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Abstract

In [24] a functional limit theorem was proved. It states that symmetric processes
associated with resistance metric measure spaces converge when the underlying
spaces converge with respect to the Gromov-Hausdorff-vague topology, and a certain
uniform recurrence condition is satisfied. Such a theorem finds particularly nice
applications if the resistance metric measure space is a metric measure tree. To
illustrate this, we state functional limit theorems in old and new examples of suitably
rescaled random walks in random environment on trees.

First, we take a critical Galton-Watson tree conditioned on its total progeny and a
non-lattice branching random walk on Rd indexed by it. Then, conditional on that, we
consider a biased random walk on the range of the preceding. Here, by non-lattice
we mean that distinct branches of the tree do not intersect once mapped in Rd. This
excludes the possibility that the random walk on the range may jump from one branch
to the other without returning to the most recent common ancestor. We prove, after

introducing the bias parameter βn−1/4

, for some β > 1, that the biased random walk
on the range of a large critical non-lattice branching random walk converges to a
Brownian motion in a random Gaussian potential on Aldous’ continuum random tree
(CRT).

Our second new result introduces the scaling limit of the edge-reinforced random
walk on a size-conditioned Galton-Watson tree with finite variance as a Brownian
motion in a random Gaussian potential on the CRT with a drift proportional to the
distance to the root.

Keywords: random walk in random environment; diffusion in random potential; biased random
walk; branching random walk; Galton-Watson tree; Sinai’s regime; self-reinforcement.

MSC2020 subject classifications: Primary 60K37; 60F17; 82D30, Secondary 60K35.

Submitted to EJP on February 28, 2020, final version accepted on August 19, 2021.

*NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, China. E-mail: ga73@nyu.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP687
https://ams.org/mathscinet/msc/msc2020.html
mailto:ga73@nyu.edu


Invariance principles for random walks in random environment on trees

1 Introduction

In recent years the scaling limits of tree-like spaces became well-understood. To
lay out a distinctive but non-exhaustive list of particular cases, we cite some previous
work on trees and graphs that possess Aldous’ Brownian continuum random tree (CRT)
as their scaling limit, see [5] and [45]. Its universality class is, in fact, even larger
e.g. critical multi-type Galton-Watson trees [49], random trees with prescribed degree
sequence satisfying certain conditions [16], random dissections [25], random graphs
from subcritical classes [51]. Also, it appears as a building block of the limiting space
of rescaled random quadrangulations, which is constructed as a complicated quotient
of the CRT, see [46]. Another goal of the investigation, which in the last few years has
been intense, is to provide a description for the scaling limits of stochastic processes
on tree-like spaces; see [21] and [23] for scaling limits of simple random walks on
critical Galton-Watson trees, conditioned on their size, with finite and infinite variance
respectively, [12, Section 7.5] and [13] for scaling limits of simple random walks on
Λ-coalescent measure trees and the two-dimensional uniform spanning tree respectively.
Last but not least, in [41] diffusions on dendrites are constructed by approximating
Dirichlet forms.

Despite the distinct characteristics of the processes mentioned, a shared feature
is that their convergence essentially emanates from the convergence of metrics and
measures that provide the natural scale functions and speed measures in this setting.
Indeed, it was shown that the Gromov-Hausdorff-vague convergence (for a definition,
see Section 3) of the metric measure trees and a certain uniform recurrence condition
which implies (but is not necessary) non-explosion of the process [24], or a condition
on the lengths of edges leaving compact sets [12] (neither condition implies the other,
see [24, Remark 1.3(a)]) yields the convergence of the associated stochastic processes.
For this very reason [12] and [24] can be seen as a generalization of Stone’s invariance
principle, who fifty years ago in [59] considered Markov processes which share the
characteristic that their state spaces are closed subsets of the real line and that their
random trajectories do not jump over points. Even more important, the result proved in
[24] holds for other spaces (not necessarily tree-like) equipped with a resistance metric
and a measure, allowing for a broader range of examples to be treated. Beyond the
framework of resistance metrics, it parallels the work of Suzuki in [60] who showed
that the pointed measured Gromov-Hausdorff convergence of a sequence of metric
measure spaces that satisfy a Riemannian curvature-dimension condition, implies the
weak convergence of the underlying Brownian motions.

We would like to draw to the attention of the reader the complementary work of [20],
where the stronger uniform volume growth (with volume doubling) condition enabled the
study of time-changes of stochastic processes according to irregular measures, with the
representative examples treated being the Liouville Brownian motion (in two dimensions,
it is the diffusion associated with planar Liouville quantum gravity and is conjectured
to be the scaling limit of simple random walks on random planar maps, see [15], [29]
and [35]), the Bouchaud trap model, and the random conductance model on a variety
of self-similar trees and fractals. For the latter two models, the limiting process on the
respective space is a FIN diffusion [34], which is connected with the localization and
aging of physical spin systems, see [14] and [61].

Going a step further, it would be desirable to ask whether it is possible to employ this
framework in order to study scaling limits of random walks in random environment on
tree-like spaces (for a definition, see Section 4). The reversibility of this model offers
an alternative description of it as an electrical network with conductances that can be
described explicitly in terms of the potential of the random walk in random environment
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(see (4.2)). This observation allows for random walks in random environment on tree-like
spaces to be thought of as variable speed random walks on those spaces with the shortest
path metric replaced by a distorted metric (see (4.3)), which is a resistance metric solely
expressed in terms of the potential of the random walk in random environment, and
endowed with the invariant measure specified in (4.5), which is a distortion of the
uniform probability measure on the vertices of the tree.

In this case, Gromov-Hausdorff-vague convergence of the distorted metric measure
trees, equipped with the potential of the random walk in random environment as a spatial
element, can be viewed as a generalized metric measure version of Sinaı̆’s regime in
dimension one, that is when the potential converges to a two-sided Brownian motion.
For a definition, see [62, Assumption 2.5.1]. Having this in mind, as an application of
the main contributions in [12] and [24], the convergence of the distorted metrics and
measures leads to the convergence of the the random walks in random environment.
Here, we should stress that in the various examples we consider throughout the paper,
the limiting diffusion is a Brownian motion on a locally compact real tree, which is
on natural scale with respect to the resistance metric. Typically, keeping up with the
terminology used to describe continuum analogues of one-dimensional random walks
in random environment, it can be seen as a Brownian motion in random potential on a
locally compact real tree.

In the one-dimensional model (for a definition, see Section 6.1), it is well-known that
due to the large traps that arise, the random walk in random environment in Sinaı̆’s
regime localizes at a rate (log n)2 ((6.3) is due to [57], for sharp pathwise localization
results, see [36]), and therefore there is no hope in finding a Donsker’s theorem in
random environment without providing a discrete scheme that changes the random
environment appropriately at every step (this is not a particular feature of random
environment, e.g. rescaling random walk with drift to Brownian motion with drift
also requires changing the drift as the parameter n varies). This was understood by
Seignourel [55], who proved such a scheme for Sinaı̆’s random walk, and verified a
conjecture on the scaling limit of a random walk with infinitely many barriers dating
back to Carmona [19]. Our approach is advantageous as it renders clear how the
“flattening” of the environment that was introduced in the first place in [55], forces the
potential to converge to a two-sided Brownian motion, and consequently the distorted
metric and measure to converge to the scale function and the speed measure of the
Brox diffusion [17] (see (6.4)). Also, we are able to considerably shorten Seignourel’s
proof but more importantly to remove the technical assumption of uniform ellipticity (see
(6.2)) and the assumption on the independent and identically distributed (i.i.d.) random
environment as well.

Next, we consider biased random walk on branching random walk associated with
a marked tree, that is a rooted ordered finite tree in which every edge is marked by a
real value (it is equivalent to have values assigned to the vertices instead). We associate
with each vertex the trajectory of a walk defined by summing the values of all the edges
contained in the unique path from the root to that particular vertex (it is obvious that the
walk is killed after as many steps as the height of the vertex evaluated at), see (6.16).
Choosing the skeleton and the values of the marked tree at random, the multiset of the
random trajectories of the killed walk is called a branching random walk.

We are interested in biased random walk on branching random walk φn conditioned
to have total population size n, where the underlying tree is a critical Galton-Watson tree
Tn with exponential tails for the offspring distribution, and each edge gets assigned, in
an i.i.d. fashion, a real-valued vector which is distributed according to a random variable
Y which has centred, continuous distribution with fourth order polynomial tail decay. To
contrast this case with the case in which the values have the step distribution of a simple
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random walk in Zd, we usually refer to the former as non-lattice branching random
walk and to the latter as lattice branching random walk. When viewed as an embedded
subgraph of Rd, the non-lattice branching random walk is essentially a self-avoiding
path, or in other words the multiset of trajectories of φn is a tree, whereas the lattice
branching random walk regarded as a subgraph of Zd contains loops, and therefore is
not necessarily a self-avoiding path.

The bias, say β > 1, is chosen in such a way that the walk has a tendency to move
towards a certain direction (see Section 6.3 and the details that lie therein). We prove
that a weakly biased random walk on the aforementioned model converges to a Brownian
motion in a random Gaussian potential on the CRT, which is a Brownian motion on the
CRT endowed with the resistance metric (6.23) and a finite measure (see (6.24)). We
refer to this regime as the weakly biased regime on account of the “flattening” that the
bias has to undergo. More formally, we state our result in the theorem below. For a
definitive statement see Theorem 6.10. Let us define central objects such as the CRT,
the random Gaussian potential on the preceding (or the tree-indexed Gaussian process
as we will often refer to it) before we state the theorem.

Definition 1.1 (stick-breaking construction). Let (C1, C2, ...) be the times of an inhomo-
geneous Poisson point process on R+ with rate t, i.e.

P (C1 > u) = e−
∫ u
0
tdt = e−u

2/2.

Conditionally on C1, let R1 be the line-segment [0, C1) of length C1. Proceeding induc-
tively, for each i ≥ 1, and conditionally on Ci, obtain Ri+1 from Ri by attaching the
line-segment [Ci, Ci+1) of length Ci+1−Ci to a uniform point of Ri sampled with respect
to the normalized Lebesgue measure on the line-segments. The metric space closure of
the union of all these line-segments built from the whole R+ is the Brownian CRT. Write
dT for its distance.

The CRT was initially defined by Aldous [4] with this formalism, but in Section 2 we
introduce the formalism of compact real trees coded by functions of which the CRT is the
canonical random example. See Definition 2.4, which corresponds to Corollary 22 in [5].

Definition 1.2 (Gaussian Free Field (GFF) on the CRT). Let T be the CRT, a real tree
coded by a normalized Brownian excursion, with root ρ and canonical metric dT given
by (2.1). We consider the Rd-valued Gaussian process (φ(σ))σ∈T whose distribution is
characterized by

Eφ(σ) = 0

Cov(φ(σ), φ(σ′)) = dT (ρ, σ ∧ σ′)I,

where I denotes the d-dimensional identity matrix and σ ∧ σ′ denotes the most recent
common ancestor of σ and σ′.

We will refer to the GFF on the CRT as the tree-indexed Gaussian process or the
random Gaussian potential for reasons that will become apparent in the remainder of
this article.

Next, we describe our first model in two steps. The first ingredient is to consider a
critical Galton-Watson branching process with offspring law p(·), which satisfies:

• p(·) is not supported on a sub-lattice of Z,

•
∑∞
k=0 p(k) = 1,

•
∑∞
k=0 kp(k) = 1 (excluding the case when p(1) = 1),

•
∑∞
k=0 k

2p(k) ∈ (0,∞),
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•
∑∞
k=0 e

λkp(k) <∞, for some λ > 0.

The second ingredient is to regard a branching random walk (BRW) as the range of
an embedding of the family tree T resulting from the critical Galton-Watson branching
process with offspring law p(·). To see this, label edges (e)e∈E(T ) with i.i.d. random
variables (y(e))e∈E(T ) distributed as a mean 0 continuous random variable Y on Rd.
Define a tree-indexed random walk φ : V (T ) → Rd by assigning the spatial location
φ(ρ) := 0 to the root ρ of T , and by setting:

φ(v) :=
∑

e∈Eρ,v

y(e), v ∈ V (T ) \ {ρ},

where Eρ,v denotes the subset of E(T ) containing the edges in the shortest path from
ρ to v in T . This rule assigns a spatial location φ(v) to the (non-root) particle v. If Dk

denotes the collection of vertices that belong to the k-th generation of the family tree T ,
observe that (φ(v))v∈Dk are not independent. The pair (T, φ) is usually called a random
spatial tree under a law that we will denote by P. We will also use the term critical BRW
to refer to this object. Finally, (T, φ) can be obtained as a subgraph of Rd, letting G be
the graph with vertex set given by

V (G) := {x ∈ Rd : x = φ(u) with u ∈ V (T )}

and edge set

E(G) := {{x1, x2} ∈ E(Rd) : xi = φ(ui) with {u1, u2} ∈ E(T )}.

Obviously, since the increments (y(e))e∈E(T ) of the spatial component φ are i.i.d. random
variables distributed as a mean 0 continuous random variable Y , the range G is a tree. In
this article, we will be interested in large critical BRWs, where the family tree is drawn
from Pn(·) := P(·||T | = n), which is asymptotically well-defined under the assumption
that p(·) is not supported on a sub-lattice of Z. We denote the random spatial tree by
(Tn, φn) and the corresponding embedded subtree by Gn.

Now, we are able to present our model of the biased random walk. Given a config-
uration Gn, we consider the reversible Markov chain Xn on Gn with law PGn , whose
transition probabilities PGn(x, y) for x, y ∈ Gn are defined by

• X0 = 0, PGn -a.s.,

• PGn(x, y) =
c({x, y})∑
z∼x c({x, z})

,

where z ∼ x means that z and x are adjacent in Gn. In particular, for a fixed bias
parameter β > 1, we set

c({x, y}) =

{
βmax{φ(1)

n (u),φ(1)
n (v)}, if x ∼ y and x = φn(u), y = φn(v),

0, otherwise,
(1.1)

where φ(1)
n (u) denotes the first coordinate of φn(u) in Rd. The random variable c({x, y})

is called the conductance of {x, y} ∈ E(Gn) in the configuration Gn, a term which is
indicative of the connection between reversible Markov chains and electrical networks,
for an outline of which the reader may refer to [47]. The invariant measure with respect
to which Xn is reversible is given by

c({x}) :=
∑
z∼x

c({x, z}). (1.2)
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Theorem 1.3. Consider the weakly biased random walk (Xn
m)m≥1 on Tn with bias

parameter βn
−1/4

, for some β > 1. Then,(
n−1/4φn(Xn

n3/2t)
)
t≥0

(d)−−→
(

Σφφ(Xtσ−1
T

)
)
t≥0

,

where σT > 0 is a constant and Σφ is a positive definite d× d-matrix given below (6.19),
(Xt)t≥0 is a Brownian motion in a random Gaussian potential φ(1) on the CRT, φ(1) is
the first coordinate of a tree-indexed Gaussian process (φ(σ))σ∈T . The convergence is
annealed and occurs in D(R+,R

d).

At this point it would be also helpful to give heuristics on our space-time scaling
as well as the scaling of the parameters involved. Given Tn, whenever v, v′ ∈ Tn are
connected by an edge (in symbol v ∼ v′), put cn({v, v′}) := (c({v, v′}))n−1/4

, and

r̃n(v, v′) := n−1/2cn({v, v′})−1 = n−1/2β−n
−1/4 max{φ(1)

n (v),φ(1)
n (v′)},

which is the inverse of the conductance (rescaled by n−1/2) specified in (1.1) when the
bias parameter is βn

−1/4

instead. Moreover, let

ν̃n({v}) :=

∑
v∼v′ cn({v, v′})

2n
=

∑
v∼v′ β

n−1/4 max{φ(1)
n (v),φ(1)

n (v′)}

2n
,

which denotes the respective measure (rescaled by (2n)−1) specified in (1.2).
Given the random spatial tree (Tn, φn) and the corresponding embedded subtree Gn,

the continuous-time nearest neighbor random walk on (Tn, r̃n) with exponential jump
rates

qn(v) :=
1

2ν̃n({v})
∑
v∼v′

r̃n(v, v′)−1

=
1

2
· 2n∑

v∼v′ β
n−1/4 max{φ(1)

n (v),φ
(1)
n (v′)}

· n1/2
∑
v∼v′

βn
−1/4 max{φ(1)

n (v),φ(1)
n (v′)} = n3/2,

when continuously embedded into Rd by φ̃n := n−1/4φn, and with the edge lengths of
Gn rescaled by n−1/4, is the embedded weakly biased random walk (φ̃n(Xn

n3/2t
))t≥0 with

jumps rescaled by n−1/4 and time speeded up by a factor n3/2.
In Theorem 6.9, we will show that ((Tn, r̃n, ν̃n), φ̃n) converges Gromov-Hausdorff-

vaguely in distribution to ((T , σT rφ(1) , νφ(1)),Σφφ), where (T , σT rφ(1)) is the CRT endowed
with a distorted metric (see (6.23)), νφ(1) is the distorted measure specified in (6.24),
and φ is the tree-indexed Gaussian process from Definition 1.2. We will then conclude
from Theorem 5.4 that the embedded weakly biased random walk with jumps rescaled
by n−1/4 and time speeded up by a factor of n3/2 converges to the νφ(1) -Brownian motion
on (T , rφ(1)), when continuously embedded into Rd by φ.

We believe that our work offers a promising candidate for the scaling limit of a biased
random walk on the incipient infinite cluster (IIC) of critical Bernoulli-bond percolation
on Zd in high dimensions, that is when d > 6. Our declaration is justified in the sense
that the critical behavior of branching random walk is closely related to the critical
behavior of percolation in high dimensions, and therefore it is expected that both models
satisfy the same scaling properties (see [37] for an up-to-date survey). Attempting to
give a plausible answer to [10, Question 5.3] posed by Ben Arous and Fribergh, the
right scaling for a biased random walk on the IIC of Zd is that of a random walk with
a weak cartesian bias to a single direction, identical to the one introduced in Theorem
1.3, with the limit being a Brownian motion in a random Gaussian potential that maps an
infinite version of the CRT to the Euclidean space, or alternatively, a Brownian motion
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in a random Gaussian potential on the integrated super-Brownian excursion (ISE) (the
Brownian motion on the latter object was constructed for d ≥ 8 by Croydon [22]). Just as
critical branching random walk is a mean-field model for percolation, critical branching
random walk conditioned on survival is a mean-field model for the high-dimensional IIC,
which explains why an unbounded version of the Brownian CRT is expected to appear in
the limit. As for establishing the corresponding limit for the weakly biased random walk
on critical lattice branching random walk, [9] outlines a program of four conditions to be
checked in order to provide a flexible scaling theorem that will be generally applicable or
adaptable to several models. In this direction, it would be a meaningful project to check,
as it was done for the simple random walk on critical lattice branching random walk in
[8], whether those conditions are satisfied, utilising the connection between distorted
resistance metrics and random walks in random environments that the present article
suggests.

Finally, we demonstrate an appealing application to non-Markovian settings. The
edge-reinforced random walk (ERRW) was introduced by Coppersmith and Diaconis in
1986 (for references on the ERRW, see also [7], [27], [28], [39]) as a discrete process
on the vertices of undirected graphs, starting from a fixed vertex. Given initial weights
to all edges, whenever an edge is crossed the weight of that edge increases by one.
The transition, through edges leading out of a particular vertex chosen, has probability
proportional to their various weights. In the context of the ERRW on trees [52] (for a
definition, see Section 6.4), due to the absence of cycles, the transitions of the process
are decided by independent Pólya urns, one per vertex, where edges leading out play the
role of colours and initial weights that of the number of balls of each colour. The ERRW
on other undirected graphs by Sabot and Tarrès [53] is a random walk in a correlated,
but explicit, random environment.

It was not until recently that a scaling limit of the ERRW on 2−nZ appeared in [48].
The scaling limit introduced is a one-dimensional diffusion in a random potential that
contains a scale-changed two-sided Brownian with a drift. We introduce the scaling limit
of the ERRW on a critical Galton-Watson tree Tn with finite variance, conditioned to have
total population size n, as a Brownian motion in a random Gaussian potential with a drift
on the CRT. More formally, we state our last result below. For a definitive statement see
Theorem 6.15.

Theorem 1.4. Consider the ERRW (Znk )k≥1 on Tn, started at its root ρn, with initial
weights given by αn0 (e) = 2−1n1/2, e ∈ E(Tn). Then,(

n−1/2Znn3/2t

)
t∈[0,1]

(d)−−→ (Ztσ−1
T

)t∈[0,1],

where σT > 0 is a constant, (Zt)t≥0 is a Brownian motion in a random potential 2(
√

2φ+

dT (ρ, ·)) on the CRT, started at ρ.

The article is organised as follows. In Section 2, we give the necessary definitions
of metric measure trees, such as real trees coded by functions. In Section 3, we
present the Gromov-Hausdorff-vague topology between metric measure trees that are
embedded nicely into a common metric space. In Section 4, we introduce the random
walk in random environment on locally finite ordered trees as a resistor network with
conductances and stationary reversible measure given in terms of its potential, while
Section 5 ties together the preliminary work done in the previous sections to yield the
convergence of the random walks in random environments under Assumption 5.3, as
a corollary of the main contribution of [24]. Finally, in Section 6, along with extending
Seignourel’s result in [55] to hold for a wider class of environments, we prove Theorem
1.3 and Theorem 1.4.
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2 Preliminaries

The definitions of boundedly finite pointed metric measure trees appeared in the
course of extending results that hold for real-valued Markov processes to Markov
processes that take values in tree-like spaces. We refer to [12] for the preliminary work
we do here.

A pointed metric space (T, r, ρ) with a distinguished point ρ is called Heine-Borel if
(T, r) has the Heine-Borel property, i.e. each closed bounded set in T is compact. Note
that this implies that (T, r) is complete, separable and locally compact.

Definition 2.1 (rooted metric measure trees). A rooted metric tree is a pointed Heine-
Borel space (T, r, ρ) if it satisfies the four point condition,

r(u1, u2) + r(u3, u4) ≤ max{r(u1, u3) + r(u2, u4), r(u1, u4) + r(u2, u3)},

for every u1, u2, u3, u4 ∈ T , and if for every u1, u2, u3 ∈ T there exists a unique point
u := u(u1, u2, u3) ∈ T , such that

r(ui, uj) = r(ui, u) + r(u, uj),

for every i, j ∈ {1, 2, 3} with i 6= j. The point u is usually called the branch point, and the
distinguished point ρ is referred to as the root.

A rooted metric measure tree (T, r, ν, ρ) is a rooted metric tree (T, r, ρ) equipped with
a measure ν that has full support on (T,B(T )), where B(T ) denotes the Borel σ-algebra
of (T, r), and charges every bounded set with finite measure.

Remark 2.2. The property of containing the branch points in the previous definition
was added to exclude non-tree graphs such as the triangle graph, which is a planar
undirected graph with 3 vertices and 3 edges in the form of a triangle. It has a vertex
set which satisfies the four point condition with respect to the graph-distance while the
property of containing the branch points fails.

In a rooted metric tree (T, r, ρ), for x, y ∈ T , we define the path intervals

[[x, y]] := {z ∈ T : r(x, y) = r(x, z) + r(z, y)},

[x, y]] := [[x, y]] \ {x}, [x, y] := [[x, y]] \ {x, y}.

If x 6= y and [[x, y]] = {x, y}, we say that x and y are connected by an edge in T and use
the notation x ∼ y. Due to separability, a rooted metric tree can only have countably
many edges. Denote the skeleton of (T, r, ρ) as

Sk(T ) := ∪u∈T [ρ, u] ∪ Is(T ),

where Is(T ) is the set of isolated points of (T, r, ρ), excluding the root. For any separable
metric space that satisfies the four point condition, the notion of a length measure was
introduced in [12]. In short, using that B(T )|Sk(T ) is the smallest σ-algebra that contains
all the open path intervals with endpoints in a countable dense subset of T , the validity
of the following statement, which we turn into a definition, is justified.

Definition 2.3 (length measure). There exists a unique σ-finite measure λ on the rooted
metric tree (T, r, ρ), such that λ(T \ Sk(T )) = 0 and for all u ∈ T ,

λ([ρ, u]]) = r(ρ, u).

Such a measure is called the length measure of (T, r, ρ).
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If (T, r) is a discrete tree, i.e. all the points in T are isolated, the length measure
shifts the length of an edge to the endpoint that is further away from the root, and
therefore it does depend on the root, i.e. λ({u}) = λ([ρ, u]]) = r(ρ, u), for all u ∈ T .

The first definitions of random real trees date back to Aldous [4]. Informally, real
trees are metric trees that have a unique “unit speed” path between any two points,
whereas the range of any injective path connecting two points coincides with the image
of the “unique unit” speed path. Thus, the last requirement expresses the notion of
“tree-ness”. We refer to [45] for a general presentation of the topic.

Definition 2.4 (real trees). A metric space (T, r) is a real tree if the two following
properties hold for every x, y ∈ T .

(i) It has a unique geodesic. There exists a unique isometry fx,y : [0, r(x, y)] → T such
that fx,y(0) = x and fx,y(r(x, y)) = y.

(ii) It does not contain cycles. If q : [0, 1] → T is continuous and injective such that
q(0) = x and q(1) = y, then

q([0, 1]) = fx,y([0, r(x, y)]).

Clearly (ii) is not a consequence of (i) since axiom (i) is satisfied by many spaces
such as Rn with the standard Euclidean distance, whereas axiom (ii) is only satisfied by
Rn when n = 1. A real tree has no edges. Therefore, if (T, r) is a real tree, then

Sk(T ) = ∪u,v∈T [u, v].

The unique length measure that extends the Lebesgue measure on the real line coincides
with the trace onto Sk(T ) of the one-dimensional Hausdorff measure on T . To describe a
method to generate random real trees, which will play a crucial role to our forthcoming
applications, we turn our attention first to a deterministic setting. Let g : [0,∞)→ [0,∞)

be a continuous function with compact support, such that g(0) = 0. We let

supp(g) := {t ≥ 0 : g(t) > 0},

denote the support of g. To avoid trivial cases, we assume that g is not identical to zero.
For every s, t ≥ 0, let mg(s, t) := infr∈[s∧t,s∨t] g(r) and dg : [0,∞)× [0,∞) → R+ defined
by

dg(s, t) := g(s) + g(t)− 2mg(s, t). (2.1)

It is obvious that dg is symmetric and satisfies the triangle inequality. One can introduce
the equivalence relation s ∼ t if and only if dg(s, t) = 0, or equivalently g(s) = g(t) =

mg(s, t). Considering the quotient space

(Tg, dg) := ([0,∞)/∼, dg),

which we root at ρ, the equivalence class of 0, it can be proven to be a rooted compact
real tree (see [45, Theorem 2.1]). We use the term real tree coded by g to describe
Tg. Denote by pg : [0,∞) → Tg the canonical projection, which is extended by setting
pg(u) = ρ, for every u ≥ supp(g), so that the distance from pg(s) to pg(t) in Tg is

(g(s)−mg(s, t)) + (g(t)−mg(s, t)) = dg(s, t), s, t ∈ [0, supp(g)],

as illustrated by Figure 1. For every A ∈ B(Tg), we let

µTg (A) := `({t ∈ [0, 1] : pe(t) ∈ A}) (2.2)

denote the image measure on Tg of the Lebesgue measure ` on [0, 1] by the canonical
projection pg.
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3 Topological considerations

In a number of settings, for instance, in studying the weakly biased random walk
on the range of critical non-lattice branching random walk in Section 6.3, it is relevant
to consider the embedding into Euclidean space. Also, many self-similar fractals are
naturally defined as subsets of Rd or some other metric space, and it might sometimes
be more desirable to state the convergence of graphs to such fractals in that space,
instead of an abstract metric space isometric with respect to their associated metrics.
To take this on account, one can adapt the Gromov-Hausdorff-vague topology to include
the case in which the spaces of interest are embedded into a common complete and
separable metric space (E, dE) when the relevant embeddings are continuous (but not
necessarily isometric) with respect to the metric that the spaces are endowed with.

Definition 3.1 (spatial rooted metric measure trees). A d-dimensional spatial rooted
metric measure tree is a pair (T , φ), where T = (T, r, ν, ρ) is a rooted metric measure
tree endowed with a continuous mapping φ : T → E.

Note that the terminology spatial is borrowed from [31, Section 6]. It is worth men-
tioning that “spatial” convergence of metric measure trees is also known as convergence
of marked metric measure spaces introduced in [26]. In fact we are looking at the
particular case where the mark distribution comes from a mark function. A criterion for
the existence of the latter is the subject of [43].

To define an equivalence relation on the space of spatial rooted metric measure trees
we say that (T , φ) := ((T, r, ν, ρ), φ) ∼ (T ′, φ′) := ((T ′, r′, ν′, ρ′), φ′) if and only if there is
a root-preserving isometry f between (T, r, ρ) and (T ′, r′, ρ′) such that ν ◦ f−1 = ν′ and
φ′ ◦ f = φ, which is a shorthand of φ′(f(u)) = φ(u), for every u ∈ T . Denote by Tsp the
space of equivalence classes of spatial rooted metric measure trees.

Write Tcsp for the subspace of Tsp that contains all the spatial rooted metric measure
trees ((T, r, ν, ρ), φ) for which (T, r) is compact. For two elements of Tcsp, say (T , φ) and
(T ′, φ′) as before, we define their distance on Tcsp to be

dTcsp
((T , φ), (T ′, φ′))

:= inf
Z,ψ,ψ′,C:
(ρ,ρ′)∈C

{
dPZ (ν ◦ ψ−1, ν′ ◦ ψ′−1) + sup

(z,z′)∈C
(dZ(ψ(z), ψ′(z′)) + dE(φ(z), φ′(z′)))

}
,

where the infimum is taken over all metric spaces (Z, dZ), isometric embeddings ψ :

(T, r) → (Z, dZ), ψ′ : (T ′, r′) → (Z, dZ) and correspondences C between T and T ′. A
correspondence C between T and T ′ is a subset of the product space T × T ′ such that
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for every z ∈ T there exists at least a z′ ∈ T ′ such that (z, z′) ∈ C and vice versa for
every z′ ∈ T ′ there is at least one z ∈ T such that (z, z′) ∈ C. Moreover, dE denotes the
distance on E and dPZ is the Prokhorov distance between Borel probability measures on
Z.

Before continuing, let us decipher the expression for dTcsp
. The first part of the

second term is one of the formulations of the standard Gromov-Hausdorff distance using
correspondences as a way to define a distance between two abstract metric spaces
that are not necessarily subsets of a common metric space, see [18, Theorem 7.3.25].
The standard Gromov-Hausdorff distance is the maximal distance that satisfies the two
requirements that follow. First, the distance between subspaces in a common metric
space is not bigger than the Hausdorff distance between them. Second, the distance
between isometric metric spaces is zero. Incorporating the same ideas, the first term
was added in [1, Section 2.2, (6)] as a way to define a distance between two abstract
metric measure spaces that are not necessarily subsets of a common metric measure
space. Finally, the second part of the second term was introduced in [31, Section 6] as a
means to provide a distance between trees embedded in space by a continuous function.
It is possisble to check that (Tcsp, dTcsp

) is a separable metric space [6, Proposition 2.1] (cf.
[13, Proposition 3.1]).

For two fixed metric spaces (T, r, ν, ρ) and (T ′, r′, ν′, ρ) and a subset C ⊆ T × T ′, the
distortion of C is defined as

dis(C) := sup{|r(x, y)− r′(x′, y′)| : (x, x′), (y, y′) ∈ C}.

Given a Borel probability measure π on T ×T ′, with marginals π1 and π2, the discrepancy
of π with respect to ν and ν′ is defined as

D(π; ν, ν′) := ||π1 − ν||TV + ||π2 − ν′||TV,

where || · ||TV denotes the total variation distance between signed measures. If ν and ν′

are probability distributions, a Borel probability measure on T × T ′ is a coupling of ν
and ν′ in the standard sense, if D(π; ν, ν′) = 0. The following lemma gives an alternative
description of dTcsp

.

Lemma 3.2 ([3]). Let (T , φ), (T ′, φ′) ∈ Tcsp. Then, the metric dTcsp
between (T , φ) and

(T ′, φ′) is also given by

dTcsp
((T , φ), (T ′, φ′)) := inf

π,C:
(ρ,ρ′)∈C

{
1

2
dis(C) +D(π; ν, ν′) + π(Cc) + sup

(z,z′)∈C
dE(φ(z), φ′(z′))

}
,

where the infimum is taken over all correspondences and Borel probability measures on
T × T ′.

Given a metric space (Z, dZ) and isometric embeddings ψ : (T, r) → (Z, dZ), ψ′ :

(T ′, r′)→ (Z, dZ), the standard Prokhorov distance between ν ◦ ψ−1 and ν′ ◦ ψ′−1 on the
common metric space (Z, dZ) appeared in the definition of dTcsp

. Another distance, which
fits to the setting where ν and ν′ are not supported in the same metric space, but still
generates the same topology, is given by

inf{ε > 0 :D(π; ν ◦ ψ−1, ν′ ◦ ψ′−1) < ε,

π({(z, z′) : dZ(z, z′) ≥ ε}) < ε, for some Borel probability measure π on Z}

To extend this, the condition π({(z, z′) : dZ(z, z′) ≥ ε}) < ε is replaced by π(Cc) < ε, an
analogous condition on the set of pairs lying outside of the correspondence C, measured
by π.
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Remark 3.3. In Lemma 3.2, if the infimum is taken over all correspondences between T
and T ′, and couplings π on T × T ′, observe that the formulation of dTcsp

is simplified not
to include D(π; ν, ν′).

To extend dTcsp
to a metric to Tsp consider restrictions of (T , φ) = ((T, r, ν, ρ), φ) ∈ Tsp

to B̄(ρ,R) := {u ∈ T : r(ρ, u) ≤ R}, the closed of radius R centred at the root ρ, denoted
by

(T , φ)|R =
(
(B̄(ρ,R), r|B̄(ρ,R)×B̄(ρ,R), ν(· ∩ B̄(ρ,R)), ρ), φ|B̄(ρ,R)

)
.

By assumption
(
B̄(ρ,R), r|B̄(ρ,R)×B̄(ρ,R)

)
is compact, and therefore (T , φ)|R ∈ Tcsp. The

function defined on T2
sp by setting

dTsp ((T , φ), (T ′, φ′)) :=

∫ +∞

0

e−R
(
dTcsp

((T , φ)|R, (T ′, φ′)|R) ∧ 1
)
dR

is well-defined since the map R 7→ (T , φ)|R is càdlàg (right-continuous with left limits),
and moreover it can be checked that it is a metric on Tsp. For each n ∈ N ∪ {∞} let
(Tn, φn) := ((Tn, rn, νn, ρn), φn) ∈ Tsp. We say that (Tn, φn) → (T∞, φ∞) in the spatial
Gromov-Hausdorff-vague topology if and only if, for Lebesgue-almost-every R ≥ 0,

dTcsp
((Tn, φn)|R, (T∞, φ∞)|R)→ 0.

4 Random walk in random environment on plane trees

We will work with ordered trees (or plane trees), i.e. those with a distinguished
vertex (the root) and such that the children of a vertex (its neighbors which are further
away from the root) have a specified ordering, say left-to-right order by increasing label.
An ordered tree for which every vertex has a finite number of children is called locally
finite.

Let T be a locally finite ordered tree with a distinguished vertex ρ. Let each vertex
u have ξ(u) children. Note that ξ(u) < ∞, for every u ∈ T , since T was assumed to be
locally finite. For each u ∈ T , we denote its children by u1, ..., uξ(u) and its parent by
either u0 or←−u . For each u ∈ T , let

Nu :=

(ωuui)
ξ(u)
i=0 : ωuui > 0 ∀ 0 ≤ i ≤ ξ(u) and

ξ(u)∑
i=0

ωuui = 1

 ,

where ωuui : T → (0, 1) is a measurable function indexed by the directed edge connecting
u to its neighbor ui. Formally, Nu is the set of transition probability laws on oriented
edges starting at u. We equip Nu with the weak topology on probability measures, which
turns it into a Polish space. Let Ω :=

∏
u∈T Nu equipped with the product topology that

carries the Polish structure of Nu, and the corresponding Borel σ-algebra F , which is
the same as the σ-algebra generated by cylinder functions. For a probability measure P
on (Ω,F), a random environment ω is an element of Ω that has law P .

For each ω ∈ Ω, the random walk in the random environment (RWRE) ω is the time-
homogeneous Markov chain X = ((Xn)n≥0,P

u
ω, u ∈ T ) taking values on T with transition

probabilities, for each u ∈ T , given by

(Pω(Xn+1 = ui|Xn = u))
ξ(u)
i=0 = (ωuui)

ξ(u)
i=0 . (4.1)

Using the same terminology from the literature of RWRE, for u ∈ T , we refer to Puω as the
quenched law of X started from u. Then, the fraction ρ←−u u := ω←−u

←−←−u
/ω←−u u is well-defined

for every node of T except the root and any of its children. Suppose that the marginals
of ω are defined as the transition probabilities of a weighted random walk on T with
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positive conductances assigned on its (undirected) edge set E(T ). More specifically, for
each u ∈ T , let

(ωuui)
ξ(u)
i=0 =

(
c({u, ui})
c({u})

: 0 ≤ i ≤ ξ(u)

)
,

where c({u}) :=
∑
e∈E(T ):u∈e c(e). In this case, ρ←−u u = c({←−u ,

←−←−u })/c({←−u , u}).
To define the potential VT of the RWRE on T , we demand its increment between u

and←−u to be given by log ρ←−u u, or in other words

VT (u)− VT (ρ) :=
∑

v∈[ρ,u]]

log ρ←−v v,

which is well-defined, up to a constant, for every node of T except the root and its
children. It will be convenient to work with a slight modification of the trees under
consideration. We add a nex vertex which we call the base and stick it to the root by a
new edge with unit conductance, i.e. c({←−ρ , ρ}) := 1. This yields a planted tree T̄ . To
keep our notation simple, even if the statements are expressed in terms of the planted
tree T̄ , we still phrase them in terms of T . Setting VT (ρ) := 0 extends the definition of
the potential to the whole vertex set of T . Now, observing that the potential is given
pointwise at u ∈ T \ {ρ} by the telescopic sum

VT (u) =
∑

v∈[ρ,u]]

log ρ←−v v =
∑

v∈[ρ,u]]

[
log c({←−v ,

←−←−v })− log c({←−v , v})
]

= log c({←−u , u})−1,

we deduce that the exponential of the potential at u is equal to the reciprocal r({←−u , u}) :=

c({←−u , u})−1, which is called the resistance of the edge {←−u , u}. Therefore, we can now
define the potential as

VT (u) =

{
log r({←−u , u}), u ∈ T \ {ρ},
0, u = ρ.

(4.2)

The pair (T, r({e}) consisting of the finite undirected graph T , endowed with positive
resistances r({e}), that are associated to E(T ), is often called an electrical network. One
of the crucial facts for the RWRE on tree-like spaces is that, for fixed ω, the random walk
is a reversible Markov chain, and thus it was of no loss of generality to assume that the
marginals of ω are defined as transition probabilities of a weighted random walk on T
(see [47, Section 9.1]). The RWRE on T , for fixed ω, can be described as an electrical
network with resistances given by r({←−u , u}) = eVT (u), and weighted shortest path metric

r(u1, u2) :=
∑

u∈[u1,u2]]

r({←−u , u}) =
∑

u∈[u1,u2]]

eVT (u), u1, u2 ∈ T, (4.3)

with the convention of a sum taken over the empty set being equal to zero. Moreover,
one has that r is identical to the electrical resistance defined by means of the variational
problem

r(u1, u2)−1 = inf{E(f, f) : f : T → R, f(u1) = 0, f(u2) = 1}, u1, u2 ∈ T, (4.4)

involving the Dirichlet from on T given by

E(f, g) =
1

2

∑
x∼y

c({x, y})(f(x)− f(y))(g(x)− g(y)),

where c({x, y}) is the conductance between x and y in the electrical network described
above as assigning parent-children edge weights by c({←−u , u}) = e−VT (u) (see [41]). The

EJP 26 (2021), paper 115.
Page 13/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP687
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Invariance principles for random walks in random environment on trees

stationary measure of the RWRE on T , for fixed ω, is given by

ν({u}) := e−VT (u) +

ξ(u)∑
i=1

e−VT (ui), u ∈ T. (4.5)

The reversibility means that, for all u ∈ T and 0 ≤ i ≤ ξ(u), we have

ν({u})ωuui = c({u})c({u, ui})
c({u})

= c({u, ui})

= c({ui, u}) = c({ui})
c({ui, u})
c({ui})

= ν({ui})ωuiu.

It is worth mentioning that this discussion is precice under the quenched law, as a
random walk in independent random environment is not represented as a random walk
among random conductances under the annealed law.

5 Set-up and main assumption

If (T, r) is a metric tree, we denote by C(T ) the space of continuous functions f :

T → R and by C∞ the subspace of functions that are vanishing at infinity. A continuous
function is called locally absolutely continuous if for every ε > 0 and all subsets T ′ ⊆ T
with λ(T ′) <∞ (see Definition 2.3), there exists a δ ≡ δ(T ′, ε), such that if [[ui, vi]]

n
i=1 ⊆ T

is a disjoint collection with
∑n
i=1 r(ui, vi) < δ, then

∑n
i=1 |f(ui)− f(vi)| < ε. Denote the

subspace of locally absolutely continuous functions by A. Notice that in the case when
(T, r) is a discrete metric tree A is equal to the space of continuous functions.

Consider the Dirichlet form

E(f, g) :=
1

2

∫
dλ∇f · ∇g (5.1)

and its domain

D(E) := {f ∈ L2(ν) ∩ C∞ ∩ A : ∇f ∈ L2(λ)}, (5.2)

where the gradient ∇f , of f ∈ A is the function, which is unique up to λ-null sets, that
satisfies ∫ u2

u1

∇f(u)λ(du) = f(u2)− f(u1), ∀u1, u2 ∈ T. (5.3)

For its existence and uniqueness, see [11, Proposition 1.1]. The gradient, ∇f , of f ∈ A
depends on the choice of the root ρ, although, the Dirichlet form in (5.1) is independent
of that choice (see [11, Remark 1.3]).

Definition 5.1 (ν-symmetric Markov process). We call a Markov process X on (T,B(T ))

ν-symmetric if the transition function {Tt}t>0 of X is ν-symmetric on (T,B(T )) in the
following sense: ∫

T

f(u)(Ttg)(u)ν(du) =

∫
T

(Ttf)(u)g(u)ν(du)

for any non-negative measurable functions f and g.

Theorem 5.2 (ν-speed motion [11], [12]). There exists a unique ν-symmetric strong
Markov process ((Xt)t≥0,P

u, u ∈ T ) associated with the regular Dirichlet form (E , D̄(E))

on the metric measure tree (T, r, ν), which is called the ν-speed motion on (T, r).

If (T, r) is a compact real tree, then the ν-speed motion on (T, r) coincides with
the ν-Brownian motion on T [11], i.e. a ν-symmetric strong Markov process with the
following properties.
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(i) Continuous sample paths.

(ii) Reversible with respect to the invariant measure ν.

(iii) For every u1, u2 ∈ T with u1 6= u2,

Pu3(τu1
< τu2

) =
r(u(u1, u2, u3), u2)

r(u1, u2)
, u3 ∈ T,

where τu := inf{t > 0 : Xt = u} is the hitting time of u ∈ T , and u(u1, u2, u3) is the
unique branch point of u1, u2 and u3 in T .

(iv) For u1, u2 ∈ T , the mean occupation measure for the process started at u1 and
killed upon hitting u2 has density 2r(u(u1, u2, u3), u2)dν(u3) with respect to ν, so
that

Eu1

(∫ τu2

0

g(Xs)ds

)
= 2

∫
T

g(u3)r(u(u1, u2, u3), u2)dν(u3),

for every g ∈ C(T ).

If (T, r) is a discrete metric measure tree, then the ν-speed motion on (T, r) is the
continuous-time nearest neighbor random walk on (T, r) with the following jump rates
(for a reference for these jump rates, see [12, Lemma 2.11]).

q(x, y)−1 := 2 · ν({x}) · r(x, y), x ∼ y.

Equivalently, the ν-speed motion on (T, r) is the continuous-time nearest neighbor
random walk on (T, r) with associated Dirichlet form (E , D̄(E)) with

E(f, g) = (−Lf, g)ν , (5.4)

where

Lf =
1

2ν({x})
∑
y∼x

1

r(x, y)
(f(y)− f(x))

is the generator of the process, acting on continuous functions f ∈ C(T ) that depend
only on finitely many points of T .

Let (T, r, ν) be a compact real metric tree. To formalize the notion of the potential of
diffusions on (T, r), which are not necessarily on natural scale with respect to r, assume
that we are further given a measure µ which is absolutely continuous with respect to the
length measure λ and its density is given by

dµ

dλ
(x) = eφ(x), (5.5)

where φ : T → R is a continuous function. For every u1, u2 ∈ T , let rφ : T × T → R+

defined by

rφ(u1, u2) :=

∫
[[u1,u2]]

eφ(u)λ(du). (5.6)

To justify the term potential on T given to φ, cf. (4.3). It is easy to check that rφ defines
a metric on T . In addition, r and rφ are topologically equivalent and the metric space
(T, rφ) is also a compact real tree. Moreover, (E , D̄(E)) (see (5.1) and (5.2) with the
difference that in (5.1) we integrate with respect to µ instead of λ) is a regular Dirichlet
form. In this case we refer to the corresponding diffusion as the (ν, µ)-Brownian motion.
The ν-Brownian motion on (T, rφ) is equal in law with (ν, µ)-Brownian motion on (T, r)

[11, Example 8.3]. In fact, for the previous statement to hold, φ needs not to be assumed
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continuous insofar as it has enough regularity for the integral in (5.6) to make sense and
(T, rφ) to be a locally compact real tree.

Now, we are ready to state our main assumption that corresponds to a metric measure
version of Sinaı̆’s model, that is when the potential converges to a Brownian motion.
The natural tree-distance and the counting measure on the tree are replaced by the
distorted resistance metric and the invariant measure of the RWRE on the tree, which
are explicitly associated with the potential on the tree.

Assumption 5.3. For a sequence (Tn, Vn)n≥1 ∈ Tsp, where Tn := (Tn, rn, νn, ρn), n ≥ 1 is
a (locally finite) rooted plane metric measure tree with metric rn as in (4.3), boundedly
finite measure νn as in (4.5), and Vn : Tn → R is the potential of the RWRE as defined in
Section 4, we suppose that

(Tn, Vn)
(d)−−→ (T , φ) (5.7)

in the spatial Gromov-Hausdorff-vague topology, where T := (T, rφ, νφ, ρ) is a rooted real
measure tree with metric rφ as in (5.6), boundedly finite measure νφ, and φ : T → R is
a continuous potential on T as defined in (5.5). Moreover, suppose that the following
uniform recurrence condition of the resistance from ρn to the complement of the open
ball Bn(ρn, R) is satisfied

lim
R→∞

lim inf
n→∞

rn(ρn, Bn(ρn, R)c) =∞. (5.8)

If (Tn, Vn)n≥1 ∈ Tsp are random elements built on a probability space P, suppose instead
of (5.8) that, for Lebesgue a.e. R ≥ 0,

lim
R→∞

lim inf
n→∞

P (rn(ρn, Bn(ρn, R)c) ≥ λ) = 1, ∀λ ≥ 0. (5.9)

With their role as the scale and the speed measure, rn and νn will dictate the scaling
of the RWRE. If Assumption 5.3 holds, as a corollary of [24, Theorem 1.2], it is possible
to isometrically embed (Tn, rn), n ≥ 1 and (T, rφ) into a common metric space (Z, dZ) in
such a way that the νn-speed motion on (Tn, rn) converges weakly on D(R+, Z) to the
νφ-Brownian motion on (T, rφ). Note that, rn is a resistance metric associated with the
Dirichlet form (5.4) and rφ is a resistance metric associated with the Dirichlet form (5.1),
when integrating with respect to µ instead of λ. For further background on Dirichlet
forms and their associated resistance metrics, the reader is referred to [42].

Theorem 5.4 (cf. Croydon [24]). Let (Xn
t )t≥0 be the random walk associated with a

random environment ω(n), n ≥ 1. Under Assumption 5.3, there exists a common metric
space (Z, dZ) onto which we can isometrically embed (Tn, rn), n ≥ 1 and (T, rφ), such
that

Pρn
(

(Xn
t )t≥0 ∈ ·

)
→ Pρ

(
(Xt)t≥0 ∈ ·

)
,

weakly on D(R+, Z) (the space of càdlàg processes on Z, equipped with the usual
Skorohod metric), where (Xt)t≥0 is the νφ-Brownian motion on (T, rφ). Here, Pρn and Pρ

represent the annealed laws of the corresponding processes, obtained by integrating the
randomness of the elements of Tsp with respect to P.

Remark 5.5. When (Tn, (Vn, ψn)), n ≥ 1 and (T , (φ, ψ)) are random elements of Tsp,
built on a probability space with probability measure P, where ψn and ψ are continuous
embeddings of (Tn, rn), n ≥ 1 and (T, rφ) respectively, into a complete and separable
metric space (E, dE), Assumption 5.3 (with the probabilistic uniform recurrence of (5.9))
and its validity implies the annealed convergence of the embedded stochastic processes
involved in Theorem 5.4.

Pρn
(

(ψn (Xn
t ))t≥0 ∈ ·

)
→ Pρ

(
(ψ (Xt))t≥0 ∈ ·

)
,
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weakly onD(R+, E), where Pρn and Pρ represent the annealed laws of the corresponding
processes, obtained by integrating the randomness of the elements of Tsp with respect
to P.

6 Examples

6.1 Convergence of Sinaı̆’s random walk to the Brox diffusion

We introduce the one-dimensional RWRE considered early in the works of [57] and
[58] (see also [36] and [40]) and studied extensively subsequently by many authors (we
refer to [62] for a detailed account). Given a sequence ω = (ω−z )z∈Z of i.i.d. random
variables taking values in (0,1) and defined on a probability space (Ω,F , P ), the one-
dimensional RWRE is the Markov chain X = ((Xn)n≥0,P

u
ω, u ∈ Z) defined by X0 = 0

and

Pω(Xn+1 = z − 1|Xn = z) = ω−z , Pω(Xn+1 = z + 1|Xn = z) = ω+
z := 1− ω−z ,

for any given ω. Let ρz := ω−z /ω
+
z , z ∈ Z and assume that

EP (log ρ0) = 0, σ2 := Var(log ρ0) > 0, (6.1)

P (ε ≤ ω−0 ≤ 1− ε) = 1, for some ε ∈ (0, 1/2). (6.2)

The first assumption ensures that the one-dimensional RWRE is recurrent, P -a.s. ω,
while the second forces the environment to be non-deterministic. The last assumption,
called uniform ellipticity, is used in the context of RWRE to ensure the absence of local
traps, which can appear in the elliptic setting.

Sinaı̆[57] showed that there exists a non-trivial random variable b1 : Ω→ R, whose
law was characterized later independently by Golosov [36] and Kesten [40], such that
for any η > 0,

Pu
(∣∣∣∣ σ2Xn

(log n)2
− b1(ω)

∣∣∣∣ > η

)
→ 0, (6.3)

as n → ∞, where Pu is the annealed law of X defined as Pu(G) :=
∫
Puω(G)P (dω), for

any fixed Borel set G ⊆ ZN. This result was a consequence of a localization phenomenon
that occurs, trapping the random walk in some valleys of its potential.

Brox [17] considered a one-dimensional diffusion process in a random Brownian
environment W that formally solves the stochastic differential equation

dXt = dBt −
1

2
W ′(Xt)dt, X0 = 0, (6.4)

where (Bt)t≥0, (W1(x))x≥0, (W2(x))x≤0 are three mutually independent standard Brown-
ian motions such that

W (x) :=

{
σW1(|x|), x ≥ 0,

σW2(|x|), x ≤ 0,
(6.5)

for some σ > 0. Equation (6.4) cannot be defined as a stochastic differential equation
(SDE), since the formal derivative W ′ of W (white noise) does not exist (almost-surely).
Rigorously speaking we are considering a Feller-diffusion process Xt on R with the
generator of Feller’s canonical form

L :=
1

e−2W (x)

d

dx

(
1

eW (x)

d

dx

)
.

Once one defines the conditioned process Xt given an environment W , using the law of
total probability, one defines what the process Xt is.

EJP 26 (2021), paper 115.
Page 17/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP687
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Invariance principles for random walks in random environment on trees

Among those, Brox also showed that this real-valued stochastic process Xt converges
very slowly, when σ = 1, to the same random variable b1 as in (6.3). Namely, for every
η > 0,

Pu
(∣∣α−2Xeα − b1(ω)

∣∣ > η
)
→ 0, (6.6)

as α→∞.
(6.3) and (6.6) show that the one-dimensional RWRE enjoys the same asymptotic

properties as a one-dimensional diffusion process in a random Brownian environment,
however this does not necessarily imply that Brox’s diffusion is the continuous analogue
of Sinaı̆’s random walk. This question was answered in the affirmative by Seignourel
[55] who proved the existence of a Donsker’s invariance principle in a setting where one
is allowed to parameterize the random environment appropriately at every step of the
walk.

Theorem 6.1 (Seignourel [55]). For every m ≥ 1, consider a sequence (ω−z (m))z∈Z of
i.i.d. random variables, and for simplicity denote ω−z (1) by ω−z . Furthermore, suppose
that (6.1) and (6.2) are satisfied, while also, for every m ≥ 1 and for every z ∈ Z,

ω+
z (m) := 1− ω−z (m)

(d)
=
(

1 + ρz
m−1/2

)−1

, (6.7)

which in other words means that, for every m ≥ 1 and for every z ∈ Z, ρz(m) :=

ω−z (m)/ω+
z (m)

(d)
= ρm

−1/2

z . If, for every m ≥ 1, (Xm
n )n≥0 denotes the random walk associ-

ated with the random environment (ω−z (m))z∈Z, then

(m−1Xm
bm2tc)t≥0

(d)−−→ (Xt)t≥0

in distribution in D([0,∞)), where (Xt)t≥0 is the Brox diffusion.

We undertake the task of generalizing the result for Seignourel’s model by effectively
removing the uniform ellipticity condition. Such a gesture is meaningful in that it allows
us to include applications of this theorem to environments that are not uniformly elliptic,
such as Dirichlet environments. A particular model of interest that famously falls into
this class is the directed edge linearly reinforced random walk on locally finite directed
graphs. For an overview on random walks in Dirichlet random environment (RWDE) we
refer to [54].

In a second level the i.i.d. assumption made by Seignourel [55] is not essential as soon
as we suppose that the potential of the random walk associated with the parameterized
environment converges weakly to a two-sided Brownian motion. Recalling some basic
definitions from Section 4, for every m ≥ 1,

V mx :=


1√
m

∑x
i=1 log ρi, x ≥ 1,

0, x = 0,

− 1√
m

∑0
i=x+1 log ρi, x ≤ −1.

is the potential of the one-dimensional RWRE changed at step m according to (6.7), and
now we are ready to make our assumption precise. It clarifies why in order to get a
Donsker’s theorem in random medium one is forced to “flatten” the environment in the
first place.

Assumption 6.2 (Sinăı’s regime). Suppose that (V mbmxc)x∈R converges in distribution to
(W (x))x∈R, where (W (x))x∈R is a two-sided Brownian motion as in (6.5).

By direct calculation it can be verified that, for fixed ω(m), m ≥ 1, the RWRE (Xm
n )n≥0,

m ≥ 1, is a reversible Markov chain and the stationary reversible measure which is
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unique up to multiplication by a constant is given by

νω(m)(x) =


(1 + ρx(m)) (

∏x
i=1 ρi(m))

−1
, x ≥ 1,

1 + ρ0(m), x = 0,

(1 + ρx(m))
∏0
i=x+1 ρi(m), x ≤ −1.

(6.8)

Here, the reversibility means that, for all n ≥ 0 and x, y ∈ Z, we have

νω(m)(x)Pω(m)(X
m
n = y|Xm

0 = x) = νω(m)(y)Pω(m)(X
m
n = x|Xm

0 = y).

Sticking to the interpretation of the one-dimensional RWRE as an electrical network
with resistances given by rω(m)(x− 1, x) = eV

m
x−1 , x ∈ Z, we can rewrite (6.8) as

νω(m)(x) = e−V
m
x + e−V

m
x−1 , x ∈ Z. (6.9)

Moreover, we endow Z with the resistance metric rω(m) : Z × Z → R+ that satisfies
rω(m)(x, x) := 0, for every x ∈ Z, and

rω(m)(x, y) :=

y−1∑
z=x

rω(m)(z, z + 1) =

y−1∑
z=x

eV
m
z , x < y. (6.10)

The one-dimensional lattice viewed as a rooted metric measure space endowed with
the finite measure and the resistance metric defined in (6.9) and (6.10) respectively,
in Sinaı̆’s regime converges weakly in the Gromov-Hausdorff-Prokhorov topology as
indicated by the next theorem.

Theorem 6.3. Under Assumption 6.2,(
(Z,m−1rω(m),m

−1νω(m), 0), V m
) (d)−−→ ((R, r, ν, 0),W ) , m→∞,

with respect to the Gromov-Hausdorff-Prokhorov-vague topology, where

r(x, y) :=

∫
[x∧y,x∨y]

eW (z)dz, (6.11)

for every x, y ∈ R and

ν(A) :=

∫
A

2e−W (x)dx, (6.12)

for every A ∈ B(R).

Proof. By Skorohod’s representation theorem, there exists a probability space on which
the convergence

(V mbmxc)x∈R
(d)−−→ (W (x))x∈R

holds almost-surely with respect to the uniform norm on compact intervals. Define a
correspondence Rm between Z and R by setting (i, s) ∈ Rm if and only if i = bmsc. We
will bound the distortion of Rm. Suppose that (i, s), (j, t) ∈ Rm such that s ≤ t. Then,

|m−1rω(m)(i, j)− r(s, t)| =

∣∣∣∣∣ 1

m

j−1∑
z=i

eV
m
z −

∫ t

s

eW (u)du

∣∣∣∣∣ =

∣∣∣∣∣
∫ bmtc

m

bmsc
m

eV
m
bmucdu−

∫ t

s

eW (u)du

∣∣∣∣∣ .
Since limm→∞ eV

m
bmuc1[bmsc/m,bmtc/m](u) = eW (u)1[s,t](u), dis(Rm) converges to 0 uni-

formly in s, t ∈ [−R,R], for some R > 0.

EJP 26 (2021), paper 115.
Page 19/38

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP687
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Invariance principles for random walks in random environment on trees

Recall that m−1νω(m) puts mass m−1(e−V
m
i + e−V

m
i−1) on i ∈ Z. Then, we may couple

m−1νω(m) and ν on {0, 1, ...,m − 1} × [0, 1) by taking U ∼ U([0, 1)), where U stands for
the uniform distribution on [0, 1), and taking π to be the law of the pair

(π1, π2) := (e−V
m
bmUc + e−V

m
bmUc−1 , 2e−W (U)).

Consequently, bmUc is uniform in {0, 1, ...,m− 1}. Hence,

π1(i) = m−1(e−V
m
i + e−V

m
i−1) = m−1νω(m)(i),

for every i = 0, 1, ...,m− 1. Similarly, π2 = ν|[0,1), where the latter stands for the restric-
tion of ν on [0, 1). This is precisely the natural coupling π induced by the correspondence
Rm. Therefore, π(Rcm) = 0. Referring to Lemma 3.2, for every R ≥ 0,

dTcsp
((Z,m−1rω(m),m

−1νω(m), 0)|R, V m|R), ((R, r, ν, 0)|R,W |R))

≤ 1

2
dis(Rm) + π(Rcm) + sup

x∈[−R,R]

|V mbmxc −W (x)|,

the result follows.

Let R > 0. Using [42, Theorem 5.3] yields

rω(m)(0, Bm(0, R)c) ≥ R

4N(Bm(0, R), R/2)
,

where N(B,R) =: min{|A| : A ⊆ B ⊆ ∪y∈ABm(y,R)}. Since N(Bm(0, R), R/2) = 1, the
lower bound above becomes

lim inf
m→∞

rω(m)(0, Bm(0, R)c) ≥ R/4.

Consequently, taking the limit as R → ∞ yields that (5.8) is satisfied. Combining this
along with Theorem 6.3 allows us to deduce that Assumption 5.3 is fulfilled. Thus, as a
consequence of Theorem 5.4, the νω(m)-speed motion on (Z, rω(m), 0) converges weakly
in D([0,∞)) to the ν-speed motion on (R, r, 0). The νω(m)-speed motion on (Z, rω(m)) is
the continuous-time nearest neighbor random walk on (Z, rω(m)) with jumps rescaled by
m−1 and time speeded up by

νω(m)(x)−1(rω(m)(x, x+ 1)−1 + rω(m)(x− 1, x)−1) = m2, x ∈ Z,

which, is equal in law to (m−1Xm
bm2tc)t≥0.

It remains to identify (in law) the ν-speed motion on (R, r, 0) with the Brox model (see
(6.4)). Fixing the environment W , (Xt)t≥0 is a continuous-time stochastic process on R
having infinitesimal generator of Feller’s canonical form

L =
1

2e−W (x)

d

dx

(
1

eW (x)

d

dx

)
.

In other words, (Xt)t≥0 is a diffusion on R with differentiable scale function

s(x) :=

∫ x

0

eW (z)dz, x ∈ R,

and speed measure

ν(A) :=

∫
A

2e−W (x)dx, A ∈ B(R),
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which is the same as in (6.12). For each environment W , the domain of the generator
D(L) is contained in the space of differential functions C1(R) (for example, see [50,
Proposition 2]). Then, X is the continuous strong Markov process associated with the
Dirichlet form

E(f, g) :=
1

2

∫
dz

s′(z)
f ′(z) · g′(z),

for every f, g ∈ L2(ν) ∩ C∞ ∩ A, such that E(f, g) < ∞, where here A is the space of
absolutely continuous functions. Note that, for all x, y ∈ R,

r(x, y) =

∫
[x∧y,x∨y]

s′(z)dz,

which can be seen to induce that (R, r, 0) is a locally compact real tree with length
measure s′(z)dz. The gradient ∇rf , of f ∈ A is the function, which is unique up to
s′(z)dz-zero sets, that satisfies∫ y

x

∇rf(z)s′(z)dz = f(y)− f(x),

for every x, y ∈ R (see (5.3)). Therefore, ∇rf = f ′/s′. Using this information, by the
following calculation, we find that

E(f, g) =
1

2

∫
dz

s′(z)
f ′(z) · g′(z) =

=
1

2

∫
dz

s′(z)
(∇rf(z)s′(z)) · (∇rg(z)s′(z)) =

1

2

∫
s′dz∇rf · ∇rg,

for every f, g ∈ L2(ν) ∩ C∞ ∩ A, such that E(f, g) <∞, which implies that

E(f, g) =
1

2

∫
dz

s′(z)
f ′(z) · g′(z) =

1

2

∫
s′dz∇rf · ∇rg,

for every f, g ∈ L2(ν) ∩ C∞ ∩ A, such that E(f, g) <∞. To conclude, this shows that X,
which is associated with the Dirichlet form as expressed in the first equality above, and
the ν-speed motion on (R, r, 0), which is associated with the Dirichlet form as expressed
in the second equality above, are effectively associated with the same regular Dirichlet
form (E , D̄(E)). So, in the light of Theorem 5.2, they must be equal in law. We have thus
successfully proven Seignourel’s result to hold for a wider class of random walks in
random environment.

Theorem 6.4. Let, for every m ≥ 1, (Xm
n )n≥0 denote the random walk associated with

the random environment under which Assumption 6.2 holds. Then,

(m−1Xm
bm2tc)t≥0

(d)−−→ (Xt)t≥0

in distribution in D([0,∞)), where (Xt)t≥0 is the Brox diffusion.

6.2 Convergence of a random walk with barriers

A model with infinitely many barriers was considered by Carmona in [19] in order to
study the large time behavior of the solution of (6.4) when the random coefficient W ′ is
replaced by the formal derivative of a spatial Lévy process. The random environment
consists of a sequence of barriers (τz)z∈Z such that their increments (τz − τz−1)z∈Z form
a sequence of independent geometric random variables of parameter α ∈ (0, 1). To
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construct the random environment rigorously consider a sequence of Bernoulli random
variables (ξz)z∈Z of parameter α ∈ (0, 1), i.e. P (ξ1 = 1) = 1− P (ξ1 = 0) = α and let

βα(z) :=


∑z
k=1 ξk, z ≥ 1,

0, z = 0,

−
∑−1
k=z ξk, z ≤ −1.

(6.13)

Then, setting τz := inf{r ∈ Z : βα(r) = z} yields the desired property for the increments
of (τz)z∈Z. The random walk in the random environment τ is introduced as a simple
random walk away from the level of the set {τz : z ∈ Z}. When it reaches one of the
barriers a biased coin is tossed, and the walk moves to the right with probability p or
to the left with probability q := 1− p. In other words, the random walk in the random
environment τ is the Markov chain ((Xn)n≥1,P

u
τ , u ∈ Z) that given τ has transition

probabilities

1− Pτ (Xn+1 = z − 1|Xn = z) = Pτ (Xn+1 = z + 1|Xn = z) =

{
1
2 , z /∈ {τz : z ∈ Z},
p, z ∈ {τz : z ∈ Z}.

To treat this example, we need to extend the Gromov-Hausdorff-vague topology on
rooted metric measure spaces endowed with a càdlàg function φ : R→ R instead. To do
this we replace sup(z,z′)∈C dE(φ(z), φ′(z′)) that appears in the definition of the metric on
Tcsp with dJ1

(φ, φ′), where dJ1
denotes the Skorohod metric on D(R). It can be checked

that Tcsp with this new metric constitutes a separable metric space [6, Proposition 2.1].
In the light of this consideration we can reformulate Assumption 6.2 to include one-
dimensional diffusions with jumps. Namely, suppose that the limiting process (W (x))x∈R
in Assumption 6.2 is a two-sided Lévy process and that the convergence in distribution
takes place on D(R).

To write down the potential first observe that ρz = ω−z /ω
+
z = 1 if and only if z /∈ {τz :

z ∈ Z}. Therefore, observing that the set of barriers {τz : z ∈ Z} is a.s. identical to the
set {z ∈ Z : ξz = 1}, we have that

Vz =

z∑
k=1

log ρz = log

(
q

p

) z∑
k=1

ξk = log

(
q

p

)
βα(z), z ≥ 1.

Repeating the same calculation for z ≤ −1 implies that Vz = log(q/p)βα(z), for every
z ∈ Z.

To obtain in the limit a general Lévy process, and consequently a Brownian motion
in random Lévy potential as the scaling limit of the random walk with infinitely many
barriers, we normalize the random media appropriately. Let λ > 0, and for every n ≥ λ
consider the normalized environment (βnλ/n(z))z∈Z defined as in 6.13, where this time
the Bernoulli trials have probability of success equal to λ/n. To verify that this is indeed
the correct choice, check that the following conditions are satisfied.

bnxc∑
k=1

P (ξk = 1) = λ · bnxc
n
→ λx ∈ (0,∞), max

1≤k≤bnxc
P (ξk = 1) =

λ

n
→ 0,

for every x > 0. These are sufficient (see [32, Theorem 3.6.1]) to allow us to deduce
from the weak law of small numbers that, for fixed x > 0, βnλ/n(bnxc), converges weakly
to a Poisson random variable with mean λx. For an alternative proof of this fact using
characteristic functions see [32, Appendix B]. Therefore, for the two sided-process
(V nbnxc)x∈R that has independent increments, we have that

(V nbnxc)x∈R ⇒ log

(
q

p

)
(N(x))x∈R, (6.14)
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weakly on D(R), where (N(x))x∈R is Poisson process on the real line. Consequently,
since the proof of Theorem 6.3 remains unchanged,(

(Z, n−1rτn , n
−1ντn , 0), V n

) (d)−−→ ((R, r, ν, 0), log(q/p)N) , n→∞, (6.15)

with respect to the Gromov-Hausdorff-Prokhorov-vague topology, where τnz := inf{r ∈
Z : βnλ/n(r) = z}. See (6.9) and (6.10) for a definition of ντn and rτn respectively. Slightly
abusing notation, r and ν stand for (6.11) and (6.12) with W replaced by log(q/p)N .
The following result, that was conjectured by Carmona [19] and originally proved by
Seignourel [55, Theorem 2], is alternatively deduced by using (6.14), (6.15) and following
the proof of Theorem 6.4.

Theorem 6.5. Let λ > 0, and for every n ≥ λ consider the random walk (Xn
m)m≥1

associated with the random environment τn. Then,

(n−1Xn
bn2tc)t≥0

(d)−−→ (Xt)t≥0,

weakly on D([0,∞)), where (Xt)t≥0 is a solution to the SDE

dXt = dBt −
1

2

(
log

(
q

p

)
N ′(Xt)

)
, X0 = 0,

where (Bt)t≥0 is a standard Brownian motion independent of N .

Remark 6.6. One way to see that the process Xt exists is by noticing that its generator
would take the form

1

2e− log( qp )N(x)

d

dx

(
1

elog( qp )N(x)

d

dx

)
.

Once one defines the conditioned process Xt given the environment N , using the law of
total probability, one defines what the process Xt really is.

6.3 Random walk on the range of a branching random walk

We can define biased random walks on graphs generated by a branching random
walk, conditioned to have a total of n particles. For a rooted finite ordered tree T with
root ρ, in which every edge e is marked by a real-valued vector y(e), given a value
function y : E(T )→ Rd, we define a map φ : T → Rd by setting φ(ρ) := 0 and φ(←−ρ ) := 0,

φ(u) :=
∑

e∈Eρ,u

y(e), u ∈ T \ {ρ}, (6.16)

where the sum is taken over the set of all edges contained in the unique path between ρ
and u. Also, we interpolate linearly along the edges.

Let {(Tn, φn)}n≥1 be a family of random spatial graph trees, where Tn is generated
by a Galton-Watson process with critical offspring distribution ξ conditioned to have
total progeny n. In addition, we demand ξ to have finite variance σ2

ξ < ∞ and expo-

nential moments, i.e. E(eλξ) < ∞, for some λ > 0. Conditional on Tn, the increments
(y(e))e∈E(Tn) of the spatial element φn are independent and identically distributed as a
mean 0 continuous random variable Y with finite variance Σ2

Y < ∞ (ΣY is a positive
definite d× d-matrix) that furthermore satisfies the tail condition

P(dE(0, Y ) ≥ y) = o(y−4), (6.17)

where dE denotes the usual Euclidean metric on Rd. Next, we introduce the contour
function of Tn. The contour function traces the distance to the root of the position of a
particle that visits the outline of Tn from left to right at unit speed.
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Definition 6.7 (contour function). Let un0 = ρn. Given uni = u, let uni+1 to be, if possible,
the leftmost descendant that has not been visited yet. If no descendant is left unvisited,
let uni+1 be the parent of u. Then, the contour function of Tn at i, is defined as the
distance between ρn and uni :

Cn(i) := dTn(ρn, u
n
i ), i = 0, ..., 2n,

where dTn denotes the shortest path metric. To extend Cn to [0, 2n] interpolate linearly
between integer points.

Given the other assumptions that we are making, [38, Theorem 2] ensures that the
fourth order polynomial tail decay in (6.17) is necessary to obtain the convergence of
the tours of Tn, i.e. the joint process (Cn(i), Rn(i)) supported on {0, ..., 2n}, such that
the head function Rn(i) := φn(uni ), if uni denotes the i-th visited vertex in the contour
exploration of Tn, keeps record of the points of the branching random walk φn. Note
that, Cn determines the “shape” of the tree (the finite ordered tree without edge lengths)
and Rn, via its increments, all the successive marks y(e) of the crossed edges as abscissa
displacements.

Hence, conditional on Tn, if ρn, u1,...,ul is an injective path in Tn, then the path
φn(ρn), φn(u1),...,φn(ul) can be represented as a tree-indexed random walk in Rd with l
steps, where the index tree is Tn and the increments are independent and identically
distributed as Y . Thus, taking this into account, it is a fact that the random multiset of
trajectories in Rd established by mapping the paths originating from ρn of Tn into Rd

via φn constitute a branching random walk. Let Gn = (V (Gn), E(Gn)) be the graph with
vertex set

V (Gn) := {x ∈ Rd : x = φn(u) with u ∈ Tn}

and edge set

E(Gn) := {{x1, x2} ∈ Rd ×Rd : xi = φn(ui), i = 1, 2 with {u1, u2} ∈ E(Tn)}.

Fix a parameter β ≥ 1, and to each edge {x1, x2} ∈ E(Gn), assign the conductance

c({x1, x2}) := βmax{φ(1)
n (u1),φ(1)

n (u2)}

with {u1, u2} ∈ E(Tn), where φ(1)
n (ui) denotes the first coordinate of φn(ui), i = 1, 2 in Rd.

Observe that c({φn(←−ρn), φn(ρn)}) = βmax{φ(1)
n (←−ρn),φ(1)

n (ρn)} = 1, which is compatible with
our convention of putting a unit conductance between the root and its base. The biased
random walk on Gn is the Markov chain X = ((Xn)n≥0,P

x
Gn , x ∈ V (Gn)) on V (Gn) with

transition probabilities given by

PGn(x1, x2) :=
c({x1, x2})
c({x1})

,

where the normalization is defined by c({x1}) =
∑
e∈E(Gn):x1∈e c(e). If β > 1, then the

biased random walk X has a directional preference towards the first coordinate. On the
other hand, if β = 1, there is no bias and we end up with the simple random walk on Gn.

Remark 6.8. In the case we consider a more general bias than just towards one direction:
the bias ` = λ~̀ depends on the strength λ > 0 and the bias direction ~̀which lies in the
unit sphere with respect to the Euclidean metric of Rd, where the conductances at each
edge {x1, x2} ∈ E(Gn) are

c({x1, x2}) = e(φn(u1)+φn(u2))·`

with {u1, u2} ∈ E(Tn), we believe that we can obtain the same results by the same
methods.
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The RWRE on Tn is going to be of particular interest. Firstly, adopting the notation
that was introduced in Section 4, the random environment at every vertex u ∈ Tn will
be represented by a random sequence (ωuui)

ξ(u)
i=0 in (0, 1)ξ(u)+1 such that

∑ξ(u)
i=0 ωuui = 1.

The RWRE on Tn will be the time-homogeneous Markov chain X ′ = ((X ′n)n≥0,P
u
ω, u ∈

Tn) taking values on Tn with transition probabilities given by (4.1). To connect this
model with the biased random walk on the critical non-lattice branching random walk
conditioned to have n particles, suppose that the marginals of the environment are
defined, for each u ∈ Tn, as follows.

(ωuui)
ξ(u)
i=0 = (PGn(φn(u), φn(ui)))

ξ(u)
i=0 .

For this choice of random environment, the quenched law of φn(X ′) is the same as that
of X, and consequently the same holds for the corresponding annealed laws. This is
immediate regarding the following relations

(PGn(φn(u), φn(ui)))
ξ(u)
i=0 =

(
c({φn(u), φn(ui)})

c({φn(u)})
: 0 ≤ i ≤ ξ(u)

)
, u ∈ Tn.

To connect the first coordinate of the random embedding φn with the potential of the
RWRE on Tn, let (∆n(u))u∈Tn be its increments process, i.e.

∆n(u) := φ(1)
n (u)− φ(1)

n (←−u ).

If the environment is defined as in the previous paragraph, log c({φn(←−u ), φn(u)})−1 =

−max{φ(1)
n (←−u ), φ

(1)
n (u)} · log β. Therefore, the potential (Vn(u))u∈Tn of the random walk

in a random environment on Tn, which is obtained by (4.2), satisfies

Vn(u) = −
(
φ(1)
n (←−u ) + max{0,∆n(u)}

)
· log β, u ∈ Tn, (6.18)

which demonstrates that if the individual increments are small, the potential of the
RWRE on Tn is nearly given by a negative constant multiple of the first coordinate of φn.

We demonstrate that Vn, when rescaled, converges to an embedding of the CRT into
the Euclidean space, so that an arc of length t in the CRT is mapped to the range of
a Brownian motion run for time t. In other words, if T denotes the CRT, consider a
tree-indexed Gaussian process (φ(σ))σ∈T , built on a probability space with probability
measure P, with Eφ(σ) = 0 and Cov(φ(σ), φ(σ′)) = dT (ρ, σ ∧ σ′)I, where I is the d-
dimensional identity matrix and σ ∧ σ′ is the most recent common ancestor of σ and σ′.
For almost-every realization of T (with respect to the normalized Itô excursion measure
N1), there exists a P-a.s. continuous version of φ.

For an underlying tree that satisfies the assumptions we made in the beginning of
the section and the second paragraph that lies therein, [22, Corollary 10.3] ensures the
following distributional convergence in Tcsp. If dTn is the shortest path metric and µTn is
the uniform probability measure on the vertices of Tn, we have that(

(Tn, n
−1/2dTn , µTn , ρn), n−1/4φn

)
(d)−−→ ((T , σT dT , µT , ρ),Σφφ) , (6.19)

where σT := 2
σξ

and Σφ := ΣY
√

2
σξ

. The limiting object (T , dT ) is a real tree coded by a

normalized Brownian excursion e := (e(t))0≤t≤1 (see (2.1)). Combining (6.18) with (6.19)
yields

((Tn, n
−1/2dTn , µTn , ρn), n−1/4φn, n

−1/4Vn)
(d)−−→ ((T , σT dT , µT , ρ),Σφφ, σβ,φφ

(1)), (6.20)

in the spatial Gromov-Hausdorff-vague topology, where φ(1) denotes the first coordinate
of φ and σβ,φ = −(Σφ)11 · log β. It is natural to ask whether there is a certain regime
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in which the biased random walk on large critical non-lattice branching random walk
possesses a scaling limit. Answering the question posited above, (6.20) can be infor-
mative as it designates a discrete scheme in which the bias must be changed at every
step. To be more precice, for every n ≥ 1, let (Xn

m)m≥1 denote the biased random walk

on Gn with bias parameter βn := βn
−1/4

, for some β > 1. Observe that, for every n ≥ 1,
(n−1/4Vn(u))u∈Tn is the potential of the RWRE on Tn changed at every step n according
to

(cn({x1, x2})){x1,x2}∈E(Gn) :=
(
βn
−1/4 max{φ(1)

n (u1),φ(1)
n (u2)}

)
{u1,u2}∈E(Tn)

.

Then, in conjunction with Section 4 and (4.5), for fixed environment, the stationary
reversible measure of the weakly biased random walk (Xn

m)m≥1 is unique up to multipli-
cation by a constant and is given pointwise in u by

νn(u) = e−n
−1/4Vn(u) +

∑
u′∼u,u′ 6=←−u

e−n
−1/4Vn(u′), u ∈ Tn, (6.21)

where the sum is taken over the set of all vertices contained in the neighborhood of u
excluding its parent. Moreover, the resistance metric with which Tn is endowed satisfies
rn(u, u) := 0, for every u ∈ Tn, and

rn(u1, u2) :=
∑

u∈[u1,u2]]

en
−1/4Vn(u), u1, u2 ∈ Tn with u1 6= u2. (6.22)

The rest of the section is devoted in verifying that the analogue of (6.20) indeed holds
when the shortest path metric dTn and the uniform probability measure on the vertices of
Tn are distorted by continuous functionals of the potential of the weakly biased random
walk as can be seen by the form of the finite measure νn and the resistance metric rn in
(6.21) and (6.22) respectively.

Theorem 6.9. As n→∞,(
(Tn, n

−1/2rn, (2n)−1νv, ρn), n−1/4φn, n
−1/4Vn

)
(d)−−→

(
(T , σT rφ(1) , νφ(1) , ρ),Σφφ, σβ,φφ

(1)
)
,

in the spatial Gromov-Hausdorff-vague topology, where

rφ(1)(u1, u2) :=

∫
[[u1,u2]]

eσβ,φφ
(1)(v)λ(dv), (6.23)

for every u1, u2 ∈ T and νφ(1) is the mass measure on T defined as the image measure
by the canonical projection pẽ of the Lebesgue measure on [0, 1], see (2.2), where

ẽ :=

(∫
[[pe(0),pe(t)]]

e−σβ,φφ
(1)(v)λ(dv) : 0 ≤ t ≤ 1

)
. (6.24)

(note that ẽ : [0, 1]→ R+ is a (random) continuous function such that ẽ(0) = ẽ(1) = 0, and
therefore pẽ is well-defined).

Proof. Recall the definition of Cn from Definition 6.7. Using Skorohod’s representation,
we can assume that we are working on a probability space on which the distributional
convergence of the normalized contour process Cn of Tn,

(C(n)(t))0≤t≤1 :=

(
Cn(2nt)√

n
: 0 ≤ t ≤ 1

)
,

to a normalized Brownian excursion e := (e(t))0≤t≤1, i.e. C(n)
(d)−−→ σT e in C([0, 1],R)

[5], holds in the almost sure sense. We build a correspondence between Tn and T as
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follows. Let Rn be the image of the set (i, t) by the mapping (i, t) 7→ (uni , pe(t)) from
{0, ..., 2n} × [0, 1] to Tn × T such that i = b2ntc, where uni is the i-th visited vertex in the
contour exploration of Tn and pe denotes the canonical projection from [0, 1] to T . Note
that this correspondence also associates the root un0 of Tn with the root pe(0) of T .

The first part of the proof consists of showing that the distortion of Rn converges to
0. Now, suppose that (i, s) ∈ Rn. Then∣∣∣n−1/2rn(un0 , u

n
i )− σT rφ(1)(pe(0), pe(s))

∣∣∣

=

∣∣∣∣∣∣n−1/2
∑

v∈[un0 ,u
n
i ]]

en
−1/4Vn(v) − σT

∫
[[pe(0),pe(s)]]

eσβ,φφ
(1)(v)λ(dv)

∣∣∣∣∣∣
=

∣∣∣∣∣
∫

[un0 ,u
n
i ]]

en
−1/4Vn(v)λn(dv)− σT

∫
[[pe(0),pe(s)]]

eσβ,φφ
(1)(v)λ(dv)

∣∣∣∣∣ ,
where λn denotes the normalized length measure of (Tn, n

−1/2dTn , u
n
0 ). The second

equality follows from the fact that the normalized measure λn of the discrete tree Tn
shifts the length of one edge to its endpoint that lies further away from the root un0 , i.e.
λn({unk′}) = λn([unk , u

n
k′ ]]) = n−1/2, for all unk ∼ unk′ . The normalized length measure λn is

naturally associated with a σ-finite measure λCn on ({0, ..., 2n}, n−1/2dCn , 0), such that
for all i ∈ {0, ..., 2n},

λCn((0, i]) = n−1/2dCn(0, i) = n−1/2Cn(i) = λn([un0 , u
n
i ]]),

where dCn is defined similarly to (2.1) replacing g with Cn as introduced in Definition 6.7.
Recall here that Cn is also a positive excursion with finite length 2n. In a similar fashion,
let λe be the unique σ-finite measure on ([0, 1], σT de, 0), such that for each t ∈ [0, 1],

σ−1
T λe((0, t]) = de(0, t) = dT (pe(0), pe(t)) = λ([pe(0), pe(t)]]),

where λ is the length measure of T . Hence, for every uni ∈ Tn, i ∈ {0, ..., 2n}, the sum
and consequently the distorted distance in (6.22) between un0 and uni can be rewritten as

n−1/2rn(un0 , u
n
i ) =

∫
[un0 ,u

n
i ]]

en
−1/4Vn(v)λn(dv) =

∫
Bs

(n)

en
−1/4Vn(unb2nrc)λCn(dr),

where Bs(n) := {r ≤ s : infu∈[r,s] C(n)(u) = C(n)(r)}. Similarly, the distorted distance rφ(1)

(see (6.23)) between pe(0) and pe(s), for some s ∈ [0, 1], can be reexpressed as

rφ(1)(pe(0), pe(s)) =

∫
[[pe(0),pe(s)]]

eσβ,φφ
(1)(v)λ(dv) = σ−1

T

∫
Bse

eσβ,φφ
(1)(pe(r))λe(dr),

where Bse := {r ≤ s : infu∈[r,s] e(u) = e(r)}. Hence, for (i, s) ∈ Rn, we have that∣∣∣n−1/2rn(un0 , u
n
i )− σT rφ(1)(pe(0), pe(s))

∣∣∣
=

∣∣∣∣∣
∫
Bs

(n)

en
−1/4Vn(unb2nrc)λCn(dr)−

∫
Bse

eσβ,φφ
(1)(pe(r))λe(dr)

∣∣∣∣∣ ,
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which is bounded above by∣∣∣∣∣
∫
Bs

(n)

eσβ,φφ
(1)(pe(r))λCn(dr)−

∫
Bs

(n)

eσβ,φφ
(1)(pe(r))λe(dr)

∣∣∣∣∣
+ sup
t∈[0,1]

|eσβ,φφ
(1)(pe(t))| ·

∫ ∣∣∣1Bs
(n)

(r)− 1Bse (r)
∣∣∣λe(dr)

+ sup
t∈[0,1]

∣∣∣en−1/4Vn(unb2ntc) − eσβ,φφ
(1)(pe(t))

∣∣∣ · λCn(Bs(n)). (6.25)

There are a few steps in the way to prove that each of those terms converges to 0
uniformly in s ∈ [0, 1]. By definition,∣∣∣λCn(Bs(n))− λe(B

s
e)
∣∣∣ = |C(n)(s)− σT e(s)|

n→∞−−−−→ 0,

uniformly in s ∈ [0, 1]. Now suppose that (i, s), (j, t) ∈ Rn with s ≤ t. In a second place, if
r is a point at which the minimum of C(n) and e is achieved between s and t, when the
two processes are coupled in such a way that the convergence above holds in the almost
sure sense, we have that

|λCn([s, t])− λe([s, t])|
=
∣∣C(n)(s) + C(n)(t)− 2C(n)(r)− σT (e(s) + e(t)− 2e(r))

∣∣ ,
which also converges to 0 uniformly in s, t ∈ [0, 1]. As a consequence, λCn converges
strongly to λe. This entails that the first term of the upper bound in (6.25) converges to 0
uniformly in s ∈ [0, 1]. We can say the same about the second term in the aforementioned
upper bound since ∣∣∣1Bs

(n)
(r)− 1Bse (r)

∣∣∣ n→∞−−−−→ 0,

uniformly in s ∈ [0, 1]. Then, the convergence of this second term follows by an applica-
tion of the dominated convergence theorem. Finally, the third term of the upper bound
in (6.25), converges to 0 by (6.20). To bound the distortion dis(Rn), note that the roots
un0 and pe(0) of Tn and T respectively, enable an orientation sensitive integration which
gives∣∣∣n−1/2rn(uni , u

n
j )− σT rφ(1)(pe(s), pe(t))

∣∣∣ ≤ 2
∣∣∣n−1/2rn(un0 , u

n
k )− σT rφ(1)(pe(0), pe(r))

∣∣∣
+
∣∣∣n−1/2rn(un0 , u

n
i )− σT rφ(1)(pe(0), pe(s))

∣∣∣
+
∣∣∣n−1/2rn(un0 , u

n
j )− σT rφ(1)(pe(0), pe(t))

∣∣∣ ,
where (k, r) ∈ Rn and r ∈ [s, t] as before. Each individual term converges to 0 uniformly
in r, s, t ∈ [0, 1], and this finishes the first part of the proof that was devoted to the
convergence of the distortion dis(Rn) of the natural correspondence Rn to 0.

We now introduce what we call the distorted contour exploration of Tn. In essence,
what it does is to collect a weight equal to e−n

−1/4Vn(uni ), i ∈ {0, ..., 2n}, whenever the
directed edge connecting the parent of uni to uni is traversed in the canonical contour
exploration of Tn. To be more precise, set

C̃n(i) :=
∑

u∈[un0 ,u
n
i ]]

e−n
−1/4Vn(u), 0 < i < 2n.
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By convention, let C̃n(0) = C̃n(2n) := 0. Extend C̃n by linear interpolation to non-integer
times. Then, (Tn, rn, u

n
0 ) is a random real tree coded by C̃n. Moreover, (T , rφ(1) , pe(0)) can

be also viewed as a real tree coded by ẽ as in (6.24). Recall that the mass measure µC̃n
on Tn is defined as the image measure by the canonical projection pC̃n of the Lebesgue
measure on [0, 2n], see (2.2). By definition, (2n)−1µC̃n(A) = `({t ∈ [0, 1] : pC̃n(t) ∈ A}),
for a Borel set A of (Tn, rn, u

n
0 ). The final step in the proof aims at showing that the

Prokhorov distance dPTn between (2n)−1µC̃n and νφ(1) is negligible. This is enough since

dPTn
(
(2n)−1µC̃n , (2n)−1µTn

)
≤ (2n)−1,

recalling that µTn the uniform probability measure on the vertices of Tn. Towards proving
that the Prokhorov distance between (2n)−1µC̃n and νφ(1) is negligible, we consult the
proof of [2, Proposition 2.10]. Namely, by the second display before the end of the proof
that lies in the previous reference, there exists a common metric space (Z, dZ) such that
the following upper bound applies to the Prokhorov distance dPZ between (2n)−1µC̃n and
νφ(1) :

dPZ
(
(2n)−1µC̃n , νφ(1)

)
≤ 1

2
dis(Rn) + |supp(C̃n)− supp(ẽ)|,

where supp(·) stands for the support of the relevant function. Since the right-hand-side
converges to 0 as n→∞, the desired result follows.

The νφ(1) -speed motion on (T , σT rφ(1) , ρ), which we coined the νφ(1) -Brownian motion
in a random Gaussian potential σβ,φ(1)φ(1) on the CRT, e.g. (5.5) and the paragraph below
(5.6), is a novel object that emerges as the annealed scaling limit of the weakly biased
random walk (Xn

m)m≥1 on Tn, with bias parameter βn
−1/4

, for some β > 1. To make this
statement clear, we suppose that the random elements(

(Tn, n
−1/2rn, (2n)−1νv, ρn), n−1/4φn, n

−1/4Vn

)
n≥1

and
(
(T , σT rφ(1) , νφ(1) , ρ),Σφφ, σβ,φφ

(1)
)

are built on a probability space with probabil-
ity measure P. This is possible since the probability measure Mn on C([0, 1],R+) ×
C([0, 1],Rd) such that the pair of normalized discrete tours (C(n), R(n)) is in its sup-
port, converges weakly as a probability measure to M, a probability measure on
C([0, 1],R+) × C([0, 1],Rd) defined similarly in such a way that the resulting spatial
tree (T , φ) has marginal M (see [38, Theorem 2]). Then, P is the probability measure of
the probability space under which the aforementioned weak convergence holds almost-
surely, which we can assume exists using Skorohod’s representation theorem. The
annealed laws Pρn and Pρ of the weakly biased random walk (Xn

m)m≥1 and the νφ(1) -
Brownian motion in a random Gaussian potential σβ,φ(1)φ(1) respectively, are obtained by
integrating out the randomness of the state spaces with respect to P.

Finally, we are able to state our result, as (5.7) and (5.9) are satisfied, and therefore
so is Assumption 5.3. (5.7) follows from Theorem 6.9, and (5.9) from the fact that the
spaces involved in the spatial Gromov-Hausdorff-vague convergence of Theorem 6.9 are
compact.

Theorem 6.10. Consider the weakly biased random walk (Xn
m)m≥1 on Tn with bias

parameter βn
−1/4

, for some β > 1. Then,

Pρn
((

n−1/4φn(Xn
n3/2t)

)
t≥0
∈ ·
)
→ Pρ

((
Σφφ(Xtσ−1

T
)
)
t≥0
∈ ·
)
,

weakly as probability measures on D(R+,R
d), where (Xt)t≥0 is the νφ(1) -Brownian

motion in a random Gaussian potential σβ,φ(1)φ(1) on the CRT.
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6.4 Edge-reinforced random walk on large critical trees

Let (αn0 (e))e∈E(Tn) be a sequence of positive initial weights on E(Tn), the set of
edges of a critical Galton-Watson tree with finite variance for the aperiodic offspring
distribution, the model that was fully described in Section 6.3. The edge-reinforced
random walk (ERRW) on Tn, started from ρn, is introduced as the discrete time process
Z = ((Znk )k≥1,P

u
α0
, u ∈ Tn) with transition probabilities

Pα0
(Znk+1 = u|(Znj )0≤j≤k) = 1{u∼Znk }

Nn
k ({Znk , u})∑

u′∼Znk
Nn
k ({Znk , u′})

,

where for an edge e ∈ E(Tn), Nn
k (e) := αn0 (e) + #{0 ≤ j ≤ k − 1 : {Znj , Znj+1} = e}. In

other words, at time k, this walk jumps through a neighboring edge e with probability
proportional to Nn

k (e), which is initially equal to αn0 (e) and then increases by 1 each time
the edge e is crossed before time k. The initial weights we are going to be interested in
choosing are

αn0 (e) = 2−1n1/2, e ∈ E(Tn). (6.26)

The following theorem due to Sabot and Tarrès describes the ERRW as a mixture of
Markovian random walks.

Theorem 6.11 (Sabot-Tarrès [53]). Let αn := (αn(e))e∈E(Tn) independent random vari-
ables with αn(e) ∼ Γ(αn0 (e), 1). Let (ωn(ei(u)) : 0 ≤ i ≤ ξ(u))u∈Tn be an independent
family of independent random variables, that conditional on αn, are distributed according
to the density √

αn(ei(u))

2π
e−2αn(ei(u)) sinh( x2 )

2
+ x

2 dx, (6.27)

where (ei(u))
ξ(u)
i=0 := ({u, ui} : 0 ≤ i ≤ ξ(u)). Define Un := (Un(u))u∈Tn by

Un(u) :=

{∑
e∈Eρn,u

ωn(e), u 6= ρn,

0, u = ρn,

where Eρn,u is the set of all edges contained in the unique path connecting ρn and u. Un
is interpolated linearly along the edges. Consider the nearest neighbor random walk
on Tn, started from ρn, that conditional on (αn,Un), moves from u to ui with probability
proportional to

αn(ei(u))e−(Un(u)+Un(ui)).

Then, under the annealed law it has the same distribution as the ERRW (Znk )k≥0.

Remark 6.12. To read off Theorem 6.11 from Theorem 2 in [53], which is given for finite
graphs, one has to take x, y ∈ Tn and consider only z ∈ [[x, y]]. The density distribution
that corresponds to Theorem 2 in [53] is for the random variables

Ūnx,y(z) = −Un(z) +
1

#[[x, y]]

∑
z′∈[[x,y]]

Un(z′), z ∈ [[x, y]].

Then, ∑
z∈[[x,y]]

Ūnx,y(z) = 0.

The law of the random vector (Ūnx,y(z))z∈[[x,y]], conditioned on αn, on the subspace

H0 := {(ū(z))z∈[[x,y]],
∑

z∈[[x,y]]

ū(z) = 0}
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is given by
1

(2π)N
eū(x)e−H

n
x,y(αn,ū)

√
Dn
x,y(αn, ū), (6.28)

where 2N + 1 = #[[x, y]],

Hn
x,y(αn, ū) = 2

∑
{i,j}∈Ex,y

αn({i, j}) sinh

(
ū(i)− ū(j)

2

)2

and
Dn
x,y(αn, ū) =

∏
{i,j}∈Ex,y

αn({i, j})eū(i)+ū(j).

As remarked in N.B. (2) just below the statement of Theorem 2 in [53], the factor
Dn
x,y(αn, ū) could be written as a product on spanning trees with edges conditionally

weighted by
αn({i, j})eū(i)+ū(j), {i, j} ∈ Ex,y.

Here in the tree setting there is a unique spanning tree including all the edges. Further
calculations suggest that (6.28) is replaced by

1

(2π)N
eū(x)

∏
{i,j}∈Ex,y

√
αn({i, j})e−2αn({i,j}) sinh( ū(i)−ū(j)

2 )
2
+
ū(i)+ū(j)

2

=eū(x)−ū(x)/2−ū(y)/2
∏

{i,j}∈Ex,y

√
αn({i, j})

2π
e−2αn({i,j}) sinh( ū(i)−ū(j)

2 )
2

=eū(x)/2−ū(y)/2
∏

{i,j}∈Ex,y

√
αn({i, j})

2π
e−2αn({i,j}) sinh( ū(i)−ū(j)

2 )
2

=e
∑
{i,j}∈Ex,y

ū(i)−ū(j)
2

∏
{i,j}∈Ex,y

√
αn({i, j})

2π
e−2αn({i,j}) sinh( ū(i)−ū(j)

2 )
2

=
∏

{i,j}∈Ex,y

√
αn({i, j})

2π
e−2αn({i,j}) sinh( ū(i)−ū(j)

2 )
2
+
ū(i)−ū(j)

2 ,

where, to derive the third equality, we made use of the fact that ū ∈ H0, which deduced∏
{i,j}∈Ex,y

e
ū(i)+ū(j)

2 = e
∑
{i,j}∈Ex,y

ū(i)+ū(j)
2 = e−ū(x)/2−ū(y)/2.

Note that ∏
{i,j}∈Ex,y

√
αn({i, j})

2π
e−2αn({i,j}) sinh( ū(i)−ū(j)

2 )
2
+
ū(i)−ū(j)

2

is the law of the random family (ωn(e) : e ∈ Ex,y) of independent random variables, that
conditional on αn, is given by (6.27). It is not obvious that (6.27) is a probability density.
The argument presented in [53] is probabilistic: (6.28) is the law of the random variables
Ūnx,y(z) on the subspace H0.

As a consequence of Theorem 6.11 and (4.2), the potential Vn := (Vn(u))u∈Tn of the
random walk in random environment (αn,Un) satisfies

Vn(u) =

{
Un(←−u ) + Un(u) + logαn({←−u , u})−1, u 6= ρn,

0, u = ρn.
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The aim of the following series of lemmas is to establish the distributional convergence
of this potential and examine its limit. In what follows, it is useful to recall the natural
correspondence Rn between Tn and T that was extensively used in the proof of Theorem
6.9. This correspondence takes pairs of projections from [0, 1] with an additional equiva-
lence structure in such a way that the i-th visited vertex in the contour exploration of
Tn, denoted by uni , is associated with pe(t) of T , if i = b2ntc and pe denotes the canonical
projection from [0, 1] to T as usual.

Lemma 6.13. Let t ∈ [0, 1]. Then,

sup
(i,t)∈Rn

∣∣∣∣12 ∑
e∈Eun0 ,uni

αn(e)−1 − σT dT (pe(0), pe(t))

∣∣∣∣
converges to 0 in probability.

Proof. Since αn(e) ∼ Γ(αn0 (e), 1), then αn(e)−1 follows the inverse Gamma distribution
with parameters αn0 (e) and 1. By elementary properties of the Gamma distribution,

E(αn(e)−1) = (αn0 (e)− 1)−1 =
2√
n− 2

,

Var(αn(e)−1) = (αn0 (e)− 1)−2(αn0 (e)− 2)−1 =
8

(
√
n− 2)2(

√
n− 4)

= O(n−3/2).

Using Doob’s martingale inequality follows that

P

 sup
(i,t)∈Rn

1

2

∣∣∣∣ ∑
e∈Eun0 ,uni

[
αn(e)−1 −E(αn(e)−1)

] ∣∣∣∣ > η

 ≤Var
(∑

e∈Eun0 ,uni
αn(e)−1

)
4η2

=

∑
e∈Eun0 ,uni

Var
(
αn(e)−1

)
4η2

=
n−1/2dTn(un0 , u

n
i )O(n−1)

4η2
.

This in turn yields the desired result just by noticing that

lim
n→∞

sup
(i,t)∈Rn

∣∣∣∣12 ∑
e∈Eun0 ,uni

E
(
αn(e)−1

)
− σT dT (pe(0), pe(t))

∣∣∣∣
= lim
n→∞

sup
(i,t)∈Rn

∣∣∣∣(√n− 2)−1dTn(un0 , u
n
i )− σT dT (pe(0), pe(t))

∣∣∣∣ = 0,

where the latter equality holds by (6.19), see also the definition of dTcsp
in Section 3.

Lemma 6.14. As n→∞, conditional on (αn,Un),(
(Tn, n

−1/2dTn , µTn , ρn),Vn
)

(d)−−→ ((T , σT dT , µT , ρ), 2U) ,

in the spatial Gromov-Hausdorff-vague topology, where U := (U(u))u∈T is a process
defined by

U(u) :=
√

2φ(u) + dT (ρ, u), u ∈ T , (6.29)

where (φ(u))u∈T is a tree-indexed Gaussian process built on a probability space with
probability measure P, with Eφ(u) = 0 and Cov(φ(u), φ(u′)) = dT (ρ, u ∧ u′).
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Proof. Conditional on αn, let wn(e) be the random variable with density√
αn(e)

2π
exp

(
−2αn(e) sinh

(x
2

)2

+
x

2

)
.

The density of
√
αn(e)(wn(e)− (2αn(e))−1) is

1√
2π

exp
(
−2αn(e) sinh((4αn(e))−1/2x+ (4αn(e))−1)2 + (4αn(e))−1/2x+ (4αn(e))−1

)
,

For distributions
√
αn(e)(wn(e)−(2αn(e))−1) andN(0, 1) of a continuous random variable,

the Kullback-Leibler divergence is defined to be the integral:

DKL(
√
αn(e)(wn(e)− (2αn(e))−1)||N(0, 1)) =

∫ +∞

−∞
p(x) log

(
p(x)

q(x)

)
dx,

where p and q denote the probability densities of
√
αn(e)(wn(e)− (2αn(e))−1) and N(0, 1).

Moreover,

exp
(
−2αn(e) sinh((4αn(e))−1/2x+ (4αn(e))−1)2 + (4αn(e))−1/2x+ (4αn(e))−1

)
exp(−x2/2)

≤
exp

(
−2αn(e)((4αn(e))−1/2x+ (4αn(e))−1)2 + (4αn(e))−1/2x+ (4αn(e))−1

)
exp(−x2/2)

(6.30)

= e(8αn(e))−1

,

where we just used that sinh(x)2 ≥ x2. Therefore, we have

DKL(
√
αn(e)(wn(e)− (2αn(e))−1)||N(0, 1)) ≤ e(8αn(e))−1

.

Pinsker’s inequality [56, (13)] entails that

DTV(
√
αn(e)(wn(e)− (2αn(e))−1)||N(0, 1))

≤
√

1

2
DKL(

√
αn(e)(wn(e)− (2αn(e))−1)||N(0, 1)) =

e(16αn(e))−1

√
2

.

where DTV is the total variation distance between probability measures. We have
(conditional on αn) a strong convergence. For any f : R→ R non-negative measurable
function

E

[
g
(√

αn(e)
(
wn(e)− (2αn(e))−1

)) ∣∣∣∣αn] ≤ e(8αn(e))−1

(2π)1/2

∫ +∞

−∞
f(z)e−z

2/2dz,

such that f is integrable for N(0, 1). Take s, t ∈ [0, 1] with s ≤ t, such that (i, s), (j, t) ∈ Rn
and eij := {uni , unj } ∈ E(Tn). In particular, due to Lemma 6.13, and the almost sure
continuity of the normalized Brownian excursion e, we deduce that

E (wn(eij)|αn) = (2αn(eij))
−1 + op(α

n(eij)
−1), (6.31)

where the notation op means that the set of values E
(
wn(eij)/(2α

n(eij))
−1|αn

)
converges

to 1 in probability. Similarly,

Var (wn(eij)|αn) = αn(eij)
−1 + op(α

n(eij)
−1). (6.32)
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By (6.30),

P
(∣∣wn(eij)− (2αn(eij))

−1
∣∣ ≥ u∣∣αn) ≤ e(8αn(eij))

−1

(2π)1/2

∫ +∞

√
αn(eij)u

e−z
2/2dz. (6.33)

Let
En(t) = E(Un(unb2ntc)|α

n), Mn(t) = Un(unb2ntc)− E
n(t),

An(t) = E(Mn(t)2|αn).

(Mn(t))t≥0 and (Mn(t)2 − An(t))t≥0 are martingales. The identities (6.31) and (6.32)
imply that,

sup
t∈[0,1]

|En(t)− dT (pe(0), pe(t))| , sup
t∈[0,1]

|An(t)− 2dT (pe(0), pe(t))| ,

converge to 0 in probability. To conclude that (Mn(t))t∈[0,1] converges in distribu-

tion to (
√

2φ(pe(t)))t∈[0,1], and therefore (Un(unb2ntc))t∈[0,1] converges in distribution to
(U(pe(t)))t∈[0,1], we can apply the martingale functional Central Limit Theorem 1.4 in [33,
Section 7.1]. We also need to check that,

lim
n→∞

E

[
sup
t∈[0,1]

(Mn(t)−Mn(t−))
2 ∣∣αn]

= lim
n→∞

E

[
sup

eij∈E(Tn)

(wn(eij)−E(wn(eij)))
2 ∣∣αn]

= lim
n→∞

E

[
sup

eij∈E(Tn)

(
wn(eij)− (2αn(eij))

−1
)2 ∣∣αn]

= lim
n→∞

∫ +∞

0

P

(
sup

eij∈E(Tn)

∣∣wn(eij)− (2αn(eij))
−1
∣∣ ≥ u1/2

∣∣αn)du
= lim
n→∞

∫ +∞

0

(
1−

∏
eij∈E(Tn)

(
1−P

(
wn(eij)− (2αn(eij))

−1 ≥ u1/2
∣∣αn)))du = 0.

We get that by combining (6.33) and∫ +∞

√
αn(eij)u

e−z
2/2dz = O(e−α

n(eij)u
2/2)

for the complementary cumulative distribution function of N(0, 1).

When νn and rn are defined similarly to (6.21) and (6.22) respectively, with the
potential of the particular RWRE studied in Section 6.3 replaced by Vn, the proof of
Theorem 6.9 remains intact. Note that (φ(u))u∈T has a continuous modification, therefore
there exists a P-a.s. continuous modification of U . The scaling limit of the ERRW on
Tn with initial weights as in (6.26) is described as the νU -speed motion on (T , σT rU , ρ),
where

rU (u1, u2) :=

∫
[[u1,u2]]

exp(2U(v))λ(dv),

for every u1, u2 ∈ T and νU is the mass measure on T defined as the image measure by
the canonical projection pê of the Lebesgue measure on [0, 1], see (2.2), where

ê :=

(∫
[[pe(0),pe(t)]]

exp(−2U(v))λ(dv) : 0 ≤ t ≤ 1

)
.
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Theorem 6.15. Consider the ERRW (Znk )k≥1 on Tn, started at ρn, with initial weights
given by (6.26). Then, there exists a common metric space (Z, dZ) onto which we can
isometrically embed (Tn, rn), n ≥ 1 and (T , rU ), such that

Pρnα0

(
(n−1/2Znn3/2t)t∈[0,1] ∈ ·

)
→ Pρ

(
(Ztσ−1

T
)t∈[0,1] ∈ ·

)
,

weakly as probability measures on D(R+, Z), where (Zt)t≥0 is the νU -Brownian motion
in a random potential 2U on the CRT, started at ρ. The potential U in (6.29) is a Gaussian
potential with a drift, which is an artefact of the reinforcement.

We emphasize that choosing Tn to be a critical Galton-Watson tree with finite variance
for the aperiodic offspring distribution is justified by its distributional convergence as a
metric measure space, and more importantly by the convergence of its contour function.
Therefore, it is of no surprise that the theorem above is expected to hold for the ERRW
on random ordered trees that possess these properties, such as a size-conditioned
critical Galton-Watson tree, whose aperiodic offspring distribution lies in the domain
of attraction of a stable law of index α ∈ (1, 2]. It was shown by Duquesne [30] (see
also [44]) that, properly rescaled, its contour function converges weakly to a normalized
excursion of the continuous height function associated with the α-stable continuous-state
branching process, which encodes the α-stable Lévy tree, a generalisation of the CRT in
the case α = 2 (for definitions, see the references mentioned above).
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