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Abstract

We investigate the probabilistic and analytic properties of Volterra processes con-
structed as pathwise integrals of deterministic kernels with respect to the Hölder
continuous trajectories of Hilbert-valued Gaussian processes. To this end, we extend
the Volterra sewing lemma from [18] to the two dimensional case, in order to construct
two dimensional operator-valued Volterra integrals of Young type. We prove that the
covariance operator associated to infinite dimensional Volterra processes can be
represented by such a two dimensional integral, which extends the current notion of
representation for such covariance operators. We then discuss a series of applications
of these results, including the construction of a rough path associated to a Volterra
process driven by Gaussian noise with possibly irregular covariance structures, as
well as a description of the irregular covariance structure arising from Gaussian
processes time-shifted along irregular trajectories. Furthermore, we consider an
infinite dimensional fractional Ornstein-Uhlenbeck process driven by Gaussian noise,
which can be seen as an extension of the volatility model proposed by Rosenbaum et
al. in [13].
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Infinite dimensional pathwise Volterra processes

1 Introduction

Volterra processes appear naturally in models with non-local features. In this arti-
cle, we will investigate the analytic and probabilistic properties of Volterra processes
constructed as pathwise integrals of a kernel K against a Gaussian process W . For
generality, we will assume that the Gaussian process W takes values in a Hilbert space
H with a covariance operator QW , and that the kernel (t, s) 7→ K(t, s) for t > s is a linear
operator on the same Hilbert space. In particular, we define the process X : [0, T ]→ H

formally by the integral

X(t) =

∫ t

0

K(t, s)dW (s). (1.1)

At a discrete level, one can think of this process as assigning different weights through
the kernel K to the increments of W . Volterra processes have received much attention
in the field of stochastic analysis over the past decades. The canonical examples are the
Ornstein-Uhlenbeck process where K(t, s) = exp(−α(t− s)) and W a Brownian motion,
or the fractional Brownian motion where K(t, s) = (t − s)H− 1

2 and W is a Brownian
motion. These processes are typically used to model phenomena where some sort of
memory is inherent in the dynamics, and applications are found in various fields ranging
from physics and turbulence modelling [3] to biology [25] and financial mathematics
[15, 4]. See also [2] and the references therein for an introduction to these processes
and their applications.

In order to make sense of the integral appearing on the right-hand side of (1.1), one
must assume some type of regularity conditions on K and W . The type of regularity
conditions needed, typically depends on the choice of integral that is used in the con-
struction of X. For example, if W is a QW -Wiener process (the infinite dimensional
extension of the classical Brownian motion) one would need that K is (Bochner) square
integrable in time s 7→ K(t, s) up to (and including) t (see e.g. [21]). However, for general
real-valued Gaussian processes, this is not a sufficient criterion. Indeed, in the case of
general Gaussian processes on the real line, it is well known that the Volterra processes
appearing in (1.1) makes sense as a Wiener integral if∫ T

0

∫ T

0

K(T, r)K(T, r′)
∂2

∂r∂r′
QW (r, r′)drdr′ <∞, (1.2)

where QW is the real valued covariance of the Gaussian process W (see e.g. [19]). This
construction requires of course that QW is differentiable in both variables, or at least of
bounded variation simultaneously in both variables, which excludes several interesting
Gaussian processes (particular examples of which will be discussed in detail later). An
extension of the above condition to the infinite dimensional setting when W is an Hilbert-
valued process is quite straightforward, but one would still require strong regularity of
the covariance operator QW (say Fréchet differentiable). In several interesting examples,
such regularity requirements on the covariance operator are too strong. For example,
consider a Gaussian processes (B(t))t∈[0,T ] time-shifted along an irregular (possibly
deterministic) path (Z(t))t∈[0,T ], given as the composition process (B(Z(t)))t∈[0,T ]. The
regularity of the covariance would typically be given as the composition of the regularity
of the covariance associated to B and the regularity of Z. Thus if t 7→ Z(t) is only Hölder
continuous, one would not expect to get better regularity of the covariance than that of
Z. The canonical example of such processes is the iterated Brownian motion given as

B(t, ω1, ω2) = B1(ω1, |B2(ω2, t)|)

where B1 : [0, T ] × Ω1 → R and B2 : [0, T ] × Ω2 → R are two independent Brownian
motions on the real line. Such processes have received much attention due to their
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Infinite dimensional pathwise Volterra processes

curious probabilistic properties, as well as applications towards modelling of diffusions
in cracks [24, 9, 10]. If we now fix a trajectory of B2, it is readily seen that B(·, ω2) is
Gaussian, with covariance given by

QB(ω2)(t, s) = min(B2(t, ω), B2(s, ω)),

and therefore the regularity of QB is inherited by the regularity of t 7→ B2(t, ω). Hence,
the covariance function associated to a Volterra process driven by B(·, ω2) can not be
constructed as in (1.2), but an extension of this construction is needed.

In recent years, pathwise analysis of stochastic processes has become prevalent in
the literature. This plays a fundamental role when applying these processes in the theory
of rough paths [22, 14], where analytic properties of the paths and associated “iterated
integrals” constitute the main ingredients. The advantage of the rough path theory lies
in the flexibility to construct pathwise solutions to controlled ODEs on the form

dY (t) = f(Y (t))dX(t), Y (0) = y ∈ H,

even when X is not a semimartingale. Furthermore, one directly obtains stability in the
solution mapping (X, y) 7→ Γ(X, y) induced by the equation above. The rough path theory
opens for considering equations controlled by noise given as Volterra processes, which
typically is of a non-semimartingale nature due to the kernel K. Much work has therefore
been devoted to the construction of the so-called rough path above a given Volterra
process driven by a Brownian motion [23, 33]. On the other hand, to the best of our
knowledge, there is no construction of the rough path above Volterra processes driven
by Gaussian noise with irregular covariance structures. In [14, Sec. 10.2] the authors
provide a simple criterion for the existence of a geometric rough path connected to a
given Gaussian process, given that the covariance structure of this process is sufficiently
regular. This requires of course the existence of a covariance function, which in the
case of Volterra processes driven by Gaussian noise is given by (1.2). A relaxation of the
existence criteria for (1.2) to the case of non-smooth covariances QW and with singular
Volterra kernels K is therefore needed in order to construct the rough path associated
to this class of processes.

The main goal of this article is therefore to extend the sufficient conditions for
construction of the covariance operator on the form of (1.2) to the case when W is an
infinite dimensional stochastic process and QW is possibly nowhere differentiable in both
variables. To this end, we start by giving a pathwise description of the Volterra process
X stated in (1.1). Given a sample path of a Gaussian process W which is α-Hölder
regular, we will show that (1.1) can be constructed in a pathwise sense through a slight
modification of the newly developed Volterra Sewing Lemma from [18]. In this way,
one directly obtains the regularity of the process X as the composition of the possible
singularity coming from K and the regularity of W . On a heuristic level, if the kernel
K(t, s) is behaving locally like (t− s)−η for t ∼ s, and the Gaussian process has Hölder
continuous trajectories of order α ∈ (0, 1), then

|K(t, s)(W (t)−W (s))|H . (t− s)α−η, (1.3)

and henceforth this composition is only finite for t→ s whenever α− η > 0. Recalling
that both in the classical probabilistic framework and in the modern approach of rough
path theory, one would construct the integral as the limit when the mesh size of the
partition P of [0, t] goes to zero in the Riemann-type sum (in either L2(Ω) if possible, or
pathwise topology induced by variation or Hölder norms, see e.g. [18])∑

[u,v]∈P

K(t, u)(W (v)−W (u)). (1.4)
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Infinite dimensional pathwise Volterra processes

Thus at first glance, in order for this sum to converge, it seems natural to require
α− η > 0 to (at least) avoid any explosions when the mesh of the partition P goes to 0.

We next extend the Volterra Sewing Lemma to the two dimensional case, in order to
construct two dimensional operator-valued Volterra integrals on the form

Q̄ :=

∫ T

0

∫ T ′

0

K(T, r)d2Q(r, r′)K(T ′, r′)∗ (1.5)

for linear operators K and Q on the Hilbert space H, and where (s, t) 7→ K(t, s) is
possibly singular on the diagonal as described above. In this expression, K∗ is the adjoint
operator of K, and the ordering of the integral appears naturally when considering
operator-valued integrands which might be non-commutative. Our construction is based
on Young-type integration theory with Volterra kernels, and only requires that Q is
Hölder regular, and K does not blow up too fast at its singular point(s). In particular,
we do not assume that Q needs to be differentiable nor of bounded variation, and thus
our construction truly extends the notion of the integral given in (1.2). An immediate
consequence of our construction is stability of the two dimensional Volterra integral with
respect to changes in the Volterra operator K and the operator Q.

Through a consideration of the characteristic functional associated to the Volterra
processes (1.1), we next show that when Q = QW is of sufficient regularity, then the
covariance operator QX associated the Volterra process X from (1.1) is given by Q̄

in (1.5). In the end we discuss several application areas of our results, including an
analysis of the covariance structure arising from general Gaussian Volterra iterated
processes, the construction of the rough path associated to Volterra processes driven by
Gaussian processes with irregular covariance structures, as well as a representation of
the covariance structure of certain linear fractional stochastic differential equations of
Ornstein-Uhlenbeck type in Hilbert space. In the last example, we discuss the potential
application towards rough volatility modelling, proposing an extension of the rough
Heston model to infinite dimensions.

Already in 2002, Towghi [32] proved that for two functions f, g : [0, T ]2 → R, the
following integral ∫

[0,T ]2
f(s, t)dQW (s, t) (1.6)

makes sense as the limit of a two dimensional Riemann type sum under suitable assump-
tions of complementary regularity between f and g, and can thus be seen as an extension
of the classical Young integral developed in [35]. The construction of the integral (1.5)
can therefore be seen as an infinite dimensional extension of (1.6) to the case when
the the integrand is given as a Volterra operator of singular type. In the case when
the covariance QW itself is a real-valued covariance function associated to a Volterra
process, Lim provided in [20] a relaxation of the complementary regularity conditions
originally proposed in [32] for existence of the two dimensional integral in (1.6). There, f
is assumed to be a sufficiently regular function, and thus singular Volterra kernels as we
consider here fall outside of the scope of that article. Furthermore, in the current article,
we do not impose any further structure on the covariance operator, other than regularity
to keep it as general as possible, which in the end will prove useful in applications.

1.1 Outline of the article

The article is structured into the following sections:

Sec. 2 We give an introductory account of Gaussian processes in Hilbert space, as well
as continuity of the trajectories.
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Sec. 3 We introduce the concept of Volterra paths (as described in [18]), and provide
a pathwise construction of Gaussian Volterra paths from the regularity of the
trajectories of the Gaussian noise as well as the possible singularity of the Volterra
kernel.

Sec. 4 This section is devoted to prove that the pathwise Volterra processes driven by
Gaussian processes, are again Gaussian. To this end, we show the construction of
a general covariance operator, even when the covariance function of the driving
noise is nowhere differentiable.

Sec. 5 We discuss a series of applications, including the construction of a rough path
above Volterra processes driven by Gaussian noise with irregular covariance
structures, and compute explicitly the covariance operators to various well-known
Volterra processes, driven by Gaussian noise.

We provide background material on fractional calculus and some proofs of auxiliary
results in two appendices.

1.2 Notation

We assume (Ω,F ,P) to be a complete probability space equipped with a filtration
(Ft)t≥0 satisfying the usual hypotheses. We will work with a separable Hilbert space
which will be denoted by H. The inner product in H is denoted 〈·, ·〉H with associated
norm | · |H . The (Banach) space of bounded linear operators from H to E, E being another
Hilbert space, is denoted L(H,E), with L(H) := L(H,H). Sometimes E may also be a
general Banach space, but this will be clear from the context. We will frequently use the
n-simplex ∆T

n over an interval [0, T ] defined by

∆T
n := {(s1, . . . , sn) ∈ [0, T ]n | s1 ≥ . . . ≥ sn}. (1.7)

Also, define the diagonal in [0, T ]n by DT
n , i.e.

DT
n := {(s1, . . . , sn) ∈ [0, T ] | s1 = . . . = sn}. (1.8)

We will denote by Cγ([0, T ], H) the space of γ-Hölder continuous functions f : [0, T ]→ H,
with the norm ‖f‖Cγ = |f(0)|H + ‖f‖γ,[0,T ] where

‖f‖γ,[0,T ] = sup
(t,s)∈∆T

2

|f(t)− f(s)|H
|t− s|γ

.

Whenever the interval [0, T ] is clear from the context, we will write ‖f‖γ for the quantity
‖f‖γ,[0,T ]. Aiming towards an analysis of possibly non-smooth (i.e., only Hölder continu-
ous) covariance functions, we will also be working with increments of two-parameter
functions. To this end, we will need to introduce some new notation. Consider two
points s = (s1, s2) and t = (t1, t2) in [0, T ]2 and a function f : [0, T ]2 → H. Let us
denote by �s,tf the generalized (or rectangular) increment of f over the rectangle
[s, t] = [s1, t1] × [s2, t2] ⊂ [0, T ]2 (notice the implied partial order of the variables in
s = (s1, s2) and t = (t1, t2)) given by

�s,tf = f(t1, t2)− f(t1, s2)− f(s1, t2) + f(s1, s2). (1.9)

Note in particular that if f has a mixed partial derivative ∂2f(r1, r2)/∂r1∂r2 which is
integrable over the rectangle [s, t], we have

�s,tf =

∫ t1

s1

∫ t2

s2

∂2f(r1, r2)

∂r1∂r2
dr2dr1. (1.10)

We remark in passing that in the literature �s,tf is sometimes referred to as the f -volume
of the rectangle [s, t].
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2 Gaussian stochastic processes in Hilbert spaces

One of the main objectives in this article is to study the regularity properties of
various stochastic processes in Hilbert spaces, together with their covariance operators.
In this Section we provide some background material on the important class of Gaussian
stochastic processes in Hilbert space which will be at the core of our studies.

For a Gaussian process in Hilbert space, one associates a covariance operator on the
Hilbert space where the process lives, which describes the covariance structure of the
process. A special case of such Gaussian processes is the Q-Wiener process, where the
covariance operator Q is a non-negative definite trace class linear operator. This process
can be seen as an infinite dimensional extension of the well known Brownian motion, as
these processes share many of the same probabilistic and analytic properties. The infinite
dimensional Wiener process is a special case of a more general class of Hilbert-valued
Gaussian stochastic processes. Below we give a general definition of Hilbert-valued
Gaussian random variables, and then extend this definition to Hilbert-valued Gaussian
processes. We highlight this definition with the example of the construction of the
Hilbert-valued fractional Brownian motion.

We say that an H-valued random variable X is square-integrable if E[|X|2H ] <∞. If X
is square-integrable with zero mean, that is, E[X] = 0 where 0 ∈ H is the zero element
and the expectation is in the sense of Bochner integration with respect to the probability
P, we introduce the covariance functional Q associated to X by

Q = E[X ⊗X].

Here, ⊗ is the tensor product such that for any g, h, x ∈ H, (g ⊗ h)(x) = 〈g, x〉Hh. Note
that by square-integrability of X, the expectation defining Q is well-defined as a Bochner
integral. It is known that Q ∈ L(H) is a symmetric, positive semi-definite trace class
operator. In fact, we have, Tr(Q) = E[|X|2H ] and

E[〈X, g〉H〈X,h〉H ] = 〈Qg, h〉H ,

for any g, h ∈ H. We have the following standard definition of a Gaussian random variable
in Hilbert space:

Definition 1. An H-valued random variable X is said to be Gaussian if 〈X,h〉H is a
real-valued Gaussian random variable for every h ∈ H.

We remark that Gaussian variables in Hilbert space are square-integrable (see [26,
Thm. 3.31]). We introduce a Gaussian process in Hilbert space by the following definition
(see [26, Def. 3.30]):

Definition 2. An H-valued stochastic process (X(t))t≥0 is said to be Gaussian if for
every n ∈ N, 0 ≤ t1 < t2 · · · < tn <∞, (X(t1), X(t2), . . . , X(tn)) is an Hn-valued Gaussian
random variable.

By definition, we have that a Gaussian process can be equivalently characterised
by saying that for every n ∈ N, 0 ≤ t1 < t2 · · · < tn < ∞ and h1, . . . , hn ∈ H,
(〈X(t1), h1〉H , . . . , 〈X(tn), hn〉H) is an n-variate Gaussian random variable on Rn. We
have a covariance operator defined as (for s, t ≥ 0)

Q(s, t) := E[X(s)⊗X(t)] ∈ L(H).

Here we have implicitly assumed that the process has zero mean. Note that generally
Q(s, t) 6= Q(t, s). But,

〈Q(s, t)g, h〉H = E[〈X(s), g〉H〈X(t), h〉H ] = 〈g,Q(t, s)f〉H ,
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and thus, Q(s, t)∗ = Q(t, s). But, on the other hand, Q(t, t) is a positive semi-definite and
symmetric trace class operator.

An important Gaussian process in Hilbert space is the Q-Wiener process, which has a
covariance operator Q(s, t) = Qmin(s, t) where Q is a symmetric positive definite trace
class operator. As in [31, 12, 16] we can define a Q-fractional Brownian motion with
values in Hilbert space by letting

Q(s, t) := Rh(s, t)Q, (2.1)

for a symmetric positive definite trace class operator Q and the real-valued function

Rh(s, t) =
1

2

(
s2h + t2h − |t− s|2h

)
, (2.2)

with the Hurst index h ∈ (0, 1) and s, t ≥ 0. Letting h = 0.5, the Q-fractional Brownian
motion is a Q-Wiener process.

In our analysis, the continuity properties of paths play an important role. For this
purpose, we recall the Kolmogorov continuity theorem (see e.g. [11, Thm. 3.3], where a
full proof of the below statement can be found).

Theorem 3. (Kolmogorov’s continuity theorem). Let W : Ω× [0, T ]→ H be a stochastic
process such that for some positive constants C > 0, ε > 0, δ > 1 and all (t, s) ∈ ∆T

2 the
following inequality holds

E
[
|W (t)−W (s)|δH

]
≤ C|t− s|1+ε.

Then there exists a pathwise continuous modification W̃ of W . More specifically, the
mapping t 7→ W̃ (ω, t) is α-Hölder continuous with α = ε

δ , P− a.s.

For a Q-Wiener process, we readily see that

E[|W (t)−W (s)|2H ] = |t− s|Tr(Q),

while for the fractional Brownian motion with covariance operator defined in (2.1) we
have

E[|W (t)−W (s)|2H ] = |t− s|2hTr(Q).

We have the following result on the Hölder continuity of the fractional Brownian motion
(which seems to be known but we include a proof for the convenience of the reader):

Proposition 4. Let W be a Q-fractional Brownian motion with values in H and covari-
ance operator given in (2.1) with Hurst parameter h ∈ (0, 1). Then, for (t, s) ∈ ∆T

2

E[|W (t)−W (s)|2nH ] ≤ |t− s|2hn(Tr(Q))nE[Z2n]

for any n ∈ N and with Z being a standard normal random variable in R. Moreover,
there exists a version of W which is Hölder continuous of order α < h, P− a.s.

Proof. Let (ei)i∈N be the ONB of eigenvectors of Q, with the covariance operator Q(s, t)

of W defined in (2.1). We have that W (t) − W (s) is a Gaussian mean-zero random
variable, and a straightforward calculation yields that it has the covariance operator
|t− s|2hQ. Thus, Xi := 〈W (t)−W (s), ei〉H is a mean-zero real-valued Gaussian random
variable, with variance equal to |t− s|2hλi. Here, λi > 0 is the ith eigenvalue of Q. As
(ei)i∈N are the eigenvectors of Q, Xi is independent of Xj for any i 6= j, i.j ∈ N. Let
(Zi)i∈N be a sequence of independent identically distributed real valued standard normal
variables. Then, in distribution, we have Xi = |t− s|h

√
λiZi. Parseval’s equality yields

E[|W (t)−W (s)|2nH ] = E

[( ∞∑
i=1

〈W (t)−W (s), ei〉2H

)n]
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= |t− s|2hnE

[( ∞∑
i=1

λiZ
2
i

)n]
.

If n = 1, we are done. Suppose that n ≥ 2. For p > 1 and q being the reciprocal of p, we
find by Hölder’s inequality

∞∑
i=1

λiZ
2
i =

∞∑
i=1

λ
1/q
i λ

1/p
i Z2

i

≤

( ∞∑
i=1

λi

)1/q ( ∞∑
i=1

λiZ
2p
i

)1/p

= (Tr(Q))1/q

( ∞∑
i=1

λiZ
2p
i

)1/p

.

Choosing p = n > 1 and q = n/n− 1, we find

E[|W (t)−W (s)|2nH ] ≤ |t− s|2hn(Tr(Q))n−1
∞∑
i=1

λiE[Z2n
i ],

and the first result of the Proposition follows.
For the second conclusion, suppose that n ∈ N is such that 2hn > 1. Then we obtain

existence of an α := h− 1
2n Hölder continuous version of W from Kolmogorov’s continuity

theorem 3. As n can be chosen arbitrary large, we conclude that there exists a version
of W which is Hölder continuous of order α < h, P-a.s.

As a simple consequence of the above, we see that a Q-Wiener process has a version
with Hölder continuous paths of order α < 1/2. In the analysis that follows in the next
sections, we will make use of processes with specific regularity properties of the paths.
The discussion in this Section shows that we have available specific cases of (Gaussian)
stochastic processes with various Hölder regularity of the paths. Gaussian processes
will constitute our canonical class of models, and whenever we refer to such processes
we will have their Hölder continuous version in mind.

3 Pathwise Volterra processes in Hilbert spaces

In this Section we introduce and study Volterra processes of the form (1.1). In order
to give a pathwise description of Volterra integrals driven by generic Hölder paths, we
will apply a variant of the celebrated Sewing Lemma from the theory of rough paths,
modified to accommodate the Volterra structure inherit in the processes of interest.
This lemma was first proved in [18] where the authors extend aspects of the theory
of rough paths to the analysis of Volterra equations with singular kernels driven by
irregular paths. In order to discuss Volterra integration in a pathwise manner, we will
introduce an abstract space of Volterra paths, as defined in [18]. This definition allows
us to discuss the continuity properties of Volterra paths, independent of the Volterra
integral representation. However, it will be instructive for the reader to think of the
expression

Xτ (t) := X(τ, t) =

∫ t

0

K(τ, r)dW (r), (3.1)

where we have chosen to let a Volterra process have two arguments by decoupling the
first argument τ in the kernel, and the upper integration parameter t, with τ ≥ t. The
classical Volterra process is of course given by the mapping t 7→ Xt(t) (recall (1.1)).
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Thus, if W : [0, T ]→ H is a smooth path,1 then the integral in (3.1) can be interpreted
in the Riemann sense, provided that the kernel K ∈ L(H) is Riemann integrable with
respect to W , and thus we can view X as a path from ∆T

2 to H. Note that we can then
measure the regularity of X in both t and τ separately, where at least at a heuristic
level, the regularity of X in the τ parameter can be expected to be inherited from the
regularity of the kernel K in τ . On the other hand the regularity of X in the t parameter
will typically be inherited by the path W .

Definition 5. Let γ, η ∈ (0, 1) and assume γ − η > 0. We denote by V(γ,η)(∆T
2 , H) the

space of all functions f : ∆T
2 → H such that

‖f‖(γ,η) := ‖f‖(γ,η),1 + ‖f‖(γ,η),1,2 <∞

where we define the semi-norms by

‖f‖(γ,η),1 := sup
(τ,t,s)∈∆T

3

|fτ (t)− fτ (s)|H
[|τ − t|−η|t− s|γ ] ∧ |τ − s|γ−η

‖f‖(γ,η),1,2 := sup
(τ ′,τ,t,s)∈∆T

4

θ∈[0,1],ζ∈[0,γ−η)

|fτ ′(t)− fτ (t)− fτ ′(s) + fτ (s)|H
|τ ′ − τ |θ|τ − t|−θ+ζ {[|τ − t|−η−ζ |t− s|γ ] ∧ |τ − s|γ−η−ζ}

.

(3.2)
Here we have used the notation fτ (t) := f(τ, t) for (τ, t) ∈ ∆T

2 .

Remark 6. Consider a subspace V̂(γ,η)(∆T
2 , H) ⊂ V(γ,η)(∆T

2 , H) containing all Volterra
paths f ∈ V(γ,η)(∆T

2 , H) such that f0 := fτ (0) = c ∈ H for all τ ∈ [0, T ]. Under the norm

‖f‖(γ,η),∗ := |f0|H + ‖f‖(γ,η)

the space V̂(γ,η)(∆T
2 , H) is a Banach space, see e.g. [18].

Remark 7. We can extend the definition of V(γ,η)(∆T
2 , H) above to functions f : ∆T

3 → H,
where f has one upper variable and two lower variables, that is,

(τ, t, s) 7→ fτ (t, s).

In this case, we consider the semi-norms ‖f‖(γ,η),1 and ‖f‖(γ,η),1,2 to be given by

‖f‖(γ,η),1 := sup
(τ,t,s)∈∆T

3

|fτ (t, s)|H
|τ − t|−η|t− s|γ ∧ |τ − s|γ−η

‖f‖(γ,η),1,2 := sup
(τ ′,τ,t,s)∈∆T

4

θ∈[0,1],ζ∈[0,γ−η)

|fτ ′(t, s)− fτ (t, s)|H
|τ ′ − τ |θ|τ − t|−θ+ζ [|τ − t|−η−ζ |t− s|γ ∧ |τ − s|γ−η−ζ ]

.

We denote the space of such three-variable functions by V(γ,η)
3 (∆T

3 , H).

The next proposition shows the relation between the space of classical Hölder paths
Cρ([0, T ], H) and V(γ,η)(∆T

2 , H) when γ − η = ρ > 0.

Proposition 8. Suppose f ∈ V(γ,η)(∆T
2 , H) with γ − η = ρ > 0 and fτ (0) = c ∈ H is

constant (in H) for all τ ∈ [0, T ]. Then the restriction of f̃(t) := f t(t) of f to the diagonal
of ∆T

2 is ζ-Hölder continuous for any ζ ∈ [0, ρ), i.e. f̃ ∈ Cζ([0, T ], H).

1Notice here that W is a general path, not necessarily a Gaussian process as we discussed in the previous
section. However, in typical cases we have W being a Q-Wiener or fractional Brownian motion, which explains
why we use the notation W .
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Infinite dimensional pathwise Volterra processes

Proof. By assumption it follows that f t(0) − fs(0) = 0 for all s, t ∈ [0, T ]. Furthermore,
by definition of the norms, we have that

|f t(t)− fs(s)|H ≤ |f t(t)− f t(s)|H + |f t(s)− fs(s)|H
≤ |f t(t)− f t(s)|H + |f t(s)− fs(s)− f t(0) + fs(0)|H
≤ ‖f‖(γ,η),1|t− s|ρ + T γ−η−ζ‖f‖(γ,η),1,2|t− s|ζ .

In the second majorization of the last inequality above, we applied the definition of
‖ · ‖(γ,η),1,2 in (3.2) with θ = ζ ∈ [0, γ − η), i.e., for any (τ ′, τ, t, s) ∈ ∆T

4 , the following
relation holds

|fτ
′
(t)− fτ (t)− fτ

′
(s) + fτ (s)|H ≤ ‖f‖(γ,η),1,2|τ ′ − τ |ζ |τ − t|0|τ − s|γ−η−ζ .

Thus, for (τ ′, τ, t, s) := (t, s, s, 0) we get the desired inequality after observing that
sγ−η−ζ ≤ T γ−η−ζ . As ζ ∈ [0, ρ) is arbitrary, we see that f̃ ∈ Cζ([0, T ], H) and the result
follows.

In order to accommodate pathwise Volterra integrals, we will need a modified version
of the Sewing Lemma. But first we define a suitable space of abstract Volterra integrands.
In the sequel, we will work with integrals taking values in a space of linear operators
on Hilbert spaces. We therefore state the Volterra Sewing Lemma in general Banach
spaces.

Definition 9. Consider a Banach space E, and suppose γ, η ∈ (0, 1), β ∈ (1,∞) and
κ ∈ (0, 1) is such that the following relations hold β − κ ≥ γ − η > 0. Denote by
V (γ,η)(β,κ)

(
∆T

3 , E
)
, the space of all functions Ξ : ∆T

3 → E such that

|||Ξ|||(γ,η)(β,κ) := ‖Ξ‖(γ,η) + |||δΞ|||(β,κ) <∞. (3.3)

Here δ is the operator defined for any s ≤ u ≤ t ≤ τ acting on functions g by

δug
τ (t, s) = gτ (t, s)− gτ (t, u)− gτ (u, s). (3.4)

The norm ‖Ξ‖(γ,η) is given as in Remark 7, while the quantity |||δΞ|||(β,κ) is a slight
modification of the norms from Remark 7 defined by

|||δΞ|||(β,κ) := |||δΞ|||(β,κ),1 + |||δΞ|||(β,κ),1,2

where

|||δΞ|||(β,κ),1 := sup
(τ,t,u,s)∈∆T

4

|δuΞτ (t, s)|E
|τ − t|−κ|t− s|β ∧ |t− s|β−κ

,

|||δΞ|||(β,κ),1,2 := sup
(τ ′,τ,t,u,s)∈∆T

5

θ∈[0,1],ζ∈[0,β−κ)

|δu
[
Ξτ
′
(t, s)− Ξτ (t, s)

]
|E

|τ ′ − τ |θ|τ − t|−θ+ζ [|τ − u|−κ−ζ |t− s|β ]
.

(3.5)

where we mean Ξτ (t, s) := Ξ(τ, t, s). In the sequel we call V (γ,η)(β,κ)(∆T
3 , E) the space of

all abstract Volterra integrands.

We are now ready to state the Sewing Lemma adapted to Volterra integrands. The
following lemma is a trivial extension of [18, Lemma 21] to the case of Banach-valued
Volterra kernels.

Lemma 10. (Volterra Sewing Lemma) Let E be a Banach space, and consider param-
eters γ, η ∈ (0, 1), β ∈ (1,∞), and κ ∈ (0, 1) such that β − κ ≥ γ − η > 0. There exists a
unique continuous map I : V (γ,η)(β,κ)

(
∆T

3 , E
)
→ V(γ,η)

(
∆T

2 , E
)

such that the following
statements holds true
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(i). The quantity I(Ξτ )(t, s) := lim|P|→0

∑
[u,v]∈P Ξτ (v, u) exists (in E) for all tuples

(τ, t, s) ∈ ∆T
3 , where P is a generic partition of [s, t] and |P| denotes the mesh size

of the partition.

(ii). For all (τ, t, s) ∈ ∆T
3 the following inequality holds

|I (Ξτ ) (t, s)− Ξτ (t, s)|E . |||δΞ|||(β,κ),1

(
|τ − t|−κ|t− s|β ∧ |τ − s|β−κ

)
, (3.6)

(iii). For all (τ ′, τ, t, s) ∈ ∆T
4 , θ ∈ [0, 1] and ζ ∈ [0, β − κ), we denote by Ξτ

′,τ (t, s) =

Ξτ
′
(t, s)− Ξτ (t, s), and the following inequality holds

|I(Ξτ
′,τ )(t, s)− Ξτ

′,τ (t, s)|E
. |||δΞ|||(β,κ),1,2

(
|τ ′ − τ |θ|τ − t|−θ+ζ

[
|τ − t|−κ−ζ |t− s|β ∧ |τ − s|β−κ−ζ

])
. (3.7)

Moreover, t 7→ I(Ξτ )(t) := I(Ξτ )(t, 0) is additive, in the sense that I(Ξτ )(t, s) =

I(Ξτ )(t, 0)− I(Ξτ )(s, 0), and we conclude that (τ, t) 7→ I (Ξτ ) (t) ∈ V(γ,η)(∆T
2 , E).

We are frequently going to work with Volterra kernels in various contexts, and we
therefore state a common hypothesis on the regularity on the kernels we consider in this
article.

Definition 11. For η ∈ (0, 1), suppose K : ∆T
2 → L(H) is a linear operator on the Hilbert

space H which satisfies for (τ, t, s, r) ∈ ∆T
4 and any θ, ν ∈ [0, 1] the following inequalities

|K(t, s)f |H . |t− s|−η|f |H (3.8)

|(K(t, s)−K(t, r))f |H . |t− s|−η−θ|s− r|θ|f |H . (3.9)

|(K(τ, s)−K(t, s))f |H . |t− s|−η−θ|τ − t|θ|f |H . (3.10)

|(K(τ, s)−K(τ, r)−K(t, s) +K(t, r))f |H . |τ − r|−ν−θ−η|τ − t|θ|r − s|ν |f |H . (3.11)

for every f ∈ H. Then we say that the kernel K is a Volterra kernel of order η. We
denote the space of all Volterra kernels K of order η ∈ (0, 1) satisfying (3.8)-(3.11) by Kη.
We equip this space with the following semi-norm

‖K‖Kη := ‖K‖η,1 + ‖K‖η,2 + ‖K‖η,3, ‖K‖η,4, (3.12)

where we define the three semi-norms on the right-hand side above by

‖K‖η,1 := sup
(t,s)∈∆T

2

‖K(t, s)‖op

|t− s|−η
, (3.13)

‖K‖η,2 := sup
(t,u,s)∈∆T

3

θ∈[0,1]

‖K(t, s)−K(u, s)‖op

|t− u|θ|u− s|−θ−η
, (3.14)

‖K‖η,3 := sup
(t,u,s)∈∆T

3

θ∈[0,1]

‖K(t, u)−K(t, s)‖op

|u− s|θ|t− u|−θ−η
, (3.15)

‖K‖η,4 := sup
(τ ′,τ,s,r)∈∆T

4

θ,ν∈[0,1]

‖K(τ ′, s)−K(τ ′, r)−K(τ, s) +K(τ, r)‖op

|τ − r|−ν−θ−η|τ ′ − τ |ν |r − s|θ
, (3.16)

with ‖ · ‖op denoting the operator norm.

Remark 12. Note that if K ∈ Kη, then also K∗ ∈ Kη. Indeed, this follows from the
well-known fact that ‖K(t, s)‖op = ‖K∗(t, s)‖op for any (t, s) ∈ ∆T

2 .
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Remark 13. We restrict our analysis here to K(t, s) ∈ L(H). One could easily extend
our results to operators K(t, s) ∈ L(H,H ′) for some general Hilbert spaces H and H ′, or
even to K(t, s) ∈ L(E,E′) for some general Banach spaces E and E′, by adjusting the
spaces of paths and functions accordingly. However, to increase readability we confine
our considerations to L(H).

With Definition 11 at hand we will now show that we can construct Volterra processes
from Hölder paths in a deterministic manner using the Volterra Sewing Lemma 10.

Proposition 14. Suppose γ, η ∈ (0, 1) are such that γ − η > 0. Let W ∈ Cγ ([0, T ], H)

and consider a kernel K ∈ Kη as introduced in Definition 11. Let the abstract integrand
Ξ be given as

Ξτ (t, s) := K(τ, s) (W (t)−W (s)) . (3.17)

Then we define the pathwise Volterra process as the integral

Xτ (t) :=

∫ t

0

K(τ, s)dW (s) := I (Ξτ ) (t), (3.18)

where, for a partition P of [0, t], the integral I (Ξτ ) is defined as in Lemma 10 by

I(Ξτ )(t) := lim
|P|→0

∑
[u,v]∈P

Ξτ (v, u), (3.19)

and the limit is taken in H. Moreover, we have that (τ, t) 7→ Xτ (t) ∈ V(γ,η)(∆T
2 , H).

Proof. With Lemma 10 in mind, we recall that in order to show convergence of the
integral in (3.19), it is sufficient to prove that Ξ given as in (3.17) satisfies the following
conditions

‖Ξ‖(γ,η) = ‖Ξ‖(γ,η),1 + ‖Ξ‖(γ,η),1,2 <∞ and

|||δΞ|||(β,κ) = |||δΞ|||(β,κ),1 + |||δΞ|||(β,κ),1,2 <∞,

for some (β, κ) ∈ (1,∞) × [0, 1) with β − κ ≥ γ − η. The fact that ‖Ξ‖(γ,η) < ∞ follows
directly from the assumptions on the noise W and kernel K: Indeed, since K ∈ Kη and
W ∈ Cγ([0, T ], H) yields

|K(τ, s)(W (t)−W (s))|H . ‖K‖η,1‖W‖γ |τ − s|−η|t− s|γ .

Notice that since τ ≥ t ≥ s we have

|τ − s|−η|t− s|γ ≤ [|τ − t|−η|t− s]γ ] ∧ |τ − s|γ−η. (3.20)

This shows that ‖Ξ‖(γ,η),1 <∞. For the second part of the semi-norm ‖Ξ‖(γ,η), we argue
as follows. Firstly, for τ ′ ≥ τ , we find

Ξτ
′
(t, s)− Ξτ (t, s) = (K(τ ′, s)−K(τ, s))(W (t)−W (s))

Hence, from the semi-norm in (3.15), we find

|(K(τ ′, s)−K(τ, s))(W (t)−W (s))|H ≤ ‖W‖γ‖K‖η,3|τ ′ − τ |θ|τ − s|−θ−η|t− s|γ . (3.21)

for any θ ∈ [0, 1]. Invoking (3.20), it is readily seen that also ‖Ξ‖(γ,η),1,2 <∞.
Next we move on with showing the finiteness of |||δΞ|||(β,κ): First, we investigate the

action of δ on the integrand Ξ given in (3.17). By elementary algebraic manipulations,
we observe that for (τ, t, u, s) ∈ ∆T

4 the following relation holds

δuΞτ (t, s) = (K(τ, s)−K(τ, u)) (W (t)−W (u)) .
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Again using that the kernel K ∈ Kη and the assumption that W ∈ Cγ([0, T ], H), it is
readily checked that for any θ ∈ [0, 1]

|δuΞτ (t, s)|H ≤ ‖K‖η,3‖W‖γ |τ − s|−η−θ|s− u|θ|t− u|γ . |τ − s|−η−θ|t− s|γ+θ.

We therefore set β = γ + θ and κ = η + θ, and choose θ ∈ [0, 1] such that (β, κ) ∈
(1,∞)× (0, 1) (we note that this is always possible due to the restriction γ − η > 0). Then
we see that |τ − s| ≥ |t− s| and |τ − s| ≥ |τ − t|, and therefore

|τ − s|−κ|t− s|β ≤ [|τ − t|−κ|t− s|β ] ∧ |t− s|β−κ

It follows that |||δΞ|||(β,κ),1 <∞. We also point out that β − κ = γ − η.
To prove that also |||δΞ|||(β,κ),1,2 < ∞, we follow in the same direction as outlined

above. However, rather than invoking (3.9), we will need to make use of (3.11). In
particular, we need to consider the increment in the upper variables in Ξ, i.e.

Ξτ
′,τ (t, s) = Ξτ

′
(t, s)− Ξτ (t, s),

and then the action of δu on Ξτ
′,τ (t, s) is given by

δuΞτ
′,τ (t, s) = (K(τ ′, s)−K(τ, s)−K(τ ′, u) +K(τ, u)) (W (t)−W (u)) .

Thus invoking (3.11) on the kernel K, and we can follow the exact same routine as
for the proof that |||δΞ|||(β,κ),1 < ∞. One sees that for any parameters θ, ν ∈ [0, 1] and

(τ ′, τ, t, u, s) ∈ ∆T
5 we have

|δuΞτ
′,τ (t, s)|H ≤ ‖K‖η,4‖W‖γ |τ ′ − τ |ν |τ − u|−ν−θ−η|u− s|θ|t− u|γ .

Using that for any ζ ≥ 0 we have |τ −u|−ν−θ−η ≤ |τ − t|−θ+ζ |τ −u|−η−ν−ζ , we obtain that

|δuΞτ
′,τ (t, s)|H ≤ ‖K‖η,4‖W‖γ |τ ′ − τ |ν |τ − t|−ν+ζ

[
|τ − u|−η−θ−ζ |t− s|γ+θ

]
(3.22)

We then choose θ ∈ [0, 1] such that γ + θ > 1 and θ + η + ζ < 1, which is possible by
restricting ζ ∈ [0, γ − ρ), and γ − ρ > 0 by assumption. We therefore set β = θ + γ and
κ = θ+ η, and it follows that |||δΞ|||(β,κ),1,2 <∞, where we recall that this norm is defined
in (3.5). Thus we may invoke Lemma 10 for the construction of the integral I(Ξ) as given
in 3.19, and we get that this integral exists with a unique limit. It follows directly from
Lemma 10 that X ∈ V(γ,η)(∆T

2 , H). This concludes the proof.

Let us illustrate Proposition 14 by providing an example which will be discussed in
the applications, Section 5.

Example 3.1. For (τ, s) ∈ ∆T
2 , assume that the kernel K(τ, s) ∈ L(H) is given on the

form K(τ, s) = (τ−s)−ηA, where η ∈ (0, 1
2 ) and A ∈ L(H). Furthermore, for any α ∈ (0, 1

2 )

such that α > η, consider an α-Hölder continuous trajectory of an H-valued Q-Wiener
process W . Then we can give a pathwise construction of an infinite dimensional version
of what is known as the Riemann-Liouville fractional Brownian motion by setting

Xτ (t) =

∫ t

0

(τ − s)−ηAdW (s) = I (Ξτ ) (t, 0)

where the integral is constructed in terms of Proposition 14. An interesting observation
here is that the construction of this processes is given as a purely deterministic functional
I applied to the Wiener process W , i.e. X = I (W ). This tells us in particular that when
we have constructed a Wiener processes on a probability space (Ω,F ,P), and according
to Kolmogorov’s continuity theorem 3 found the set N c ⊂ Ω of full measure such that
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for each ω ∈ N c the mapping t 7→ W (ω, t) has α−Hölder continuous trajectories for
α ∈ (0, 1

2 ), then the trajectory (τ, t) 7→ Xτ (ω, t) ∈ V(α,η)(∆T
2 , H). Recall in particular from

Proposition 8 that the restriction mapping t 7→ X(ω, t) := Xt(ω, t) is ρ-Hölder continuous
with ρ = α− η. This illustrates the point that simply from a probabilistic construction
of the Wiener process, and the identification of the set of N c ⊂ Ω on which the Wiener
process is continuous, one can construct a vast class of processes X : N c × [0, T ]→ H

given by X(ω, t) = I (W (ω, ·))(t). In the next section we will show that under mild
conditions on the deterministic operators K, the random variable

ω 7→ X(ω, t) = I (W (ω, ·))(t)

is Gaussian on the probability space (Ω,F ,P), with an explicit covariance operator given
as a two-dimensional, possibly singular, integral with respect to the covariance operator
of W.

4 Gaussian Volterra processes

With the Sewing Lemma 10 at hand, we are now ready to investigate Volterra paths
driven by Gaussian processes. The processes we consider will be constructed in a
pathwise manner, as limits of Riemann-type sums through the application of Lemma
10. When the deterministic Volterra kernel K is a linear operator on H with sufficient
regularity of the singularity, we show that these processes are again Gaussian. More
specifically, we consider Volterra processes on the form

Xτ (t) =

∫ t

0

K(τ, s)dW (s), (4.1)

where τ ≥ t and W is a Gaussian process with zero mean and a sufficiently regular
covariance operator

QW (u, u′) := E[W (u)⊗W (u′)].

Recall from Section 2 that the covariance operator is a bounded linear operator on H.
When the Volterra kernel K ∈ Kη for some η ∈ [0, 1), and the covariance function QW is
sufficiently regular, we show that X given in (4.1) is again a Gaussian process. We derive
the characteristic functional of X, and from this give an explicit computation of the
covariance structure of X, denoted by QX . In fact, we show that the covariance operator
QX can be written as a deterministic functional of the kernel K and the covariance of
W . That is, the covariance operator QX can be written as

QX = I (K,QW ) , (4.2)

where I is an integral operator, given as a double Young-Volterra integral. Furthermore,
we prove that the operator I is Lipschitz continuous in both of its arguments. Stability
of the covariance operator tells us in particular that if we do small (sufficiently regular)
perturbations of the covariance associated to a Gaussian process W , then the covariance
associated to the Gaussian process X does not change by more than the size of these
perturbations. In view of statistical estimation, this demonstrates robustness of the
model with respect to data.

Let us begin to motivate the construction of the integral functional I in (4.2). The
covariance operator QX associated to X will be defined by the double integral from (0, 0)

to a point (t, t′) ∈ [0, T ]2 as follows

Qτ,τ
′

X (t, t′) =

∫ t

0

∫ t′

0

K(τ, r)d2QW (r, r′)K(τ ′, r′)∗, (4.3)
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where K∗ denotes the dual operator of K, and the differential d2QW will be given
meaning below. If QW is smooth, then we can think of this as given by the mixed partial

derivative d2QW (r, r′) = ∂2QW
∂t∂s (r, r′)drdr′. From the proposed representation of QW ,

Qτ,τ
′

X (t, t′)f ∈ H since K and QW are both bounded linear operators on H. At this stage,
we would like to comment that the order of the integrands in (4.3) is natural when
working with operator-valued integrals corresponding to covariance functions. Since
the covariance operators QW and K are linear operators on H, their non-commutative
nature requires special care. Indeed, first recall that for (τ, v, u), (τ ′, v′, u′) ∈ ∆T

3 and
f, g ∈ H we have

E [〈K(τ, u)W (u), f〉H〈K(τ ′, v)W (v), g〉H ] = E [〈W (u),K(τ, u)∗f〉H〈W (v),K(τ ′, v)∗g〉H ] .

Since X given in (4.1) is constructed as a limit of a Riemann sum as in Proposition 14,
let us motivate the construction of (4.3) by considering an approximation of X given by
a partition P of [0, t] as

Xτ
P(t) :=

∑
[u,v]∈P

K(τ, u)(W (v)−W (u)). (4.4)

Then, the covariance operator between Xτ
P(t) and Xτ ′

P′(t
′) (where P ′ is a partition of

[0, t′]) is computed in the following way

E

[
〈
∑

[u,v]∈P

K(τ, u)(W (v)−W (u)), f〉H〈
∑

[u′,v′]∈P′
K(τ ′, u′)(W (v′)−W (u′)), g〉H

]
=

∑
[u,v]∈P

[u′,v′]∈P′

E [〈(W (v)−W (u)),K(τ, u)∗f〉H〈(W (v′)−W (u′)),K(τ ′, u′)∗g〉H ]

=
∑

[u,v]∈P
[u′,v′]∈P′

〈
�(u,u′),(v,v′)QWK(τ, u)∗f,K(τ ′, u′)∗g

〉
H

= 〈
∑

[u,v]∈P
[u′,v′]∈P′

K(τ ′, u′)�(u,u′),(v,v′)QWK(τ, u)∗f, g〉H .

(4.5)

Here, we used the duality of linear operators and

�(u,u′),(v,v′)QW = E[(W (v)−W (u))⊗ (W (v′)−W (u′))] (4.6)

by recalling the definition of the increment operator � in (1.9). If QW is mixed-
differentiable in its two variables, we have

�(u,u′),(v,v′)QW '
∂2QW
∂t∂s

(u, v)(v − u)(v′ − u′). (4.7)

whenever u is close to u′ and v is close to v′. However, we would like to allow for possibly

singular covariance functions where the mixed partial derivative ∂2QW
∂t∂s does not exist

(possibly everywhere). Thus, taking the limit when |P| ∨ |P ′| → 0 in Xτ
P and Xτ ′

P′ , one
would need to show that the corresponding covariance integral appearing as the limit

lim
|P|∨|P′|→0

∑
[u,v]∈P

[u′,v′]∈P

K(τ ′, u′)�(u,u′),(v,v′)QWK(τ, u)∗ (4.8)

converges in L(H).
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4.1 Construction of irregular covariance functions

Our first goal will be to show the existence of the integral appearing on the right-
hand side of (4.3). To this end, we will give an extension of the Volterra Sewing Lemma
presented in Lemma 10, to allow for two-dimensional operator-valued integrals. As
the integrals we are concerned with have the very specific form given in (4.3), we will
tailor the construction of the two-dimensional integral to this specific case. Our second
goal is to show that the process defined in (4.1) is Gaussian if W is Gaussian and K

is deterministic, whenever the integral on the right-hand side of (4.3) exists. Before
moving on to the construction of the double integral in (4.3), we give a definition of a
class of suitable two-parameter functions Q which shall be used in the sequel for the
construction of covariance operators.

Definition 15. Let α ∈ (0, 1) and let Q : [0, T ]2 → L(H). We say that Q is an α-regular
covariance operator if it satisfies

‖Q‖Qα := ‖Q‖α,(1,0) + ‖Q‖α,(0,1) + ‖Q‖α,(1,1) <∞, (4.9)

where we define

‖Q‖α,(1,0) := sup
(t,s)∈∆T

2

t′∈[0,T ]

‖Q(t, t′)−Q(s, t′)‖op
|t− s|α

(4.10)

‖Q‖α,(0,1) := sup
t∈[0,T ]

(t′,s′)∈∆T
2

‖Q(t, t′)−Q(t, s′)‖op
|t′ − s′|α

(4.11)

‖Q‖α,(1,1) := sup
(t,s)∈∆T

2

(t′,s′)∈∆T
2

‖�(s,s′),(t,t′)Q‖op
[|t− s||t′ − s′|]α

, (4.12)

where we recall the rectangular increment is given by

�(u,u′),(v,v′)Q = Q(v, v′)−Q(u, v′)−Q(v, u′) +Q(u, u′).

We denote the class of all α−regular covariance operators by Qα.

The reader should notice that the space Qα of α-regular covariance operators is
larger than the space of true covariance operators Q : [0, T ]2 → L(H) (with the same
path-regularity, of course). Indeed, we have Q(t, t) being a symmetric and positive-
semidefinite trace class operator if Q(s, t) = E[X(s)⊗X(t)] is the covariance operator
for a mean-zero and square-integrable H-valued stochastic process X(t), a restriction
not imposed on the elements in Qα. Thus, our results in the next subsection cover a
larger family of mappings Q : [0, T ]2 → L(H) than merely those which arise as covariance
operators. We prefer to keep the adjective “covariance” associated to this larger class
simply because we typically have such operators in mind.

Remark 16. If Q : [0, T ]2 → L(H) is 0 when one of the variables is 0, i.e. Q(0, t) =

Q(t, 0) = 0, then Q ∈ Qα if ‖Q‖α,(1,1) <∞. Indeed, by subtraction of 0 = Q(t, 0)−Q(s, 0)

in (4.10), we observe that

‖Q‖α,(1,0) = sup
(t,s)∈∆T

2

(t′,s′)∈∆T
2

‖Q(t, t′)−Q(s, t′)−Q(t, 0) +Q(s, 0)‖op
|t− s|α

≤ ‖Q‖α,(1,1)T
α.

Similarly we can bound ‖Q‖α,(0,1).
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The space Qα is somewhat non-standard (at least from the point of view of covariance
functions), and thus we provide below an example of a co-variance operator contained in
this space. We consider here the covariance operator of a fractional Brownian motion,
and show that it is contained in such a space. For conciseness we only consider the case
of fractional Brownian motion with Hurst parameter 0 < h ≤ 1

2 , as this is the case which
will be discussed in later applications.

Example 4.1. LetQ(t, s) = Rh(t, s)Q be the covariance operator of a fractional Brownian
motion on a Hilbert space H with Hurst parameter h ∈ (0, 1

2 ], where Rh : [0, T ]→ R is
given as in (2.2). Then, we have that

�(u,u′),(v,v′)R
h =

1

2
(−|v − v′|2h + |v′ − u|2h + |v − u′|2h − |u− u′|2h). (4.13)

Using that for α ∈ (0, 1], there exists a c > 0 such that for two numbers a, b ∈ R,
||a|α − |b|α| ≤ c|a− b|α, it follows that

|�(u,u′),(v,v′)R
h| ≤ c|v − u|2h ∧ |v′ − u′|2h. (4.14)

By using the interpolation inequality a ∧ b ≤ aθb1−θ for any θ ∈ [0, 1] and a, b ∈ R+, we
find that

|�(u,u′),(v,v′)R
h| ≤ c|v − u|h|v′ − u′|h. (4.15)

It follows that the covariance operator Rh(t, s)Q associated to a fractional Brownian
motion with Hurst parameter h ∈ (0, 1

2 ] is contained in the space Qh.

The following theorem can be viewed as an extension (or combination) of the Volterra
Sewing Lemma 10 proven in [18] and the multi-parameter Sewing lemma found in [17].

Theorem 17. Let α ∈ (0, 1), η ∈ [0, 1) such that α−η > 0. Consider a covariance operator
Q : [0, T ]2 → L(H) in Qα, and suppose K ∈ Kη is a Volterra kernel. For partitions P of
[0, t] and P ′ of [0, t′], define the approximating Volterra covariance function by

Mτ,τ ′

P×P′(t, t
′) :=

∑
[u,v]∈P

[u′,v′]∈P′

K(τ, u)�(u,u′),(v,v′)QK(τ ′, u′)∗. (4.16)

Then there exists a unique operator in L(H) given as the limit (in operator-norm)

I(K,Q)τ,τ
′
(t, t′) :=

∫ t

0

∫ t′

0

K(τ, r)d2Q(r, r′)K(τ ′, r′)∗ := lim
|P|→0
|P′|→0

Mτ,τ ′

P×P′(t, t
′), (4.17)

satisfying the additivity relation

�(u,u′),(v,v′)I(K,Q)τ,τ
′

=

∫ v

u

∫ v′

u′
K(τ, r)d2Q(r, r′)K(τ ′, r′)∗ (4.18)

Furthermore, there exists a pair (β, κ) ∈ (1,∞)×[0, 1) with β−κ ≥ ρ and a constant C > 0

such that the following statements holds

(i). For (τ, t, s), (τ ′, t′, s′) ∈ ∆T
3 the following inequality holds

‖
∫ t

s

∫ t′

s′
(K(τ, r)−K(τ, s)) d2Q(r, r′) (K(τ ′, r′)∗ −K(τ ′, s′)∗) ‖op

≤ C‖K‖2Kη‖Q‖Qα
(

[|τ − t||τ − t′|]−κ [|t′ − s′||t− s|]β
)
∧ [|τ ′ − s′||τ − s|]β−κ ,

(4.19)
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(ii). For (τ, t, s) ∈ ∆T
3 , (τ ′1, τ

′
2, t
′, s′) ∈ ∆T

4 and any ζ ∈ [0, ρ) we have

‖
∫ t

s

∫ t′

s′
(K(τ, r)−K(τ, s)) d2Q(r, r′)

(
�(τ ′2,s

′),(τ ′1,r
′)K
∗) ‖op

≤ C‖K‖2Kη‖Q‖Qα |τ
′
1 − τ ′2|θ

× |τ ′2 − t′|−θ+ζ
([
|τ − t||τ − t′|−ζ

]−κ
[|t′ − s′||t− s|]β

)
∧
[
|τ − s||τ ′ − s′|−ζ

]β−κ
. (4.20)

(iii). For (τ1, τ2, t, s) ∈ ∆T
4 , (τ ′, t′, s′) ∈ ∆T

3 and any ζ ∈ [0, ρ) we have

‖
∫ t

s

∫ t′

s′

(
�(τ2,s),(τ1,r)K

)
d2Q(r, r′) (K(τ ′, r′)∗ −K(τ ′, s′)∗) ‖op

≤ C‖K‖2Kη‖Q‖Qα |τ1 − τ2|
θ

× |τ2 − t|−θ+ζ
([
|τ − t||τ − t′|−ζ

]−κ
[|t′ − s′||t− s|]β

)
∧
[
|τ − s||τ ′ − s′|−ζ

]β−κ
. (4.21)

(iv). For (τ1, τ2, t, s), (τ
′
1, τ
′
2, t
′, s′) ∈ ∆T

4 and any ζ ∈ [0, ρ) we have

‖
∫ t

s

∫ t′

s′

(
�(τ2,s),(τ1,r)K

)
d2Q(r, r′)

(
�(τ ′2,s

′),(τ ′1,r
′)K
∗) ‖op

≤ C‖K‖2Kη‖Q‖Qα [|τ1 − τ2||τ ′1 − τ ′2|]θ

× [|τ2 − t||τ ′2 − t′|]−θ+ζ
([
|τ − t||τ − t′|−ζ

]−κ
[|t′ − s′||t− s|]β

)
∧
[
|τ − s||τ ′ − s′|−ζ

]β−κ
. (4.22)

Proof. The first objective of this proof is to show the existence and uniqueness of
the two-dimensional integral defined in (4.17). To this end, we will also encounter one-
dimensional integrals formed from the two-dimensional integrandK(τ, u)�(u,u′),(v,v′)QK(τ ′, u′)∗

used in the definition (4.16) which will be called boundary integrals. Since these inte-
grals are simply constructed from the one-dimensional Volterra Sewing Lemma 10 in the
Banach space L(H), we will only briefly comment on their construction here, and focus
on the two-dimensional integral. The one-dimensional integrals are given on the form

Iτ,τ
′

1 (s, s′, t, t′) :=

∫ t

s

K(τ, r) [dQ(r, t′)− dQ(r, s′)]K(τ ′, s)∗ (4.23)

=

∫ t

s

∫ t′

s′
K(τ, r)d2Q(r, r′)K(τ ′, s)∗,

where we note that there is no dependence on the integration variable r′ in the integrand
of the second integral, and thus the integral in this variable exists naturally as an integral
over a constant. The differential dQ(r, t′) with fixed second argument t′ is then meant as
the regular one-variable differential. We can define the second boundary integral I2 in
the same way, by integrating over the interval [s′, t′].

In the sequel, we will frequently analyse the mapping

(s, s′, t, t′, τ, τ ′) 7→ K(τ, s)�(s,s′),(t,t′)QK(τ ′, s′).

From time to time, we will simply write K�QK∗ as a generic notation.
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At this point we let δ1 and δ2 denote the δ given in (3.4) restricted to the first and
third, and second and fourth variable, respectively, of a four-variable function f(s, s′, t, t′).
That is, the action on δ1 on f for s ≤ u ≤ t is given by

δ1
uf(s, s′, t, t′) = f(s, s′, t, t′)− f(u, s′, t, t′)− f(s, s′, u, t′), (4.24)

and the action of δ2 is defined similarly over the variables s′ ≤ u′ ≤ t′. Then, using the
Volterra Sewing Lemma 10 we can show that there exists a pair (β, κ) ∈ (1,∞)× [0, 1)

such that

‖Iτ,τ
′

1 (s, s′, t, t′)−K(τ, s)�(s,s′),(t,t′)QK(τ ′, s′)∗‖op
≤ C

∣∣∣∣∣∣δ1
(
K(·, ·)�(·,s′),(·,t′)QK(τ ′, s′)∗

)∣∣∣∣∣∣
(β,κ),1

[
|τ − t|−κ|t− s|β

]
∧ |τ − s|β−κ, (4.25)

Indeed, in order to apply Lemma 10 we need to show that δ1 acting on the increment
K�QK∗ is sufficiently regular. By elementary algebraic manipulations, we observe in
particular that

δ1
zK(τ, u)�(u,s′),(v,t)QK(τ ′, s′)∗ = (K(τ, u)−K(τ, z))�(z,s′),(v,t)QK(τ ′, s′)∗. (4.26)

With this relation at hand, invoking the assumption that K ∈ Kη and the regularity
condition on Q given by (4.10), we obtain that for any θ ∈ [0, 1]

‖δ1
zK(τ, u)�(u,s′),(v,t′)QK(τ ′, s′)∗‖op

≤ ‖K‖η,3‖Q‖α,(1,1)‖K‖η,1|τ − z|−η−θ|v − u|α+θTα−η, (4.27)

Here we have used that

‖�(u,s′),(v,t′)Q‖op ≤ |v − u|α|t′ − s′|α and ‖K(τ ′, s′)‖op ≤ |τ ′ − s′|−η, (4.28)

and thus
‖�(u,s′),(v,t′)Q‖op‖K(τ ′, s′)‖op ≤ |v − u|αTα−η, (4.29)

where ρ = α−η In the same way, one can verify a similar bound for δ2K�QK∗. It follows
that that the bound in (4.25) holds by setting β = α + θ and κ = η + θ and choosing
θ ∈ [0, 1] such that (β, κ) ∈ (1,∞)× [0, 1) (which is always possible due to the fact that
η < α). The fact that C in (4.25) can be chosen uniformly in all the time variables, follows
from the assumption that η < α, which in particular implies that any singularity coming
from K as s′ → τ ′ is killed by the regularity of �(·,s′),(·,t′)Q, since s′ ≤ t′ ≤ τ ′. Similarly,
we can define the integral I2 in the same way by letting the integrand be independent
of the first integration variable r. By the same analysis as above, with application of
the one-dimensional Volterra Sewing Lemma 10, one gets that also I2 is a well-defined
integral, satisfying a similar bound to (4.25).

Now let us focus on the two-dimensional integral operator I in (4.17). First, we note
that the additivity relation in (4.18) is a straightforward consequence of the additivity of
the limit of the one-dimensional Riemann sum, corresponding to the property∫ t

0

f(r)dr −
∫ s

0

f(r)dr =

∫ t

s

f(r)dr.

See [14] or [17] for more details on this property in connection with the Sewing lemma
both in the one-parameter and multi-parameter setting.

For the uniqueness of the integral defined in (4.17), assume for now that the integral
exists and satisfies (i)-(iv), and consider the following argument: Assume M and M̄
are two candidates for I, both constructed from the integrand K�QK∗. We obtain for
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both M and M̄ one-dimensional integrals, which are unique by the one-dimensional
sewing lemma. Thus, the boundary integrals I1 and I2 of both are identical. Note that
this implies in particular that the boundary integrals corresponding to the difference
M − M̄ is equal to 0. Invoking this fact, it follows from (4.19) that the increment
�(s,s′),(t,t′)(M−M̄) satisfies the following bound for s ≤ t ≤ τ and s′ ≤ t′ ≤ τ ′ and some
(β, κ) ∈ (1,∞)× [0, 1)

‖�(s,s′),(t,t′)(M−M̄)‖op ≤ C [|τ − t||τ − t′|]−κ [|t′ − s′||t− s|]β . (4.30)

Furthermore, due to the additive property in (4.18) of the increment we have that

Mτ,τ ′(s, s′, t, t′)− M̄τ,τ ′(s, s′, t, t′) =
∑

[u,v]∈P
[u′,v′]∈P′

�(u,u′),(v,v′)

[
Mτ,τ ′ − M̄τ,τ ′] , (4.31)

where P and P ′ are now partitions of [s, t] and [s′, t′] respectively. Thanks to (4.30) it
follows that we can bound the left hand side of (4.31) in the following way

‖Mτ,τ ′(0, 0, t, t′)− M̄τ,τ ′(0, 0, t, t′)‖op ≤ C
∑

[u,v]∈P
[u′,v′]∈P′

[|τ − v||τ − v′|]−κ [|v′ − u′||v − u|]β

≤ C [|P||P ′|]β−1
∫ t

s

∫ t′

s′
[|τ − r||τ ′ − r′|]−κ dr′dr,

where we have appealed to the restriction of the parameters (β, κ) ∈ (1,∞)× [0, 1) in the
last inequality, as well as recalling that |P| denotes the size of the mesh of the partition
P. We can now choose the partition arbitrarily fine, which implies that the difference
Mτ,τ ′(0, 0, t, t′)−M̄τ,τ ′(0, 0, t, t′) ≡ 0. We conclude that the integral constructed in (4.17)
is unique.

We continue with the proof of the existence of the integral I(K,Q) given in (4.17). To
shorten slightly the notation, we from now on write I := I(K,Q) for the two-dimensional
integral. In our argument, we first consider a sequence of approximating integrals
constructed from dyadic partitions, and show that this sequence is Cauchy. We show
in particular that the integral constructed from dyadic partitions satisfy the regularity
condition in (i). Second, we show that the definition may be extended to any partition,
and thus the limit in Equation (4.17) is independent of the chosen partition P.

Consider now dyadic partitions Pn for n ∈ N0 defined in the following way: P0 =

{[s, t]} and Pn is defined iteratively for n ≥ 1 by

Pn :=
⋃

[u,v]∈Pn−1

{[u, z], [z, v]}, (4.32)

where the point z = (v + u)/2. It is readily checked that each interval [u, v] ∈ Pn is of
length 2−n|t − s|, and that Pn consists of 2n intervals. Construct the dyadic partition
P ′,n′ of [s′, t′] similarly for n′ ∈ N0.

For n, n′ ∈ N, observe that

Mτ,τ ′

Pn×P′,n′ −M
τ,τ ′

Pn×P′,n′−1 =
∑

[u,v]∈Pn

[u′,v′]∈P′,n
′−1

δ2
z′K(τ, u)�(u,u′),(v,v′)QK(τ ′, u′)∗. (4.33)

From this we see that the following relation holds

Mτ,τ ′

Pn×P′,n′ −M
τ,τ ′

Pn×P′,n′−1 −M
τ,τ ′

Pn−1×P′,n′ +Mτ,τ ′

Pn−1×P′,n′−1
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=
∑

[u,v]∈Pn−1

[u′,v′]∈P′,n
′−1

δ1
zδ

2
z′K(τ, u)�(u,u′),(v,v′)QK(τ ′, u′)∗. (4.34)

Here δ1δ2 = δ1 ◦ δ2 = δ2 ◦ δ1 is the composition of the one-dimensional delta’s given in
(4.24). We have already seen the action of δi for i = 1, 2 applied to the increment K�QK∗

in (4.26), and we will therefore now compute the action of the composition δ1δ2. We get
for (v, z, u), (v′, z′, u′) ∈ ∆T

3 that

δ1
zδ

2
z′K(τ, u)�(u,u′),(v,v′)QK(τ ′, u′)∗

= (K(τ, u)−K(τ, z))�(z,z′),(v,v′)Q (K(τ ′, u′)−K(τ ′, z′))
∗
. (4.35)

Using the relation in (4.35) together with the assumption that K,K∗ ∈ Kη and that the
covariance Q is α-regular, we obtain the following bound for any θ ∈ [0, 1]

‖δ1
zδ

2
z′K(τ, u)�(u,u′),(v,v′)QK(τ ′, u′)∗‖op

≤ ‖K‖2η,3‖Q‖α,(1,1) [|τ − z||τ ′ − z′|]−η−θ [|v − u||v′ − u′|]α+θ
, (4.36)

where we have used that |z−u|θ ≤ |v−u|θ, and similarly for the difference |z′−u′|θ. With
this inequality at hand, we will now go back to the difference in (4.34). By telescoping
sums, we observe that for n′ > m′ we have

Mτ,τ ′

Pn×P′,n′ −M
τ,τ ′

Pn×P′,m′ =

n′∑
i=m′+1

Mτ,τ ′

Pn×P′,i −M
τ,τ ′

Pn×P′,i−1 , (4.37)

with the same type of relation for the difference Mτ,τ ′

Pn×P′,n′ −M
τ,τ ′

Pm×P′,n′ when n > m.
Combining the two and inserting the relation in (4.35) yields that

Mτ,τ ′

Pn×P′,n′ −M
τ,τ ′

Pn×P′,m′ −M
τ,τ ′

Pm×P′,n′ +Mτ,τ ′

Pm×P′,m′

=
∑

i∈{m+1,...,n}
j∈{m′+1,...,n′}

∑
[u,v]∈Pi

[u′,v′]∈P′,j

δ1
zδ

2
z′K(τ, z)�(u,u′),(v,v′)QK(τ ′, z′)∗. (4.38)

Invoking the inequality obtained in (4.36), we can bound the left-hand side of (4.38) in
the following way

‖Mτ,τ ′

Pn×P′,n′ −M
τ,τ ′

Pn×P′,m′ −M
τ,τ ′

Pm×P′,n′ +Mτ,τ ′

Pm×P′,m′‖op (4.39)

≤ ‖K‖2η,3‖Q‖α,(1,1)

∑
i∈{m+1,...,n}
j∈{m′+1,...,n′}

∑
[u,v]∈Pi

[u′,v′]∈P′,j

[|τ − z||τ ′ − z′|]−η−θ [|v − u||v′ − u′|]α+θ

=: VP,P′ .

Then we choose κ = θ + η and β = θ + α such that (β, κ) ∈ (1,∞) × [0, 1) (again we
note that this is always possible since α− η > 0). Using that for any [v, u] ∈ Pn it holds
|v − u| = 2−n|t− s|, we obtain that

VP,P′ ≤ CR(m,n,m′, n′) [|t− s||t′ − s′|]β−1
∫ t

s

∫ t′

s′
[|τ − r||τ ′ − r′|]−κ dr′dr

≤ CR(m,n,m′, n′)
(

[|τ − t||τ ′ − t′|]−κ [|t− s||t′ − s′|]β
)
∧ [|τ − s||τ ′ − s′|]β−κ , (4.40)
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where we have used R(m,n,m′, n′) :=
∑

i∈{m+1,...,n}
j∈{m′+1,...,n′}

2−(i+j)(β−1). Inserting (4.40) into

the right hand side of (4.39), it follows that {MPn×P′,n′}(n,n′)∈N2 is a Cauchy sequence
(with multi-index (n, n′) ∈ N). We define the limit of this sequence as n, n′ →∞ to be

Iτ,τ
′
(s, s′, t, t′) := lim

n,n′→∞
Mτ,τ ′

Pn×P′,n′ .

It now follows directly from the additivity property (4.18) proven in the beginning of the
proof that the following identity holds

Iτ,τ
′
(s, s′, t, t′) = �(s,s′),(t,t′)Iτ,τ

′
(0, 0, ·, ·).

Furthermore, due to the relations (4.27) and (4.37), and by deriving a one-dimensional

estimate similar to (4.39), it follows that the boundary terms
{
Mτ,τ ′

Pn×[s′,t′]

}
n∈N

and{
Mτ,τ ′

[s,t]×P′,n′

}
n′∈N

are both Cauchy sequences. Moreover, we observe that the boundary

integrals are given as

Iτ,τ
′

1 (s, s′, t, t′) = lim
n→∞

Mτ,τ ′

Pn×[s′,t′],

Iτ,τ
′

2 (s, s′, t, t′) = lim
n′→∞

Mτ,τ ′

[s,t]×P′,n′ .

Note that these two objects are only additive in one pair of its variables, i.e. we have

Iτ,τ
′

1 (0, s′, t, t′)− Iτ,τ
′

1 (0, s′, s, t′) = Iτ,τ
′

1 (s, s′, t, t′)

while on the other hand

Iτ,τ
′

1 (s, 0, t, t′)− Iτ,τ
′

1 (s, 0, t, s′) 6= Iτ,τ
′

1 (s, s′, t, t′).

The opposite relation holds for I2. This is due to the nature of the integrand K�QK∗

and since

Iτ,τ
′

1 (s, s′, t, t′) = lim
n→∞

Mτ,τ ′

Pn×[s′,t′] = lim
n→∞

∑
[u,v]∈Pn

K(τ, u)�u,s′,v,t′QK(τ ′, s′)∗.

Recall that the boundary integrals I1 should be thought of as the integral appearing in
(4.23), and similarly for I2. Now, we observe from (4.39) with m = m′ = 0 that if we let

Hτ,τ
′
(s, s′, t, t′)

:= Iτ,τ
′
(s, s′, t, t′)− Iτ,τ

′

1 (s, s′, t, t′)− Iτ,τ
′

2 (s, s′, t, t′) +K(τ, s)�(s,s′),(t,t′)QK(τ ′, s′)∗

then we have

‖Hτ,τ
′
(s, s′, t, t′)‖op ≤ C‖K‖2η,3‖Q‖α,(1,1)[

1

1− 21−β

]2 (
[|τ − t||τ ′ − t′|]−κ [|t− s||t′ − s′|]β

)
∧ [|τ − s||τ ′ − s′|]β−κ , (4.41)

where (β, κ) ∈ (1,∞)× [0, 1) is chosen according to the rules specified below (4.39). We
conclude that the limiting objects I, I1 and I2 made from limits of dyadic partitions exist
uniquely and satisfy the regularity condition in (4.19).

The reader would note that we can construct the limiting object I as a limit of a
Riemann sum over either I1 or I2. By this we mean that the two-dimensional integral,
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can be obtained as a limit of a Riemann sum over the one-dimensional boundary integral.
In particular we have that

Iτ,τ
′
(s, s′, t, t′) = lim

n′→∞

∑
[u′,v′]∈P′,n′

Iτ,τ
′

1 (s, u′, t, v′), (4.42)

and similarly for I2 where integration is done over a dyadic partition of [s, t]. Indeed,
recall that I1 is additive in the first variable, by which we mean that for any partition P
we have

Iτ,τ
′

1 (s, s′, t, t′) =
∑

[u,v]∈P

Iτ,τ
′

1 (u, s′, v, t′). (4.43)

A similar property holds for I2. Given the structure of the integrand K�QK∗, and in the
spirit of Lemma 10 together with linearity of the integral it is readily checked that for
any θ ∈ [0, 1]

‖δ2
m′I

τ,τ ′

1 (s, u′, t, v′)‖op ≤ C‖K‖η,1‖Q‖α,(0,1)‖K‖η,2[|τ−m|−η−θ|v′−u′|α+θ]|τ−s|−η|t−s|α,
(4.44)

where the estimate is uniform in the ordered variables (s, t, τ). Then again setting
β = ρ+ θ and κ = η + θ and choosing θ ∈ [0, 1] such that (β, κ) ∈ (1,∞)× [0, 1), and next
invoking (4.43) together with (4.44), it follows from the Volterra Sewing Lemma 10 that

‖Iτ,τ
′
(s, s′, t, t′)− Iτ,τ

′

1 (s, s′, t, t′)‖op
≤ C‖K‖η,1‖Q‖α,(0,1)‖K‖η,2|τ − t′|−κ|t′ − s′|β ∧ |τ − s′|β−κ]|τ − s|−η|t− s|α, (4.45)

and thus relation (4.42) follows directly. Similarly, one can show that

‖Iτ,τ
′
(s, s′, t, t′)−Iτ,τ

′

2 (s, s′, t, t′)‖op
≤C‖K‖η,2‖Q‖α,(1,0)‖K‖η,1|τ−t|−κ|t−s|β∧|τ−s|β−κ]|τ ′−s′|−η|t′−s′|α.

Our next goal is to show that the limiting object I is independent of the chosen
partition P. Note that the one-dimensional integral terms are in fact independent of the
partition chosen, as a consequence of the one-dimensional Volterra Sewing Lemma 10.
Therefore, following from the relation (4.42), it is sufficient to show that the differences

Iτ,τ
′
(s, s′, t, t′)−

∑
[u,v]∈P′

Iτ,τ
′

1 (s, u′, t, v′), (4.46)

Iτ,τ
′
(s, s′, t, t′)−

∑
[u,v]∈P

Iτ,τ
′

2 (u, s′, v, t′), (4.47)

converge to zero for generic partitions P ′ and P, where |P ′| → 0 and |P| → 0. Let us
prove this for (4.46). The same result for (4.47) can be found by an analogous procedure.
By additivity of I and I1, we can write

Iτ,τ
′
(s, s′, t, t′)−

∑
[u,v]∈P′

Iτ,τ
′

1 (s, u′, t, v′) =
∑

[u,v]∈P′
Iτ,τ

′
(s, u′, t, v′)−Iτ,τ

′

1 (s, u′, t, v′). (4.48)

Invoking the bounds we found in (4.45), we can majorize the right-hand side of (4.48),
which yields that

‖Iτ,τ
′
(s, s′, t, t′)−

∑
[u,v]∈P′

Iτ,τ
′

1 (s, u′, t, v′)‖op ≤ C
∑

[u′,v′]∈P′
|τ ′ − v′|−κ|u′ − v′|β

≤ C|P ′|β−1

∫ t′

s′
|τ ′ − r|−κdr,
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where the integral is convergent since κ < 1, and the constant C > 0 may depend on T ρ.
Thus, letting |P ′| → 0 we observe that

‖Iτ,τ
′
(s, s′, t, t′)−

∑
[u,v]∈P′

Iτ,τ
′

1 (s, u′, t, v′)‖op → 0,

since β > 1, and we conclude that the integral I in (4.17) is independent of the choice of
partition. We conclude that the limit in (4.17) exists uniquely, and it follows from (4.41)
that the inequality in (i) holds.

It now remains to show that also (ii)-(iv) holds. From the proof above, all the integrals
appearing in these expressions exist, and so the different regularity estimates differ from
(i) in the sense that they have various increments in the upper parameters of the Volterra
kernels. As the proof of these inequalities are essentially identical with the proof of (i)
above, we will only show the inequality in (iv) here, and leave the details for (ii)-(iii) to
the reader. This we do because (ii)-(iii) can be seen as mixtures of (i) and (iv), and it will
therefore be simple to verify that also these inequalities hold. To illustrate this point, for
(τ1, τ2, t, s), (τ

′
1, τ
′
2, t
′, s′) ∈ ∆T

4 define Gτ1,τ2(r) = K(τ1, r)−K(τ2, r), and observe that

∫ t

s

∫ t′

s′

(
�(τ2,s),(τ1,r)K

)
d2Q(r, r′)

(
�(τ ′2,s

′),(τ ′1,r
′)K
∗)

=

∫ t

s

∫ t′

s′
(Gτ1,τ2(r)−Gτ1,τ2(s)) d2Q(r, r′)

(
Gτ
′
1,τ
′
2(r′)∗ −Gτ

′
1,τ
′
2(s′)∗

)
. (4.49)

The right-hand side is an integral expression on the same form as in in (i), however
with different Volterra kernel. Similarly, we observe that (ii) and (iii) can be written as
mixtures of integrals over the kernels K and G defined above. Following the strategy
outlined above to prove (i), we now consider the integrand

Gτ1,τ2(s)�(s,s′),(t,t′)QG
τ ′1,τ

′
2(s′) = (K(τ1, s)−K(τ2, s))�(s,s′),(t,t′)Q(K(τ ′1, s

′)∗−K(τ ′2, s
′)∗),

(4.50)
and by the same techniques as above our goal is to obtain an analytic inequality as in
(iv). Consider the approximating integral given by

NP×P′ :=
∑

[u,v]∈P
[u′,v′]∈P′

(K(τ1, u)−K(τ2, u))�(u,u′),(v,v′)Q(K(τ ′1, u
′)∗ −K(τ ′2, u

′)∗).

Thus, we obtain the inequality in (iv) by following the exact same steps as for the
existence with the integrand K�QK∗. However, instead of relying on the norm ‖K‖η,3
as given in (3.15) to obtain our bounds, we need to use ‖K‖η,4 given in (3.16) as this
represents the regularity of the kernel over the rectangular increment (i.e. in both upper
and lower variables). Indeed, when arriving at the step similar to (4.35), we set

Ξτ1,τ2,τ
′
1,τ
′
2(u, u′, v, v′) := (K(τ1, u)−K(τ2, u))�(u,u′),(v,v′)Q(K(τ ′1, u

′)∗ −K(τ ′2, u
′)∗)

and observe that

δ1
zδ

2
z′Ξ

τ1,τ2,τ
′
1,τ
′
2(u, u′, v, v′) = (K(τ1, u)−K(τ2, u)−K(τ1, z) +K(τ2, z))

×�(z,z′),(v,v′)Q(K(τ ′1, u
′)∗ −K(τ ′2, u

′)∗ −K(τ ′1, z
′)∗ +K(τ ′2, z

′)∗).

We then need to bound this expression in a similar way as we did in (4.36). Using the
quantity defined in (3.15), it is readily seen that for θ1, θ2 ∈ [0, 1]

‖δ1
zδ

2
z′Ξ

τ1,τ2,τ
′
1,τ
′
2(u, u′, v, v′)‖op . ‖K‖2η,4‖Q‖α,(1,1)
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× [|τ1 − τ2||τ ′1 − τ ′2|]θ1 [|τ2 − v||τ ′2 − v′|]−θ1−θ2−η|[|v − u||u′ − v′|]α+θ2 .

We then observe that for a parameter ζ ∈ [0, 1] we have

|τ2 − v|−θ1−θ2−η ≤ |τ2 − t|−θ1+ζ |τ2 − v|−ζ−θ2−η

and similarly for the parameters (τ ′2, t
′, v′) ∈ ∆T

3 . it follows that

‖δ1
zδ

2
z′Ξ

τ1,τ2,τ
′
1,τ
′
2(u, u′, v, v′)‖op . ‖K‖2η,4‖Q‖α,(1,1)

× [|τ1 − τ2||τ ′1 − τ ′2|]θ1 [|τ2 − t||τ ′2 − t′|]−θ1+ζ [|τ2 − v||τ ′2 − v′|]−θ2−η−ζ |[|v − u||u′ − v′|]α+θ2 .

Note that we are not integrating over the variables (τ1, τ2, t), (τ
′
1, τ
′
2, t
′) ∈ ∆T

3 , and these
will therefore not affect the sewing arguments in (4.39) and below. We now choose
θ1, θ2, ζ ∈ [0, 1] in the following way: β = α+θ2 > 1, κ := η+θ2+ζ < 1. Since ρ = α−η > 0

we can choose ζ ∈ [0, ρ). Then one can simply check that there exists a θ2 ∈ [0, 1] such
that β > 1 and κ < 1. By following the steps from (4.36) and below, one can conclude
that (iv) holds. This completes the proof.

Remark 18. We point out that the integral
∫ t

0

∫ t′
0
K(τ, r)d2Q(r, r′)K(τ ′, r′)∗ is linear in Q,

and bilinear in K. By this we mean that for Q, Q̃ ∈ Qα∫ t

0

∫ t′

0

K(τ, r)d2[Q+ Q̃](r, r′)K(τ ′, r′)∗

=

∫ t

0

∫ t′

0

K(τ, r)d2Q(r, r′)K(τ ′, r′)∗ +

∫ t

0

∫ t′

0

K(τ, r)d2Q̃(r, r′)K(τ ′, r′)∗, (4.51)

and similarly for the bilinearity with respect to K. This follows directly from the
construction of the integral as a limit of Riemann sums, and a simple verification can
be done by going through the proof above using the integrand K(τ, u)�(u,u′),(v,v′)[Q +

Q̃]K(τ ′, r′)∗. For conciseness we omit a more detailed proof here.

Remark 19. From the derivations in (4.5), a different notation for the integral∫ t

0

∫ t′

0

K(τ, r)d2Q(r, r′)K(τ ′, r′)∗

could be used. By the expression∫ t

0

K(τ, r)

∫ t′

0

Q(dr, dr′)K(τ ′, r′)∗

we mean the integration of K(τ ′, r′)∗ with respect to Q(r, dr′) to form the integral∫ t′
0
Q(r, dr′)K(τ ′, r′)∗, followed by the integration of K(τ, r) with respect to the integrand∫ t′

0
Q(dr, dr′)K(τ ′, r′).

A direct consequence of Theorem 17 is that the covariance functions constructed
from K ∈ Kη and Q ∈ Qα is again a covariance function in Qζ for any ζ ∈ [0, α− η). We
summarize this in the next Proposition.

Proposition 20. By restricting the domain of I to the square [0, T ]2 by considering the
map (t, t′) 7→ It,t′(K,Q)(0, 0, t, t′), the integration map I is a continuous operator from
Kη ×Qα to Qζ for any ζ ∈ [0, α− η). Moreover, we have that

‖I(K,Q)‖Qζ ≤ C‖K‖2Kη‖Q‖Qα . (4.52)
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Proof. This follows from a combination of the estimates in (i)-(iv) given in Theorem 17.
We denote by ∆s,tK(·, r) the increment K(t, r)−K(s, r). Observe that

�(s,s′),(t,t′)

∫ ·
0

∫ ·′
0

K(·, r)d2Q(r, r′)K(·′, r′)∗ =

∫ t

s

∫ t′

s′
K(t, r)d2Q(r, r′)K(t′, r′)∗

+

∫ s

0

∫ t′

s′
∆s,tK(·, r)d2Q(r, r′)K(t′, r′)∗ +

∫ t

s

∫ s′

0

K(t, r)d2Q(r, r′)∆s′,t′K(·′, r′)∗

+

∫ s

0

∫ s′

0

∆s,tK(·, r)d2Q(r, r′)∆s′,t′K(·′, r′)∗.

(4.53)

Our goal is to check that

‖�(s,s′),(t,t′)

∫ ·
0

∫ ·′
0

K(·, r)d2Q(r, r′)K(·′, r′)∗‖op . [|t− s||t′ − s′|]α−η, (4.54)

and thus, by verifying that each of the integrals on the right-hand side of (4.53) satisfies
the above bound, we are done. Each of the four terms on the right hand side above
corresponds to the inequalities in (i)-(iv) in Theorem 17 plus some one-dimensional
integral terms which can be treated with the one-dimensional Volterra Sewing Lemma 10.
We will illustrate this by considering the first term on the right hand side of the above
equality (4.53). It is readily checked that by addition and subtraction of three terms

∫ t

s

∫ t′

s′
K(t, s)d2Q(r, r′)K(t′, r′)∗,

∫ t

s

∫ t′

s′
K(t, r)d2Q(r, r′)K(t′, s′)∗,

and K(t, s)�(s,s′),(t,t′)Q(r, r′)K(t′, s′)∗,

it follows that∫ t

s

∫ t′

s′
K(t, r)d2Q(r, r′)K(t′, r′)∗

=

∫ t

s

∫ t′

s′
[K(t, r)−K(t, s)]d2Q(r, r′)[K(t′, r′)−K(t′, s′)]∗

+

∫ t

s

∫ t′

s′
K(t, s)d2Q(r, r′)K(t′, r′)∗

+

∫ t

s

∫ t′

s′
K(t, r)d2Q(r, r′)K(t′, s′)∗ −K(t, s)�(s,s′),(t,t′)QK(t′, s′).

We can bound the first integral expression on the right-hand side by application of (i)
in Theorem 17. The two other integral terms are one-dimensional in the sense that we
are only integrating one of the kernels K in either r or r′. By the inequality obtained in
(4.25) and (4.27), it follows that

‖
∫ t

s

∫ t′

s′
K(t, s)d2Q(r, r′)K(t′, r′)∗ −K(t, s)�(s,s′),(t,t′)QK(t′, s′)‖op

. ‖K‖2Kη‖Q‖α|t− s|
α−η|t′ − s′|α−η, (4.55)

and similarly we get

‖
∫ t

s

∫ t′

s′
K(t, r)d2Q(r, r′)K(t′, s′)∗ −K(t, s)�(s,s′),(t,t′)QK(t′, s′)‖op

. ‖K‖2Kη‖Q‖α|t− s|
α−η|t′ − s′|α−η. (4.56)
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At last, it is readily checked that also

‖K(t, s)�(s,s′),(t,t′)QK(t′, s′)‖op . ‖K‖2Kη‖Q‖α|t− s|
α−η|t′ − s′|α−η. (4.57)

Thus a combination of (4.55), (4.56) and (4.57) as well as the bound in (i) of Theorem 17,
we obtain

‖
∫ t

s

∫ t′

s′
K(t, r)d2Q(r, r′)K(t′, r′)∗‖op . ‖K‖2Kη‖Q‖α|t− s|

α−η|t′ − s′|α−η.

By a similar analysis, one obtains equivalent bounds for the three other integral terms
on the right-hand side of (4.53) by appealing to (ii)-(iv) of Theorem 17 as well as bounds
for one-dimensional integral terms treated (as done above) by application of Lemma 10.
However, in this case, the bound will be with respect to any exponent ζ ∈ [0, α− γ), as
the inequalities in (ii)-(iv) satisfy this type of regularity condition. It therefore follows
that the left-hand side of (4.53) satisfies

‖�(s,s′),(t,t′)

∫ ·
0

∫ ·′
0

K(·, r)d2Q(r, r′)K(·′, r′)∗‖op . ‖K‖2Kη‖Q‖α|t− s|
ζ |t′ − s′|ζ ,

for any ζ ∈ [0, α−γ). Since the map (t, t′) 7→
∫ t

0

∫ t′
0
K(·, r)d2Q(r, r′)K(·′, r′)∗ is zero on the

boundary of [0, T ]2, we conclude by Remark 16 that the covariance operator is contained
in Qζ for any ζ ∈ [0, α− γ).

Another consequence of the construction of the double Young-Volterra integral is
stability estimates in terms of the driving covariance Q and the Volterra kernel K. We
summarize this in the following proposition.

Proposition 21. Let K, K̃ ∈ Kη, with η ∈ (0, 1). For a constant α ∈ (η, 1], assume that
Q and Q̃ are both α-regular covariance functions in Qα. Furthermore, let M > 0 be a
constant such that ‖K‖Kη ∨ ‖K̃‖Kη ∨ ‖Q‖Qα ∨ ‖Q̃‖Qα ≤M . Then the following stability
estimate holds for any ζ ∈ [0, α− γ).

‖I(K,Q)− I(K̃, Q̃)‖Qζ ≤ CM
(
‖K − K̃‖Kη + ‖Q− Q̃‖Qα

)
. (4.58)

Proof. This follows directly from the proof of Theorem 17, and Proposition 20. First, it is
readily checked that Theorem 17 may canonically be extended to integrals on the form

I(K,Q,L)(t, t′) :=

∫ t

0

∫ t′

0

K(t, r)d2Q(r, r′)L(t′, r′)∗,

where K,L ∈ Kη and Q ∈ Qα. We therefore assume at this point that the above integral
is well defined in the same way as shown in Theorem 17. This leads to an extension of
inequality (4.52) given on the form

‖I(K,Q,L)‖Qζ ≤ C‖K‖Kη‖Q‖Qα‖L‖Kη , (4.59)

for ζ ∈ [0, α− γ). Observe that the difference I(K,Q)− I(K̃, Q̃) is equal to

I(K,Q)− I(K̃, Q̃) = D(K, K̃) +D(Q, Q̃) (4.60)

where we define

D(K, K̃) := I(K,Q)− I(K̃,Q) and D(Q, Q̃) := I(K̃,Q)− I(K̃, Q̃).

Recall from Remark 18 that the integral operator is bilinear in K and linear in Q.
Moreover, since K and K̃ are both linear operators on H, their difference is also a linear
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operator on H, and since Kη is a linear space, it follows that K − K̃ ∈ Kη. Similarly,
Q− Q̃ ∈ Qα. This yields,

D(K, K̃)(t, t′) =

∫ t

0

∫ t′

0

K̃(t, r)d2Q(r, r′)(K − K̃)(t′, r′)∗

+

∫ t

0

∫ t′

0

(K − K̃)(t, r)d2Q(r, r′)K(t′, r′)∗

= I(K̃,Q,K − K̃)(t, t′) + I(K − K̃,Q,K)(t, t′).

Invoking the inequality (4.59) twice, we find

‖D(K, K̃)‖Qζ ≤ CM‖K‖Kη‖K − K̃‖Kη‖Q‖Qα . (4.61)

Through similar manipulations using that Q− Q̃ ∈ Qα it is seen from Proposition 20 that
D(Q, Q̃) can be bounded by

‖D(Q, Q̃)‖Qζ ≤ CM‖K‖Kη‖Q− Q̃‖Qα . (4.62)

We can now majorize the difference on the left hand side of (4.58) by using relation
(4.60) and the triangle inequality, as well as the estimates in (4.61) and (4.62) to obtain

‖I(K,Q)− I(K̃, Q̃)‖Qζ ≤ CM
(
‖K − K̃‖Kη + ‖Q− Q̃‖Qα

)
,

which proves our claim.

The stability estimate in Proposition 21 tells us that the Volterra processes are
Lipschitz continuous in both the kernel K and the covariance functional Q of the noise.
Thus, small model errors or statistical estimation errors in the kernel K and/or the
covariance functional Q lead to small errors in the resulting Volterra processes. This
holds ω-wise and is therefore a very strong stability in a probabilistic context.

4.2 Characteristic functionals of Volterra processes driven by Gaussian noise

An important question to ask is whether the pathwise Volterra process constructed
in Proposition (14) is a Gaussian process when the driving noise W is a Hilbert-valued
Gaussian process. The next proposition gives an affirmative answer to this question.

Proposition 22. Consider a Hilbert-valued zero-mean Gaussian process W : [0, T ]×Ω→
H with covariance operator QW : [0, T ]2 → L(H), and assume t 7→ W (t, ω) is β-Hölder
continuous with β ∈ (0, 1) for ω ∈ N c ∈ F , where N c is of full measure. Let K ∈ Kη with
ζ := β − η > 0, and that the covariance operator QW ∈ Qα for ρ = α − η > 0. For any
ω ∈ N c, let X ·(·, ω) be given as the Volterra process

Xτ (t, ω) =

∫ t

0

K(τ, s)dW (s, ω), (4.63)

where the integral is constructed as in Proposition 14. Then (t, ω) 7→ Xt(t, ω) is a
Hilbert-valued zero-mean Gaussian process on the probability space (Ω,F ,P), and the
characteristic functional of X is given by

E [exp (i〈Xτ (t), f〉)] = exp

(
−1

2
〈
∫ t

0

∫ t

0

K(τ, r)d2QW (r, r′)K(τ, r′)∗f, f〉
)
, (4.64)

for any f ∈ H.
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Proof. We begin to prove that for each (τ, t) ∈ ∆T
2 , Xτ (t, ·) is a Gaussian random variable.

To this end, it is sufficient to prove that the characteristic functional of Xτ (t, ·) is that of
a Gaussian, and that it is given by (4.64). Observe that by continuity of the exponential
function and the construction of X as the limit of a Riemann type sum as given in
Proposition 14, we have

E

[
exp

(
i〈
∫ t

0

K(τ, s)dW (s, ω), f〉
)]

= E

[
lim
|P|→0

exp

(
i
∑

[u,v]∈P

〈K(τ, u)(W (v)−W (u)), f〉
)]

= E

[
lim
|P|→0

exp

(
i
∑

[u,v]∈P

〈W (v)−W (u),K(τ, u)∗f〉
)]
.

(4.65)

Since the exponential | exp (i〈g, f〉) | ≤ 1 for any f, g ∈ H, it follows from the dominated
convergence theorem that

E

[
lim
|P|→0

exp

(
i
∑

[u,v]∈P

〈W (v)−W (u),K(τ, u)∗f〉
)]

= lim
|P|→0

E

[
exp

(
i
∑

[u,v]∈P

〈W (v)−W (u),K(τ, u)∗f〉
)]
. (4.66)

Using that the sum
∑

[u,v]∈P〈W (v)−W (u),K(τ, u)∗f〉 is Gaussian, since W is a Gaussian
process (see Def. 2), and by similar computations as given in (4.5) we obtain that the
following identity holds

E

[
exp

(
i
∑

[u,v]∈P

〈W (v)−W (u),K(τ, u)∗f〉
)]

= exp

(
− 1

2

∑
[u,v]∈P

[u′,v′]∈P

〈�(u,u′),(v,v′)QWK(τ, u′)∗f,K(τ, u)∗f〉
)
. (4.67)

By using the dual formulation of the operators again, and moving the double sum on this
inside, we recognise that

exp

(
− 1

2

∑
[u,v]∈P

[u′,v′]∈P

〈�(u,u′),(v,v′)QWK(τ, u′)∗f,K(τ, u)∗f〉
)

= exp

(
− 1

2
〈
∑

[u,v]∈P
[u′,v′]∈P

K(τ, u)�(u,u′),(v,v′)QWK(τ, u′)∗f, f〉
)
.

Taking limits as the partition goes to zero, we obtain exactly the operator-valued integral∫ t

0

∫ t

0

K(τ, r)d2QW (r, r′)K(τ, r′)∗

= lim
|P|→0

∑
[u,v]∈P

[u′,v′]∈P

K(τ, u)�(u,u′),(v,v′)QWK(τ, u′)∗. (4.68)

By again recalling the derivations in (4.5), we have that

E
[
(Xτ
P(t))⊗2

]
=

∑
[u,v]∈P

[u′,v′]∈P

K(τ, u)�(u,u′),(v,v′)QWK(τ, u′)∗.
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This shows that the right-hand side is symmetric and positive semi-definite operator,
properties which are preserved after taking limits. Thus, the operator in (4.68) a bounded
linear operator on H which is symmetric and positive semi-definite. Combining our
considerations and identities obtained in (4.68), (4.67), (4.66) and (4.65), we can see
that

E

[
exp

(
i〈
∫ t

0

K(τ, s)dW (s), f〉
)]

= exp

(
−1

2
〈
∫ t

0

∫ t

0

K(τ, r)d2QW (r, r′)K(τ, r′)∗f, f〉
)
. (4.69)

Recognising that this is the characteristic functional of a Gaussian random variable in a
Hilbert space with trace class covariance operator Qτ,τX (t, t) ∈ L(H) given by

Qτ,τX (t, t) =

∫ t

0

∫ t

0

K(τ, r)d2QW (r, r′)K(τ, r′)∗, (4.70)

proves that Xτ (t) =
∫ t

0
K(τ, s)dW (s) is a Gaussian random variable in H for each

(τ, t) ∈ ∆T
2 .

In order to prove that t 7→ X(t) = Xt(t) =
∫ t

0
K(t, s)dW (s) is a Gaussian process,

recall from Definition 2 that we need to show that for any n ≥ 1, {ti}ni=1 ⊂ [0, T ], and
{fi}ni=1 ∈ H×n, (〈X(t1), f1〉, . . . , 〈X(tn), fn〉) is an n-variate Gaussian random variable
in Rn. We prove this claim for n = 2, and the case for n ≥ 2 follows by by a similar
argument, however being notationally much more involved.

For t1, t2 ∈ [0, T ], we consider(∫ t1
0
K(t1, r)dW (r)∫ t2

0
K(t2, r)dW (r)

)
∈ H2. (4.71)

Define an operator G : [0, T ]4 → L(H2) by

G(t1, t2, u1, u2) =

(
K(t1, u1) 0

0 K(t2, u2)

)
. (4.72)

Both integrals in (4.71) are constructed as limits of Riemann type sums (as in Proposition
14) in the following way: Set P1 to be a partition over [0, t1] and P2 to be a partition over
[0, t2], and we have that(∫ t1

0
K(t1, r)dW (r)∫ t1

0
K(t2, r)dW (r)

)

= lim
|P1|→0

lim
|P2|→0

∑
[u1,v1]∈P1

∑
[u2,v2]∈P2

G(t1, t2, u1, u2)

(
W (v1)−W (u1)

W (v2)−W (u2)

)
(4.73)

Set F = (f1, f2) ∈ H2, u = (u1, u2), v = (v1, v2), t = (t1, t2) ∈ [0, T ]2, and define

Z(v)− Z(u) :=

(
W (v1)−W (u1)

W (v2)−W (u2)

)
.

It is then readily checked that

E [〈G(t, u)(Z(v)− Z(u)), F 〉H2〈G(t, u′)(Z(v′)− Z(u′)), F 〉H2 ]

= E [〈Z(v)− Z(u), G(t, u)∗F 〉H2〈Z(v′)− Z(u′), G(t, u′)∗F 〉H2 ] , (4.74)
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and by similar computations as in (4.5) we obtain the following expression

E [〈G(t, u)(Z(v)− Z(u)), F 〉H2〈G(t, u′)(Z(v′)− Z(u′)), F 〉H2 ]

= 〈G(t, u)�(u,v),(u′,v′)QZG(t, u′)∗F, F 〉H2 .

Let us first investigate the covariance QZ associated to Z. By definition of Z, it follows
that

�(u,u′),(v,v′)QZ

=

(
E[(W (v1)−W (u1))⊗ (W (v′1)−W (u′1))] E[(W (v1)−W (u1))⊗ (W (v′2)−W (u′2))]

E[(W (v2)−W (u2))⊗ (W (v′1)−W (u′1))] E[(W (v2)−W (u2))⊗ (W (v′2)−W (u′2))]

)
=

(
�(u1,u′1),(v1,v′1)QW �(u1,u′2),(v1,v′2)QW
�(u′1,u2),(v′1,v2)QW �(u2,u′2),(v2,v′2)QW

)
.

The above expression for the covariance leads to the following expression for the
appropriate composition of operators

G(t, u)�(u,u′),(v,v′)QZG(t, u′)∗

=

(
K(t1, u1)�(u1,u′1),(v1,v′1)QWK(t1, u

′
1)∗ K(t1, u1)�(u1,u′2),(v1,v′2)QWK(t2, u

′
2)∗

K(t2, u2)�(u′1,u2),(v′1,v2)QWK(t1, u
′
1)∗ K(t2, u2)�(u2,u′2),(v2,v′2)QWK(t2, u

′
2)∗

)
.

The key observation here is that each of the elements in the above matrix only depends
on four variables (in addition to t1 and t2). With this expression at hand, let P := P1×P2

and P ′ := P ′,1 × P ′,2 be two partitions of the rectangle [0, t1]× [0, t2]. In particular, for
[u, v] = [u1, v1] × [u2, v2] ∈ P, [u1, v1] ∈ P1 and [u2, v2] ∈ P2. For notational ease define∑
Pi×Pj :=

∑
[ui,vi]∈Pi

∑
[uj ,vj ]∈Pj for i, j = 1, 2. We then have that∑

[u,v]∈P

∑
[u′,v′]∈P′

G(t, u)�(u,v),(u′,v′)QZG(t, u′)∗

=

(∑
P1×P′,1 K(t1, u1)�(u1,u

′
1),(v1,v

′
1)
QWK(t1, u′1)

∗ ∑
P1×P′,2 K(t1, u1)�(u1,u

′
2),(v1,v

′
2)
QWK(t2, u′2)

∗∑
P2×P′,1 K(t2, u2)�(u′1,u2),(v

′
1,v2)

QWK(t1, u′1)
∗ ∑

P2×P′,2 K(t2, u2)�(u2,u
′
2),(v2,v

′
2)
QWK(t2, u′2)

∗

)
On the right-hand side we obtain four double-sums approximating different covariance operators, as con-

structed in Theorem 17. In particular we have that for i, j = 1, 2

lim
|Pi|→0

|Pj |→0

∑
Pi×Pj

K(ti, ui)�(ui,uj),(vi,vj)
QWK(tj , uj)

∗ =

∫ ti

0

∫ tj

0
K(ti, r)d

2QW (r, r′)K(tj , r
′)∗

from which we conclude that also the following expression is well-defined as a linear operator on H2

lim
|P|→0

|P′|→0

∑
[u,v]∈P

∑
[u′,v′]∈P′

G(t, u)�u,v,u′,v′QZG(t, u′)∗ =

∫ t

0

∫ t

0
G(t, s)d2QZ(s, s′)G(t, s′)∗,

where |P| = |P1| ∨ |P2|, and similarly for P ′. With all these tools at hand, we follow along the same lines of
arguments leading to the proof that

∫ t
0 K(t, s)dW (s) is a Gaussian random variable on H as done in the first

part of this proof, to see that

E

[
exp(i〈

(∫ t1
0 K(t1, r)dW (r)∫ t2
0 K(t2, r)dW (r)

)
, F 〉H2 )

]
= exp

(
−
1

2
〈
∫ t

0

∫ t

0
G(t, s)d2QZ(s, s′)G(t, s′)∗F, F 〉H2

)
,

where
∫ t
0 =

∫ t1
0

∫ t2
0 . From this it follows that

(∫ t1
0 K(t1, r)dW (r)∫ t2
0 K(t2, r)dW (r)

)
is a Gaussian random variable on H2. A

similar argument can be extended to any collection of times t1, . . . , tn ∈ [0, T ], and thus we conclude that
t 7→

∫ t
0 K(t, r)dW (r) is a Gaussian process.

We remark in passing that the proof of Proposition 22 shows more than only the
covariance operator of Xτ (t). Indeed, the proof provides (by inductive arguments) the
covariance operator associated with the Hn-valued random variable (X(t1), . . . , X(tn))

for any sequence of times {ti}ni=1 ⊂ [0, T ]n, where X(t) := Xt(t).
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5 Applications

In this Section we have collected some possible applications of our results on Gaussian
Volterra processes in Hilbert space and the corresponding covariance functionals.

5.1 Iterated stochastic process and their covariance operators

Iterated stochastic processes has received much attention (e.g. [24, 9, 10, 30]). In
[10], the authors propose to model a diffusion in a crack by iterated Brownian motions.
In particular, one considers two independent Brownian motions Bi : [0, T ]× Ωi → Rn for
i = 1, 2, and then studies properties of the process B1(|B2(t)|). We refer to B1 as the
state process and B2 as the time process. Several interesting probabilistic and analytic
properties can be obtained from these processes, see in particular [9] for a study of
the pathwise properties of these processes, and [24] for relations with higher order
fractional parabolic PDEs. A natural extension would be to consider infinite dimensional
Gaussian processes indexed by irregular paths. The advantage of this pathwise approach
is that the time process and the state process does not need to be independent. By this
we mean that we fix an ω2 ∈ Ω2, such that t 7→ B2(t, ω2) is a continuous path, and one
look at the conditional process B(t) = B1(|B2(ω2, t)|) as a random variable. This process
is then a Gaussian process, and its covariance function is given by the composition of the
covariance function of B1 with the path |B2(ω2, t)|. Due to the fact that t 7→ B2(ω2, t) is
Hölder continuous of order α < 1

2 , it follows that the regularity of the covariance function
is reduced accordingly. More generally, one can study infinite dimensional Gaussian
processes with irregular time shifts. Let I ⊂ R+, α ∈ (0, 1), and suppose X : [0, T ]→ I,
is a nowhere differentiable path, which is α-Hölder continuous. Let W : I × Ω→ H be a
Gaussian process with an γ-regular covariance function QW : I × I → L(H) (according
to Definition 15). Then the composition W ◦X : [0, T ]→ H is a Gaussian process, with
covariance function

QW ◦X(t, s)(f, g) = E[〈W ◦X(t), f〉〈W ◦X(s), g〉] = QW (X(t), X(s))〈f, g〉.

It follows that the covariance QW ◦X is αγ-regular with αγ ∈ (0, 1). Furthermore, one can
study the Volterra process Y (t) =

∫ t
0
K(t, r)d(W ◦X)(r), in order to introduce memory

in the iterated process. Then Proposition 22 tells us that Y is again Gaussian, given
that the singularity of K is integrable with respect to the regularity of the covariance
function QW . In fact, since the covariance operator QW ◦X is only Hölder continuous,
the covariance operator needs to be constructed in terms Theorem 17, in order to make
sense of this integral. This is of course due to the fact that QW ◦ X(t, s) is nowhere
differentiable in a Frèchet sense, and thus classical constructions of the covariance
functions of Gaussian Volterra processes (for example given in [19]) are not applicable.

5.2 Construction of the rough path lift of Gaussian processes with irregular
covariance functions

At the core of rough paths lies a solution theory for controlled differential equations
on the form

dY (t) = f(Y (t))dX(t), Y (0) = y ∈ H,

where f is sufficiently regular function and X is an α-Hölder continuous signal with
α ∈ (0, 1). If 1

3 < α ≤ 1
2 , one needs to lift the signal X into a tuple (X,X), where

X : [0, T ]2 → H ⊗H represents the iterated integral of X. This tuple is then called the
rough path corresponding to X. In fact, one requires the following two conditions to
hold for X and X for s ≤ u ≤ t,

X(s, t)−X(s, u)−X(u, t) = (X(u)−X(s))⊗ (X(t)−X(u)),
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and

sup
t 6=s∈[0,T ]

|X(t)−X(s)|H
|t− s|α

<∞ and sup
t 6=s∈[0,T ]

|X(s, t)|H
|t− s|2α

<∞.

Therefore, much attention is given to construct an object X which satisfies the above
conditions for a given path X. In [14, Sec. 10.2], the construction of this object
corresponding to a Gaussian noise is shown under a sufficient smoothness condition on
the covariance function. This smoothness condition is stated in terms of two-dimensional
p-variation norms, which can be seen to be equivalent to the Hölder continuity of the
covariance operators introduced in Definition 15 under the assumption of continuity on
the p-variation functions

In particular, in order to construct a “geometric” version of X when X is a centred
Gaussian process, [14, Thm. 10.4] tells us that it is sufficient that the covariance operator
QX is contained in Qγ with γ > 1

2
2. Thus, the construction of covariance operators

and their corresponding regularity provided in Theorem 17 and Proposition 20, open
up for the construction of a rough path for Volterra processes driven by Gaussian paths
with nowhere differentiable covariance operators. Such processes are, for example,
illustrated in the above subsection by the class of iterated processes.

5.3 Fractional Ornstein-Uhlenbeck process driven by irregular paths

Fractional differential equations (FDEs) provide an alternative to classical ODEs, by
introducing memory in the evolution of the process. This results in a non-local equation
with interesting applications to several physical and social systems (e.g. [29, 13, 28])

Our concern here is an H-valued fractional Ornstein-Uhlenbeck stochastic differential
equation on a given time interval [0, T ]. Consider two parameters (α, γ) ∈ R+ × (0, 1)

with the relation α+ γ − 1 > 0, and consider the equation formally given by

Dα (Y − y) (t) = AY (t) + Ẇ (t). (5.1)

Here, y ∈ H, A ∈ L(H), W ∈ Cγ([0, T ], H) and Dα is the fractional time-derivative
of order α, given as in Definition 30 in the Appendix. The object Ẇ is interpreted
only formally and is corresponding to the time-derivative d

dtW (t). Since W is only
Hölder continuous, the derivative d

dtW (t) does not exist, and thus we rather consider an
integrated version of (5.1). With Iα being the fractional integral operator (see Definition
30 in the appendix), let us denote by X = Iα(Ẇ ) which we interpret as the integral

X(t) =

∫ t

0

(t− s)α−1dW (s). (5.2)

This integral is understood in the sense of Proposition 14 with K(t, s) = (t − s)α−1I

and I ∈ L(H) being the identity operator on H. The integral exists due to the assumption
that α+ γ − 1 > 0. Applying the fractional integral operator Iα on both sides of (5.1), we
obtain the equation

Y (t) = y + Iα (AY ) (t) +X(t), t ∈ [0, T ]. (5.3)

We will need a few extra tools to be able to obtain an explicit representation of its
solution, as well as the associated covariance operator in the Gaussian case.

First we present a version of Fubini’s theorem, showing that we can exchange the
order of integration of double integrals involving Riemann integration and Volterra-Young

2The condition is actually stated in terms of a two-dimensional ρ-variation norm for the covariance function,
with ρ ∈ [1, 2). It is readily checked that the Hölder norms in Definition 15 are equivalent to this variation
norm, under the assumption of continuity.
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integration. This property, that may be interesting in itself, is a crucial tool in proving a
specific analytic representation of the fractional Ornstein-Uhlenbeck process in (5.3).
As a corollary to our Fubini theorem, we show that the order of the fractional integral
operator and a Young-Volterra integral can be interchanged. For conciseness, all proofs
in this section are relegated to Appendix B.

Proposition 23. For γ, η > 0 with ρ := γ − η > 0, let Z : [0, T ]→ H be given as

Z(t) =

∫ t

0

K(t, s)dW (s),

for K ∈ Kη and W ∈ Cγ([0, T ], H), with the integral being defined as in Proposition 14.
Assume G : ∆T

2 → L(H) is in Kκ for some κ ∈ (0, 1). Then the following equality holds∫ t

0

G(t, s)Z(s)ds =

∫ t

0

∫ t

s

G(t, r)K(r, s)drdW (s), (5.4)

where the integral on the right-hand side is again interpreted in terms of Lemma 10
with Ξτ (t, s) :=

∫ τ
s
G(τ, r)K(r, s)dr (W (t)−W (s)).

As already indicated, we apply the Fubini theorem to the fractional integral operator,
and as we see in ther next Corollary, we can further establish a connection to Mittag-
Leffler functions.

Corollary 24. Let 0 < α < γ < 1 and α + γ − 1 > 0 and W ∈ Cγ ([0, T ], H). Let
furthermore X be defined as in Proposition 14, with K(t, s) = 1

Γ(1−η) (t − s)−η and
γ − η > 0. In particular, X is given as the Volterra integral

X(t) = Γ(1− η)−1

∫ t

0

(t− s)−ηdW (s).

Then, for A ∈ L(H), the following relation holds

∞∑
i=0

A◦iIiα (X) (t) =

∫ t

0

(t− s)−η Eα,1−η (A (t− s)α) dW (s), (5.5)

where Eα,β (At) :=
∑∞
i=0

A◦iti

Γ(αi+β) for t ∈ [0, T ] is called the Mittag-Leffler operator, and

the integrals are interpreted in sense of Proposition 14. Indeed, since x 7→ Eα,β(xα)

is smooth everywhere except at 0 where it is α-Hölder continuous, we interpret the
right-hand side of (5.5) using Proposition 14 with K(t, s) = (t− s)−ηEα,1−η(A(t− s)α).

Remark 25. The fact that the Mittag-Leffler operator is a bounded linear operator on H
is readily checked: for any f ∈ H we have by the triangle inequality that

|Eα,β(At)f |H = |
∞∑
i=0

A◦itif

Γ (αi+ β)
|H ≤

∞∑
i=0

|A◦itif |H
Γ (αi+ β)

≤ |f |HEα,β(‖A‖opt), (5.6)

where, in the last inequality, we have used that for a bounded linear operator A and for
any i ≥ 0 we have |A◦if |H ≤ ‖A‖iop|f |H . The expression Eα,β(‖A‖opt) appearing on the
right-hand side of (5.6) is the classical Mittag-Leffler function evaluated at ‖A‖opt.

Theorem 26. For some γ ∈ (0, 1), let W ∈ Cγ ([0, T ] , H), and assume that A ∈ L(H).
For any α > 1− γ let X = Iα(W ) as given in (5.2), and assume y ∈ H. Then there exists
a unique solution Y ∈ Cρ([0, T ], H) with ρ < γ + α− 1 to the equation

Y (t) = y +AIα (Y ) (t) +X(t). (5.7)
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Moreover, the solution satisfies the following analytic formula

Y (t) = Eα,1 (Atα) y +

∫ t

0

(t− s)α−1
Eα,α (A (t− s)α) dW (s), (5.8)

where the integral on the right-hand side of (5.8) is interpreted in sense of Corollary 24.

We observe from our analysis in Section 2 and 4, that Y is a Gaussian process. In the
next Corollary we apply Theorem 17 to state the covariance operator of Y .

Corollary 27. Consider parameters γ, α ∈ (0, 1) such that ρ = γ + α− 1 > 0 and β > 0

such that β + α− 1 > 0. Let W be a Gaussian process in Cγ([0, T ], H), with covariance
operator QW ∈ Qβ, and suppose Y ∈ Cρ([0, T ], H) is the solution to the fractional
Ornstein-Uhlenbeck process given in Theorem 26 driven by W with linear operator
A ∈ L(H). Then the covariance operator associated to Y is given by

QY (t, t′) =

∫ t

0

∫ t′

0

(t−r)α−1Eα,α(A(t−r)α)d2QW (r, r′)(t′−r′)α−1Eα,α(A∗(t′−r′)α). (5.9)

and QY ∈ Qη for any η < β + α− 1.

Remark 28. Observe that the regularity of Y constructed as the Volterra process in (5.8)
is of order 0 < ρ < γ + α− 1, where γ is the regularity of W , However the regularity of
the covariance QY is of order η < β + α− 1 where β is the regularity of the covariance
QW . A-priori, there is no imposed relationship between β and γ, although in typical
examples they will be strongly related (if not the same, see Example 3.1 for the case of
fractional Brownian motion). On the other hand, given that we know the regularity of
the covariance operator QW , then through Kolmogorov’s continuity theorem 3, one can
deduce the regularity of W (which then relates γ to β). However, this theorem is not an
if and only if statement, and thus given that a stochastic process is γ-Hölder continuous,
it is not obvious what regularity its covariance might have.

5.4 Rough stochastic volatility models

In this subsection we discuss various infinite dimensional extensions of rough stochas-
tic volatility models that have attracted interest in recent years. Our starting point is
the fractional Ornstein-Uhlenbeck process Y defined in (5.8), where we for simplicity
assume y = 0.

Consider first a state space H = R, and let the risk-neutral stock price dynamics with
stochastic volatility be

dS(t)

S(t)
= σ(t, Y (t))dB(t),

for some Brownian motion B, possibly correlated with W , and where we suppose the
risk-free interest rate to be zero. Recall that W is the Gaussian process driving the
fractional Ornstein-Uhlenbeck dynamics of Y . For example, choosing σ(t, y) = exp(y)

would give a rough stochastic volatility model extending the class of models proposed by
Gatheral, Jaisson and Rosenbaum [15]. In their paper, an Ornstein-Uhlenbeck process
driven by a fractional Brownian motion is shown to provide an excellent fit the volatility
of stock prices. We extend this class of models to allow for a fractional time-derivative in
the dynamics as well, opening for further flexibility in the modelling. Furthermore, we
can define a simple rough Heston model as the variance process

V (t) := Y 2(t)
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or, more generally, taking n independent copies of R-valued processes Wi, i = 1, . . . , n

driving Yi(t) as in (5.8),

V (t) =

n∑
i=1

Y 2
i (t)

Choosing σ(t, v) =
√
v would give a rough Heston stochastic volatility, providing a

possible extension of the class of models considered by El Euch and Rosenbaum [13].
Let us return to a general separable Hilbert space H. Forward and futures prices can

be realized as infinite dimensional stochastic processes, which call for operator-valued
stochastic volatility models (see Benth, Rüdiger and Süss [7] and Benth and Krühner [6]).
To this end, let H be the state space of the forward curves, given by some separable
Hilbert space of real-valued functions on R+. We restrict to R+ as this plays the role of
the time to maturity. A possible (simplistic) model for the risk-neutral forward price at
time t ≥ 0 is defined as

df(t) = ∂xf(t)dt+ Σ(t)dB(t) (5.10)

where B is some H-valued Wiener process with covariance operator QB. A direct
extension of the rough stochastic volatility model could be the following: supposing that
H is a Banach algebra, we define

Σ(t) := exp(Y (t)).

From the assumed algebra-structure of H, we can conclude that Σ(t) is again an element
of H. Moreover, Σ(t) defines a linear operator on H, given as the multiplication operator
Σ(t)(f) = Σ(t)f, f ∈ H. An example of a natural Hilbert space H to use for modelling
forward prices is the Filipovic space, which also happens to be a Banach algebra (see [5]).
The detailed knowledge of the covariance operator of Y (recall Corollary 27) provides a
starting point for empirical analysis of the volatility and its dependency across maturities
for forward prices. For a fixed time to maturity, we will have a dynamics following
a fractional stochastic volatility model similar to the one in [15] as discussed above.
We refer to the recent paper [1] where clear evidence of rough stochastic volatility in
commodity forward markets has been found (see also [15]). In particular, they show that
for front month contracts, the roughness of the stochastic volatility is in general lower
than for stock markets. Indeed, the authors find empirical evidence of Hurst parameters
below 0.05 for metals and below 0.15 in other commodity markets.

We can also introduce infinite dimensional extensions of the fractional Heston model.
To this end, following Benth and Simonsen [8], for some H-valued adapted process Z
with |Z(t)|H = 1, define

Σ(t) := Y (t)⊗ Z(t).

Then, Σ(t)(f) = 〈Y (t), f〉Z(t), and moreover, Σ(t)∗ = Z(t) ⊗ Y (t). We take Σ(t) as our
infinite dimensional volatility process, where we observe that

Σ(t)∗Σ(t) = Y ⊗2(t)

I.e., Σ(t) is in a sense the Cholesky decomposition of Y ⊗2. Notice that we use the
convention (f ⊗ g)(h) = 〈f, h〉g.

We are concerned with the variance/volatility of elements like

U(t) = L
∫ t

0

Σ(s)dB(s)

where L ∈ H∗, that is, a linear functional on H. If for any x ≥ 0 the evaluation operator
ex : f 7→ exf := f(x) is a continuous linear functional on H3, we can think of L := ex as

3This is the case for the Filipovic space, say.
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the noise process of the forward contract with time to maturity x. In power markets, say,
the forwards deliver electricity over a settlement period. From e.g. [5], one finds that L
in this case can be represented as some integral operator which is averaging over the
maturities x ≥ 0 in some domain (corresponding to the settlement period).

The total quadratic variation of U is given by the operator angle bracket process, see
Cor. 8.17 in [26],

〈〈U,U〉〉(t) =

∫ t

0

LΣ(s)QΣ(s)∗L∗1ds.

The instantaneous quadratic variation is the time-derivative of this expression, thus,

σ2
L(t) := LΣ(t)QΣ(t)∗L∗1. (5.11)

The instantaneous quadratic variation is the stochastic variance process (that is, the
squared volatility) of U , and has the form,

Proposition 29. It holds

σ2
L(t) = |L(Y (t))|2|Q1/2

B Z(t)|2H

Proof. For T ∈ H∗, we have

|T ∗1|2H = 〈T ∗1, T ∗1〉 = T T ∗1.

Hence,
σ2
L(t) = |Q1/2

B Σ(t)∗L∗1|2H
By definition,

Σ∗(t)(f) = (Y (t)⊗ Z(t))(f) = 〈Y (t), f〉Z(t)

Hence,
Q

1/2
B Σ(t)∗(L∗1) = 〈Y (t),L∗1〉Q1/2

B Z(t) = (LY (t))Q
1/2
B Z(t)

The Proposition follows.

One may take Z(t) := z, with |z|H = 1. Thus, the stochastic variance is given as

σ2
L(t) = c|LY (t)|2, where c is a scaling factor given by c = |Q1/2

B z|2H .
Let us now look at the stochastic process |LY (t)|2. From Theorem 26 we find that

t 7→ LY (t) has paths which are ρ = γ+α−1-regular, where we recall that γ ∈ (0, 1) is the
path regularity of W and α ∈ (0, 1) is the fractional derivative in the Ornstein-Uhlenbeck
dynamics of Y . Moreover, γ + α > 1. Denoting by v(t) the expected value of |LY (t)|2, we
find from Corollary 27

v(t) = E[|LY (t)|2] = E[〈Y (t),L∗1〉2H ] = 〈QY (t, t)L∗1,L∗1〉H = LQY (t, t)L∗1.

Thus, the expected moments of σ2
L is given by

E[σ2k
L (t)] = ckE[|LY (t)|2k] = ckξ2kv(t)k,

where ξ2k is the 2kth moment of a standard normal random variable, k ∈ N. From
Corollary 27, we have that QY ∈ Qη for η < β + α − 1 and β > 0 such that β + α > 1.
We recover a fractional behaviour in the moments of the stochastic variance process
similar to what has been observed empirically for a number of assets (see [15]) and
more recently for commodity forwards [1] as noted above. In our context, we have the
“roughness” split into a rough noise W and a fractional derivative α which opens for
a more flexible modeling of the stochastic volatility. Moreover, we have provided an
infinite-dimensional extension of the classical models.

EJP 26 (2021), paper 114.
Page 37/42

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP683
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Infinite dimensional pathwise Volterra processes

A Fractional calculus

We will apply certain elements from the theory of fractional calculus, involving
fractional derivatives and integrals of functions taking values in a separable Hilbert
spaceH. Although there are several concepts of fractional differentiation and integration,
we will in this article focus on fractional calculus of Riemann-Liouville type.

Definition 30. Let f : R+ → H be a locally Bochner integrable function in H, that is
f ∈ L1

loc(R+, H). We define the fractional integral of order α > 0 by

Iα(f)(t) =
1

Γ (α)

∫ t

0

(t− s)α−1
f(s)ds.

For α = 0, we set I0 = I to be the identity operator. The fractional integral Iα is a linear
operator on L1

loc(R+, H). Furthermore, define the fractional derivative of order α by

Dα(f)(t) =
d

dt
I1−α(f)(t), (A.1)

where the derivative d/dt is interpreted in the Frechet sense whenever this exists.

The next proposition is well known for the finite dimensional fractional Lebesgue
integral, see for example [27] for an comprehensive introduction to fractional calculus.

Proposition 31. Let f ∈ L1
loc(R+, H). For any t ∈ R+, α ≥ 0 and β ≥ 0, the fractional

derivative and integral satisfy the following properties:

(i). Iβ(Iα(f))(t) = Iα+β(f)(t).

(ii). Dβ(Iα(f))(t) = Iα−β(f)(t), whenever f ∈ C(R+, H) and β ≤ α.

(iii).
∑∞
i=0 I

iα(1) =
∑∞
i=0

tiα

Γ(α+1) =: Eα,1(tα).

The function Eα,β(x) :=
∑
i≥0

xi

Γ(iα+β) is known as the Mittag-Leffler function of order

(α, β).

Proof. All of these identities are well known in the finite dimensional case, and we only
give a sketch of the proof of their extension to the case of Hilbert valued elements here.
The reader is referred to [27] for a comprehensive discussion in the finite dimensional
case. First note that (i) follows from an application of Fubini’s theorem for Bochner
integrals, together with elementary manipulations of the fractional integral. To obtain
(ii) we apply (i) together with the definition of the fractional derivative in (A.1) to write

Dβ(Iα(f))(t) =
d

dt
I1+α−β(f)(t),

where the derivative is interpreted in the Frechet sense.
First, consider the case α > β with f ∈ L1

loc(R+, H). From the triangle and the
Bochner inequalities, we obtain the following estimate for arbitrary h > 0

1

h
|I1+α−β(f)(t+ h)− I1+α−β(f)(t)− hIα−β(f)(t)|H

≤ 1

Γ(1 + α− β)

1

h

∫ t+h

t

(t+ h− s)α−β |f(s)|Hds

+
1

Γ(1 + α− β)

∫ t

0

1

h

∣∣(t+ h− s)α−β − (t− s)α−β − h(α− β)(t− s)α−β−1
∣∣ |f(s)|Hds.
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Since t+ h− s ≤ h for s ∈ [t, t+ h], we find for the first integral on the right hand side
that

1

h

∫ t+h

t

(t+ h− s)α−β |f(s)|Hds ≤ hα−β
1

h

∫ t+h

t

|f(s)|Hds.

Thus, noting that the derivative of t 7→ (t− s)α−β is (α− β)(t− s)α−β−1, it holds from the
fundamental theorem of calculus and the dominated convergence theorem that, a.e.,

lim
h→0

1

h
|I1+α−β(f)(t+ h)− I1+α−β(f)(t)− hIα−β(f)(t)|H = 0.

Hence, (ii) holds a.e. for f ∈ L1
loc(R+, H) when α > β. If f is continuous, then the

fundamental theorem of calculus holds everywhere, such that h−1
∫ t+h
t
|f(s)|Hds →

|f(t)|H for all t ∈ R+ when h→ 0.
In the case of α = β, the result follows from the fundamental theorem of calculus

for the Bochner integral. This proves (ii). At last, from a simple computation we find
Iiα(1)(t) = Γ(iα+ 1)−1tiα. Thus, by summing over i, property (iii) holds.

Remark 32. Note that from point (ii) of Proposition 31, we see that Dα is the inverse
operator with respect to Iα. We further remark that we must assume continuity of f to
make use of the fundamental theorem of calculus for Bochner integrals.

B Auxiliary proofs

In this Appendix we have collected proofs from some of the claims in Section 5.

Proof of Proposition 23. Since s 7→ G(t, s) is integrable on [0, t] and s 7→ Z(s) is con-
tinuous, the left-hand side of (5.4) makes sense as a Riemann integral. Furthermore,
setting

Ξτ (t, s) =

∫ τ

s

G(τ, r)K(r, s)dr(W (t)−W (s)),

where the integral term is interpreted in Bochner sense, we give meaning to the integral
on the right-hand side of (5.4) as a Volterra Young integral by application of Lemma
10. To this end, we check that L(τ, s) :=

∫ τ
s
G(τ, r)K(r, s)dr is contained Kζ for some

ζ ∈ (0, 1) such that γ − ζ > 0, and then apply Proposition 14. Using that G ∈ Kκ for
κ ∈ (0, 1), and K ∈ Kη, it is readily checked that

‖L(τ, s)‖op ≤ ‖K‖Kη‖G‖Kκ
∫ τ

s

(τ − r)−κ(r − s)−ηdr

. (τ − s)1−κ−η
∫ 1

0

(1− θ)−κθ−ηdθ.

Due to the assumption that both κ, η ∈ (0, 1) it follows that |
∫ 1

0
(1−θ)−κθ−ηdθ| <∞. Since

κ ∈ (0, 1), we have that (τ − s)1−κ−η . (τ − s)−η, and it therefore follows that ‖L‖η,1 <∞.
By similar techniques, one can show ‖L‖η,i <∞ for i = 2, 3, 4, and thus we conclude that
L ∈ Kη inherits the regularity K. Since γ − η > 0 we conclude by Proposition 14 that the
integral on the right-hand side of (5.4) is well defined in a Young-Volterra sense.

We will now show that these two integrals are in fact equal. Let now P denote a
partition of [0, t] and for some s ∈ [0, t] let P ∩ [0, s] be the partition restricted to the
domain [0, s]. Then it is readily seen that following relation holds∑

[u,v]∈P

∑
[u′,v′]∈P∩[0,u]

G(t, u)[K(u, u′)(W (v′)−W (u′))](v − u)
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=
∑

[u′,v′]∈P

∑
[u,v]∈P∩[v′,t]

[G(t, u)K(u, u′)(v − u)](W (v′)−W (u′)) (B.1)

Since the left-hand side of (5.4) is a Riemann integral, it is constructed as the limit of
the sum on the left-hand side above. Similarly, the integral on the right-hand side of
(5.4) is the limit of the sum appearing on the right-hand side above. Since (B.1) holds for
arbitrary partitions P, it follows that (5.4) holds.

Proof of Corollary 24. An application of Proposition 23 where we set G(t, s) = (t− s)α−1

and K(t, s) = (t − s)−η (both interpreted as multiplication of scalar operators on H),
reveals that for α ∈ (0, 1) we have

Iα(X)(t) = Γ (α)
−1

Γ (1− η)
−1
∫ t

0

∫ t

r

(t− s)α−1
(s− r)−η dsdW (r). (B.2)

Next we will simplify the integral with respect to ds in (B.2), and to this end, we do a
change of variables by setting s = r + θ (t− r) and compute∫ t

r

(t− s)α−1
(s− r)−η ds = (t− r)α−η B(α, 1− η),

where B is the Beta-function. Using the properties of the Beta-function, we further
compute that

Γ (α− η + 1)

Γ (α) Γ (1− η)

∫ t

0

∫ t

r

(t− s)α−1
(s− r)−η dsdW (r) =

∫ t

0

(t− r)α−η dW (r). (B.3)

Therefore, it holds

∞∑
i=0

A◦iIiα (X) (t) =

∫ t

0

(t− r)−η
∞∑
i=0

A◦i (t− r)iα

Γ (iα− η + 1)
dW (r)

=

∫ t

0

(t− r)−η Eα,1−η (A (t− r)α) dW (r),

where we have applied the linearity of the integral together with the pathwise Fubini
Theorem in Proposition 23 to exchange the infinite sums with integration.

Proof of Theorem 26. The proof is given in two steps. First we show the existence of a
solution by showing that (5.8) satisfies (5.7), and next we show that this solution is in
fact unique. An application of Corollary 24 shows that (5.8) satisfies (5.7). Indeed, define

Y (t) := Eα,1 (Atα) y +

∫ t

0

(t− s)α−1
Eα,α (A (t− s)α) dW (s). (B.4)

Inserting (B.4) into AIα(Y )(t) yields

AIα(Y )(t) = AIα (Eα,1 (A(·)α)) y +AIα
(∫ ·

0

(· − s)α−1
Eα,α (A (· − s)α) dW (s)

)
(t)

=: I1(t) + I2(t). (B.5)

By definition of Eα,1 (see Corollary 24), we observe that

I1(t) = Eα,1 (Atα) y − y. (B.6)

Moreover, using the convolution property of the fractional integral Iα together with
the representation of the Mittag-Leffler function, followed by the Fubini property from
Corollary 24, we find

I2(t) =

∫ t

0

(t− s)α−1
Eα,α (A (t− s)α) dW (s)−X(t) (B.7)
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Thus, combining (B.6) and (B.7) and inserting into (B.5), it is clear that

AIα(Y )(t) = Eα,1 (Atα) y − y +

∫ t

0

(t− s)α−1
Eα,α (A (t− s)α) dW (s)−X(t).

After rearranging this expression it follows that (5.8) solves (5.7).
We continue to prove that this solution is unique. Suppose Y and Ỹ are two solutions

in Cρ([0, T ], H) to (5.7), starting in y ∈ H and ỹ ∈ H respectively. Then it is readily
checked that

|Y (t)− Ỹ (t)|H ≤ |y − ỹ|H +AIα(|Y − Ỹ |H)(t). (B.8)

By application of the fractional Grönwall lemma [34, Corollary 2], Inequality (B.8) implies
that

|Y (t)− Ỹ (t)|H ≤ |y − ỹ|Eα,1(AΓ(α)tα).

Thus if y− ỹ = 0, we see that |Y (t)− Ỹ (t)|H = 0, which implies that the solution is unique.
This concludes the proof.
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