . . . ,K − 1. Under this setting, ρ∗ = ρB and
ϑ̄π = ϑ̄πB

. Balance is optimal provided that ā > āi for i = 1, . . . ,K − 1, i.e.

ϑ̄2
πB

(
1

K

K∑
k=1

1

vk

)
[1−σi]−2ϑ̄πB

(
1

K

K∑
k=1

ϑk

vk

)
[1−βi]+

(
1

K

K∑
k=1

ϑ2
k

vk

)
[1−γi] > 0,
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namely fi(1) > 0 for every i = 1, . . . ,K − 1 (condition P2) and

φ(ρB) = ā =
1

K

[
ϑ̄2
πB

K∑
k=1

1

vk
− 2ϑ̄πB

K∑
k=1

ϑk

vk
+

K∑
k=1

ϑ2
k

vk

]
=

(
T − 1

TK

) K∑
k=1

ϑ2
k

vk
.

Case 4: in all the other scenarios, namely when P2 does not hold and �i
satisfying P1, then the Lagrangian does not admit critical points, so that only
boundary solutions could be optimal. Due to the constraints ρ∗1 ≥ . . . ≥ ρ∗K ,
then ρ∗i = 0 implies that ρ∗j = 0 for every j > i; moreover, ρ∗2 = 0 should be
excluded since it corresponds to the minimum of the NCP. Starting from the
case with ρ∗K = 0 and using the same notation of Appendix A.2, notice that

φ
(
ρ(K−1)t ; 0

)
= φ

(
ρ(K−1)

)
; thus, if P1 or P2 are satisfied, then ċ = 1 and

therefore φ
(
ρ(K−1)

)
≤ φ

(
ρ∗
[K−1]

)
; otherwise ρ∗K−1 = ρ∗K = 0 and, iteratively,

the same reasoning should be applied at most for ċ = K − 2, for which results
of Remark 2.5 hold.

A.7. Proof of Corollary 2.3

If v(θ) is non-decreasing in θ, then {v−1
k ; k = 1, . . . ,K}, {ϑkv

−1
k ; k = 1, . . . ,K}

and {ϑ2
kv

−1
k ; k = 1, . . . ,K} are non decreasing in k and therefore {(σk, βk, γk); k =

1, . . . ,K − 1} is still non-decreasing with 1 ≥ σk ≥ βk ≥ γk ≥ 0 for every
k = 1, . . . ,K − 1. Under condition (2.11),

• T > 1+ σ1 implies that P2 holds, since (1+ σ1)(1− γi) > 1+ σi − 2βi for
i = 2, . . . ,K − 1;

• while if T ≤ 1 + σ1, then A1 ∈ (0; 1] and P1 is satisfied, since fi(A1) > 0
for every i = 2, . . . ,K − 1; indeed, it corresponds to

T [(1− σi)− (1− γi)(1− σ1)] + 2(βi − γi)
[
1 +

√
1− T (1− σ1)

]
> 0,

(A.6)
which trivially holds if 1 − σi ≥ (1 − γi)(1 − σ1), while for 1 − σi < (1 −
γi)(1− σ1) the left-hand side (LHS) in (A.6) is monotonically decreasing
in T and (A.6) is satisfied for T = 1 + σ1.

For the normal homoscedastic model the proof is straightforward, since σi = 1
for i = 1, . . . ,K−1 and condition (2.11) is trivially satisfied because βi ≥ γi for
i = 2, . . . ,K − 1. Under Poisson data, let ψk = θ1/θk for k = 1, . . . ,K (where

1 = ψ1 ≤ . . . ≤ ψK) and ψ̄ = K−1
∑K

i=1 ψi (while ψ̄k = k−1
∑k

i=1 ψi). Thus,

K−1
∑K

k=1 v
−1
k = ψ̄/θ1 and K−1

∑K
k=1 ϑkv

−1
k = ψ̄ − 1, so that (2.11) becomes

1− γj
ψ̄

≥ ψ̄j

ψ̄
+ γj − 2

(
ψ̄j − 1

ψ̄ − 1

)
,

namely

(ψ̄j − 1)

[
2

ψ̄ − 1
− 1

ψ̄

]
≥

(
ψ̄ + 1

ψ̄

)
γj ⇐⇒ ψ̄j − 1

ψ̄ − 1
= βj ≥ γj .
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For exponential data, by letting ψ̄2 = K−1
∑K

i=1 ψ
2
i and ψ̄2

k = k−1
∑k

i=1 ψ
2
i ,

then K−1
∑K

k=1 v
−1
k = ψ̄2/θ21 and K−1

∑K
k=1 ϑkv

−1
k = (ψ̄2 − ψ̄)/θ1, while

K−1
∑K

k=1 ϑ
2
kv

−1
k = ψ̄2 − 2ψ̄ + 1. Hence, after some algebra, (2.11) becomes

ψ̄2
k − 1 ≥ ψ̄2

k − 2ψ̄k + 1

ψ̄2 − 2ψ̄ + 1
(ψ̄2 − 1) ⇐⇒ ψ̄k − 1

ψ̄ − 1
≥ ψ̄2

k − 1

ψ̄2 − 1

and, by rearranging the terms in the summation, we obtain

(K − k)

[
k∑

i=1

ψi(ψi − 1)

]
−

k∑
h=1

K∑
i=k+1

ψhψi(ψh − ψi) ≥ k

K∑
i=k+1

ψi(ψi − 1) ⇐⇒

k∑
h=1

K∑
i=k+1

ψh(ψi − 1)(ψi − ψh + 1) ≥
k∑

h=1

K∑
i=k+1

ψi(ψi − 1) ⇐⇒

k∑
h=1

K∑
i=k+1

(ψi − 1)(ψh − 1)(ψi − ψh) ≥ 0,

which is satisfied since ψi ≥ 1 for every i = 1, . . . ,K and ψi ≥ ψh (since h < i).

A.8. Proof of Proposition 2.1

For binary trials, ∃ ! ĩ ∈ {1, . . . ,K} s.t. a1 ≥ · · · ≥ aĩ ≤ aĩ+1 ≤ · · · ≤ aK , namely

{ai, i = 1, . . . ,K} is decreasing for k ≤ ĩ and increasing for k > ĩ. Indeed, by
equating ai = ai+1 we get

ϑ̄2
π(vi+1 − vi)− 2ϑ̄π(ϑivi+1 − ϑi+1vi) + ϑ2

i vi+1 − ϑ2
i+1vi = 0. (A.7)

Clearly, if vi = vi+1, then ϑ̄π = (ϑi + ϑi+1)/2, while if vi �= vi+1 eq. (A.7)
is quadratic wrt ϑ̄π, whose corresponding roots are ϑ̄π = Q±

i , with Q±
i =

[ϑi
√
vi+1±ϑi+1

√
vi]/[

√
vi+1±

√
vi]. However, since 0 = ϑ1 < ϑ̄π < ϑK ≤ 1, then

Q−
i is not a feasible solution; indeed, if vi+1 > vi, then Q−

i < 0, while if vi+1 < vi
then Q−

i > 1. Thus, the only feasible solution is Q+
i = ςi+1,iϑi + ςi,i+1ϑi+1 ∈

[ϑi;ϑi+1] (which also encompasses the case vi = vi+1) and

ai ≥ ai+1 ⇐⇒ (ϑ̄π ≥ Q+
i ) ∪ (ϑi = ϑi+1). (A.8)

Since the sequence {Q+
i , i = 1, . . . ,K−1} is increasing in i, combined with (A.8)

it guarantees that ∃ ! ĩ ∈ {1, . . . ,K}, such that a1 ≥ · · · ≥ aĩ ≤ aĩ+1 ≤ · · · ≤ aK .
Moreover, if ā ≥ a1, then ā > āK−1 (i.e., ā < aK), since (K − 1)ā + aK >∑K−1

k=1 ak + aK is always satisfied due to the fact that ā < maxi=1,...,K ai.
Case 1: λ1 = 0 and λi > 0 for i = 2, . . . ,K − 1. Under this setting the

optimal target is ρ∗
1 = [1− (K−1)τ ]e1+τ

∑K
k=2 ek, where τ follows easily from

Theorem 2.2 after simple algebra. Condition ā = a1, namely A1 ∈ (0, 1], holds
iff T ≤ 1 + σ1. In this case also P1b is satisfied, i.e. ā > āi for i = 2, . . . ,K − 1,
since ā > āK−1 due to the behaviour of {ai, i = 1, . . . ,K}.
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Case 2: λ1 = · · · = λj = 0 (with j = 2, . . . ,K − 2) and λi > 0 for i > j.
Under this setting ā = āi for i = 1, . . . , j and ā > āi for i = j+1, . . . ,K−1, then
θ1 = · · · = θj (which implies A1 = · · · = Aj) and P1a holds for i = 1, . . . , j iff
T ≤ 1+σ1. Following the same reasoning of Case 1, P1b for i = j+1, . . . ,K−1
also holds, so that ρ∗

1,ρ
∗
2, . . . ,ρ

∗
j are optimal designs. Moreover, due to the

concavity of φ(·), every convex combination of ρ∗
1,ρ

∗
2, . . . ,ρ

∗
j is still optimal.

Case 3: λi > 0 for every i = 1, . . . ,K − 1. Under this scenario ρ∗ = ρB and
when T > 1 + σ1 then ā > a1, which also guarantees ā > āi ∀i = 2, . . . ,K − 1
(namely P2 holds), due to the behaviour of {ai, i = 1, . . . ,K}.

Every other scenario is impossible since:

• λ1 > 0 and at least one λi = 0 with i ∈ {2, . . . ,K−1}, namely ā > a1 and
ā = āi where at least ai > ā, clearly implies that ā < ai < ai+1. However,
if λi+1 > 0, then ā = āi > āi+1 ⇐⇒ ā > ai+1, while if λi+1 = 0, then
ā = āi = āi+1 ⇐⇒ ā = ai+1;

• λ1 = 0 and at least one λi > 0 and λi+1 = 0 with i ∈ {2, . . . ,K − 2},
namely ā = a1 and ā = āi+1, so that a2 < ā < ai+1 < ai+2, but if
λi+2 = 0, then ā = ai+2, while if λi+2 > 0, then ā > ai+2.
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