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Abstract

We fix a mistake in the previously published paper Electron. J. Probab. 25: 1–31
(2020). The corrected version of the paper can also be found at arXiv:1911.03792.
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We made a mistake in the proof of Theorem 4.1, and we gratefully thank Manan
Bhatia for pointing this out to us. In the original paper, the mistake appeared in (4.9),
and we provide correct proof for it here.

Recall the beginning part of the proof from the original paper, and we continue from
equation (4.8), with a weaker estimate:

P̃
{
∃z outside J0, vN K such that |Z 0→ z| < barN2/3c

}
≤ Cr−3. (4.8)

Here P̃ is the modified environment defined above (4.5), and Z 0→ z is the exit time for
the geodesic, which is define in the text between (3.4) and (3.5). Note the upper bound
above is weaker than the one stated in (4.8) of the original paper, but it is enough for
showing (4.5).

We treat the case 1 ≤ Z 0→ z < barN2/3c of (4.8). The same arguments give the
analogous bound for the case −barN2/3c < Z ≤ −1. Start by perturbing the endpoint
vN =

(
bN(1− ρ)2c, bNρ2c

)
to a new point wN as was done in Lemma 4.2:

wN = vN − b 1
10 (1− ρ)rN

2/3ce1.

Break up the northeast boundary of J0, vN K into two regions L and D as in the diagram on
the right of Figure 4.3. Recall the parameter λ = ρ+ r

N1/3 defined at the beginning of the
proof, and note that the

(
− (1−λ)2,−λ2

)
-directed ray started from wN still goes through
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the interval [arN2/3, brN2/3] on the e1-axis. We now require 0 < a < 1
10 (1− ρ) < 10 2

ρ2 < b

for a, b in order to apply Lemma 4.2 directly in the later part of the proof.
First consider geodesics that hit D. In the remainder of this erratum, we will show

P̃
{
∃z ∈ D : 1 ≤ Z 0→ z < barN2/3c

}
≤ Cr−3, (4.9)

and this replaces the estimate (4.9) in the original paper.
Let σ 0→ x

1 denote the exit time of the optimal path among those 0 → x paths whose
first step is e1. Then we have

P̃
{
∃z ∈ D : 1 ≤ Z 0→ z < barN2/3c

}
≤ P̃

{
∃z ∈ D : σ0→ z

1 < barN2/3c
}

≤ P̃
{
σ0→wN
1 < barN2/3c

}
.

(4.10)

The second inequality comes from the uniqueness of maximizing paths: the maximizing
path to wN cannot go to the right of a maximizing path to D.

The task is to bound P̃
{
σ0→wN
1 < barN2/3c

}
. Define an environment with Pλ distri-

bution by multiplying the Pρ boundary weights by 1−ρ
1−λ on the e1-axis and by ρ

λ on the
e2-axis. We have now three coupled weight configurations with marginal distributions
P̃,Pρ and Pλ. Denote their joint distribution by P. Let G̃, Gρ, and Gλ denote the last-
passage values under these three environments. Additionally, let G̃0,wN

(I) denote the
last-passage value restricted to paths that exit through the set I.

To obtain
P̃
{
σ0→wN
1 < barN2/3c

}
≤ Cr−3

we show

P
{
G̃0,wN

(Je1, barN2/3 − 1ce1K) < G̃0,wN
(JbarN2/3ce1, bbrN2/3ce1K)

}
≥ 1− Cr−3. (4.11)

By Lemma 4.2 there exists an event A1 with P(A1) ≥ 1− e−Cr3 such that on this event
the geodesic of Gλ0,wN

exits inside JbarN2/3ce1, bbrN2/3ce1K. The following equality holds
on A1:

G̃0,wN
(JbarN2/3ce1, bbrN2/3ce1K) +

barN2/3−1c∑
k=1

(
1− ρ
1− λ

− 1

)
ωke1 = Gλ0,wN

.

Together with the fact that

G̃0,wN
(Je1, barN2/3 − 1ce1K) ≤ Gρ0,wN

,

the probability in (4.11) can be lower bounded as

(4.11) ≥ P
({

Gρ0,wN
< Gλ0,wN

−
barN2/3−1c∑

k=1

(
1− ρ
1− λ

− 1

)
ωke1

}
∩A1

)
. (4.12)

Up to a ρ-dependent constant

E

[ barN2/3−1c∑
k=1

(
1− ρ
1− λ

− 1

)
ωke1

]
∼ ar2N1/3, (4.13)

and recall that the parameter a can be fixed arbitrarily small. On the other hand, a
computation in eqn. (5.53) in the arXiv version of [1] with κ1N = −b 1

10 (1− ρ)rN
2/3c and

κ2N = 0 gives
E[Gλ0,wN

]− E[Gρ0,wN
] ≥ c1r2N1/3 (4.14)
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where c1 is another ρ-dependent constant. Hence for small a > 0 the event inside the
braces in (4.12) should occur with high probability. This we now demonstrate.

Let
A2 = {Gλ0,wN

> E[Gρ0,wN
] + 1

2c1r
2N1/3}.

We show that P(A2) ≥ 1 − Cr−3. First we estimate the variance Var[Gρ0,wN
]. The first

equality below is Theorem 5.6 in the arXiv version of [1]:

Var[Gρ0,wN
] = −

b(1− ρ)2Nc − b 1
10 (1− ρ)rN

2/3c
(1− ρ)2

+
bρ2Nc
ρ2

+
2

1− ρ
E

[ 0∨Z 0→wN∑
k=1

ωρke1

]

≤ CrN2/3 +
2

1− ρ
E

[ 0∨Z 0→ vN∑
k=1

ωρke1

]
≤ CrN2/3 + C ′N2/3. (4.15)

Shifting the endpoint from wN back to vN inside the expectations increases the expected
value because Z 0→wN ≤ Z 0→ vN almost surely. This gives the inequality between the
two expectations. The last expectation is of order N2/3 as shown through Lemma 5.8
and Proposition 5.9 in the arXiv version of [1]. Now we can bound:

P(Ac2) = P
(
Gλ0,wN

≤ E[Gρ0,wN
] +

c1
2
r2N1/3

)
(using (4.14)) ≤ P(Gλ0,wN

≤ E[Gλ0,wN
]− c1

2
r2N1/3)

≤ c2
r4N2/3

Var[Gλ0,wN
]

(Lemma 5.7, arXiv version of [1]) ≤ c2
r4N2/3

(Var[Gρ0,wN
]+c3rN

−1/3(1− ρ)2N)≤Cr−3.

For the last inequality we take r ≥ C ′ from the last line of (4.15). We have the further
lower bound

(4.12) ≥ P
({

Gρ0,wN
< E[Gρ0,wN

] +
c1
2
r2N1/3 −

barN2/3−1c∑
k=1

(
1− ρ
1− λ

− 1

)
ωke1

}
∩A1 ∩A2

)
.

(4.16)
We handle the i.i.d. sum above using large deviation of i.i.d. exponential random variables.
Let I(·) denote the Cramér rate function of the Exp(1− ρ) distribution. Then

P

{(
1− ρ
1− λ

− 1

) barN2/3−1c∑
k=1

ωke1 >
c1
4
r2N1/3

}
≤ e−arN

2/3I(c5/a) ≤ e−c6rN
2/3

where c5 is a certain constant, and for small enough a > 0, I(c5/a) ≥ c6/a. Thus the
event

A3 =

{(
1− ρ
1− λ

− 1

) barN2/3−1c∑
k=1

ωke1 ≤
c1
4
r2N1/3

}
satisfies P(A3) ≥ 1− e−c6rN2/3

. Continuing the lower bound,

(4.16) ≥ P
({
Gρ0,wN

< E[Gρ0,wN
] +

c1
4
r2N1/3

}
∩A1 ∩A2 ∩A3

)
. (4.17)

The variance bound from (4.15) gives

P
{
Gρ0,wN

− E[Gρ0,wN
] ≥ c1

4
r2N1/3

}
≤ c2
r4N2/3

Var[Gρ0,wN
] ≤ Cr−3.

All four events inside the probability in (4.17) have probability at least 1−Cr−3, and this
verifies (4.9).
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