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Abstract

Motivated by the goal of understanding the evolution of populations undergoing
selection, we consider branching Brownian motion in which particles independently
move according to one-dimensional Brownian motion with drift, each particle may
either split into two or die, and the difference between the birth and death rates is a
linear function of the position of the particle. We show that, under certain assumptions,
after a sufficiently long time, the empirical distribution of the positions of the particles
is approximately Gaussian. This provides mathematically rigorous justification for
results in the biology literature indicating that the distribution of the fitness levels of
individuals in a population over time evolves like a Gaussian traveling wave.
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1 Introduction

An important problem in evolutionary biology is to understand how the fitness of
individuals in a population increases over time as a result of beneficial mutations. Results
in the biology and physics literature indicate that in large populations, if individuals
acquire beneficial mutations at a constant rate, then the overall fitness level of the
population increases at a constant rate, known as the rate of adaptation, while the
empirical distribution of the fitness levels of individuals in the population becomes
approximately Gaussian. That is, the empirical distribution of the fitness levels of
individuals in the population evolves over time like a Gaussian traveling wave. The idea
of modeling the fitness distribution by a traveling wave goes back at least to the work of
Tsimring, Levine, and Kessler [38]. Later works discussing the Gaussian shape for the
traveling wave include [4, 11, 14, 16, 31, 33, 34, 35].
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Gaussian particle distribution for BBM with inhomogeneous branching

Although the idea that the fitness distribution evolves as a Gaussian traveling wave is
well established in the biology and physics literature, the mathematically rigorous work
on this problem has been considerably more limited. The main aim of this paper is to
provide a first rigorous analysis in which a non-degenerate Gaussian traveling wave is
observed in this context. Before we go into the details of our own results, we give a brief
overview of the existing mathematical literature.

A standard mathematical model involves a population of fixed size N in which each
individual independently acquires beneficial mutations at the constant rate µ. Beneficial
mutations increase an individual’s fitness by s, so that an individual that has acquired k
beneficial mutations, which we call a type k individual, has fitness max{0, 1+s(k−m(t))},
where m(t) is the mean number of mutations of the individuals in the population at time t.
Each individual independently dies at rate one, and when an individual dies, the parent of
the new individual that is born is chosen at random from the population with probability
proportional to fitness. A number of authors have studied models very similar to this one.
Yu, Etheridge, and Cuthbertson [40] and Kelly [27] obtained rigorous results concerning
the rate of adaptation for a very similar model, but did not establish a Gaussian shape
for the fitness distribution. Durrett and Mayberry [15] considered, for a closely related
model, the case in which s is constant and the mutation rate is N−α, where 0 < α < 1.
They rigorously established traveling wave behavior. However, they considered mutation
rates that are small enough that the number of distinct types present in the population
at a typical time is a constant that does not tend to infinity with N , which means the
traveling wave does not have a Gaussian shape. Schweinsberg [37] considered slightly
faster mutation rates, so that the mutation rate tends to zero more slowly than any
power of N . This work essentially made rigorous the heuristics developed by Desai and
Fisher [14]. For the range of parameter values considered in [37], the traveling wave
exhibits Gaussian-like tail behavior, in the sense that the logarithm of the ratio of the
number of individuals with ` more mutations than average to the number of individuals
with an average number of mutations is proportional to −`2. However, at a typical time,
most individuals have the same number of mutations, which means that the empirical
distribution of the fitnesses of individuals in the population is actually converging to a
point mass, rather than to a Gaussian distribution. Up to this point, as far as we know,
the empirical distribution of the fitnesses of individuals in the population in this model
has not been rigorously shown to converge to a Gaussian distribution for any range of
values of the parameters µ and s.

For the fitness distribution to be approximately Gaussian, the mutation rate needs to
be large enough that one type does not dominate the population at a typical time. This
corresponds to the high speed regime considered in [16]; see also [19]. We therefore
consider a scenario in which the rate of beneficial mutations is large, but the additional
selective benefit resulting from each mutation is small. This is the idea behind the
so-called infinitesimal model in quantitative genetics, which goes back to the early work
of Fisher [17]. See Barton, Etheridge, and Véber [2] for a recent mathematical treatment
of the infinitesimal model and an extensive survey of the relevant biology literature. They
establish conditions under which the values of various quantitative traits within a family
are approximately normally distributed, but emphasize that their results do not imply
that the trait values across the entire population are approximately normally distributed.

If individuals acquire many mutations, each having a small effect on fitness, then
the fitness of an individual over time will evolve like a continuous-time random walk,
which, after being scaled to have mean zero, can be approximated by Brownian motion.
We will therefore consider a model in which the fitness of an individual moves over
time according to Brownian motion. We will allow the offspring of individuals to evolve
independently, rather than imposing a fixed population size. However, by adding a
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negative drift to the Brownian motion and choosing the initial conditions carefully,
we can work in a nearly critical regime in which the number of individuals stays the
same order of magnitude on the time scale of interest, rather than dying out quickly or
growing exponentially. Consequently, we believe that our results will be relevant for
understanding populations with a fixed size, as we discuss briefly in Section 1.5.

1.1 The model

The above considerations lead us to consider the following branching Brownian
motion process, which is the model that we will study throughout the rest of the paper.
Because we aim to prove a limit theorem, we will consider a sequence of processes
indexed by n. We begin with some configuration of particles at time zero, which may
depend on n. Each particle independently moves according to one-dimensional Brownian
motion with drift −ρn, where ρn > 0. Also, any particle at the location x independently
dies at rate dn(x), and splits into two particles at rate bn(x), where

bn(x)− dn(x) = βnx (1.1)

for some βn > 0. In particular, note that the birth and death rates are the same for
particles at the origin. This model is very similar to the model studied by Neher and
Hallatschek [31]. The main results of this paper are mathematically rigorous versions of
some of the results in [31], and some of the results in the high speed regime in [16].

As indicated above, we view this process as modeling a population undergoing
selection. With this interpretation, particles represent individuals in a population, and
the position of the particle corresponds to the fitness level of the individual.

1.2 Main results

Before stating our main results, we will need to introduce some assumptions and
some notation. Given two sequences of positive real numbers (an)∞n=1 and (bn)∞n=1, we
will write an . bn if an/bn is bounded above by a positive constant, and an � bn if
limn→∞ an/bn = 0. We will use the symbols & and� likewise. We also write an � bn if
an/bn is bounded both above and below by positive constants. We write that an is O(1) if
the sequence (an)∞n=1 is bounded and o(1) if limn→∞ an = 0. We will also use O(1) and
o(1) for random sequences that are uniformly bounded above by deterministic sequences
that are O(1) and o(1) respectively.

We will make the crucial assumption that

lim
n→∞

ρ3
n

βn
=∞. (1.2)

We will also assume that
lim
n→∞

ρn = 0, (1.3)

and that, in addition to (1.1), there exists ∆ ∈ (0, 1) such that

dn(x) ≥ ∆ for all x ∈ R, n ∈ N and bn(x) ≤ 1/∆ for all x ≤ 1/βn, n ∈ N. (1.4)

The assumptions (1.2), (1.3), and (1.4) will be in effect throughout the rest of the paper,
even when they are not explicitly mentioned. Note that (1.1) and (1.4) are satisfied, for
example, if dn(x) = 1 and bn(x) = 1 + βnx for all x ≥ −1/βn, while dn(x) = −βnx and
bn(x) = 0 for x < −1/βn.

Beyond Section 1, to lighten notation, we will drop the subscripts and write ρ and β
in place of ρn and βn. However, it is important for the reader to keep in mind that these
parameters do depend on n.

EJP 26 (2021), paper 103.
Page 3/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP673
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian particle distribution for BBM with inhomogeneous branching

We will also need to consider the Airy function

Ai(x) =
1

π

∫ ∞
0

cos

(
y3

3
+ xy

)
dy.

The Airy function Ai has an infinite sequence of zeros (γk)∞k=1 which satisfy · · · < γ2 <

γ1 < 0. The Airy function and particularly the quantity γ1 will play an important role in
what follows. It is known (see table 9.9.1 in [32]) that to three decimal places,

γ1 ≈ −2.338. (1.5)

We will let Nn(t) denote the total number of particles in the system at time t, and
we will let X1,n(t) ≥ X2,n(t) ≥ · · · ≥ XNn(t),n(t) denote the locations of the particles at
time t. We imagine our system drawn with time on the vertical axis, so that the maximal
particle is the right-most. Let

Ln =
ρ2
n

2βn
− (2βn)−1/3γ1. (1.6)

Note that ρ2
n/βn � β

−1/3
n by (1.2), which means that ρ2

n/2βn is the dominant term in
(1.6). Our particles will generally be to the left of Ln, and we call the area near Ln the
right edge. Note that since γ1 < 0, Ln is to the right of ρ2

n/2βn. Define

Yn(t) =

Nn(t)∑
i=1

eρnXi,n(t) (1.7)

and

Zn(t) =

Nn(t)∑
i=1

eρnXi,n(t)Ai((2βn)1/3(Ln −Xi,n(t)) + γ1)1{Xi,n(t)<Ln}. (1.8)

While the form of Zn(t) may seem mysterious at this point, this turns out to be a natural
measure of the “size” of the process at time t. It turns out that, if we modify the process
by killing particles that reach Ln, then (Zn(t), t ≥ 0) is a martingale.

In addition to the assumptions (1.2), (1.3), and (1.4) on the parameters, we will make
two assumptions on the initial configuration of particles at time zero. We will assume
that for all ε > 0, there is a δ > 0 such that for sufficiently large n,

P
(
δ · β

1/3
n

ρ3
n

eρnLn ≤ Zn(0) ≤ 1

δ
· β

1/3
n

ρ3
n

eρnLn
)
> 1− ε. (1.9)

In other words, the sequence of random variables (ρ3
nβ
−1/3
n e−ρnLnZn(0))∞n=1 and its recip-

rocal sequence are tight. Since ρnLn ≈ ρ3
n/2βn →∞ by (1.2), we have (β

1/3
n /ρn)eρnLn →

∞. It then follows that when (1.9) holds, Zn(0) is large because 1/ρ2
n →∞ by (1.3).

We will also assume that

ρ2
ne
−ρnLnYn(0)→p 0, (1.10)

where→p denotes convergence in probability as n→∞. Roughly speaking, the condition
(1.10) ensures that the contribution to Zn(t) for small values of t will not be dominated
by the descendants of a single particle at time zero, nor will it be dominated by particles
that are far from Ln at time zero. The two conditions (1.9) and (1.10) cannot be satisfied
by a single particle at any location. However, they are satisfied, for example, by letting
(un)∞n=1 be any sequence satisfying ρ−1

n � un ≤ β
−1/3
n , and starting with eρnun/unρ

3
n

particles all located at Ln − un.
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We are now ready to state our main result, establishing the Gaussian shape for the
distribution of particles on a suitable time scale. Here and throughout the paper, δy
denotes the unit mass at y, and ⇒ denotes convergence in distribution for random
elements of the Polish space of probability measures on R endowed with the weak
topology.

Theorem 1.1. Suppose the assumptions (1.2), (1.3), (1.4), (1.9) and (1.10) hold. Suppose

ρ
2/3
n

β
8/9
n

� tn −
ρn
βn

.
ρn
βn
. (1.11)

For t > 0, define the random probability measure

ζn(t) =
1

Nn(t)

Nn(t)∑
i=1

δ
Xi,n(t)

√
βn/ρn

(1.12)

if Nn(t) ≥ 1, and set ζn(t) = δ0 if Nn(t) = 0. Let µ be the standard normal distribution.
Then ζn(tn)⇒ µ as n→∞.

This result shows that the empirical distribution of the particle locations shortly
after time ρn/βn is approximately Gaussian, and stays that way at least for times of the
order ρn/βn. We will see later that it takes time approximately ρn/βn for descendants
of particles near Ln to start to reach the origin, which is the reason why the Gaussian
shape does not show up until after a waiting time of approximately ρn/βn.

Note that this Gaussian distribution has mean zero. However, if we considered a
translation of the model in which particles move according to branching Brownian motion
with no drift, with time-dependent birth and death rates satisfying b(x, t) − d(x, t) =

βn(x− ρnt), then the Gaussian particle distribution at time tn would be centered at ρntn,
giving rise to the Gaussian traveling wave behavior discussed above. Therefore, the drift
parameter ρn can be interpreted in this model as the speed at which the traveling wave
advances. Because the fitness of the population, as measured by the branching rate,
increases by βn whenever the traveling wave advances by one unit, the fitness of the
population increases over time at rate vn = βnρn.

Note also that from the scaling in (1.12), the empirical distribution of particles has
standard deviation approximately

√
ρn/βn, and therefore has variance ρn/βn. Because

the fitness of a particle in increases by βn when the position of a particle increases by
one, it follows that the variance of the fitness distribution is σ2

n = β2
n(ρn/βn) = vn, in

agreement with Fisher’s Fundamental Theorem of Natural Selection [18].

Because, as we will see, some particles with unusually high fitness account for nearly
all of the offspring that are still alive at a time ρn/βn in the future, it is also of interest to
understand the empirical distribution of particles close to the right edge. To do this, we
consider an empirical measure in which a particle at x is weighted by eρnx. This leads to
the following result.

Theorem 1.2. Suppose the assumptions (1.2), (1.3), (1.4), (1.9) and (1.10) hold. Suppose

β−2/3
n

(
log

(
ρn

β
1/3
n

))1/3

� tn .
ρn
βn
. (1.13)

For t > 0, define the random probability measure

ξn(t) =
1

Yn(t)

Nn(t)∑
i=1

eρnXi,n(t)δ(2βn)1/3(Ln−Xi,n(t)) (1.14)
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if Nn(t) ≥ 1, and set ξn(t) = δ0 if Nn(t) = 0. Let ν be the probability measure on (0,∞)

with probability density function

h(y) =
Ai(y + γ1)∫∞

0
Ai(z + γ1) dz

. (1.15)

Then ξn(tn)⇒ ν.

Note that β−2/3
n � ρn/βn by (1.2), so the particles near the right edge reach this

limiting configuration on a much faster time scale than the time it takes for the Gaussian
shape to emerge near the origin. Note also that Theorem 1.2 describes particles
that are within O(β

−1/3
n ) of Ln, which in turn is within O(β

−1/3
n ) of ρ2

n/2βn. Because
ρ2
n/2βn �

√
ρn/βn by (1.2), it follows that these particles near the right edge whose

configuration is described by Theorem 1.2 are far away from the bulk of the Gaussian
distribution of particles described by Theorem 1.1.

The appearance of the Airy function here is not a surprise. The Airy function appeared
in the early work on traveling waves by Tsimring, Levine, and Kessler [38]. It also arises
in the work of Neher and Hallatschek [31], who studied essentially the same model
that we are considering in this paper, as well as in [12], where one of the equations
that is central to the work of Neher and Hallatschek [31] had previously been studied.
Fisher [16] arrived at an expression analogous to (1.6) involving the largest zero of
the Airy function for the difference in fitness between the fittest individual and an
individual of average fitness (see equation (50) of [16]). The Airy function also arises in
the expression for the position of the right-most particle in branching Brownian motion
with inhomogeneous variance, as shown in [30].

1.3 A heuristic analysis based on large deviations

Branching Brownian motion with an inhomogeneous branching rate was also studied
in [7, 24], where the authors considered the case in which a particle at x branches at a
rate proportional to |x|p, where 0 < p < 2. The techniques of proof that we will use in the
present paper are quite different from those used in [7, 24]. However, while the large
deviations techniques used in [7] are not sufficiently precise to prove the main results of
this paper, a heuristic calculation based on these techniques provides insight into the
behavior of the process and helps to explain the motivation for our proof strategy. We
therefore summarize this calculation here, even though it is not logically necessary for
understanding the rest of the paper.

Let T be a large time, and let f : [0, T ]→ R. According to results in [7], if the process
starts with one particle at f(0), then the expected number of particles that stay close to
the function f through time T can be approximated by

exp

(∫ T

0

(
βnf(u)− 1

2
(f ′(u) + ρn)2

)
du

)
. (1.16)

This is because the birth rate minus the death rate for particles that do manage to
follow near f will be approximately βnf(u) at time u, and the probability that a Brownian

motion with drift −ρn manages to follow near f is roughly exp(− 1
2

∫ T
0

(f ′(u) + ρn)2 du) by
Schilder’s theorem.

If the process starts with one particle, then it is possible that the process will die
out almost immediately. However, assuming this does not happen, the actual number of
such particles will be reasonably omparable to the expected number provided that the
integral in (1.16), when evaluated from 0 to t, is nonnegative for all t ∈ [0, T ]. Otherwise,
at the point that the integral becomes negative, the expected number of particles will
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be exponentially small and Markov’s inequality entails that with high probability no
particles will manage to follow the trajectory.

Suppose the function f is constant on [0, T ]. Then the integrand in (1.16) is positive if
f(u) > ρ2

n/2βn, suggesting that if we begin with one particle above ρ2
n/2βn, the number

of descendants of this particle will grow exponentially. The integrand in (1.16) is negative
if f(u) > ρ2

n/2βn, suggesting that if we begin with one particle below ρ2
n/2βn, then no

particle can remain close to this level. An equilibrium is reached when f(u) = ρ2
n/2βn for

all u ∈ [0, T ], in which case the integrand in (1.16) is zero. Therefore, if we start with one
particle at the position ρ2

n/2βn at time zero (and the descendants of this particle do not
die out quickly), then the right-most particle is likely to stay near the position ρ2

n/2βn.
This calculation explains why we defined Ln to be close to ρ2

n/2βn.
We now consider the trajectory fz followed by particles that are near z at time T ,

starting from one particle at the position ρ2
n/2βn at time zero. According to Theorem 7 of

[7], these particles initially stay close to their initial position, so we have fz(t) = ρ2
n/2βn

for t ∈ [0, tz] for some tz. Then for u ∈ [tz, T ], equation (18) of [7] implies that f ′′z (u) =

−βn, which means fz(u) = a+ bu− (βn/2)u2 for u ∈ [tz, T ], with the conditions fz(T ) = z,
fz(tz) = ρ2

n/2βn, and f ′z(tz) = 0, for some real numbers a and b. Solving, we get

fz(u) =
ρ2
n

2βn
− βn

2
(u− tz)2, tz = T −

√
2

βn

(
ρ2
n

2βn
− z
)
. (1.17)

This means that the number of particles near z at time T is approximately exp(g(z)),
where

g(z) =

∫ T

tz

(
βnfz(u)− 1

2
(f ′z(u) + ρn)2

)
du =

ρ3
n

2βn
− ρnz −

2
√

2βn
3

(
ρ2
n

2βn
− z
)3/2

. (1.18)

We can then calculate

g(0) =
ρ3
n

6βn
, g′(0) = 0, g′′(0) = −βn

ρn
,

which means that for small z, a Taylor expansion gives

g(z) ≈ ρ3
n

6βn
− βnz

2

2ρn
. (1.19)

We then see that at time T , the empirical distribution of particles should be approximately
normal with mean zero and variance ρn/βn, consistent with Theorem 1.1. For this
reasoning to be valid, the standard deviation

√
ρn/βn needs to be much smaller than the

distance between zero and the right-most particle, which is ρ2
n/2βn. This is indeed the

case when (1.2) holds. Note also that T − t0 = ρn/βn, which means that it takes time
approximately ρn/βn for the descendants of particles near ρ2

n/2βn to concentrate near
the origin. This explains why, in Theorem 1.1, the Gaussian shape emerges only after
the process has evolved for time ρn/βn.

Finally, note that although the bulk of the distribution of particles is Gaussian, we
see different behavior near the right edge. In particular, writing y = ρ2

n/2βn − z, from
(1.18) we have

g(z) = ρny −
2
√

2βn
3

y3/2,

and since the first term dominates for small y, we see an exponential decay of rate ρn
for the particle density near the right edge. This is partially explained by Theorem 1.2,
which describes the configuration of particles that are within a distance of order β−1/3

n

from the right edge at Ln.
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1.4 Additional connections to previous work

Branching Brownian motion has previously been used to model populations under-
going selection in [5, 8, 9, 13, 28]. However, in these works, it was assumed that the
branching rate of a particle does not depend on the position of the particle. Instead, to
model selection, particles are killed when they drift too far to the left, that is, when their
fitness gets too low. This model leads to substantially different behavior. The empirical
distribution of particles is not approximately Gaussian but rather most particles end
up close to the left edge. For example, for the model studied in [5] in which particles
are killed when they reach the origin, when the system has N particles that are in a
nearly stable configuration, the density of particles near y will be roughly proportional
to e−

√
2y sin(

√
2πy/ logN). See [6] for a precise formulation and proof of this result.

Nevertheless, the techniques of proof used in the present paper are very similar to those
used in [5, 6].

The main results of [5] state that when the branching rate is constant but particles
are killed upon reaching the origin, under suitable initial conditions, the number of
particles over time behaves like Neveu’s continuous-state branching process, while the
genealogy of the particles can be described by the Bolthausen-Sznitman coalescent.
The result concerning the genealogy of the particles had previously been predicted in
[8, 9]. We believe that similar results should hold for the process studied in the present
paper. Indeed, (2.18) and Lemma 2.10 below closely resemble Lemmas 11 and 12 of
[5] respectively, which are two of the key steps in proving the convergence to Neveu’s
continuous-state branching process. Also, it was established in [31] by nonrigorous
methods that the genealogy of the particles for the process studied in the present paper
should be described by the Bolthausen-Sznitman coalescent, following an initial time
period in which coalescence does not occur because particles sampled from the bulk of
the distribution at time t will most likely be descended from distinct ancestors near the
right edge of the distribution at time t− ρ/β. However, in the present paper, we focus on
establishing the Gaussian shape for the empirical distribution of particles, and we defer
consideration of the genealogy of the particles to a future work.

Beckman [3] also considered branching Brownian motion in which the branching
rate depends on the position of the particle. She assumed that at time zero, there
are N particles placed independently according to some density, and established a
hydrodynamic limit for the evolution of the empirical distribution of particles over time
as N → ∞. An important difference between the work in [3] and the present paper
is that in [3], time is not rescaled, so the results essentially pertain to what happens
at a fixed time t in the limit as N → ∞, whereas here we consider times of the order
ρ/β, which tends to infinity. Also, while the work in [3] was likewise motivated by the
consideration of evolving populations, the results in [3] have been established only for
the case in which the branching rate of the particles is a bounded function of the position.
Groisman, Jonckheere, and Martinez [22] likewise obtained a hydrodynamic limit for a
model in which, at the time of a branching event, two particles are chosen at random
and the particle on the left jumps to the location of the particle on the right, effectively
giving a higher branching rate to particles further to the right.

1.5 Implications for discrete population models

We briefly return here to the discrete population model mentioned at the beginning of
the paper, in which there is a fixed population of size N and, at rate µN , each individual
acquires beneficial mutations that increase the individual’s fitness by sN . As noted above,
we believe that our results may provide non-rigorous insight into the behavior of this
discrete model. In this section, we explain the correspondence that we expect should
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hold between the discrete population model and the branching Brownian motion model.
We emphasize, however, that the results in this paper do not rigorously establish any
results for the discrete population model. Extending the results in this way is expected
to require overcoming considerable technical obstacles, and we consider this to be an
important topic for future work.

In the discrete model, the evolution of an individual’s fitness over time is a continuous-
time random walk, which evolves by making steps of size sN at rate µN . If µN is
sufficiently large and the selective advantage sN resulting from an individual mutation
is sufficiently small, then after suitable scaling, it should therefore be possible to
approximate the evolution of an individual’s fitness over time by Brownian motion with
drift. We therefore expect that, if the parameters are tuned in the right way, then our
branching Brownian motion model should give a good approximation to the discrete
model. Below we show how to choose the parameters to match with the discrete model,
and we then expect that similar results to those that we establish for the branching
Brownian motion model should also be true for the discrete model. In particular, we
expect the fitness distribution of the population to evolve like a Gaussian traveling wave.

Furthermore, because the convergence of random walks to Brownian motion is not
sensitive to the step size distribution of the random walk (assuming finiteness of the
second moment), we believe that this correspondence should extend to discrete models
in which the fitness change resulting from a mutation is random, and mutations could be
deleterious as well as beneficial. See [16] and [20] for detailed nonrigorous work on the
evolution of populations in which mutations have a random effect on fitness.

Recall that although the number of particles varies over time in the branching
Brownian motion model, the parameters and initial conditions can be chosen so that the
size of the population stays the same order of magnitude on the time scale of interest.
We will therefore compare the discrete population model with N individuals to branching
Brownian motion with the parameters indexed by N and chosen so that the number of
particles is within a constant multiple of N . To see how the parameters match up, note
that in the discrete population model, the standard deviation of the number of mutations
that an individual gets in one time unit is

√
µN , so the standard deviation of the fitness

change of an individual in one time unit is sN
√
µN . Because the standard deviation of

the position of a Brownian motion with drift after one time unit equals one, the standard
deviation of the fitness change of a particle in one time unit in the branching Brownian
motion model is βN . This leads to the correspondence

βN = sN
√
µN . (1.20)

Furthermore, (2.8) below states that for the branching Brownian motion model, if (1.9)
and (1.10) hold, the number of particles in the system at later times is of the order
β

1/3
N ρ−3

N eρNLN e−ρ
3
N/3βN , which suggests the correspondence

N =
β

1/3
N

ρ3
N

exp

(
ρ3
N

6βN
− ρN (2βN )−1/3γ1

)
. (1.21)

That is, given the biological parameters N , µN , and sN , to model the population using
branching Brownian motion, we can choose βN to satisfy (1.20) and then choose the
drift ρN so that (1.21) holds.

If (1.21) holds, then the assumption (1.2) is equivalent to the condition that N �
β
−2/3
N , which if (1.20) holds is equivalent to the condition that

N3µNs
2
N →∞. (1.22)

Note that (1.22) fails to hold when µN and sN are both of the order 1/N , in which case
the population can be studied using a classical diffusion approximation. The quantity
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N3µNs
2
N also figures prominently in the work of Good, Walczak, Neher, and Desai [21].

They considered the case in which NµN → ∞, NsN → 0, and N3µNs
2
N → c ∈ (0,∞),

which led to what they called the “fine-grained coalescent”. Their parameter regime
would correspond to our model with ρ3

N/βN → c ∈ (0,∞), which entails weaker selection
than what we consider in this paper.

To prove results rigorously for the discrete population model, it would be neces-
sary to extend the results in this paper for branching Brownian motion to the case of
branching random walks, in which the mutations would correspond to random walk
steps. Furthermore, it would be necessary to adapt the analysis to the case of a model
of fixed population size, which presents technical challenges because individuals in
the population no longer evolve independently. As noted in [16], this will lead to some
complicated feedback between the behavior of the fittest individuals and the behavior
of the bulk of the population. Similar technical obstacles were overcome successfully
in [28] by Maillard, who showed that many of the ideas developed in [5] for branching
Brownian motion with particles killed at the origin could be carried over to the so-called
N -BBM process, in which the left-most particle is killed at the time of a branching event
to keep the number of particles fixed. We do not pursue these matters further in this
paper.

1.6 Index of notation

Below is an index of some of the notation that is used throughout the paper.

A Constant used to adjust where particles are killed. See (2.1).
bn(x) Rate at which a particle at x splits into two particles.
dn(x) Death rate for a particle at x.
h Density of limiting particle configuration near right edge. See (1.15).
HA(t) Defined to equal LA − βt2/9. See (5.2).
KA(t) Defined to equal LA − βt2/66. See (2.25).
`(t) Defined to equal βt2/33. See (2.25).
L = LN Position at which particles are often killed, L = ρ2/2β − (2β)−1/3γ1.
LA Defined by LA = L−A/ρ. See (2.1).
Nn(t) Number of particles at time t.
pt(x, y) Density for process started with one particle at x at time zero. See (2.11).
p`t(x, y) Density for the process if particles are killed at `.
qt(x, y) Density for the process if the drift is removed.
r`x(u, v) Expected number of particles killed at ` between times u and v.
r̃`x(t) Rate at which particles hit ` at time t.
tx,A Time defined in (4.1).
Xi,n(t) Location of the ith particle at time t, if particles are ordered by position.
Yn(t) Weighted sum in which a particle at x contributes eρx. See (1.7).
Y ∗n,A(t) Similar to Yn(t) but counts only particles that stay below LA. See (7.1).
Zn(t) Measure of the “size” of the process at time t, defined in (1.8).
Zn,A(t) Similar to Zn(t) but counts only particles below LA at time t. See (2.4).
Z∗n,A(t) Similar to Zn,A(t) but counts only particles that stay below LA. See (7.2).
zn,A(x) Contribution to Zn,A(t) from one particle at x. See (2.3).
α(x) Defined to be Ai((2β)1/3x+ γ1).
β = βn Selection parameter, defined so that bn(x)− dn(x) = βnx.
γk kth-largest zero of the Airy function Ai.
ζn(t) Scaled empirical distribution of particle locations at time t. See (1.12).
ξn(t) Distribution of mass at time t, if particle at x contributes eρx. See (1.14).
ρ = ρn The Brownian particles have a drift of −ρ.
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2 Outline of the proofs

The proofs of Theorems 1.1 and 1.2 rely on a combination of first moment estimates
based on the many-to-one lemma, second moment estimates to control fluctuations, and
careful truncation arguments. We record in this section some of the intermediate results
that are important for the argument and defer the more technical proofs until later
sections.

We first introduce here some more notation. As mentioned in Section 1, from now on
we will drop the subscript n from much of our notation, for example writing ρ and β in
place of ρn and βn, and writing L in place of Ln. We emphasize again that is important
for the reader to keep in mind that these parameters do depend on n. We have only
excluded the subscripts to lighten the burden of notation.

When the initial configuration consists of a single particle at the location x, we denote
probabilities and expectations by Px and Ex. For real numbers A, we define

LA =
ρ2

2β
− (2β)−1/3γ1 −

A

ρ
. (2.1)

Note that LA depends on n, although again we omit the subscript. Note also that L0 = L.
The terms in LA are listed in order of size: the dominant term remains ρ2/2β, and there
is an adjustment of order β−1/3 as in L; we will see why L has this form later, in (2.17).
The difference between LA and L is only in the term of smallest order, A/ρ.

We also introduce the shorthand notation

α(x) = Ai((2β)1/3x+ γ1). (2.2)

For A ∈ R and x ∈ R, we define

zn,A(x) = eρxAi((2β)1/3(LA − x) + γ1)1{x<LA} = eρxα(LA − x)1{x<LA}. (2.3)

For A ∈ R and t ≥ 0, we define

Zn,A(t) =

Nn(t)∑
i=1

eρXi,n(t)Ai((2β)1/3(LA −Xi,n(t)) + γ1)1{Xi,n(t)<LA} =

Nn(t)∑
i=1

zn,A(Xi,n(t)).

(2.4)
Note that Zn(t) = Zn,0(t). More generally, given A ∈ R and a function ϕ : (−∞, LA)→ R,
we define

Vϕ,n,A(t) =

Nn(t)∑
i=1

eρXi,n(t)ϕ(Xi,n(t))1{Xi,n(t)<LA}. (2.5)

We introduce LA above because it will sometimes be necessary to consider a mod-
ification of the process in which particles are killed when they reach LA. In this case,
it will be important to keep track of how various constants depend on A. Given two
sequences (an)∞n=1 and (bn)∞n=1, when we write an . bn or bn & an, the ratio an/bn must
be bounded above by a positive constant that does not depend on A. We write an � bn
to mean that both an . bn and an & bn hold. Throughout the rest of the paper, Ck for
a nonnegative integer k will denote a fixed positive constant. The value of Ck may not
depend on n or A and does not change from one occurrence to the next.

2.1 The empirical distribution of particles

A large part of our proofs will consist of detailed first and second moment estimates,
allowing us to approximate the density of particles in different regions of space. We
will detail these in sections 2.2 to 2.7 below. Putting these moment estimates aside,

EJP 26 (2021), paper 103.
Page 11/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP673
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian particle distribution for BBM with inhomogeneous branching

there are three main steps required to prove Theorems 1.1 and 1.2. The first step
requires considering the configuration of particles near the right edge. As long as the
initial configuration of particles satisfies (1.9) and (1.10), a short time later the particles
near the right edge should settle into a relatively stable configuration, described by
the density h defined in (1.15). For particles within a distance of order β−1/3 from the
right edge, it should take a time of order β−2/3 for the particles to reach this relatively
stable configuration. For technical reasons, to make it easier to control particles that
drift a bit further than order β−1/3 away from the right edge, we give the particles a bit
more time to move into this configuration and establish the result below for times much
larger than β−2/3 log(ρ/β1/3). The proof of Proposition 2.1, whose statement is identical
to Theorem 1.2 except that we insist that tn � ρ/β, uses techniques similar to those
used in [6], and is given in section 5.

Proposition 2.1. Suppose the initial configuration of particles satisfies (1.9) and (1.10).
Suppose

β−2/3

(
log

(
ρ

β1/3

))1/3

� tn �
ρ

β
. (2.6)

For t ≥ 0, define ξn(t) as in (1.14). Let ν be the probability measure on (0,∞) with
probability density function h defined in (1.15). Then ξn(tn)⇒ ν as n→∞.

The second step involves considering the configuration of particles near the origin.
As long as the initial configuration of particles satisfies (1.9) and (1.10), the particles
near the origin at time approximately ρ/β, most of which will have been descended
from particles that were near L at time zero, should be approximately in a Gaussian
configuration. Note that (2.8) below, while not strictly required for the proof of Theorem
1.1, provides useful insight into the behavior of the process, as it says that the number
of particles in the system at time approximately ρ/β is determined, to a high degree of
precision, by the value of Zn(0). The proof of Proposition 2.2, which also uses techniques
similar to those used in [6], is given in section 6.

Proposition 2.2. Suppose the initial configuration of particles satisfies (1.9) and (1.10).
Suppose

ρ2/3

β8/9
� tn −

ρ

β
� ρ

β
. (2.7)

Then, for all κ > 0, we have

lim
n→∞

P
(

(1− κ)

(Ai′(γ1))2
e−ρ

3/3βZn(0) ≤ Nn(tn) ≤ (1 + κ)

(Ai′(γ1))2
e−ρ

3/3βZn(0)

)
= 1. (2.8)

For t ≥ 0, define ζn(t) as in (1.12). Let µ be the standard normal distribution. Then
ζn(tn)⇒ µ as n→∞.

The third step is to show that if (1.9) and (1.10) hold, then these conditions will
still hold with high probability at later times, which are order ρ/β in the future. This is
established in the following proposition, which is proved in section 7.

Proposition 2.3. Suppose the initial configuration of particles satisfies (1.9) and (1.10).
Suppose the times tn are chosen so that

lim
n→∞

βtn
ρ

= τ ∈ (0,∞).

Then, with probability tending to one as n→∞, the conditions (1.9) and (1.10) hold with
Zn(tn) and Yn(tn) in place of Zn(0) and Yn(0) respectively.

We now show how Propositions 2.1, 2.2, and 2.3 imply Theorems 1.1 and 1.2. Because
these proofs involve subsequence arguments, we will return to writing ρn and βn instead
of ρ and β to avoid confusion.
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Proof of Theorem 1.1. It suffices to show that every subsequence (nj)
∞
j=1 contains a

further subsequence (njk)∞k=1 for which ζnjk (tnjk ) ⇒ µ as k → ∞. By (1.11), the
sequence (

βntn
ρn
− 1

)∞
n=1

is bounded and non-negative for large n. Therefore, given a subsequence (nj)
∞
j=1, we

can choose a further subsequence (njk)∞k=1 for which

lim
k→∞

βnjk tnjk
ρnjk

− 1 = τ ∈ [0,∞).

If τ = 0, then (2.7) holds along this subsequence, and it follows immediately from
Proposition 2.2 that ζnjk (tnjk )⇒ µ as k →∞. Suppose instead that τ > 0. Choose any
sequence (sn)∞n=1 for which (2.7) holds with sn in place of tn, and let un = tn − sn. Note
that

lim
k→∞

βnjkunjk
ρnjk

= τ ∈ (0,∞),

so Proposition 2.3 implies that (1.9) and (1.10) hold with Znjk (unjk ) and Ynjk (unjk ) in
place of Zn(0) and Yn(0). We can therefore apply the Markov property at time unjk ,
followed by Proposition 2.2 with sn in place of tn, to see that ζnjk (tnjk )⇒ µ.

Proof of Theorem 1.2. The proof is very similar to the proof of Theorem 1.1. It suffices to
show that every subsequence (nj)

∞
j=1 contains a further subsequence (njk)∞k=1 for which

ξnjk (tnjk )⇒ ν as k →∞. By (1.13), the sequence (βntn/ρn)∞n=1 is bounded. Therefore,
given a subsequence (nj)

∞
j=1, we can choose a further subsequence (njk)∞k=1 for which

lim
k→∞

βnjk tnjk
ρnjk

= τ ∈ [0,∞).

If τ = 0, then (2.6) holds along this subsequence, and it follows from Proposition 2.1 that
ξnjk (tnjk )⇒ ν. Suppose instead that τ > 0. Choose any sequence (sn)∞n=1 for which (2.6)
holds with sn in place of tn, and let un = tn − sn. Note that

lim
k→∞

βnjkunjk
ρnjk

= τ ∈ (0,∞),

so Proposition 2.3 implies that (1.9) and (1.10) hold with Znjk (unjk ) and Ynjk (unjk ) in
place of Zn(0) and Yn(0). We can therefore apply the Markov property at time unjk ,
followed by Proposition 2.1 with sn in place of tn, to see that ξnjk (tnjk )⇒ ν.

2.2 The density for the unkilled process

As mentioned above, a large amount of the work in our proofs involves moment
estimates that allow us to bound the number of particles in certain regions of space. We
begin with first moment calculations.

We denote by pt(x, y) the density for the process, which means that if there is one
particle at x at time zero, then the expected number of particles in the Borel set D at
time t is given by ∫

D

pt(x, y) dy.

To calculate the density, we can invoke the many-to-one lemma, which is proved, for
example, in [23]. To do this, we first compute the density for the process when ρ = 0,
which we denote by qt(x, y). Let (Bt)t≥0 be one-dimensional Brownian motion started at
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B0 = x. The many-to-one lemma states that if f : R→ R is a nonnegative measurable
function, then

Ex
[N(t)∑
k=1

f(Xk,n(t))

]
= Ex

[
exp

(∫ t

0

βBu du

)
f(Bt)

]
. (2.9)

Consequently, the density for the process without drift can be read from formula 1.8.7
on page 141 of [10], which yields

qt(x, y)dy = Ex
[

exp

(∫ t

0

βBs ds

)
;Bt ∈ dy

]
=

1√
2πt

exp

(
− (y − x)2

2t
+
β(y + x)t

2
+
β2t3

24

)
dy.

The drift of −ρ can be added using a standard Girsanov transformation, which implies
that

pt(x, y) = eρ(x−y)e−ρ
2t/2qt(x, y) (2.10)

and therefore

pt(x, y) =
1√
2πt

exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+
β(y + x)t

2
+
β2t3

24

)
. (2.11)

Integrating (2.11) with respect to y gives∫ ∞
−∞

pt(x, y) dy = exp

(
βxt+

β2t3

6
− βρt2

2

)
. (2.12)

Alternatively, one can obtain (2.12) by applying the many-to-one formula (2.9) to Brown-
ian motion with drift, which gives∫ ∞
−∞

pt(x, y)dy = Ex
[

exp

(∫ t

0

β(Bu− ρu)du

)]
= exp

(
− βρt

2

2

)
Ex
[

exp

(∫ t

0

βBu du

)]
.

The result (2.12) then follows from equation 1.8.3 on page 141 of [10], which states that

Ex
[

exp

(∫ t

0

βBu du

)]
= exp

(
βxt+

β2t3

6

)
.

2.3 Brownian motion killed at a random time

In order to control accurately the number of particles in certain regions of space,
we will need to use moment estimates for a process where some of the particles are
killed upon hitting a barrier. To carry out these calculations we will need estimates on
Brownian motion killed at a random time, which we collect here.

Suppose that x > 0 and (Bt)t≥0 is a Brownian motion started from x. We will use an

interpretation of the integral
∫ t

0
β|Bu|du as a random clock, following Salminen [36]. Let

T0 = inf{t ≥ 0 : Bt ≤ 0},

the first time that the Brownian motion hits zero. Let E be an independent exponential
random variable of parameter 1, and define

ζ = inf
{
t ≥ 0 :

∫ t

0

β|Bu|du > E
}
.
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Let

X̂t =

{
Bt if t < ζ ∧ T0,

Υ otherwise

where Υ is some graveyard state. Then for any x > 0 and any Borel set A ⊆ (0,∞),

Px(X̂t ∈ A) = Ex[e−
∫ t
0
βBudu1{T0>t}1{Bt∈A}]. (2.13)

Let τ0 = inf{t ≥ 0 : X̂t = 0}, which takes values in (0,∞]. Writing p̂t(x, y) for the
transition density of X̂t and πx(t) for the density of τ0, we will need the following two
results from [36] (noting that the value of β used in [36] differs from ours by a factor of
2 and the densities in [36] are written with respect to twice Lebesgue measure):

p̂t(x, y) = (2β)1/3
∞∑
k=1

eβ(2β)−1/3γkt
Ai((2β)1/3x+ γk)Ai((2β)1/3y + γk)

Ai′(γk)2
, (2.14)

which is Proposition 3.9 of [36], and

πx(t) = lim
y↓0

1

2

∂

∂y
p̂t(x, y), (2.15)

which is (3.2) in [36].

2.4 The density for the process killed at level `

Returning to our branching Brownian motion, we will often need to consider a
truncated version of the process, in which particles are killed as soon as they surpass
some level ` ∈ R. For x < ` and y < `, we denote the density for this process by p`t(x, y).
Defining

T` = inf{t ≥ 0 : Bt ≥ `}

to be the first hitting time of ` by our Brownian motion (Bt)t≥0, by the many-to-one
formula and (2.10) we have

p`t(x, y)dy = eρx−ρy−ρ
2t/2Ex[e

∫ t
0
βBudu1{T`>t}1{Bt∈dy}].

Making the transformation B′u = `−Bu, and setting T ′0 = inf{t ≥ 0 : B′t ≤ 0}, we see that

p`t(x, y)dy = eρx−ρy−ρ
2t/2+β`tE`−x[e−

∫ t
0
βB′udu1{T ′0>t}1{`−B′t∈dy}]. (2.16)

Recognising the last expectation as the transition density of the killed Brownian motion
from Section 2.3, from (2.14) we have

p`t(x, y) = (2β)1/3
∞∑
k=1

e(β(`+(2β)−1/3γk)−ρ2/2)t

Ai′(γk)2

× eρxAi((2β)1/3(`− x) + γk)e−ρyAi((2β)1/3(`− y) + γk). (2.17)

We will typically take ` = LA for some real number A. The exponent (β(`+ (2β)−1/3γ1)−
ρ2/2)t in the leading term in (2.17) is zero when ` = L, which is why L is the correct level
at which to kill particles to keep the number of particles in the system approximately
stable over time.

As a consequence of the formula (2.17) for the density, it is possible to show that for
any A ∈ R, if we consider a modified process in which particles are killed when they
reach LA, then for all t ≥ 0 and x < LA, we have

Ex[Zn,A(t)] = e−Aβt/ρzn,A(x). (2.18)
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In particular, the process (Zn(t), t ≥ 0) is a martingale when particles are killed at `.
This can be proved using (2.17), the dominated convergence theorem, and the following
orthogonality relation from Section 4.4 of [39]:∫ ∞

0

Ai(z + γj)Ai(z + γk) dz =

{
(Ai′(γj))

2 if j = k

0 otherwise.
(2.19)

We will not use the fact that (Zn(t), t ≥ 0) is a martingale in the rest of the paper, so we
do not include the full proof here, but it may provide insight into why (Zn(t), t ≥ 0) is an
important measure of the “size” of the process.

2.5 Approximate density formulas

We will need to establish some approximations to the density formulas (2.11) and
(2.17). We will therefore state in this subsection six lemmas, all of which will be proved
in section 3. As indicated in section 1.3, most particles that are alive at time t will be
descended from particles that were near L at time t− ρ/β. Therefore, it will be useful to
have the following approximation for pt(x, y), which holds when x ≈ ρ2/2β and t ≈ ρ/β.
Note that here and throughout this subsection and the next two, the time t implicitly
depends on n.

Lemma 2.4. Write

t =
ρ

β
− s, x =

ρ2

2β
− w.

If |w| �
√
ρ/β and 0 ≤ s� ρ1/4β−3/4, then

pt(x, y) =
1√
2π

√
β

ρ
exp

(
ρx− ρ3

3β
− βy2

2ρ
− β2s3

6
+ βws

+O

(
s2β2|y|
ρ

)
+O

(
sβ2y2

ρ2

)
+O

(
β|wy|
ρ

)
+ o(1)

)
. (2.20)

It follows from (1.2) that if |y| .
√
ρ/β, then the last four terms inside the exponential

in (2.20) are all o(1). Among the other terms inside the exponential in (2.20), only the
−βy2/2ρ term involves y. Therefore, Lemma 2.4 indicates that for x sufficiently close
to ρ2/2β, the empirical distribution of particles at time t closely matches the Gaussian
distribution with mean 0 and variance ρ/β.

Our remaining approximations pertain to the process in which particles are killed
when they reach LA. As long as t is large enough, and x and y are sufficiently close to
LA, the right-hand side of (2.17) can be approximated by its leading term.

Lemma 2.5. Suppose that A ∈ R, t ≥ 0, x < LA and y < LA. Then

pLAt (x, y) =
(2β)1/3e−βAt/ρ

(Ai′(γ1))2
eρxα(LA − x)e−ρyα(LA − y)

(
1 + EA(t, x, y)

)
(2.21)

where

|EA(t, x, y)| .
∞∑
k=2

e(γ1−γk)((2β)1/6((LA−x)1/2+(LA−y)1/2)−2−1/3β2/3t).

In particular, if there exists a strictly positive constant C such that

(2β)1/6
(
(LA − x)1/2 + (LA − y)1/2

)
≤ 2−1/3β2/3t− C (2.22)

then there is a positive constant C0 such that

pLAt (x, y) ≤ C0β
1/3e−βAt/ρeρxα(LA − x)e−ρyα(LA − y), (2.23)
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and if

(2β)1/6
(
(LA − x)1/2 + (LA − y)1/2

)
− 2−1/3β2/3t→ −∞, (2.24)

then the error term EA(t, x, y) in (2.21) is o(1).

We will also need several additional formulas that can be used when (2.22) is not
satisfied. Lemma 2.6 is most useful when t ≤ ρ−2, while Lemma 2.7 is useful for slightly
larger values of t, particularly when both x and y are close to LA. Lemma 2.8 is useful
when x is close to LA, and y is far enough away from LA that a particle going from x

to y is unlikely to be affected by the right boundary at LA, unless it hits the boundary
almost immediately.

Lemma 2.6. For all t ≥ 0, ` ≥ 0, x < `, and y < `, we have

p`t(x, y) ≤ 1√
2πt

exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+ β`t

)
.

Lemma 2.7. For all t ≥ 0, ` ≥ 0, x < `, and y < `, we have

p`t(x, y) .
(`− x)(`− y)

t3/2
exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+ β`t

)
.

Lemma 2.8. Suppose A ∈ R, t ≥ 2β−2/3, 0 ≤ LA − x . β−1/3, and y < LA. Then

pLAt (x, y) .
β1/3(LA − x)√

t
max

{
1,
LA − y − βt2/2

β1/3t

}
× exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+
β(y + x)t

2
+
β2t3

24
+
LA − y − βt2/2

2β1/3t

)
.

The next result gives an estimate for the integral of the density for branching
Brownian motion when the particles are killed at LA and the initial particle at x is
close to the right boundary. The result can be compared to the formula (2.12) for the
process without killing.

Lemma 2.9. Suppose

t =
ρ

β
− s,

where 0 ≤ s� t, and suppose A ∈ R and x < LA. Then∫ LA

−∞
pLAt (x, y) dy . β1/3(LA − x) exp

(
βxt+

β2t3

6
− βρt2

2
+ β2/3s

)
.

2.6 Second moment estimates

To control the fluctuations in the process, we will need good second moment bounds.
Given A ∈ R and t ≥ 0, let

l(t) =
βt2

33
, KA(t) = LA −

l(t)

2
= LA −

βt2

66
. (2.25)

There is nothing particularly special about these functions. We will need to split the
integrals that arise in our second moment bounds into several cases, and these functions
will give convenient points at which to split, taking into account condition (2.22) in
Lemma 2.5. It is worth noting that when t � ρ/β, l(t) is of order ρ2/β which is the same
order as L, so KA(t) is really a long way below L (and LA). On the other hand, when
t � β−2/3, which is much smaller than ρ/β, we have l(t) � β−1/3, which is the same order
as the second-order term in L.
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Let ϕ : (−∞, LA)→ R be a measurable function. Lemma 2.10 establishes a second
moment bound for the quantity Vϕ,n,A(t) defined in (2.5). This bound will help us to
control the fluctuations of the number of particles at time t in the interval (KA(t), LA).
The particles outside this interval will be controlled by other methods. Note that in
Lemma 2.10, the time t and the function ϕ are implicitly allowed to depend on n.

Lemma 2.10. Fix A ≥ 0, and let ϕ : (−∞, LA)→ R be a bounded measurable function
such that ϕ(y) = 0 unless KA(t) < y < LA. Consider the process in which there is initially
one particle at x and particles are killed when they reach LA. Suppose KA(t) < x < LA,
and suppose t & β−2/3. Then

Ex[Vϕ,n,A(t)2] .
β2/3eρLA

ρ4

(
eρx + β2/3tzA(x)

)
. (2.26)

To prove Theorem 1.1 and establish that the empirical distribution of particles is
asymptotically Gaussian, we will also need to control the fluctuations in the number of
particles close to the origin after a time that is approximately ρ/β.

Lemma 2.11. Consider the process in which there is initially one particle at x and
particles are killed when they reach L. Write

t =
ρ

β
− s.

Suppose 0 ≤ L− x� ρ2/β and 0 ≤ s� t. Suppose g : R→ R is a bounded measurable
function. Then

Ex
[(N(t)∑

i=1

g
(
Xi(t)

√
β/ρ

))2]
.
β2/3

ρ4
exp

(
ρx+ ρL− 2ρ3

3β
− β2s3

3

)
. (2.27)

Because the proofs of Lemmas 2.10 and 2.11 are rather tedious, we defer them until
section 8.

2.7 Estimates for the particles that reach LA

Fix A ∈ R. We estimate here the rate at which particles reach the right boundary
at LA, when particles are killed upon hitting this level. We will begin by considering
a more general right boundary at `, before we later specialise to ` = LA. Suppose we
start with one particle at x < ` and kill particles when they hit level `. For 0 ≤ u < v, let
r`x(u, v) be the expected number of particles that hit ` between times u and v. Let r̃`x(t)

denote the rate at which particles hit ` at time t, defined by requiring that

r`x(u, v) =

∫ v

u

r̃`x(t) dt.

Recall that we defined T` = inf{t ≥ 0 : Bt ≥ `}, where (Bt)t≥0 is Brownian motion,
which means {T` ≤ t} is the event that the Brownian particle hits ` before time t. To
calculate r`x(0, t), it is more convenient to think of freezing particles at ` (that is, they no
longer move or branch) rather than killing them. By applying the many-to-one formula
(2.9) to this system, with f(y) = 1{y≥`}, and additionally using (2.10) to incorporate the
drift, we get

r`x(0, t) = Ex[eρx−ρ`−ρ
2T`/2+

∫ T`
0 βBudu1{T`≤t}]. (2.28)

Thus
r̃`x(t)dt = eρx−ρ`−ρ

2t/2Ex[e
∫ t
0
βBudu1{T`∈dt}],

and making the transformation B′u = `−Bu with T ′0 = inf{t ≥ 0 : B′t ≤ 0},

r̃`x(t)dt = eρx−ρ`−ρ
2t/2+β`tE`−x[e−

∫ t
0
βB′udu1{T ′0∈dt}].
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Recognising the last expectation as the density of the hitting time of zero of the killed
Brownian motion introduced in Section 2.3, and recalling the notation of that section,
from (2.15) we have

r̃`x(t) =
1

2
eρx−ρ`−ρ

2t/2+β`t lim
y↓0

∂

∂y
p̂t(`− x, y).

However, by comparing (2.13) and (2.16), we see that

p`t(x, `− y) = eρx+ρy−ρ`−ρ2t/2+β`tp̂t(`− x, y),

and because p`t(x, `) = 0, it follows that

r̃`x(t) =
1

2
lim
y↓0

∂

∂y
e−ρyp`t(x, `− y) = −1

2
lim
y↑`

∂

∂y
p`t(x, y). (2.29)

Since we know that p`t(x, `) = 0 and that the limit on the right-hand side of (2.29)
exists, if p`t(x, ` − h) ≤ dh for sufficiently small h > 0, then r̃`x(t) ≤ d. Therefore, the
estimates on p`t(x, `− h) from Lemmas 2.5 and 2.7 imply the following corollary.

Corollary 2.12. For all t ≥ 0, ` > 0 and x < `, we have

r̃`x(t) .
`− x
t3/2

exp

(
ρx− ρ`− (`− x)2

2t
− ρ2t

2
+ β`t

)
. (2.30)

If ` = LA for some fixed A ∈ R and, in addition, there exists a positive constant C > 0

such that
(2β)1/6(LA − x)1/2 ≤ 2−1/3β2/3t− C, (2.31)

then
r̃LAx (t) . β2/3e−βAt/ρeρxα(LA − x)e−ρLA . (2.32)

We will also use the following lemma to estimate the number of descendants of a
particle at x that reach LA. This estimate involves bounding separately the expected
number of descendants that hit LA during an initial time period, for which we can use
the bound in (2.30), and the number of descendants that hit LA later, for which the
bound in (2.32) is valid. This result will be proved in section 4.

Lemma 2.13. For A ∈ R, x < LA, and 0 ≤ s < t, if we define A− = max{−A, 0}, then

rLAx (s, t) . eρxe−ρLAe−β
2s3/9 + (t− s)e−ρLAβ2/3zA(x)eβA−t/ρ.

Finally, we return to the original process in which particles are not killed when
they reach LA. Lemma 2.14 below shows that the probability that a descendant of a
particle that reaches LA will survive for a reasonably long time is of the order ρ2. Note
that because a particle near LA has an effective branching rate of b(x) − d(x) ≈ ρ2/2,
this result is to be expected in view of classical results on the survival probability of
Galton-Watson processes. A complication is that the birth rate changes as the particles
move. Note that in [5, 29], stronger results were obtained related to the number of
surviving descendants of particles that reached the right boundary, and these results
were essential for establishing convergence to a continuous-state branching process.
However, the weaker result established in Lemma 2.14 will be sufficient for our purposes.
Lemma 2.14 will also be proved in section 4.

Lemma 2.14. Suppose at time zero, there is a single particle at x = xn, with β−1/3 �
x� β−1. There is a positive constant C1 such that for sufficiently large n, the probability
that any individual survives until time C1/(βx) is at most 2βx/∆, where ∆ is the constant
from (1.4).
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3 Proofs of density approximations

In this section, we prove the results stated in section 2.5, which establish approximate
formulas for the densities pt(x, y) and pLAt (x, y).

3.1 Facts about Airy functions

In this subsection we collect some facts about Airy functions which will be needed
later in the paper. In particular, Lemma 3.1 below will be important for the proof of
Lemma 2.5.

We first record some facts which can be found in [39]. Below C2, C3, C4, and C5 are
positive constants. Using ∼ to indicate that the ratio of the two sides tends to one, we
have

Ai(x) ∼ 1

2
√
πx1/4

e−(2/3)x3/2

as x→∞, (3.1)

which is (2.45) in [39]. We will also use that

− γk ∼ C2k
2/3 as k →∞, (3.2)

which can be seen from (2.54) and (2.66) in [39], and

|Ai′(γk)| ∼ C3k
1/6 as k →∞, (3.3)

which can be seen from (2.60) and (2.68) in [39]. We have

|Ai(x)| ≤ C4 for all x ∈ R, (3.4)

which can be deduced from (3.1), equation (2.49) in [39], and the continuity of the Airy
function. Finally, we will use that

|Ai′(x)| . |x|1/4 for x ≤ −1, (3.5)

which follows from (2.50) in [39], and that

|Ai′(x)| ≤ C5 for all x ≥ −1, (3.6)

which can be deduced from equation (2.46) in [39] and the continuity of the derivative of
the Airy function.

Lemma 3.1. For all z ≥ 0 and k ∈ N, we have

|Ai(γk + z)| . k1/6e(γ1−γk)z1/2Ai(γ1 + z). (3.7)

Proof. Let A be a positive constant. If 0 ≤ z ≤ A, then it follows from (3.2), along with
the facts that Ai′(γ1) > 0 and Ai(z) > 0 for all z > γ1, that

|Ai(γk + z)| . k1/6z . k1/6Ai(γ1 + z),

which is stronger than (3.7).
Next, suppose A ≤ z ≤ −γk +A. Then |Ai(γk + z)| ≤ C4 by (3.4), and

Ai(γ1 + z) & (γ1 + z)−1/4e−(2/3)(γ1+z)3/2

by (3.1). It follows that

|Ai(γk + z)| . (γ1 + z)1/4e(2/3)(γ1+z)3/2Ai(γ1 + z). (3.8)
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In view of (3.2), we have

(γ1 + z)1/4 ≤ (γ1 − γk +A)1/4 . k1/6. (3.9)

Also, recalling that γ1 < 0,

2

3
(γ1 + z)3/2 =

2

3
(γ1 + z)(γ1 + z)1/2 ≤ 2

3
(γ1 − γk +A)z1/2

= (γ1 − γk)z1/2 +

(
2A

3
− γ1 − γk

3

)
z1/2.

Because 2A− (γ1 − γk) < 0 for sufficiently large k and z ≤ −γk +A, it follows that there
is a positive constant A′ such that

2

3
(γ1 + z)3/2 ≤ (γ1 − γk)z1/2 +A′. (3.10)

The result (3.7) when A ≤ z ≤ −γk +A follows from (3.8), (3.9), and (3.10).
Finally, suppose z ≥ −γk +A. We can apply (3.1) to get

Ai(γk + z)

Ai(γ1 + z)
.

(
γ1 + z

γk + z

)1/4

e(2/3)[(γ1+z)3/2−(γk+z)3/2]. (3.11)

The first factor is maximized when z = −γk +A, so using (3.2), we get(
γ1 + z

γk + z

)1/4

≤
(
γ1 − γk +A

A

)1/4

. k1/6. (3.12)

Also, because γ1 and γk are negative and d
dz z

3/2 = 3
2z

1/2, we have

(γ1 + z)3/2 − (γk + z)3/2 ≤ 3

2
(γ1 − γk)z1/2. (3.13)

The result (3.7) follows from (3.11), (3.12), and (3.13).

3.2 Proofs of Lemmas 2.5, 2.6, 2.7, and 2.8

We begin by using Lemma 3.1 to provide the necessary error estimates to prove
Lemma 2.5.

Proof of Lemma 2.5. The expression (2.21) with EA = 0 is the k = 1 term from (2.17),
as can be seen by recalling (2.1). Denote by rk(t, x, y) the ratio of the kth term in (2.17)
to the first term, when ` = LA. For all t ≥ 0, x ≤ LA, and y ≤ LA, we have

rk(t, x, y) =
(Ai′(γ1))2

(Ai′(γk))2
· Ai((2β)1/3(LA − x) + γk)Ai((2β)1/3(LA − y) + γk)

Ai((2β)1/3(LA − x) + γ1)Ai((2β)1/3(LA − y) + γ1)
· e

β(2β)−1/3γkt

eβ(2β)−1/3γ1t
.

Using (3.3) to bound the first factor and Lemma 3.1 to bound the second factor, we get

|rk(x, t, y)| . k−1/3 · k1/3e(γ1−γk)(2β)1/6[(LA−x)1/2+(LA−y)1/2] · e−(γ1−γk)2−1/3β2/3t

= e(γ1−γk)((2β)1/6[(LA−x)1/2+(LA−y)1/2]−2−1/3β2/3t),

which implies (2.21). We then obtain (2.23) and the last conclusion of the lemma by
estimating EA(t, x, y) using (3.2).

The proof of Lemma 2.6 uses the fact that no particles go above ` to bound the
branching rate, but otherwise uses the unkilled process. This explains the fact that it is
similar to, but not the same as, (2.11).
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Proof of Lemma 2.6. Fix a < b ≤ `. Let Nt(a, b) denote the number of particles in (a, b)

at time t that have never hit `. Let (Bs)s≥0 be Brownian motion started at x. By applying
the many-to-one formula (2.9) to Brownian motion with drift, we get

Ex[Nt(a, b)] = Ex
[
e
∫ t
0
β(Bs−ρs)ds1{Bs−ρs<` ∀s≤t, Bt−ρt∈(a,b)}

]
≤ eβ`tPx(Bs − ρs < ` ∀s ≤ t, Bt − ρt ∈ (a, b))

≤ eβ`tPx(Bt − ρt ∈ (a, b))

=
eβ`t√
2πt

∫ b

a

exp
(
− (y − x+ ρt)2

2t

)
dy

=
eβ`t√
2πt

∫ b

a

exp
(
ρx− ρy − (y − x)2

2t
− ρ2t

2

)
dy

so

p`t(x, y) ≤ 1√
2πt

exp
(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+ β`t

)
,

as claimed.

The proof of Lemma 2.7 uses a trivial bound on the branching rate, but uses the killed
process as opposed to the unkilled process.

Proof of Lemma 2.7. We proceed as in the proof of Lemma 2.6 but keep the restriction
that Bs − ρs < ` for all s ≤ t, and apply Girsanov’s theorem followed by the reflection
principle. This gives

Ex[Nt(a, b)] = Ex
[
e
∫ t
0
β(Bs−ρs)ds1{Bs−ρs<` ∀s≤t, Bt−ρt∈(a,b)}

]
≤ eβ`tPx(Bs − ρs < ` ∀s ≤ t, Bt − ρt ∈ (a, b))

= eβ`tP0(Bs + ρs > x− ` ∀s ≤ t, Bt + ρt ∈ (x− b, x− a))

= eβ`t−ρ
2t/2E0[eρBt1{Bs>x−` ∀s≤t, Bt∈(x−b,x−a)}]

= eβ`t−ρ
2t/2

∫ x−a

x−b
eρy

1√
2πt

(
e−y

2/2t − e−(y+2(`−x))2/2t
)
dy

= eβ`t−ρ
2t/2

∫ b

a

eρx−ρy
1√
2πt

(
e−(x−y)2/2t − e−(x−y+2(`−x))2/2t

)
dy.

Applying the elementary bound

e−A
2/2t − e−(A+2B)2/2t = e−A

2/2t(1− e−2B(A+B)/t) ≤ 2B

t
(A+B)e−A

2/2t

gives

Ex[Nt(a, b)] ≤ eβ`t−ρ
2t/2

∫ b

a

eρx−ρy
21/2(`− x)(`− y)

π1/2t3/2
e−(x−y)2/2tdy

and therefore

p`t(x, y) ≤ eβ`t−ρ
2t/2+ρx−ρy 21/2(`− x)(`− y)

π1/2t3/2
e−(x−y)2/2t,

which yields the result.

Finally, the proof of Lemma 2.8 is more involved and combines the formula (2.11)
with the estimate in Lemma 2.7.
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Proof of Lemma 2.8. Let s = β−2/3. We apply the Chapman-Kolmogorov equation at
time s and then use Lemma 2.7 to bound pLAs (x, z) and (2.11) to bound pt−s(z, y), which
gives

pLAt (x, y)

=

∫ LA

−∞
pLAs (x, z)pLAt−s(z, y) dz

.
∫ LA

−∞

(LA − x)(LA − z)
s3/2

exp

(
ρx− ρz − (z − x)2

2s
− ρ2s

2
+ βLAs

)
× 1√

t− s
exp

(
ρz − ρy − (y − z)2

2(t− s)
− ρ2(t− s)

2
+
β(z + y)(t− s)

2
+
β2(t− s)3

24

)
dz

=
LA − x

s3/2
√
t− s

exp

(
ρx− ρy − ρ2t

2
+ βLAt−

β(LA − y)(t− s)
2

+
β2(t− s)3

24

)
×
∫ LA

−∞
(LA − z) exp

(
− (x− z)2

2s
− (y − z)2

2(t− s)
− β(LA − z)(t− s)

2

)
dz. (3.14)

Now let x̃ = LA − x, ỹ = LA − y, and z̃ = LA − z. After a few lines of algebra, we obtain

(x̃− z̃)2

2s
+

(z̃ − ỹ)2

2(t− s)
+
βz̃(t− s)

2
=

t

2s(t− s)

(
z̃ −

(
(t− s)x̃

t
+
sỹ

t
− βs(t− s)2

2t

))2

+
(ỹ − x̃)2

2t
− β2s(t− s)3

8t
+
β(t− s)2x̃

2t
+
βs(t− s)ỹ

2t
.

Therefore, substituting z̃ in place of z in the integral in (3.14), we get

pLAt (x, y) .
LA − x

s3/2
√
t− s

exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+ βLAt−

β(t− s)2(LA − x)

2t

)
× exp

(
− β(LA − y)(t− s)

2
− βs(t− s)(LA − y)

2t
+
β2(t− s)3

24
+
β2s(t− s)3

8t

)
×
∫ ∞

0

z̃ exp

(
− t

2s(t− s)

(
z̃ −

(
(t− s)x̃

t
+
sỹ

t
− βs(t− s)2

2t

))2)
dz̃. (3.15)

Because we are assuming LA − x . β−1/3 and s = β−2/3 ≤ t, we have

− β(t− s)2(LA − x)

2t
= −β(LA − x)t

2
+βs(LA−x)− βs

2(LA − x)

2t
= −β(LA − x)t

2
+O(1).

(3.16)
Note that

− β(LA − y)(t− s)
2

− βs(t− s)(LA − y)

2t
= −β(LA − y)t

2
+
β(LA − y)s2

2t
, (3.17)

and

β2(t− s)3

24
+
β2s(t− s)3

8t
=
β2t3

24
− β2s2t

4
+O(1). (3.18)

Also, because s = β−2/3

β(LA − y)s2

2t
− β2s2t

4
=

1

2β1/3t

(
LA − y −

βt2

2

)
. (3.19)
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Using (3.16), (3.17), (3.18), and (3.19) to simplify the exponential terms in (3.15), we get

pLAt (x, y) .
LA − x

s3/2
√
t− s

× exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+
β(y + x)t

2
+
β2t3

24
+
LA − y − βt2/2

2β1/3t

)
×
∫ ∞

0

z̃ exp

(
− t

2s(t− s)

(
z̃ −

(
(t− s)x̃

t
+
sỹ

t
− βs(t− s)2

2t

))2)
dz̃ (3.20)

For z ∈ R, we will write z+ = max{0, z} for the positive part of z. It is easy to check
that if Z has a normal distribution with mean µ ∈ R and standard deviation σ > 0, then
E[Z+] . µ+ + σ. Therefore,∫ ∞

0

z̃ exp

(
− t

2s(t− s)

(
z̃ −

(
(t− s)x̃

t
+
sỹ

t
− βs(t− s)2

2t

))2)
dz

.

√
s(t− s)

t

((
(t− s)x̃

t
+
sỹ

t
− βs(t− s)2

2t

)
+

+

√
s(t− s)

t

)
.

Because s = β−2/3 and t− s � t, we have
√
s(t− s)/t � β−1/3. Using that x̃ . β−1/3, we

have(
(t− s)x̃

t
+
sỹ

t
− βs(t− s)

2

2t

)
+

≤
(
x̃+

s

t

(
ỹ− βt

2

2

)
+βs2

)
+

. β−1/3 +
s

t

(
LA−y−

βt2

2

)
+
,

and therefore∫ ∞
0

z̃ exp

(
− t

2s(t− s)

(
z̃ −

(
(t− s)x̃

t
+
sỹ

t
− βs(t− s)2

2t

))2)
dz

. β−2/3 +
β−1/3s

t

(
LA − y −

βt2

2

)
+
. β−2/3 max

{
1,

1

β1/3t

(
LA − y −

βt2

2

)}
. (3.21)

Because s−3/2 = β and t− s � t, the lemma follows from (3.20) and (3.21).

3.3 Proof of Lemma 2.4

From (2.11), we have

pt(x, y) =
1√
2πt

exp

(
ρx− ρy − ρ2t

2
− (y − x)2

2t
+
β(y + x)t

2
+
β2t3

24

)
. (3.22)

From (1.2), we have s� t, and therefore

1√
2πt

exp

(
ρx− ρ2t

2

)
∼ 1√

2π

√
β

ρ
exp

(
ρx− ρ3

2β
+
ρ2s

2

)
. (3.23)

Also,
β2t3

24
=

ρ3

24β
− ρ2s

8
+
βρs2

8
− β2s3

24
. (3.24)

Next, we observe that

−ρy +
β(y + x)t

2
= −ρy +

β

2

(
y +

ρ2

2β
− w

)(
ρ

β
− s
)

= −ρy
2
− βys

2
+
ρ3

4β
− ρ2s

4
− ρw

2
+
βws

2
. (3.25)
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Furthermore, we have

− (y − x)2

2t
= − β

2ρ(1− sβ/ρ)

(
ρ2

2β
− w − y

)2

= − β

2ρ

(
ρ2

2β
− w − y

)2 ∞∑
k=0

(
sβ

ρ

)k
= − ρ

3

8β

∞∑
k=0

(
sβ

ρ

)k
+
ρ(w + y)

2

∞∑
k=0

(
sβ

ρ

)k
− β(w + y)2

2ρ

∞∑
k=0

(
sβ

ρ

)k
. (3.26)

To estimate the first term in (3.26), we note that the terms in the infinite sum with k ≥ 4

are small due to (1.2) and the assumption that s� ρ1/4β−3/4. Therefore,

− ρ3

8β

∞∑
k=0

(
sβ

ρ

)k
= − ρ

3

8β
− ρ2s

8
− βρs2

8
− β2s3

8
+ o(1). (3.27)

To estimate the second term in (3.26), we again use (1.2) and the hypotheses on |w| and
s to get

ρ(w + y)

2

∞∑
k=0

(
sβ

ρ

)k
=
ρ(w + y)

2
+
sβ(w + y)

2
+O

(
s2β2|y|
ρ

)
+ o(1). (3.28)

For the third term in (3.26), we have

− β(w + y)2

2ρ

∞∑
k=0

(
sβ

ρ

)k
= −βy

2

2ρ
+O

(
sβ2y2

ρ2

)
+O

(
β|wy|
ρ

)
+ o(1). (3.29)

We can now evaluate the right-hand side of (3.22) by putting together the results in
(3.23), (3.24), (3.25), (3.27), (3.28), and (3.29), which yields (2.20).

3.4 Proof of Lemma 2.9

Because pLAt (x, y) ≤ pt(x, y), it follows from (2.12) that it suffices to prove the result
when LA − x ≤ β−1/3, which we will assume for the rest of the proof. Note that
LA = ρ2/2β +O(β−1/3), and β−2/3/t→ 0 by (1.2). Therefore,

1

2β1/3t

(
LA − y −

βt2

2

)
=

1

2β1/3t

(
ρ2

2β
+O(β−1/3)− y − β

2

( ρ
β
− s
)2
)

=
1

2β1/3t

(
ρs− βs2

2
− y
)

+ o(1).

Combining this estimate with Lemma 2.8, and separating out the terms involving y in
the exponential factor, we get

pLAt (x, y) .
β1/3(LA − x)√

t
max

{
1,

1

β1/3t

(
ρs− βs2

2
− y
)}

× exp

(
ρx− ρ2t

2
+
βxt

2
+
β2t3

24
+

ρs

2β1/3t
− β2/3s2

4t

)
× exp

(
− (y − x)2 + 2ρyt− βyt2 + β−1/3y

2t

)
.

Note that if a ∈ R, then (y − x)2 + ay = (y − (x− a/2))2 + ax− a2/4. Applying this result
to the second exponential factor above with

a = 2ρt− βt2 + β−1/3,
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we get

pLAt (x, y) .
β1/3(LA − x)√

t
max

{
1,

1

β1/3t

(
ρs− βs2

2
− y
)}

exp

(
− 1

2t

(
y −

(
x− a

2

))2
)

× exp

(
ρx− ρ2t

2
+
βxt

2
+
β2t3

24
+

ρs

2β1/3t
− β2/3s2

4t
− ax

2t
+
a2

8t

)
. (3.30)

After some tedious but straightforward algebra, we see that the exponential factor on
the second line of (3.30) can be written as

exp

(
βxt+

β2t3

6
− βρt2

2

)
exp

(
1

8β2/3t
+

2ρs+ 2ρt− 2x− βs2 − βt2

4β1/3t

)
. (3.31)

Now using that t = ρ/β − s, and that x = ρ2/2β +O(β−1/3) by the definition of LA and
the assumption that LA−x ≤ β−1/3, we can write the second exponential factor in (3.31)
as

exp

(
2ρs− 2βs2

4β1/3t
+O

( 1

β2/3t

))
= exp

(
β2/3s

2
+O

( 1

β2/3t

))
. (3.32)

Substituting the results in (3.31) and (3.32) back into (3.30), using that 1/(β2/3t)→ 0,
and integrating with respect to y, we get∫ LA

−∞
pLAt (x, y) dy . β1/3(LA − x) exp

(
βxt+

β2t3

6
− βρt2

2
+
β2/3s

2

)
×
∫ LA

−∞

1√
t

max

{
1,
ρs− βs2/2− y

β1/3t

}
exp

(
− 1

2t

(
y −

(
x− a

2

))2
)
dy.

(3.33)

The integral in the previous line is bounded above by

√
2πE

[
max

{
1,
ρs− βs2/2− V

β1/3t

}]
,

where V has a normal distribution with mean x− a/2 and variance t. This is the same as

√
2πE[max{1,W}],

where W has a normal distribution with variance

σ2 =
1

(β1/3t)2
· t =

1

β2/3t
→ 0

and mean

µ =
1

β1/3t

(
ρs− βs2

2
−
(
x− a

2

))
=

1

β1/3t

(
ρs− βs2

2
− ρ2

2β
+ ρt− βt2

2
+O(β−1/3)

)
=
ρs− βs2

β1/3t
+O

(
1

β2/3t

)
= β2/3s+ o(1).

We therefore have E[max{1,W}] . max{1, β2/3s} . exp(β2/3s/2). Because this expres-
sion gives an upper bound for the integral in (3.33), the result follows.
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4 Particles that hit LA

In this section, we will prove Lemmas 2.13 and 2.14. Lemma 2.13 pertains to the
process in which particles are killed when they reach LA, and provides an estimate for
how many particles are killed. Lemma 2.14 pertains to the process in which particles are
allowed to continue after reaching LA. It provides an estimate for the probability that
the descendants of a particle will survive for a significant period of time after the particle
reaches LA. We also prove Lemma 4.3 below, which bounds the expected contribution to
Yn(t), for small times t, from an initial particle at LA. We begin with the following simple
integral estimate.

Lemma 4.1. If a > 0 and b > 0, then∫ ∞
0

1

x3/2
e−b

2/ax dx =

√
πa

b
.

Proof. Make the substitution y = b2/ax and then recall that Γ(1/2) =
√
π.

Proof of Lemma 2.13. Define

tx,A =

√
2(LA − x)

β
+ 21/3β−2/3. (4.1)

We first show that
rLAx (0, tx,A) . eρxe−ρLAe−β

2t3x,A/9. (4.2)

Let 0 < δ < 2−1/3. It follows from Corollary 2.12 and the fact that γ1 < 0 that

rLAx (0, tx,A) =

∫ tx,A

0

r̃LAx (u) du

.
∫ tx,A

0

LA − x
u3/2

exp

(
ρx− ρLA −

(LA − x)2

2u
− 2−1/3γ1β

2/3u− Aβu

ρ

)
du

≤ (LA − x) exp

(
ρx− ρLA −

(1− δ)(LA − x)2

2tx,A
− γ1β

2/3tx,A
21/3

+
A−βtx,A

ρ

)
×
∫ tx,A

0

1

u3/2
e−δ(LA−x)2/2u du. (4.3)

It follows from Lemma 4.1 that∫ tx,A

0

1

u3/2
e−δ(LA−x)2/2u du .

1

LA − x
.

Therefore to prove (4.2) it suffices to show that

exp

(
− (1− δ)(LA − x)2

2tx,A
+
(
− 2−1/3γ1 +

A−β
1/3

ρ

)
β2/3tx,A

)
. e−β

2t3x,A/9. (4.4)

We consider two cases. First, suppose tx,A ≤ δ−1β−2/3. Then (4.4) holds because the
left-hand side is bounded above by a positive constant, while the right-hand side is
bounded below by a positive constant. Next, suppose tx,A ≥ δ−1β−2/3. It follows from
(4.1) that√

2(LA − x)/β = (1− 21/3δ)tx,A + 21/3δtx,A − 21/3β−2/3 ≥ (1− 21/3δ)tx,A,

and therefore

LA − x ≥
β(1− 21/3δ)2t2x,A

2
.
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Also, we can bound A−β
1/3/ρ from above by C because β1/3/ρ → 0. Therefore, the

left-hand side of (4.4) is bounded above by

exp

(
− (1− δ)(1− 21/3δ)

8
β2t3x,A + (−2−1/3γ1 + C)β2/3tx,A

)
= exp

(
−
(

(1− δ)(1− 21/3δ)

8
− 1

9

)
(β2/3tx,A)3 + (−2−1/3γ1 + C)β2/3tx,A

)
e−β

2t3x,A/9.

By choosing δ sufficiently small and using that the function y 7→ −ay3 + by is bounded
above for all a > 0 and b > 0, we see that the quantity above can be upper bounded by a
constant multiple of e−β

2t3x,A/9. It follows that (4.4) holds, and therefore so does (4.2). In
particular this proves the lemma in the case s ≤ t ≤ tx,A.

Next, suppose that tx,A ≤ s ≤ t. Note that tx,A has been defined so that (2.31) holds
with equality when t = tx,A and C = 1. If s ≤ u ≤ t, then (2.31) holds with u in place of t.
Therefore, by Corollary 2.12,∫ t

s

r̃LAx (u) du .
∫ t

s

β2/3e−βAu/ρeρxα(LA − x)e−ρLA du ≤ (t− s)e−ρLAβ2/3zA(x)eβA−t/ρ,

(4.5)
which proves the lemma in the case tx,A ≤ s ≤ t. For the remaining case, when
s ≤ tx,A ≤ t, simply note that

rLAx (s, t) ≤ rLAx (0, tx,A) + rLAx (tx,A, t)

and combine the bounds from (4.2) and (4.5).

Before we prove Lemma 2.14, we show that our process cannot explode in finite time.

Lemma 4.2. Suppose that, at time zero, there is a single particle at x. Then for all t > 0,
the random variable

M = sup{Xi,n(u) : i ≤ Nn(u), u ≤ t}
is finite almost surely.

Proof. Fix k > x and consider a system where particles are frozen (that is, they no longer
move or branch) once they hit level k. Call the resulting probability measure P̂. Let A
be the number of particles that have been frozen by time t. Let (Bu)u≥0 be a process

which, under P̂, is a Brownian motion with drift −ρ that is frozen upon hitting the level
k. By applying the many-to-one lemma (2.9) under the measure P̂ with the function
f(y) = 1{y≥k}, we get

Px(M ≥ k) = P̂x(A ≥ 1) ≤ Êx[A] ≤ Êx
[

exp
(∫ t

0

βBudu
)
1{Bt=k}

]
.

Since Bu ≤ k for all u under P̂, we deduce that

Px(M ≥ k) ≤ eβktP̂x
(
Bt = k

)
.

Now, the probability that Bt = k is exactly the probability that a Brownian motion with
drift −ρ hits k before time t, which is smaller than the probability that a Brownian motion
with no drift hits k before time t. It is well-known that the first hitting time of level y by
a standard Brownian motion (Wt)t≥0 started from 0 is equal in distribution to (y/W1)2;
thus, using a standard Gaussian approximation,

Px(M ≥ k) ≤ eβktP
( (k − x)2

W 2
1

≤ t
)

= 2eβktP
(
W1 ≥

k − x
t1/2

)
.

t1/2

k − x
exp

(
βkt− (k − x)2

2t

)
,

which converges to 0 as k →∞. The result follows.
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Proof of Lemma 2.14. Fix δ > 0. Let Km = x(1 + δ)m for each m ≥ 0. Label the initial
particle at x to be type 0. Whenever a particle reaches Km for the first time, it becomes
type m. The type of a particle is never allowed to decrease, so a particle will have type m
if at some time it had an ancestor above Km, but it never had an ancestor above Km+1.
When a birth occurs, offspring have the same type as the parent.

For nonnegative integers m, let

τm =
log(1/δ)

βx(1 + δ)m+1
,

and let Tm =
∑m
k=0 τk. Let

T = lim
m→∞

Tm =

∞∑
k=0

τk =
log(1/δ)

βxδ
. (4.6)

Let D0 be the event that there is a type 0 individual alive in the population at time T0.
For positive integers m, let Dm be the event that there are type m individuals in the
population continuously from time Tm−1 until time Tm. Let D be the event that some
individual survives until time T . We claim that

P(D) ≤ P
( ∞⋃
m=0

Dm

)
. (4.7)

To see this, note that if D0 fails to occur, then there are no type 0 individuals left at time
T0, but there could be individuals that migrated to the right of K1 and became type 1
individuals. If D1 also fails to occur, then the type 1 individuals must all be gone by time
T1, but there could be individuals that became type 2. Repeating this argument, we see
that if none of the Di occur, then there cannot be individuals of any type remaining at
time T . The only further possibility is that there are individuals alive at time t that have
had type j + 1 by time Tj , for all j ∈ N. By Lemma 4.2, this has probability zero.

We therefore aim to bound the probability of Dm. Suppose m ≥ 1. For any u ≥ 0, by
(2.30),

r̃Kmx (u) .
Km − x
u3/2

exp

(
ρ(x−Km)− (Km − x)2

2u
− ρ2u

2
+ βKmu

)
.

Note that if 0 ≤ u ≤ T , then

βKmu ≤ βx(1 + δ)m
log(1/δ)

βxδ
=

(1 + δ)m log(1/δ)

δ
.

Therefore, using also that ρ2u/2 ≥ 0, we have

r̃Kmx (u) .
Km − x
u3/2

exp

(
(1 + δ)m log(1/δ)

δ
+ ρ(x−Km)

)
exp

(
− (x−Km)2

2u

)
.

It follows from this bound and Lemma 4.1 that the expected number of particles to hit
Km by time Tm−1, if particles are killed upon reaching Km, is at most∫ Tm−1

0

r̃Kmx (u) du . exp

(
(1 + δ)m log(1/δ)

δ
+ ρ(x−Km)

)
= exp

(
(1 + δ)m log(1/δ)

δ
+ ρx− ρx(1 + δ)m

)
. (4.8)

Now suppose, for m ≥ 1, a particle reaches Km before time Tm−1. For m = 0, we
can consider instead the particle at x at time zero. Particles of type m have positions
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x ≤ Km+1 and therefore effective branching rate b(x)− d(x) ≤ βKm+1. For a continuous-
time branching process in which each individual gives birth at rate λ and dies at rate
µ, it is well-known that the probability that the population survives for at least time t is
given by

λ− µ
λ− µe−(λ−µ)t

=
λ− µ

λ− µ+ µ(1− e−(λ−µ)t)
.

This formula can be deduced, for example, from results in Section 5 in Chapter III of [1].
For any µ > 0 and t > 0, one may check that the derivative of the function z 7→

z+µ(1−e−zt)
z is always negative and therefore the function is decreasing in z. Thus the

function
z 7→ z

z + µ(1− e−zt)
is increasing in z. Applying this with z = λ − µ ≤ βKm+1, µ ≥ ∆ (from (1.4)) and
t = τm, we see that the probability that a particle that reaches Km before time Tm−1 has
descendants of type m alive in the population at time Tm is bounded above by

βKm+1

βKm+1 + ∆(1− e−βKm+1τm)
≤ βKm+1

∆(1− e−βKm+1τm)
. (4.9)

By our choice of τm, this equals
βx(1 + δ)m+1

∆(1− δ)
. (4.10)

When m = 0, it follows that

P(D0) ≤ βx(1 + δ)

∆(1− δ)
.

When m ≥ 1, it follows from (4.8) and the estimate in (4.10) that

P(Dm) ≤ βx(1 + δ)m+1

∆(1− δ)
exp

(
(1 + δ)m

log(1/δ)

δ
+ ρx− ρx(1 + δ)m

)
.

Therefore, using (4.7),

P(D) ≤ βx(1 + δ)

∆(1− δ)
+

∞∑
m=1

βx(1 + δ)m+1

∆(1− δ)
exp

(
(1 + δ)m

log(1/δ)

δ
+ρx−ρx(1 + δ)m

)
. (4.11)

Let Γm denote the mth term in the infinite sum in (4.11). Because x� β−1/3 � ρ−1 as
n→∞, we see that for any fixed δ, we have Γ1 → 0 and supm≥1 Γm+1/Γm → 0. It follows
that the infinite sum in (4.11) tends to zero, and therefore as long as δ is chosen to be
small enough that (1 + δ)/(1− δ) < 2, we have P(D) ≤ 2βx/∆ for sufficiently large n. In
view of (4.6), it follows that the conclusion of the lemma holds with C1 = log(1/δ)/δ.

Lemma 4.3. If 0 < t . ρ−2, then∫ ∞
−∞

pt(LA, y)eρy dy . eρLA .

Proof. By (2.11),∫ ∞
−∞

pt(LA, y)eρy dy =

∫ ∞
−∞

1√
2πt

exp

(
ρLA −

(y − LA)2

2t
− ρ2t

2
+
β(LA + y)t

2
+
β2t3

24

)
dy.

Because t . ρ−2, the terms ρ2t/2, βLAt/2, and β2t3/24 are all bounded above by positive
constants. It follows that∫ ∞
−∞

pt(LA, y)eρy dy . eρLA
∫ ∞
−∞

1√
2πt

eβyt/2e−(y−LA)2/2t dy = eρLA ·eβtLA/2eβ
2t3/8 . eρLA ,

as claimed.
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5 Proof of Proposition 2.1

In this section, we will prove Proposition 2.1, which gives a precise description of
the density of particles near the right edge. Because it will sometimes be necessary
to condition on the initial configuration of particles, we will define (Ft, t ≥ 0) to be the
natural filtration associated with the branching Brownian motion process.

We begin with the following lemma, which states that when (1.10) holds, particles that
start out close to L can be neglected because they will not have descendants surviving
for very long.

Lemma 5.1. Suppose (1.10) holds. Fix A ∈ R, and let C1 > 0 be the constant from
Lemma 2.14. Then the probability that some particle that is to the right of LA at time
zero has a descendant alive in the population at time 2C1ρ

−2 tends to zero as n→∞.

Proof. First note that any particle that is to the right of ρ/β at time zero contributes
at least eρ

2/β � ρ−2eρL to Yn(0). It therefore follows from (1.10) that the probability
that any particle is to the right of ρ/β at time zero tends to zero as n→∞, and we can
restrict our attention to particles that start to the left of ρ/β.

Fix ε > 0. Say that a particle at time 0 “survives” if it has a descendant alive at time
2C1ρ

−2. That is, we say the particle survives if the family initiated by the particle lasts
until at least time 2C1ρ

−2. Let S be the number of particles whose positions at time 0

are between LA and ρ/β and who survive; and define E0 = E[S|F0]. Then, using the
conditional Markov inequality,

P(S ≥ 1) = E
[
P(S ≥ 1|F0)

]
= E

[
P(S ≥ 1|F0)1{E0≤ε}

]
+ E

[
P(S ≥ 1|F0)1{E0>ε}

]
≤ E

[
E[S|F0]1{E0≤ε}

]
+ E

[
1 · 1{E0>ε}

]
≤ ε+ P(E0 > ε).

Since ε > 0 was arbitrary, it therefore suffices to show that P(E0 > ε)→ 0 as n→∞.

Consider a particle i with Xi(0) ∈ [LA, ρ/β]. Lemma 2.14 gives an upper bound for
the probability that this particle has a descendant alive at time C1/βXi(0). Because
Xi(0) ≥ LA and LA ≥ ρ2/2β for large n, we have C1/βXi(0) ≤ 2C1ρ

−2 for large n.
Therefore, for large n, the bound in Lemma 2.14 is an upper bound for the probability
that this particle has a descendant alive until time 2C1ρ

−2. Thus, by Lemma 2.14, a
particle i with Xi(0) ∈ [LA, ρ/β] survives with probability at most 2βXi(0)/∆. It follows
that

E0 ≤
Nn(0)∑
i=1

1{Xi(0)∈[LA,ρ/β]}
2βXi(0)

∆

=
2

∆

Nn(0)∑
i=1

1{Xi(0)∈[LA,ρ/β]}β(Xi(0)− L) +
2L

∆

Nn(0)∑
i=1

β1{Xi(0)∈[LA,ρ/β]}. (5.1)

We now use the elementary bound x ≤ ex together with (1.2) to say that, for large n,

β(Xi(0)− L) ≤ ρ2 · ρ(Xi(0)− L) ≤ ρ2eρXi(0)−ρL

which, combined with (5.1), gives

E0 ≤
2ρ2

∆

Nn(0)∑
i=1

eρXi(0)−ρL +
2βL

∆

Nn(0)∑
i=1

1{Xi(0)≥LA}.
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The first sum on the right-hand side tends to 0 in probability by (1.10). The second also
tends to 0 in probability, since

P
(2βL

∆

Nn(0)∑
i=1

1{Xi(0)≥LA} ≥ ε
)
≤ P

(
βL

Nn(0)∑
i=1

eρXi(0)−ρLA ≥ ∆ε

2

)
= P

(
βLe−ρLYn(0) ≥ ∆εe−A

2

)
which converges to 0 as n→∞ by (1.10). This completes the proof.

We now introduce some additional notation. Recall from (2.25) that KA(t) = LA −
βt2/66. We also define

HA(t) = LA −
βt2

9
, (5.2)

so that HA(t) < KA(t) < LA. We set H(t) = H0(t) and K(t) = K0(t). Note that if
HA(tn) ≤ x < LA and HA(tn) ≤ y < LA, then as long as tn � β−2/3, the condition (2.24)
holds, and therefore Lemma 2.5 can be used to estimate pLAtn (x, y). When KA(tn) < x <

LA and KA(tn) < y < LA, Lemma 2.10 can be used for second moment bounds. Other
methods are needed to control the contribution from particles to the left of HA(t). The
next lemma will be very useful in this regard.

Lemma 5.2. If x ≤ HA(tn) and tn � β−2/3, then∫ LA

−∞
pLAtn (x, y)eρy dy � eρxe−β

2t3n/73. (5.3)

If x < LA and tn � β−2/3, then∫ HA(tn)

−∞
pLAtn (x, y)eρy dy � eρxe−β

2t3n/73. (5.4)

If x ≤ HA(tn), 0 ≤ ζ ≤ βtn/2, and β−2/3 � tn � ρ/β, then∫ LA

−∞
pLAtn (x, y)e(ρ−ζ)y dy � eρxe−β

2t3n/73. (5.5)

If x < LA, 0 ≤ ζ ≤ βtn/2, and β−2/3 � tn � ρ/β, then∫ HA(tn)

−∞
pLAtn (x, y)e(ρ−ζ)y dy � eρxe−β

2t3n/73. (5.6)

Proof. Suppose x ≤ LA − 1
9βt

2
n. By (2.11) and the fact that pLAtn (x, y) ≤ ptn(x, y), we have∫ LA

−∞
pLAtn (x, y)eρy dy

≤
∫ LA

−∞

1√
2πtn

exp

(
ρx− (y − x)2

2t
− ρ2tn

2
+
β(y + x)tn

2
+
β2t3n
24

)
dy

≤ exp

(
ρx− ρ2tn

2
+ βLAtn −

β2t3n
18

+
β2t3n
24

)∫ ∞
−∞

1√
2πtn

e−(y−x)2/2tn dy

= exp

(
ρx− 2−1/3γ1β

2/3tn −
Aβtn
ρ
− β2t3n

72

)
.

Because β2t3n � β2/3tn and β2t3n � βtn/ρ, it follows that (5.3) holds.
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To establish (5.4), we use the same argument. Instead of having x ≤ HA(tn) and
y ≤ LA, we now have x ≤ LA and y ≤ HA(tn). However, the resulting bound on
β(y + x)tn/2 is the same, and the rest of the calculation proceeds identically.

To prove (5.5) and (5.6), it follows from (5.3) and (5.4) that we only need to consider
the portion of the integral when y < 0. Using (2.11) along with the fact that ζ ≤ βtn/2
and therefore 1

2βytn − ζy ≤ 0 when y ≤ 0, we have∫ 0

−∞
pLAtn (x, y)e(ρ−ζ)y dy

≤
∫ 0

−∞

1√
2πtn

exp

(
− ζy + ρx− (y − x)2

2tn
− ρ2tn

2
+
β(y + x)tn

2
+
β2t3n
24

)
dy

≤ exp

(
ρx− ρ2tn

2
+
βLAtn

2
+
β2t3n
24

)∫ 0

−∞

1√
2πtn

e−(y−x)2/2tn dy

≤ exp

(
ρx− ρ2tn

4
− 2−4/3γ1β

2/3tn −
Aβtn

2ρ
+
β2t3n
24

)
.

Because tn � ρ/β, we have ρ2tn � β2t3n, which is sufficient to conclude (5.5) and
(5.6).

Proof of Proposition 2.1. Let g : R→ [0,∞) be a bounded measurable function, and let

‖g‖ = sup
x∈R
|g(x)|.

On the event that Nn(t) ≥ 1, let

Φn(g) = Yn(tn)

∫ ∞
−∞

g(x) ξn(tn)(dx) =

Nn(tn)∑
i=1

eρXi,n(tn)g
(
(2β)1/3(L−Xi,n(tn)

)
. (5.7)

Otherwise, let Φn(g) = 0. Let Φn(1) be the value of Φn(g) when g(x) = 1 for all x. Then,
when Nn(t) ≥ 1, we have ∫ ∞

−∞
g(x) ξn(tn)(dx) =

Φn(g)

Φn(1)
.

We will show that for all κ > 0, we have

lim
n→∞

P
(

1− κ
(Ai′(γ1))2

(∫ ∞
0

g(z)Ai(γ1 + z) dz

)
Zn(0) < Φn(g)

<
1 + κ

(Ai′(γ1))2

(∫ ∞
0

g(z)Ai(γ1 + z) dz

)
Zn(0)

)
= 1. (5.8)

It will then follow that for all κ > 0, we have

lim
n→∞

P
(

1− κ
1 + κ

∫ ∞
0

g(z)h(z) dz ≤
∫ ∞
−∞

g(x) ξn(tn)(dx) ≤ 1 + κ

1− κ

∫ ∞
0

g(z)h(z) dz

)
= 1.

That is, as n→∞ we have∫ ∞
−∞

g(x) ξn(tn)(dx)→p

∫ ∞
0

g(x) ν(dx),

which by, for example, Theorem 16.16 of [26] will imply the statement of the proposition.
It therefore remains to prove (5.8). We will estimate Φn(g) by dividing it into seven

pieces, depending mostly on the location of the particle at time tn and the location of the
ancestral particle at time zero. For i ∈ {1, . . . , Nn(t)} and s ∈ [0, t], let ai,n(s, t) be the
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location at time s of the ancestor of the ith particle at time t. We partition the particles
at time tn into the following seven subsets:

S1,n =
{
i : ai,n(s, tn) ≥ L for some s ∈

[
0, tn − 2C1ρ

−2
]}
,

S2,n =
{
i /∈ S1,n : ai,n(s, tn) ≥ L for some s ∈

[
tn − 2C1ρ

−2, tn
]}
,

S3,n =
{
i /∈ S1,n ∪ S2,n : ai,n(0, tn) < H(tn)

}
,

S4,n =
{
i /∈ S1,n ∪ S2,n ∪ S3,n : Xi,n(tn) < H(tn)

}
,

S5,n =
{
i /∈ S1,n ∪ S2,n ∪ S3,n ∪ S4,n : H(tn) ≤ ai,n(0, tn) ≤ K(tn)

}
,

S6,n =
{
i /∈ S1,n ∪ S2,n ∪ S3,n ∪ S4,n ∪ S5,n : H(tn) ≤ Xi,n(tn) ≤ K(tn)

}
,

S7,n =
{
i /∈ S1,n ∪ S2,n : K(tn) < ai,n(0, tn) < L and K(tn) < Xi,n(tn) < L

}
.

For j ∈ {1, . . . , 7}, let

Φj,n(g) =
∑
i∈Sj,n

eρXi,n(tn)g
(
(2β)1/3(L−Xi,n(tn)

)
,

and note that Φn(g) = Φ1,n(g) + · · · + Φ7,n(g). We will show that the first six terms
contribute little to the sum, while the seventh is highly concentrated around its mean.

The first term Φ1,n(g) accounts for the contributions of particles that reach L before
time tn − 2C1ρ

−2. By Lemma 5.1, with probability tending to one as n→∞, no particles
above L at time zero will have descendants alive at time tn. Consider the process in
which particles are killed upon reaching L, and let Rn(s, t) be the number of particles
killed between time s and time t. By Lemma 2.13,

E[Rn(0, tn − 2C1ρ
−2)|F0] . e−ρL

(
Yn(0) + tnβ

2/3Zn(0)
)
.

Therefore, using the assumptions (1.9) and (1.10) and the fact that tn � ρ/β, we obtain
that as n→∞,

ρ2E[Rn(0, tn − 2C1ρ
−2)|F0] . ρ2e−ρLYn(0) + ρ2e−ρLβ2/3tnZn(0)→p 0.

In view of Lemma 5.1, it follows that with probability tending to one as n → ∞, no
particle that hits L before time tn − 2C1ρ

−2 has descendants alive in the population at
time tn. That is, we have

lim
n→∞

P(Φ1,n(g) = 0) = 1. (5.9)

The term Φ2,n(g) accounts for particles that reach L between times tn − 2C1ρ
−2 and

tn, which means they may have descendants surviving at time tn even if they will not
have descendants surviving for a long time. We again apply Lemma 2.13. Noting that
β2t3n − β2(tn − 2C1ρ

−2)3 → 0 because tn � ρ/β, we get

E[Rn(tn − 2C1ρ
−2, tn)|F0] . e−ρL

(
Yn(0)e−β

2t3n/9 + ρ−2β2/3Zn(0)
)
.

Therefore, by Lemma 4.3,

E[Φ2,n(g)|F0] . ‖g‖
(
Yn(0)e−β

2t3n/9 + ρ−2β2/3Zn(0)
)
.

It follows that

E
[
ρ3e−ρL

β1/3
· Φ2,n(g)

∣∣∣F0

]
.
ρ3e−ρL

β1/3
Yn(0)e−β

2t3n/9 +
ρ3e−ρL

β1/3
· β

2/3

ρ2
Zn(0). (5.10)

Because (1.2) implies that β2/3/ρ2 → 0 and (2.6) implies that

ρ

β1/3
e−β

2t3n/9 → 0, (5.11)
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it follows from (1.9), (1.10), and (5.10) that as n→∞,

E
[
ρ3e−ρL

β1/3
· Φ2,n(g)

∣∣∣F0

]
→p 0

and therefore, by the conditional Markov’s inequality,

ρ3e−ρL

β1/3
· Φ2,n(g)→p 0. (5.12)

We now consider Φ3,n(g) and Φ4,n(g). By (5.3),

E
[
ρ3e−ρL

β1/3
· Φ3,n(g)

∣∣∣F0

]
� ρ3e−ρL

β1/3
‖g‖Yn(0)e−β

2t3n/73, (5.13)

and we obtain the identical result for Φ4,n(g) using (5.4) in place of (5.3). Therefore,
applying the conditional Markov’s inequality as we did for Φ2,n(g), we get

ρ3e−ρL

β1/3
· (Φ3,n(g) + Φ4,n(g))→p 0. (5.14)

To handle the remaining terms, write

Z ′n(0) =

Nn(0)∑
i=1

eρXi,n(0)α(L−Xi,n(0))1{Xi,n(0)≤K(tn)},

Z∗n(0) =

Nn(0)∑
i=1

eρXi,n(0)α(L−Xi,n(0))1{K(tn)<Xi,n(0)<L} = Zn(0)− Z ′n(0).

If x ≤ K(tn), then (2β)1/3(L − x) + γ1 ≥ 1
66 · 2

1/3β4/3t2 + γ1. Therefore, by (3.1), there
exists a positive constant C6 such that if x ≤ K(tn), then

α(L− x) ≤ e−C6β
2t3n .

It follows that Z ′n(0) ≤ Yn(0)e−C6β
2t3n , so by (1.10), (1.2), and the reasoning that led to

(5.11), we have
ρ3

β1/3
e−ρLZ ′n(0)→p 0 (5.15)

as n→∞. Also, if H(tn) ≤ x < L and H(tn) ≤ y < L, then because (2.24) holds, we can
estimate pLtn(x, y) using Lemma 2.5. It follows from Lemma 2.5 and the boundedness of
g that

E[Φ5,n(g)|F0] . β1/3

(∫ L

H(tn)

eρy · e−ρyα(L− y) dy

)
Z ′n(0)

≤ β1/3

(∫ L

H(tn)

Ai
(
(2β)1/3(L− y) + γ1

)
dy

)
Z ′n(0)

. Z ′n(0).

Combining this result with (5.15) and the conditional Markov’s Inequality, we get

ρ3e−ρL

β1/3
· Φ5,n(g)→p 0. (5.16)

We can bound Φ6,n(g) by making a similar calculation. This time, we are considering
descendants of the initial particles that contribute to Z∗n(0) rather than Z ′n(0), and
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requiring the particles to end up between H(tn) and K(tn) at time tn. Therefore, making
the substitution z = (2β)1/3(L− y), we get

E[Φ6,n(g)|F0] . β1/3

(∫ K(tn)

H(tn)

Ai
(
(2β)1/3(L− y) + γ1

)
dy

)
Z∗n(0)

.

(∫ (2β)1/3· 19βt
2
n

(2β)1/3· 1
66βt

2
n

Ai(γ1 + z) dz

)
Z∗n(0). (5.17)

Because β4/3t2n →∞, the integral in (5.17) tends to zero as n→∞. Therefore, in view
of (1.9),

ρ3e−ρL

β1/3
· Φ6,n(g)→p 0. (5.18)

Finally, we consider the term Φ7,n(g). Using Lemma 2.5 in the first step, making the
substitution z = (2β)1/3(L − y) in the second step, and using that β4/3t2n → ∞ in the
third step, we obtain

E[Φ7,n(g)|F0] =
(2β)1/3

(Ai′(γ1))2

(∫ L

K(tn)

g
(
(2β)1/3(L− y)

)
α(L− y) dy

)
Z∗n(0)(1 + o(1))

=
1

(Ai′(γ1))2

(∫ (2β)1/3· 1
66βt

2
n

0

g(z)Ai(γ1 + z) dz

)
Z∗n(0)(1 + o(1))

=
1

(Ai′(γ1))2

(∫ ∞
0

g(z)Ai(γ1 + z) dz

)
Z∗n(0)(1 + o(1)).

Therefore, in view of (1.9), we have that for all η > 0,

lim
n→∞

P
(∣∣∣∣E[Φ7,n(g)|F0]− 1

(Ai′(γ1))2

(∫ ∞
0

g(z)Ai(γ1 + z) dz

)
Z∗n(0)

∣∣∣∣ > ηβ1/3eρL

ρ3

)
= 0.

(5.19)
Moreover, using the independence of the descendants of different particles along with
Lemma 2.10, we get

Var(Φ7,n(g)|F0) =

Nn(0)∑
i=1

VarXi,n(0)(Φ7,n(g))1{K(tn)<Xi,n(0)<L}

≤
Nn(0)∑
i=1

EXi,n(0)[Φ7,n(g)2]1{K(tn)<Xi,n(0)<L}

.
β2/3eρL

ρ4

(
Yn(0) + β2/3tnZ

∗
n(0)

)
.

Therefore, by the conditional Chebyshev’s Inequality, for all η > 0 we have

P
(
|Φ7,n(g)− E[Φ7,n(g)|F0]| > ηβ1/3eρL

ρ3

∣∣∣∣F0

)
≤ ρ2e−ρL

η2

(
Yn(0) + β2/3tnZ

∗
n(0)

)
.

The first term on the right-hand side converges in probability to zero by (1.10), and
because tn � ρ/β, the second term on the right-hand side converges in probability to
zero by (1.9). It follows that

lim
n→∞

P
(
|Φ7,n(g)− E[Φ7,n(g)|F0]| > ηβ1/3eρL

ρ3

)
= 0. (5.20)

Combining (5.15), (5.19) and (5.20) gives that for all η > 0,

lim
n→∞

P
(∣∣∣∣Φ7,n(g)− 1

(Ai′(γ1))2

(∫ ∞
0

g(z)Ai(γ1 + z) dz

)
Zn(0)

∣∣∣∣ > 3ηβ1/3eρL

ρ3

)
= 0. (5.21)
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Finally, combining (5.9), (5.12), (5.14), (5.16), (5.18), and (5.21), we get that for all η > 0,

lim
n→∞

P
(∣∣∣∣Φn(g)− 1

(Ai′(γ1))2

(∫ ∞
0

g(z)Ai(γ1 + z) dz

)
Zn(0)

∣∣∣∣ > 4ηβ1/3eρL

ρ3

)
= 0. (5.22)

The result (5.8), and therefore the statement of the proposition, now follows from
(1.9).

6 Proof of Proposition 2.2

In this section, we prove Proposition 2.2, which shows that when (1.9) and (1.10)
hold, the empirical distribution of particles at time approximately ρ/β is asymptotically
Gaussian. We begin by proving the following simple lemma concerning the Airy function.

Lemma 6.1. We have

lim
r→∞

e−r
3/3

∫ ∞
0

er(γ1+z)Ai(γ1 + z) dz = 1.

Proof. Although this proof is elementary it does require considering various cases. For a
lower bound, begin by noting that for r large,∫ ∞

0

er(γ1+z)Ai(γ1 + z) dz =

∫ ∞
γ1

erzAi(z) dz ≥
∫ r2+r2/3

r2−r2/3
erzAi(z) dz. (6.1)

Recall from (3.1) that as x→∞,

Ai(x) ∼ 1

2
√
πx1/4

e−(2/3)x3/2

as x→∞,

and therefore∫ r2+r2/3

r2−r2/3
erzAi(z) dz ∼ 1

2
√
π

∫ r2+r2/3

r2−r2/3
erz

1

z1/4
e−2z3/2/3 dz

=
1

2
√
π

∫ r2/3

−r2/3

1

(r2 + y)1/4
er

3+ry−2(r2+y)3/2/3 dy.

Now, for y ∈ [−r2/3, r2/3], we have (r2 +y)1/4 ∼ r1/2 and (r2 +y)3/2 = r3 +3ry/2+3y2/8r+

o(1). Substituting these estimates into the above, we have∫ r2+r2/3

r2−r2/3
erzAi(z) dz ∼ 1

2
√
π

∫ r2/3

−r2/3

1

r1/2
er

3/3−y2/4r dy = er
3/3

∫ r2/3

−r2/3

1√
4πr

e−y
2/4r dy.

The last integral is easily recognised as the probability that a Gaussian random variable
of mean 0 and variance 2r falls between −r2/3 and r2/3, which converges to 1 as r →∞.
Thus we have shown that ∫ r2+r2/3

r2−r2/3
erzAi(z) dz ∼ er

3/3 (6.2)

and, combining this with (6.1), we see that the lower bound claimed in the statement
holds.

For the upper bound, by (6.2), it suffices to show that∫ r2−r2/3

γ1

erzAi(z) dz +

∫ ∞
r2+r2/3

erzAi(z) dz � er
3/3. (6.3)
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Since Ai(z) is bounded (see (3.4)), we have∫ r

γ1

erzAi(z) dz . rer
2

� er
3/3.

When z > r, we can again use (3.1) to obtain that∫ r2−r2/3

r

erzAi(z) dz ∼ 1

2
√
π

∫ r2−r2/3

r

erz
1

z1/4
e−2z3/2/3 dz

=
1

2
√
π

∫ −r2/3
r−r2

er
3+ry−2(r2+y)3/2/3

(r2 + y)1/4
dy.

We now use the fact that

(1 + x)3/2 ≥ 1 + 3x/2 + x2/4 for all x ∈ (−1, 4)

and therefore

(r2 + y)3/2 ≥ r3 + 3ry/2 + y2/4r for all y ∈ (−r2, 4r2) (6.4)

to see that

1

2
√
π

∫ −r2/3
r−r2

er
3+ry−2(r2+y)3/2/3

(r2 + y)1/4
dy ≤ 1

2
√
π

∫ −r2/3
r−r2

er
3/3−y2/6r

(r2 + y)1/4
dy . r2er

3/3−r1/3/6 � er
3/3.

When z ∈ [r2 + r2/3, 4r2], we follow a very similar route: using (3.1) and (6.4) in exactly
the same way as above, we have∫ 4r2

r2+r2/3
erzAi(z) dz ∼ 1

2
√
π

∫ 4r2

r2+r2/3

erz

z1/4
e−2z3/2/3 dz ≤ 1

2
√
π

∫ 4r2

r2/3

er
3/3−y2/6r

(r2 + y)1/4
dy � er

3/3.

Finally, for z > 4r2, again by (3.1) we have∫ ∞
4r2

erzAi(z) dz ∼ 1

2
√
π

∫ ∞
4r2

erz
1

z1/4
e−2z3/2/3 dz

and since for z > 4r2 we have z3/2 > 2rz, this is at most∫ ∞
4r2

e−rz/3dz � er
3/3.

Combining our four estimates on the integrals over the regions z ∈ [γ1, r], z ∈ (r, r2−r2/3],
z ∈ [r2 + r2/3, 4r2] and z > 4r2, we obtain (6.3) and therefore the proof is complete.

Let η > 0. By Lemma 6.1, we can choose C7 to be sufficiently large that(
1− η

2

)
eC

3
7/6 ≤

∫ ∞
0

e2−1/3C7(γ1+y)Ai(γ1 + y) dy ≤ (1 + η)eC
3
7/6 (6.5)

holds, and also

e−C
3
7/6 · (1 + η)

√
2π

(Ai′(γ1))2

∫ ∞
0

Ai(γ1 + y) dy < η. (6.6)

We can then choose C8 to be sufficiently large that∫ ∞
21/3C8

e2−1/3C7(γ1+y)Ai(γ1 + y) dy <
η

2
eC

3
7/6. (6.7)
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By (6.5) and (6.7), we have

(1− η)eC
3
7/6 ≤

∫ 21/3C8

0

e2−1/3C7(γ1+y)Ai(γ1 + y) dy ≤ (1 + η)eC
3
7/6. (6.8)

We now establish the following lemma, which shows that a certain functional of the
process after a short time tn which satisfies (2.6) is well approximated by a constant
mutiple of Zn(0). To prove this result, we use the results established in the previous
section for the configuration of particles near the right edge.

Lemma 6.2. Suppose (1.9), (1.10), and (2.6) hold. Let η > 0, and choose positive
constants C7 and C8 as above so that (6.8) holds. Let

Υn = exp

(
C7ρ

2

2β2/3
− C3

7

6

)Nn(tn)∑
i=0

e(ρ−C7β
1/3)Xi,n(tn)1{L−C8β−1/3<Xi,n(tn)<L}.

Then

lim
n→∞

P
(

1− 2η

(Ai′(γ1))2
Zn(0) ≤ Υn ≤

1 + 2η

(Ai′(γ1))2
Zn(0)

)
= 1.

Proof. Define the function g by g(y) = e2−1/3C7y if 0 < y < 21/3C8 and g(y) = 0 otherwise.
Define Φn(g) as in (5.7). Then

Nn(tn)∑
i=0

e(ρ−C7β
1/3)Xi,n(tn)1{L−C8β−1/3<Xi,n(tn)<L}

= e−C7β
1/3L

Nn(tn)∑
i=0

eρXi,n(tn)eC7β
1/3(L−Xi,n(tn))1{L−C8β−1/3<Xi,n(tn)<L}

= e−C7ρ
2β−2/3/2e2−1/3C7γ1

Nn(tn)∑
i=0

eρXi,n(tn)g((2β)1/3(L−Xi,n(tn)))

= e−C7ρ
2β−2/3/2e2−1/3C7γ1Φn(g). (6.9)

By (5.8), as n→∞, we have

Φn(g)

Zn(0)
→p

1

(Ai′(γ1))2

∫ 21/3C8

0

e2−1/3C7yAi(γ1 + y) dy. (6.10)

It follows from (6.9) and (6.10) that

eC7ρ
2β−2/3/2

Zn(0)

Nn(tn)∑
i=0

e(ρ−C7β
1/3)Xi,n(tn)1{L−C8β−1/3<Xi,n(tn)<L}

→p
1

(Ai′(γ1))2

∫ 21/3C8

0

e2−1/3C7(γ1+y)Ai(γ1 + y) dy. (6.11)

The result follows from (6.11) and (6.8).

Proof of Proposition 2.2. Let g : R→ [0,∞) be a nonzero bounded continuous function,
and let

‖g‖ = sup
x∈R
|g(x)|.

Write

I(g) =

∫ ∞
−∞

g(x)µ(dx) =

∫ ∞
−∞

g(y) · 1√
2π
e−y

2/2 dy.
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Let

Ψn(g) =

Nn(tn)∑
i=1

g
(
Xi,n(tn)

√
β/ρ

)
We will show that for all κ > 0, we have

lim
n→∞

P
(

1− κ
(Ai′(γ1))2

e−ρ
3/3βZn(0)I(g) ≤ Ψn(g) ≤ 1 + κ

(Ai′(γ1))2
e−ρ

3/3βZn(0)I(g)

)
= 1.

(6.12)
Because Ψn(1) = Nn(tn), the result (2.8) will follow immediately. Also, if Nn(t) ≥ 1, then∫ ∞

−∞
g(x) ζn(tn)(dx) =

Ψn(g)

Ψn(1)
.

Because I(1) = 1, it will follow from (6.12) that as n→∞, we have∫ ∞
−∞

g(x) ζn(tn)(dx)→p

∫ ∞
−∞

g(x) µ(dx),

which by, for example, Theorem 16.16 of [26] is enough to imply that ζn(tn)⇒ µ.
It remains, then, to prove (6.12). Let η > 0, and recall the definitions of the positive

constants C7 and C8 from before the statement of Lemma 6.2. Let C9 be a positive
constant chosen large enough that if Z has a standard normal distribution, then

P (|Z| > C9) < η. (6.13)

Let sn = C7β
−2/3, and let

un = tn −
ρ

β
+ sn.

Because the times tn satisfy (2.7), we have

β−2/3

(
log

(
ρ

β1/3

))1/3

� ρ2/3

β8/9
� un �

ρ

β
, (6.14)

and therefore the configuration of particles at time un satisfies the conclusions of
Proposition 2.1.

To prove (6.12), we will follow the trajectories of the particles between times un and
tn. Recalling (5.2), we first partition the particles at time un into the following four
subsets:

G1,n = {i : Xi,n(un) ≥ L},
G2,n = {i : Xi,n(un) ≤ H(un)},

G3,n =
{
i : H(un) < Xi,n(un) ≤ L− C8β

−1/3
}
,

G4,n =
{
i : L− C8β

−1/3 < Xi,n(un) < L
}
.

We then partition the particles at time tn into six subsets. Recall that ai,n(s, t) is the
position of the ancestor at time s of the ith particle at time t. We will denote by ki,n(s, t)

the index of this ancestor, which means Xki,n(s,t),n(s) = ai,n(s, t). For j ∈ {1, 2, 3}, we
define

Sj,n = {i : ki,n(un, tn) ∈ Gj,n}.

We also define

S4,n =
{
i : ki,n(un, tn) ∈ G4,n and Xi,n(tn) /∈

[
− C9

√
ρ/β,C9

√
ρ/β

]}
,

S5,n =
{
i : ki,n(un, tn) ∈ G4,n, i /∈ S4,n, and ai,n(s, tn) ≥ L for some s ∈ (un, tn)

}
,

S6,n =
{
i : ki,n(un, tn) ∈ G4,n and i /∈ S4,n ∪ S5,n

}
.
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For j ∈ {1, . . . , 6}, let

Ψj,n(g) =
∑
i∈Sj,n

g
(
Xi,n(tn)

√
β/ρ

)
.

Then Ψn(g) = Ψ1,n(g) + · · ·+ Ψ6,n(g). We will show that with high probability, the values
of Ψj,n(g) are small for j ∈ {1, . . . , 5}. The dominant contribution comes from Ψ6,n(g),
which is highly concentrated around its expectation.

The term Ψ1,n(g) accounts for the particles that are above L at time un. To bound
this term we can use the argument leading to (5.9), with un in place of tn − 2C1ρ

−2, to
see that with probability tending to one as n→∞, no particle that either starts above
L or reaches L before time un has descendants alive past time un + 2C1ρ

−2. Because
un + 2C1ρ

−2 ≤ tn for sufficiently large n, it follows that

lim
n→∞

P(Ψ1,n(g) = 0) = 1. (6.15)

We next consider Ψ2,n(g), which accounts for particles that are below H(un) at
time un. If there is a particle at x at time un, then by (2.12), the expected number of
descendants of this particle alive at time tn is

exp

(
βx(tn − un) +

β2(tn − un)3

6
− βρ(tn − un)2

2

)
. (6.16)

Using that tn − un = (ρ/β)− sn, after a few lines of algebra we get that the expression
in (6.16) is equal to

exp

(
(ρ− βsn)x− ρ3

3β
+
ρ2sn

2
− β2s3

n

6

)
. (6.17)

It follows that

E[Ψ2,n(g)|Fun ] ≤ ‖g‖ exp

(
− ρ3

3β
+
ρ2sn

2
− β2s3

n

6

) ∑
i∈G2,n

e(ρ−βsn)Xi,n(un). (6.18)

Note that (6.14) implies that sn � un and therefore βsn ≤ βun/2 for sufficiently large n,
so it follows from (5.6) that

E
[ ∑
i∈G2,n

e(ρ−βsn)Xi,n(un)
∣∣∣F0

]
� e−β

2u3
n/73Yn(0),

and therefore

E[Ψ2,n(g)|F0]� Yn(0) exp

(
− ρ3

3β
+
ρ2sn

2
− β2s3

n

6
− β2u3

n

73

)
.

Because un � ρ2/3/β8/9 by (6.14), we have ρ2sn � β2u3
n. Therefore,

E[Ψ2,n(g)|F0]� Yn(0) exp

(
− ρ3

3β
− β2u3

n

74

)
. (6.19)

Combining (6.19) with (1.9) and (1.10) along with the conditional Markov’s inequality,
we obtain

lim
n→∞

P
(

Ψ2,n(g) > ηZn(0)e−ρ
3/3β

)
= 0. (6.20)

The reasoning leading to (6.18) gives

E[Ψ3,n(g)|Fun ] ≤ ‖g‖ exp

(
− ρ3

3β
+
ρ2sn

2
− β2s3

n

6

) ∑
i∈G3,n

e(ρ−βsn)Xi,n(un). (6.21)
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We can write G3,n = G∗3,n+G∗∗3,n, where for i ∈ G3,n, we say i ∈ G∗3,n if ai,n(0, un) ≤ H(un)

and i ∈ G∗∗3,n otherwise. By (5.5),

E
[ ∑
i∈G∗3,n

e(ρ−βsn)Xi,n(un)

∣∣∣∣F0

]
� e−β

2u3
n/73Yn(0). (6.22)

When H(un) < x < L and H(un) < y < L, we can estimate pLun(x, y) using Lemma
2.5, and the error term E0(un, x, y) will be o(1). Therefore, for any constant C10 >

21/3/(Ai′(γ1))2, we have for sufficiently large n,

E
[ ∑
i∈G∗∗3,n

e(ρ−βsn)Xi,n(un)

∣∣∣∣F0

]

=

Nn(0)∑
i=1

1{H(un)<Xi,n(0)<L}

∫ L−C8β
−1/3

H(un)

e(ρ−βsn)ypLun(Xi,n(0), y) dy

≤ C10Zn(0)

∫ L−C8β
−1/3

H(un)

e−βsnyβ1/3α(L− y) dy.

We now make the substitution z = (2β)1/3(L − y) and recall (6.7) and the fact that
sn = C7β

−2/3 to get

E
[ ∑
i∈G∗∗3,n

e(ρ−βsn)Xi,n(un)

∣∣∣∣F0

]
≤ C10Zn(0)

∫ ∞
21/3C8

e−βsn(L−(2β)−1/3z)Ai(γ1 + z) dz

= C10Zn(0)e−ρ
2sn/2

∫ ∞
21/3C8

e2−1/3C7(γ1+z)Ai(γ1 + z) dz

≤ C10η

2
· Zn(0)e−ρ

2sn/2eC
3
7/6. (6.23)

It follows from (6.21), (6.22), and (6.23), using the reasoning that led to (6.19) to handle
the first term, that for sufficiently large n,

E[Ψ3,n(g)|F0] ≤ ‖g‖e−ρ
3/3β

(
Yn(0)e−β

2u3
n/74 +

C10η

2
· Zn(0)

)
.

Therefore, using (1.9) and (1.10) along with the conditional Markov’s Inequality,

lim sup
n→∞

P
(

Ψ3,n(g) > η1/2Zn(0)e−ρ
3/3β

)
≤ C10‖g‖η1/2. (6.24)

It remains to consider the particles between L− C8β
−1/3 and L at time un. Applying

Lemma 2.4 with s = sn = ρ/β − (tn − un), there is an Fun -measurable random variable
θn tending uniformly to zero as n→∞ such that

E[Ψ5,n(g) + Ψ6,n(g)|Fun ]

= (1 + θn)
∑

i∈G4,n

∫ C9

√
ρ/β

−C9

√
ρ/β

√
β

2πρ
g

(
y

√
β

ρ

)

× exp

(
ρXi,n(un)− ρ3

3β
− βy2

2ρ
− β2s3

n

6
+ β

( ρ2

2β
−Xi,n(un)

)
sn

)
dy

= (1 + θn)

( ∑
i∈G4,n

e(ρ−βsn)Xi,n(un)

)

× exp

(
ρ2sn

2
− ρ3

3β
− β2s3

n

6

)∫ C9

−C9

g(y) · 1√
2π
e−y

2/2 dy. (6.25)
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Because sn = C7β
−2/3, Lemma 6.2 applied at time un tells us that as n→∞,

P
(

(1− 2η)Zn(0)

(Ai′(γ1))2
≤ exp

(
ρ2sn

2
− β2s3

n

6

) ∑
i∈G4,n

e(ρ−βsn)Xi,n(un) ≤ (1 + 2η)Zn(0)

(Ai′(γ1))2

)
→ 1.

(6.26)
Because g is nonnegative and θn → 0 uniformly as n→∞, it follows that

lim
n→∞

P
(
E[Ψ5,n(g) + Ψ6,n(g)|Fun ] ≤ 1 + 3η

(Ai′(γ1))2
e−ρ

3/3βZn(0)I(g)

)
= 1. (6.27)

To obtain the corresponding lower bound, note that by (6.13),∫ C9

−C9

g(y)
1√
2π
e−y

2/2 dy ≥
∫ ∞
−∞

g(y)
1√
2π
e−y

2/2 dy − η‖g‖ = I(g)

(
1− η‖g‖

I(g)

)
.

Also using again that θn → 0 uniformly as n→∞, we get

lim
n→∞

P
(
E[Ψ5,n(g) + Ψ6,n(g)|Fun ] ≥ 1− 3η

(Ai′(γ1))2

(
1− η‖g‖

I(g)

)
e−ρ

3/3βZn(0)I(g)

)
= 1. (6.28)

The term Ψ5,n(g) accounts for the particles that reach L between times un and tn.
We now bound the contribution from this term individually. Take v ∈ [0, tn − un], and
recall the definition of r̃Lx (v) from the beginning of section 2.7. From Corollary 2.12 and
the fact that (ρ2/2)− βL = 2−1/3β2/3γ1, there is a positive constant C11 such that

r̃Lx (v) ≤ C11(L− x)

v3/2
exp

(
ρx− ρL− (L− x)2

2v
− 2−1/3β2/3γ1v

)
. (6.29)

Now let mn(v) denote the expected number of descendants in the population at time tn
of a particle that reaches L at time un + v. It follows from (2.12) that

mn(v) = exp

(
βL(tn − un − v) +

β2(tn − un − v)3

6
− βρ(tn − un − v)2

2

)
.

Because tn − un = (ρ/β)− sn, a short computation gives

β2(tn − un − v)3

6
− βρ(tn − un − v)2

2
=
ρ2(v + sn)

2
− ρ3

3β
− β2(v + sn)3

6
.

It follows that

mn(v) = exp

(
ρL+ 2−1/3β2/3γ1(v + sn)− ρ3

3β
− β2(v + sn)3

6

)
. (6.30)

Therefore, using that γ1 < 0 and (v + sn)3 ≥ s3
n, we obtain from (6.29) and (6.30) that

r̃Lx (v)mn(v) ≤ C11(L− x)

v3/2
exp

(
ρx− (L− x)2

2v
− ρ3

3β
− β2s3

n

6

)
.

We now integrate over v and apply Lemma 4.1 to see that if there is one particle at x at
time un, then the expected number of particles alive at time tn whose trajectory crosses
L between times un and tn is bounded above by

C11(L− x) exp

(
ρx− ρ3

3β
− β2s3

n

6

)∫ tn−un

0

v−3/2e−(L−x)2/2v dv

≤ C11

√
2π exp

(
ρx− ρ3

3β
− C3

7

6

)
.
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It follows that

E[Ψ5,n(g)|Fun ] ≤ C11

√
2π‖g‖e−C

3
7/6e−ρ

3/3βYn(un).

By applying (5.8) with the constant function that always takes the value 1 in place of g,
we have

lim
n→∞

P
(
Yn(un) <

1 + η

(Ai′(γ1))2

(∫ ∞
0

Ai(γ1 + z) dz

)
Zn(0)

)
= 1. (6.31)

Therefore, because C7 was chosen to satisfy (6.6),

lim
n→∞

P
(
E[Ψ5,n(g)|Fun ] ≥ C11‖g‖ηZn(0)e−ρ

3/3β

)
= 0. (6.32)

Combining this result with the conditional Markov’s Inequality, we get

lim sup
n→∞

P
(

Ψ5,n(g) > η1/2Zn(0)e−ρ
3/3β

)
≤ C11‖g‖η1/2. (6.33)

We now consider Ψ6,n(g). The upper bound (6.27) on the expectation still holds when
Ψ5,n(g) + Ψ6,n(g) is replaced by Ψ6,n(g). To get a lower bound on the expectation, let

f(η) = (1− 3η)

(
1− η‖g‖

I(g)

)
− (Ai′(γ1))2C11‖g‖η

I(g)

and then combine (6.28) with (6.32) to get

lim
n→∞

P
(
E[Ψ6,n(g)|Fun ] ≥ f(η)

(Ai′(γ1))2
e−ρ

3/3βZn(0)I(g)

)
= 1. (6.34)

We now need to control the fluctuations. By Lemma 2.11,

Var(Ψ6,n(g)|Fun) ≤
∑

i∈G4,n

EXi(un)

[( ∑
j∈S6,n

g
(
Xj,n(t)

√
β/ρ

))2]

.
∑

i∈G4,n

β2/3

ρ4
exp

(
ρXi(un) + ρL− 2ρ3

3β
− β2s3

n

3

)

≤ β2/3

ρ4
exp

(
ρL− 2ρ3

3β

)
Yn(un).

Therefore,

P
(
|Ψ6,n(g)− E[Ψ6,n(g)|Fun ]| > ηe−ρ

3/3βZn(0)
∣∣Fun) . β2/3eρL

η2ρ4
· Yn(un)

Zn(0)2
. (6.35)

It follows from (1.9) and (1.2) that as n→∞,

β2/3eρL

ρ4
· 1

Zn(0)
→p 0. (6.36)

It follows from (6.31) and (6.36) that the right-hand side of (6.35) converges in probability
to zero as n→∞. Combining this observation with (6.27) and (6.34), we get that for all
η > 0,

lim
n→∞

P
(∣∣∣∣Ψ6,n(g)− e−ρ

3/3β

(Ai′(γ1))2
Zn(0)I(g)

∣∣∣∣ > (η +
(1− f(η))I(g)

(Ai′(γ1))2

)
e−ρ

3/3βZn(0)

)
= 1.

(6.37)
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The only term remaining to be considered is Ψ4,n(g), which accounts for particles
that end up outside the interval [−C9

√
ρ/β,C9

√
ρ/β] at time tn. Letting 1 denote the

constant function whose value is always equal to one, we have by (6.17),

E[Ψ4,n(1) + Ψ5,n(1) + Ψ6,n(1)|Fun ] = exp

(
− ρ3

3β
+
ρ2sn

2
− β2s3

n

6

) ∑
i∈G4,n

e(ρ−βsn)Xi,n(un).

Also, using (6.25), if Z has a standard normal distribution, then

E[Ψ5,n(1) + Ψ6,n(1)|Fun ]

= (1 + θn) exp

(
ρ2sn

2
− ρ3

3β
− β2s3

n

6

)( ∑
i∈G4,n

e(ρ−βsn)Xi,n(un)

)
(1− P (|Z| > C9)).

Combining these two results and using (6.13) gives

E[Ψ4,n(g)|Fun ] ≤ ‖g‖E[Ψ4,n(1)|Fun ]

= ‖g‖
(
E[Ψ4,n(1) + Ψ5,n(1) + Ψ6,n(1)|Fun ]− E[Ψ5,n(1) + Ψ6,n(1)|Fun ]

)
≤ ‖g‖(|θn|+ η) exp

(
ρ2sn

2
− ρ3

3β
− β2s3

n

6

)( ∑
i∈G4,n

e(ρ−βsn)Xi,n(un)

)
.

Using the upper bound in (6.26), and the fact that θn → 0 uniformly as n→∞, it follows

lim
n→∞

P
(
E[Ψ4,n(g)|Fun ] ≤ ‖g‖(2η)(1 + 2η)

(Ai′(γ1))2
e−ρ

3/3βZn(0)

)
= 1.

Therefore, by the conditional Markov’s Inequality,

lim sup
n→∞

P
(

Ψ4,n(g) > η1/2Zn(0)e−ρ
3/3β

)
≤ ‖g‖(2η

1/2)(1 + 2η)

(Ai′(γ1))2
. (6.38)

Because η > 0 was arbitrary, we can now obtain (6.12) from (6.15), (6.20), (6.24),
(6.33), (6.37), and (6.38). The proposition follows.

7 Proof of Proposition 2.3

To prove Proposition 2.3, we essentially show that Yn(tn) and Zn(tn) remain of
the order β1/3ρ−3eρL after the process has evolved for a time that is of the order
ρ/β. For the upper bounds, only truncated first moment estimates, in combination
with Markov’s inequality, are needed. However, killing particles when they hit L is not
sufficient because doing so would kill some particles whose descendants would otherwise
contribute significantly to the process at time tn. Therefore, we instead have to kill
particles when they hit LA for A < 0, and then move the barrier further away as time
increases—that is, make A more negative as a function of time—thereby reducing the
number of particles that hit the wall.

Obtaining a lower bound on Zn(tn) requires second moment estimates. To obtain
adequate second moment estimates, the value of A needs to be chosen so that the wall at
LA moves closer to the origin at regular intervals. An alternative to this approach would
be to follow the techniques in [5, 29], which would likely yield the stronger result that
(Zn(t), t ≥ 0) converges to a continuous-state branching process. However, the simpler
arguments given here are sufficient for our purposes.
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7.1 Upper bounds on contributions of particles remaining below LA

Recall that ai,n(s, t) is the position of the ancestor at time s of the ith particle at time
t, and

zn,A(x) = eρxAi((2β)1/3(LA − x) + γ1)1{x<LA}.

For A < 0, define

Y ∗n,A(t) =

Nn(t)∑
i=1

eρXi,n(t)1{ai,n(s,t)<LA ∀s≤t} (7.1)

and

Z∗n,A(t) =

Nn(t)∑
i=1

zn,A(Xi,n(t))1{ai,n(s,t)<LA ∀s≤t} (7.2)

so that Y ∗n,A(t) and Z∗n,A(t) only count particles that have remained below the level LA
for all times s ≤ t. Before we introduce our moving barrier, a large part of our upper
bound follows relatively easily from estimates on Y ∗n,A(tn) and Z∗n,A(tn) for fixed A < 0.

The following fact about the Airy function will help us to compare the values of zn,A(x)

for different values of A.

Lemma 7.1. If x > 0 and 1/2 < r < 1, then Ai(x+ γ1) ≤ 2Ai(rx+ γ1).

Proof. We consider three cases. First, suppose 0 < x ≤ −γ1. Because Ai(x) > 0 for all
x > γ1 and the Airy function solves the differential equation Ai′′(z) = zAi(z), the second
derivative Ai′′(z) is negative for all z ∈ (γ1, 0). Therefore, since r < 1, the average value
of the derivative of the Airy function between γ1 and γ1 + x is less than the average
value of the derivative of the Airy function between γ1 and γ1 + rx. The conclusion of the
lemma follows from this observation because r ≥ 1/2.

Next, let a′1 < 0 be the largest zero of the derivative of the Airy function, which is
also the point at which the Airy function attains its maximum. Suppose x > −γ1 but
rx < a′1 − γ1. Then, we can apply the result from the previous case with a′1 − γ1 in place
of x to see that Ai(x+ γ1) ≤ Ai(a′1) ≤ 2Ai(rx+ γ1).

Finally, suppose rx ≥ a′1 − γ1. Because the Airy function is decreasing on (a′1,∞), we
have Ai(x+ γ1) ≤ Ai(rx+ γ1), which implies the conclusion of the lemma.

We now check that, at time 0, the value of Zn,A(0), or equivalently Z∗n,A(0), cannot be
much larger than that of Zn(0).

Lemma 7.2. Fix ε > 0, and suppose that (1.9) and (1.10) hold. Let A < 0, and define

Gn =

{
Zn,A(0) ≤ 3

δ
· β

1/3eρL

ρ3

}
∩
{
Yn(0) ≤ 1

ρ2
eρL
}
.

Then P(Gn) > 1− 3ε for sufficiently large n.

Proof. Since (1.10) holds, it suffices to show that for large n,

P
(
Zn,A(0) ≤ 3

δ
· β

1/3

ρ3
eρL
)
> 1− 2ε.

If x ≥ L+A/ρ, which implies that LA − x ≤ 2|A|/ρ, then

zn,A(x) = eρxAi((2β)1/3(LA − x) + γ1)1{x<LA} . eρx · (2β)1/3(LA − x) .
β1/3|A|eρx

ρ
.

It follows that
Nn(0)∑
i=1

zn,A(Xi,n(0))1{Xi,n(0)≥L+A/ρ} .
β1/3|A|Yn(0)

ρ
. (7.3)
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In view of (1.10), it follows that for sufficiently large n,

P
(Nn(0)∑

i=1

zn,A(Xi,n(0))1{Xi,n(0)≥L+A/ρ} <
1

δ
· β

1/3

ρ3
eρL
)
> 1− ε. (7.4)

Suppose that x < L+ A/ρ. Then 1
2 (LA − x) < L− x < LA − x. Therefore, zn,A(x) ≤

2zn,0(x) by Lemma 7.1. It follows from (1.9) that for sufficiently large n,

P
(Nn(0)∑

i=1

zn,A(Xi,n(0))1{Xi,n(0)<L+A/ρ} ≤
2

δ
· β

1/3

ρ3
eρL
)
> 1− ε. (7.5)

The result follows from (7.4) and (7.5).

Lemma 7.2 tells us that we may restrict our attention to the case in which the initial
configuration of particles is such that Gn occurs.

Lemma 7.3. If t� β−2/3, then

E[Y ∗n,A(t)|F0] . Zn,A(0)e−βAt/ρ + Yn(0)e−β
2t3/73.

Proof. Recall that HA(t) = LA − βt2/9, and that ai,n(s, t) is the position of the ancestor
at time s of the ith particle at time t. We divide into three subsets the particles i that are
below LA at time t:

S1,n = {i : ai,n(0, t) ≤ HA(t)},
S2,n = {i /∈ S1,n : Xi,n(t) ≤ HA(t)},
S3,n = {i /∈ S1,n ∪ S2,n}.

For j ∈ {1, 2, 3}, let

Y ∗n,A,j(t) =

N(t)∑
i=1

eρXi,n(t)1{ai,n(s,t)<LA ∀s≤t}1{i∈Sj,n}.

It follows from (5.3) that

E[Y ∗n,A,1(t)|F0]� Yn(0)e−β
2t3/73. (7.6)

Likewise, it follows from (5.4) that

E[Y ∗n,A,2(t)|F0]� Yn(0)e−β
2t3/73. (7.7)

Finally, noting that HA(t) was chosen so that (2.24) holds when HA(t) < x < LA and
HA(t) < y < LA, equation (2.21) implies that for sufficiently large n,

E[Y ∗n,A,3(t)|F0] ≤ (2β)1/3

(Ai′(γ1))2
e−βAt/ρ

(∫ LA

−∞
eρy · e−ρyα(LA − y) dy

)
Zn,A(0)(1 + o(1))

=
e−βAt/ρ

(Ai′(γ1))2

(∫ ∞
0

Ai(z + γ1) dz

)
Zn,A(0)(1 + o(1))

. e−βAt/ρZn,A(0). (7.8)

Now the result follows from (7.6), (7.7), and (7.8).

Corollary 7.4. Fix ε > 0 and A < 0. There exists η > 0, depending on A, such that if
β−2/3 log(β1/3/ρ)1/3 � t ≤ ρ/εβ, then on the event Gn,

P
(
Y ∗n,A(t) >

1

η
· β

1/3

ρ3
eρL
∣∣∣F0

)
< ε.
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Proof. Note that on the event Gn, by Lemma 7.3,

E[Y ∗n,A(t)|F0] .
3

δ
· β

1/3eρL

ρ3
e−βAt/ρ +

eρL

ρ2
e−β

2t3/73 .
β1/3eρL

ρ3
e−A/ε.

By the conditional Markov inequality, on Gn,

P
(
Y ∗n,A(t) >

1

η
· β

1/3

ρ3
eρL
∣∣∣F0

)
.
β1/3eρLe−A/ε

ρ3
· ηρ3

β1/3eρL
= ηe−A/ε,

and the right-hand side can be made smaller than ε by choosing η small.

7.2 A moving barrier

To prove the upper bounds in Proposition 2.3, we need to upgrade the result on Y ∗ in
Corollary 7.4 to results about Y and Z. To do so, we need to bound how many particles
go above LA. As mentioned earlier, a fixed barrier does not give us accurate enough
bounds, so we now define a moving barrier. For A ∈ R and s ≥ 0, let

ΛA(s) = LA −
2A

ρ

(
exp

(2β

ρ
s
)
− 1
)

and ∆A(s) = ΛA(s)− LA.

Throughout this argument we will take A < 0, and therefore ∆A and all its derivatives
are non-negative. We would like to study the process when particles are killed as soon as
they hit the curve (ΛA(s))s≥0. Let r̂Ax (u, v) be the expected number of particles that hit
the curve between times u and v in this modified process, when starting from a single
particle at x.

Lemma 7.5. Suppose that A < 0. Then for any t ≥ 0 and x ≤ LA,

r̂Ax (0, t) ≤ e2Aβt/ρrLAx (0, t)− 2Aβ

ρ

∫ t

0

e2Aβs/ρrLAx (0, s)ds.

Proof. Recall that (Bt)t≥0 is a one-dimensional Brownian motion started at x under Px,
and TK = inf{t ≥ 0 : Bt ≥ K}. Let (Gt)t≥0 be the natural filtration for this Brownian
motion. Define

T ∗ = inf{t > 0 : Bt > ΛA(t)}.

Then by the many-to-one lemma, reasoning as in (2.28), we have

r̂Ax (u, v) = Ex
[
eρx−ρΛA(T∗)−ρ2T∗/2+

∫ T∗
0

βBsds1{u<T∗≤v}
]
. (7.9)

Define a new probability measure Qx by setting

dQx

dPx

∣∣∣∣
Gt

= exp
(∫ t

0

∆′A(s)dBs −
1

2

∫ t

0

∆′A(s)2ds
)

= exp
(

∆′A(t)Bt −∆′A(0)x−
∫ t

0

∆′′A(s)Bsds−
1

2

∫ t

0

∆′A(s)2ds
)

(7.10)

where the second expression follows from the first by (stochastic) integration by parts.
Combining (7.9) and (7.10) tells us that r̂Ax (u, v) equals

Qx

[
eρx−ρΛA(T∗)−ρ2T∗/2−∆′A(T∗)ΛA(T∗)+∆′A(0)x

· e
∫ T∗
0

∆′′A(s)Bsds+
1
2

∫ T∗
0

∆′A(s)2ds+
∫ T∗
0

βBsds1{u<T∗≤v}
]
.
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Note that since Bs ≤ ΛA(s) for all s ≤ T ∗ and ∆′A(s) = Λ′A(s) for all s, by the standard
integration by parts formula,∫ T∗

0

∆′′A(s)Bsds ≤
∫ T∗

0

∆′′A(s)ΛA(s)ds = ∆′A(T ∗)ΛA(T ∗)−∆′A(0)LA −
∫ T∗

0

∆′A(s)2ds,

and so, since x ≤ LA and ∆′A(0) ≥ 0,

r̂Ax (u, v) ≤ Qx

[
eρx−ρΛA(T∗)−ρ2T∗/2+∆′A(0)(x−LA)− 1

2

∫ T∗
0

∆′A(s)2ds+
∫ T∗
0

βBsds1{u<T∗≤v}
]

≤ Qx

[
eρx−ρΛA(T∗)−ρ2T∗/2+

∫ T∗
0

βBsds1{u<T∗≤v}
]
.

Under Qx, the process (Bt − ∆A(t))t≥0 is a Brownian motion started from x, so from
above,

r̂Ax (u, v) ≤ Px
[
eρx−ρΛA(TLA )−ρ2TLA/2+

∫ TLA
0 β(Bs+∆A(s))ds1{u<TLA≤v}

]
= Px

[
e−ρ∆A(TLA )+

∫ TLA
0 β∆A(s)ds · eρx−ρLA−ρ

2TLA/2+
∫ TLA
0 βBsds1{u<TLA≤v}

]
.

We now note that for any time t ≥ 0,

−ρ∆A(t) +

∫ t

0

β∆A(s)ds = A(e2βt/ρ − 1) + 2Aβt/ρ ≤ 2Aβt/ρ,

so

r̂Ax (u, v) ≤ Px
[
e2AβTLA/ρ · eρx−ρLA−ρ

2TLA/2+
∫ TLA
0 βBsds1{u<TLA≤v}

]
≤ e2Aβu/ρrLAx (u, v).

Recalling that r̃LAx (t) is the derivative of rLAx (0, t) with respect to t, we have

d

dt
r̂Ax (0, t) ≤ e2Aβt/ρr̃LAx (t),

and integrating by parts completes the proof of the lemma.

7.3 Proof of the upper bounds in Proposition 2.3

Lemma 7.6. Fix ε > 0 and suppose that (1.9) and (1.10) hold and that t ≤ ρ/εβ. Recall
the definition of ∆ from (1.4), and let C1 be the constant from Lemma 2.14. Then there
exists a negative real number A′, depending on δ, ε, and ∆, such that if A ≤ A′, then the
probability, conditional on Gn, that some particle hits the barrier ΛA(s) at some time
s ≤ t and has descendants that survive for an additional time 2C1ρ

−2 is bounded above
by ε for large n.

Proof. First consider a fixed barrier at LA, and let Rt be the number of particles killed
at this barrier before time t ≥ 0. From Lemma 2.13,

E[Rt|F0] . e−ρLAYn(0) + tβ2/3e−ρLA−βAt/ρZn,A(0).

Now let R∗t be the number of particles that are killed at the moving barrier ΛA(s) for
some s ≤ t. By Lemma 7.5 and the bound above, we have

E[R∗t |F0] . e2Aβt/ρ−ρLAYn(0) + tβ2/3e(−A+2A)βt/ρ−ρLAZn,A(0)

− 2Aβ

ρ

∫ t

0

e2Aβs/ρ−ρLAYn(0)ds− 2Aβ

ρ

∫ t

0

sβ2/3e(−A+2A)βs/ρ−ρLAZn,A(0)ds

= e−ρLAYn(0) +

(
2ρ

Aβ1/3
(eAβt/ρ − 1)− tβ2/3eAβt/ρ

)
e−ρLAZn,A(0).
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Without loss of generality we may assume that ε ≤ 1. Since A < 0, it follows that

E[R∗t |F0] . e−ρLAYn(0) +
ρ

εβ1/3|A|
e−ρLAZn,A(0).

Recall that

Gn =

{
Zn,A(0) ≤ 3

δ
· β

1/3eρL

ρ3

}
∩
{
Yn(0) ≤ 1

ρ2
eρL
}
,

so on Gn,

E[R∗t |F0] . e−ρLA
1

ρ2
eρL +

ρ

εβ1/3|A|
e−ρLA

3

δ
· β

1/3eρL

ρ3
=
eA

ρ2
+

3eA

δερ2|A|
.

It follows that A′ can be chosen so that if A ≤ A′, then E[R∗t |F0] ≤ ε∆/2ρ2. Because
t ≤ ρ/εβ, for sufficiently large n we have ρ2/2 ≤ βΛA(s) ≤ ρ2 for all s ≤ t. From Lemma
2.14, it follows that conditional on Gn, the probability that some particle reaches the
boundary before an arbitrary time t and has descendants that survive for an additional
time 2C1ρ

−2 is bounded above by a constant multiple of ε, which is sufficient to imply
the result because ε > 0 was arbitrary.

We now have the ingredients to complete the proof of the upper bound Proposition
2.3, in the form of the following lemma. Note in particular that, in view of (1.2), the
result (7.11) is stronger than the required conclusion that ρ−2e−ρLYn(tn)→p 0.

Lemma 7.7. Fix ε > 0 and suppose that (1.9) and (1.10) hold, and that the sequence of
times tn satisfy βtn/ρ→ τ ∈ (0,∞). Then there exists η > 0 such that

P
(
Yn(tn) ≤ 1

η
· β

1/3

ρ3
eρL
)
> 1− 6ε (7.11)

and

P
(
Zn(tn) ≤ 1

η
· β

1/3

ρ3
eρL
)
> 1− 6ε. (7.12)

Proof. Choose A′ as in Lemma 7.6, and fix A ≤ A′. Fix A∗ such that for all large n,

A∗ ≤ A+ 2A
(

exp
(2β

ρ

(
tn −

2C1

ρ2

))
− 1
)

so that

LA∗ ≥ ΛA(tn − 2C1/ρ
2).

Recall that, by Corollary 7.4, there exists η > 0 such that on Gn,

P
(
Y ∗n,A∗(tn) >

1

η

β1/3

ρ3
eρL
∣∣∣F0

)
< ε.

We therefore need to consider those particles that contribute to Yn(tn)− Y ∗n,A∗(tn); such
particles must be above level LA∗ at some time before tn.

Note that ΛA(s) ≤ LA∗ for all s ≤ tn − 2C1/ρ
2. Therefore in order to contribute to

Yn(tn)− Y ∗n,A∗(tn), a particle must do one of the following:

(a) start above LA and survive until time tn;

(b) hit ΛA(s) for some s ≤ tn−2C1/ρ
2 and then survive for an additional time of 2C1/ρ

2;

(c) hit LA∗ between times tn − 2C1/ρ
2 and tn.
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By Lemma 5.1, the probability that any particle does (a) tends to 0 as n → ∞.
Lemma 7.6 tells us that on Gn, the probability that any particle does (b) is bounded
above by ε. It therefore remains to consider case (c). Let R′ be the number of particles
that hit LA∗ between times tn − 2C1/ρ

2 and tn. Then on Gn, by Lemma 2.13,

E[R′|F0] . e−ρLA∗−τ
3ρ/10β · 1

ρ2
eρL +

1

ρ2
e−ρLA∗β2/3e|A

∗|τ · β
1/3

ρ3
eρL.

We have τ � 1 and A∗ does not depend on n. Also, by (1.2) we have e−τ
3ρ/10β � β1/3/ρ

and β/ρ5 � β1/3/ρ3. Therefore

E[R′|F0]� β1/3

ρ3
eρL−ρLA∗ .

By Lemma 4.3, the expected contribution from each of these particles to Yn(tn) is at most
eρLA∗ . Therefore, letting Y ′ denote the total contribution to Yn(tn) from these particles,
we have

E[Y ′|F0]� β1/3

ρ3
eρL.

The conditional Markov’s inequality implies that for large n, on Gn,

P
(
Yn(tn)− Y ∗n,A∗(tn) >

β1/3

ρ3
eρL
∣∣∣F0

)
≤ 2ε+ P

(
Y ′ >

β1/3

ρ3
eρL
∣∣∣F0

)
< 3ε.

Since P(Gn) > 1 − 3ε for large n by Lemma 7.2, this completes the proof for Yn(tn).
Because |Ai(x)| ≤ 1 for all x (see table 9.9.1 in [32]), the result for Zn(tn) follows
immediately.

7.4 Proof of the lower bound in Proposition 2.3

To prove Proposition 2.3, it remains to establish the lower bound for Zn(tn). This
requires using a second moment argument to control the fluctuations. To do this, we will
construct another modification of the original process. We would essentially like to use
the moving barrier from Section 7.2, with A chosen positive so that the barrier moves
closer to the origin as time increases. However, our second moment bound Lemma
2.10 holds only for a fixed barrier at LA. Developing the required second moment
bounds for the moving barrier would require substantial extra work, and it is much more
convenient to instead mimic the moving barrier with a series of fixed barriers that move
progressively closer to 0.

Fix ε > 0 and choose δ > 0 such that (1.9) holds. Suppose that βtn/ρ → τ ∈ (0,∞).
Let C12 be a positive constant chosen so that (2.27) is a strict inequality for all n if the
right-hand side is multiplied by C12. Fix a positive number A large enough that 1/A < τ

and
288e4C12e

−A((4e2)τ(1+ε) − 1)

δ log(4e2)
< ε. (7.13)

Let A0 = A, and let Ak = A+ k log(4e2) for positive integers k. Choose Jn ∈ N and times

0 = u0 < u1 < · · · < uJn = tn

such that
ρ

βAk
≤ uk+1 − uk ≤

2ρ

βAk
(7.14)

for all k ∈ {0, 1, . . . , Jn−1}, which is possible for sufficiently large n because 1/A < τ .
Note that

uk ≥
ρ

β

k−1∑
j=0

1

A+ j log(4e2)
≥ ρ

β

∫ k

0

1

A+ x log(4e2)
dx =

ρ

β log(4e2)
log
(

1 +
k log(4e2)

A

)
.
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Since uJn = tn ∼ ρτ/β, it follows that for large n,

ρτ(1 + ε)

β
>

ρ

β log(4e2)
log
(

1 +
Jn log(4e2)

A

)
,

and therefore

Jn ≤
A((4e2)τ(1+ε) − 1)

log(4e2)
. (7.15)

Choose positive numbers C13 and C14 such that 0 < C13 < C14 <∞ and∫ 21/3C14

21/3C13

Ai(z + γ1)2 dz >
(Ai′(γ1))2

2
, (7.16)

which is possible by (2.19) with j = k = 1. Recalling (2.25), we consider a modified
process in which particles are killed at time 0 unless they lie in the interval

I0 =
(
KA(u1), LA

)
. (7.17)

For k ∈ {0, 1, . . . , Jn − 1}, particles are killed if they reach LAk between times uk and
uk+1, and then particles are also killed at time uk+1 unless they are in the interval

Ik+1 =
[
LAk − C14β

−1/3, LAk − C13β
−1/3

]
. (7.18)

Letting G′i(t) be the event that the ith particle at time t in the original process has not
been killed by time t in this modification, we define

Z ′n,A(t) =

Nn(t)∑
i=1

eρXi,n(t)Ai((2β)1/3(LA −Xi,n(t)) + γ1)1{Xi,n(t)<LA}1G′i(t).

Lemma 7.8. Fix ε > 0 and suppose that (1.9) and (1.10) hold. Then for sufficiently large
n,

P
(
Z ′n,A(0) ≥ δ

4
· β

1/3

ρ3
eρL
)
> 1− 3ε.

Proof. If x ≥ L− 2A/ρ, then L− x ≤ 2A/ρ and therefore

zn,0(x) = eρxAi((2β)1/3(L− x) + γ1) .
Aβ1/3eρx

ρ
.

Thus
Nn(0)∑
i=1

zn,0(Xi,n(0))1{Xi,n(0)≥L−2A/ρ} .
Aβ1/3Yn(0)

ρ
.

In view of (1.10), it follows for sufficiently large n that

P
(Nn(0)∑

i=1

zn,0(Xi,n(0))1{Xi,n(0)≥L−2A/ρ} <
δ

4
· β

1/3

ρ3
eρL
)
> 1− ε.

Likewise, by the reasoning that led to (5.15),

P
(Nn(0)∑

i=1

zn,0(Xi,n(0))1{Xi,n(0)≤KA(u1)} <
δ

4
· β

1/3

ρ3
eρL
)
> 1− ε.
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Therefore, in view of (1.9),

P
(Nn(0)∑

i=1

zn,0(Xi,n(0))1G′i(0)1{Xi,n(0)<L−2A/ρ} >
δ

2
· β

1/3

ρ3
eρL
)
> 1− 3ε. (7.19)

Now suppose x < L− 2A/ρ. Then 1
2 (L− x) ≤ LA − x ≤ L− x. Therefore, by Lemma

7.1, we have zn,0(x) ≤ 2zn,A(x). In view of (7.19), it follows that

P
(Nn(0)∑

i=1

zA,n(Xi,n(0))1G′i(0)1{Xi,n(0)<L−2A/ρ} >
δ

4
· β

1/3

ρ3
eρL
)
> 1− 3ε,

which implies the result.

Lemma 7.9 below gives the lower bound on Zn(tn) that is needed to complete the
proof of Proposition 2.3. In particular, Proposition 2.3 follows directly from Lemmas 7.7
and 7.9.

Lemma 7.9. Fix ε > 0 and suppose that (1.9) and (1.10) hold. Suppose that βtn/ρ →
τ ∈ (0,∞). There exists η > 0 such that for sufficiently large n,

P
(
Zn(tn) ≥ η · β

1/3

ρ3
eρL
)
> 1− 5ε.

Proof. Let J = A((4e2)τ(1+ε) − 1)/ log(4e2) be the right-hand side of (7.15), and let

0 < η <
δ

4(4e2)J
.

For k ∈ {0, 1, . . . , Jn}, let

Gk,n =

{
Z ′n,Ak(uk) ≥ δ

4(4e2)k
· β

1/3

ρ3
eρL
}
.

Lemma 7.8 implies that P(G0,n) > 1− 3ε for sufficiently large n.
For k ∈ {0, 1, . . . , Jn − 1}, we consider the evolution of the process between times uk

and uk+1. Recall that all particles at time uk are in the interval Ik, while particles will
be killed at time uk+1 unless they are in the interval Ik+1. Particles will also be killed if
they reach LAk,n between these two times. Note that these intervals have been chosen
in such a way that if x ∈ Ik and y ∈ Ik+1, then the density

p
LAk
uk+1−uk(x, y)

can be approximated using Lemma 2.5 because the error term in (2.21) tends to zero
uniformly over x ∈ Ik and y ∈ Ik+1 as n→∞. Likewise, Lemma 2.10 can be applied for
second moment calculations because any x ∈ Ik and y ∈ Ik+1 will satisfy the conditions
of Lemma 2.10 if n is large enough.

By Lemma 2.5,

E[Z ′n,Ak(uk+1)|Fuk ] ∼ (2β)1/3e−βAk(uk+1−uk)/ρ

(Ai′(γ1))2
Z ′n,Ak(uk)

∫
Ik+1

α(LAk − y)2 dy.

Making the substitution z = (2β)1/3(LAk − y) and applying (7.16), we have

(2β)1/3

(Ai′(γ1))2

∫
Ik+1

α(LAk − y)2 dy =
1

(Ai′(γ1))2

∫ 21/3C14

21/3C13

Ai(z + γ1)2 dz >
1

2
.
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By (7.14), e−βAk(uk+1−uk)/ρ ≥ e−2. It follows that for sufficiently large n,

E[Z ′n,Ak(uk+1)|Fuk ] ≥ 1

2e2
Z ′n,Ak(uk). (7.20)

Because all particles at time uk and their descendants evolve independently between
times uk and uk+1, it follows from Lemma 2.10 that

Var(Z ′n,Ak(uk+1)|Fuk) ≤ C12β
2/3eρLAk

ρ4

(
Yn(uk) + β2/3(uk+1 − uk)Z ′n,Ak(uk)

)
.

Therefore, by Chebyshev’s Inequality,

P
(∣∣Z ′n,Ak(uk+1)− E

[
Z ′n,Ak(uk+1)|Fuk

]∣∣ > 1

6e2
Z ′n,Ak(uk)

∣∣∣Fuk)
≤

36e4C12β
2/3eρLAk

(
Yn(uk) + β2/3(uk+1 − uk)Z ′n,Ak(uk)

)
ρ4(Z ′n,Ak(uk))2

.

Note that ρ2e−ρLYn(0) →p 0 as n → ∞ from (1.10) and ρ2e−ρLYn(uk) →p 0 as n → ∞
for k ∈ {1, . . . , Jn − 1} by Lemma 7.7, with uk in place of tn. Therefore, for all k ∈
{0, 1, . . . , Jn − 1}, as n→∞,

36e4C12β
2/3eρLAkYn(uk)1Gk,n

ρ4(Z ′n,Ak(uk))2
→p 0.

Using (7.13) and recalling that Ak = A+ k log(4e2), we also have

36e4C12β
2/3eρLAk · β2/3(uk+1 − uk)Z ′n,Ak(uk)1Gk,n

ρ4(Z ′n,Ak(uk))2
≤ 288e4−AC12

δAk
<

ε log(4e2)

Ak((4e2)τ(1+ε) − 1)
.

It follows that

lim sup
n→∞

P
( Jn−1⋃

k=0

{∣∣Z ′n,Ak(uk+1)− E
[
Z ′n,Ak(uk+1)|Fuk

]∣∣ > 1

6e2
Z ′n,Ak(uk)

}
∩Gk,n

)

≤
Jn−1∑
k=0

ε log(4e2)

Ak((4e2)τ(1+ε) − 1)
≤ ε,

where the last inequality is from (7.15). Combining this result with (7.20), we get

lim sup
n→∞

P
( Jn−1⋃

k=0

{
Z ′n,Ak(uk+1) <

1

3e2
Z ′n,Ak(uk)

}
∩Gk,n

)
≤ ε. (7.21)

For all k ∈ {1, . . . , Jn} and all positive real numbers a1 and a2, we have

lim
n→∞

inf
y∈Ik

zn,a1(y)

zn,a2(y)
= lim
n→∞

sup
y∈Ik

zn,a1(y)

zn,a2(y)
= 1. (7.22)

It follows from (7.21) and (7.22) that

lim sup
n→∞

P
( Jn−1⋃

k=0

{
Z ′n,Ak+1

(uk+1) <
1

4e2
Z ′n,Ak(uk)

}
∩Gk,n

)
≤ ε.

Therefore, by the definition of the events Gk,n, and using that P(G0,n) > 1 − 3ε for
sufficiently large n, we have

lim inf
n→∞

P(GJn,n) ≥ lim inf
n→∞

P
( Jn⋂
k=0

Gk,n

)
≥ 1− 4ε.
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That is,

lim inf
n→∞

P
(
Zn,AJn (uJn) ≥ δ

4(4e2)J
· β

1/3

ρ3
eρL
)
≥ 1− 4ε.

The result now follows from another application of (7.22).

8 Second moment calculations

8.1 Some integral estimates

Lemma 8.1. Take k ∈ N, ρ > 0, and t > 0. If a ≥ ρt/2, then∫ ∞
0

xke−(x−a)2/t−ρxdx � t1/2
(
(a− ρt/2)k + tk/2

)
eρ

2t/4−aρ, (8.1)

and if a < ρt/2, then∫ ∞
0

xke−(x−a)2/t−ρxdx � tk+1

(ρt/2− a)k+1 + t(k+1)/2
e−a

2/t. (8.2)

Proof. Note that∫ ∞
0

xke−(x−a)2/t−ρxdx = eρ
2t/4−aρ

∫ ∞
0

xke−(x−a+ρt/2)2/tdx,

so it suffices to show that for b ≥ 0,∫ ∞
0

yke−(y−b)2/tdy � t1/2(tk/2 + bk)

and ∫ ∞
0

yke−(y+b)2/tdy � tk+1

bk+1 + t(k+1)/2
e−b

2/t.

For the former,∫ ∞
0

yke−(y−b)2/tdy =

∫ ∞
−b

(y + b)ke−y
2/tdy

=

∫ ∞
0

(y + b)ke−y
2/tdy +

∫ 0

−b
(y + b)ke−y

2/tdy

�
∫ ∞

0

(y + b)ke−y
2/tdy

�
∫ ∞

0

yke−y
2/tdy + bk

∫ ∞
0

e−y
2/tdy

� t(1+k)/2 + bkt1/2,

as required. For the latter,∫ ∞
0

yke−(y+b)2/tdy = t(k+1)/2

∫ ∞
0

xke−(x+bt−1/2)2dx

so it suffices to show that for γ ≥ 0,∫ ∞
0

xke−(x+γ)2dx � 1

γk+1 + 1
e−γ

2

.

This clearly holds when γ ∈ [0, 1], so we may assume that γ > 1. We have∫ ∞
0

xke−(x+γ)2dx = e−γ
2

∫ ∞
0

xke−x
2−2γxdx
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which is bounded above by

e−γ
2

∫ ∞
0

xke−2γxdx � 1

γk+1
e−γ

2

and below, using the assumption that γ > 1, by

e−γ
2

∫ 1/γ

1/2γ

xke−x
2−2γxdx � 1

γk+1
e−γ

2

.

The result follows.

Lemma 8.2. For any fixed k ≥ 0, we have, for all a ≥ 0 and λ > 0,∫ ∞
a

xke−λx dx . e−λa
(

1

λk+1
+
ak

λ

)
. (8.3)

If 0 ≤ k ≤ 1, then for all a ≥ 0 and λ > 0, we have∫ ∞
a

xke−λx
2

dx . e−λa
2

· a
k−1

λ
. (8.4)

Proof. Making the substitution y = x− a, we have∫ ∞
a

xke−λx dx =

∫ ∞
0

(y+a)ke−λ(y+a) dy . e−λa
∫ ∞

0

(yk+ak)e−λy dy . e−λa
(

1

λk+1
+
ak

λ

)
,

which gives (8.3). Making the substitution y = x2, we have∫ ∞
a

xke−λx
2

dx =
1

2

∫ ∞
a2

y(k−1)/2e−λy dy.

The bound y(k−1)/2 ≤ ak−1 leads to (8.4).

Lemma 8.3. For any fixed k > 0, we have∫ LA

−∞
[α(LA − y)]k dy � β−1/3 (8.5)

Proof. Recalling (2.2), making the substitution z = (2β)1/3(LA − y), and then using (3.1)
and the continuity of the Airy function, we get∫ LA

−∞
[α(LA − y)]k dy = (2β)−1/3

∫ ∞
0

[Ai(z + γ1)]k dz � β−1/3,

as claimed.

8.2 Proof of Lemma 2.10

Recall that

Vϕ,n,A(t) =

Nn(t)∑
i=1

eρXi,n(t)ϕ(Xi,n(t))1{Xi,n(t)<LA}.

Standard second moment calculations, which go back to early work on branching Markov
processes by Ikeda, Nagasawa, and Watanabe (see p. 146 of [25]) give

Ex[Vϕ,n,A(t)2] =

∫ LA

−∞
e2ρyϕ(y)2pLAt (x, y) dy

+ 2

∫ t

0

∫ LA

−∞
pLAs (x, z)bn(z)

(∫ LA

−∞
eρyϕ(y)pLAt−s(z, y) dy

)2

dz ds.
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For z ≤ LA, the birth rate bn(z) is bounded by (1.4). Using also that ϕ is bounded and
equals zero except on [KA(t), LA], we have

Ex[Vϕ,n,A(t)2] .
∫ LA

KA(t)

e2ρypLAt (x, y)dy+

∫ t

0

∫ LA

−∞
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y)dy

)2

dzds.

(8.6)
We now split the last term into six parts. We define

b = min{8β−2/3, t/2}

and note that we may, and will, assume that ρ−2 ≤ t/2 because of (1.2) and the assump-
tion that t & β−2/3. Recall from (2.25) that l(t) = βt2/33 and KA(t) = LA − l(t)/2. We
write

I :=

∫ ρ−2

0

∫ LA

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds,

II :=

∫ b

ρ−2

∫ LA

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds,

III :=

∫ t/2

b

∫ LA

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds,

IV :=

∫ t−b

t/2

∫ LA

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds,

V :=

∫ t

t−b

∫ LA

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds,

VI :=

∫ t

0

∫ LA−l(t)

−∞
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds.

The next seven lemmas, which bound these six terms as well as the first term on the
right-hand side of (8.6), will imply Lemma 2.10.

Lemma 8.4. Under the assumptions of Lemma 2.10, we have∫ LA

KA(t)

e2ρypLAt (x, y) dy � β4/3

ρ4
eρLAtzA(x).

Proof. When KA(t) < x < LA and KA(t) < y < LA, equation (2.22) holds because
β−2/3 . t. Therefore, by Lemma 2.5 and (3.6),∫ LA

KA(t)

e2ρypLAt (x, y) dy . β1/3zA(x)

∫ LA

KA(t)

eρyα(LA − y) dy

= β1/3zA(x)eρLA
∫ LA−KA(t)

0

e−ρyα(y) dy

. β1/3zA(x)eρLA
∫ ∞

0

e−ρy · β1/3y dy

.
β2/3

ρ2
eρLAzA(x),

which implies the lemma because ρ−2β2/3t → ∞ by (1.3) and the assumption that
t & β−2/3.
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Lemma 8.5. Under the assumptions of Lemma 2.10, we have

I .
β2/3

ρ4
eρxeρLA .

Proof. We use Lemma 2.6 to bound pLAs (x, z) and Lemma 2.5 to bound pLAt−s(z, y). If
z ≥ LA − l(t), y ≥ KA(t) = LA − l(t)/2, and s ≤ t/2, then

(LA − z)1/2 + (LA − y)1/2 ≤ 2l(t)1/2 =
2√
33
β1/2t ≤ 4√

33
β1/2(t− s).

Therefore, using that β−2/3 . t, the expression

(2β)1/6[(LA − z)1/2 + (LA − y)1/2]− 2−1/3β2/3(t− s)

is bounded above by a negative constant, so we can apply (2.23). We get

I .
∫ ρ−2

0

∫ LA

LA−l(t)

1√
s

exp
(
ρx− ρz − (z − x)2

2s
− ρ2s

2
+ βLAs

)
×
(∫ LA

KA(t)

β1/3e−βA(t−s)/ρeρzα(LA − z)α(LA − y) dy

)2

dz ds.

Note that βLAs and ρ2s/2 are both bounded above by constants. Using also that A ≥ 0,
we get

I . β2/3eρx
∫ ρ−2

0

∫ LA

LA−l(t)

1√
s
eρze−(z−x)2/2sα(LA − z)2

(∫ LA

KA(t)

α(LA − y) dy

)2

dz ds.

Now applying Lemma 8.3 with k = 1 gives

I . eρx
∫ ρ−2

0

∫ LA

LA−l(t)

1√
s
eρze−(z−x)2/2sα(LA − z)2 dz ds.

Next, we reverse the roles of z and LA − z and use that α(z) . β1/3z by (3.5) and (3.6)
to get

I . β2/3eρxeρLA
∫ ρ−2

0

1√
s

∫ ∞
0

z2e−ρze−(z−(LA−x))2/2s dz ds. (8.7)

To evaluate the inner integral, we apply Lemma 8.1 with k = 2, t = 2s, and a = LA−x.
We now split the argument into two cases depending on the value of x. First, suppose
LA − x ≥ ρ−1. Then, because s ≤ ρ−2, we have LA − x ≥ ρs, so we can apply (8.1).
Noting also that in this case we have (LA − x)2 ≥ ρ−2 ≥ s, we have∫ ∞

0

z2e−ρze−(z−(LA−x))2/2s dz � s1/2
(
(LA − x− ρs)2 + s

)
eρ

2s/2−ρ(LA−x)

. s1/2(LA − x)2e−ρ(LA−x)

and therefore∫ ρ−2

0

1√
s

∫ ∞
0

z2e−ρze−(z−(LA−x))2/2s dz ds .
1

ρ4
· ρ2(LA − x)2e−ρ(LA−x) .

1

ρ4
. (8.8)
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Next, suppose instead that LA−x < ρ−1. This time, we must use (8.1) when s ≤ (LA−x)/ρ

and (8.2) when s > (LA − x)/ρ to get

∫ ρ−2

0

1√
s

∫ ∞
0

z2e−ρze−(z−(LA−x))2/2s dz ds

�
∫ (LA−x)/ρ

0

(
(LA − x− ρs)2 + s

)
eρ

2s/2−ρ(LA−x) ds

+

∫ ρ−2

(LA−x)/ρ

s5/2e−(LA−x)2/2s

(ρs− (LA − x))3 + s3/2
ds

.
∫ (LA−x)/ρ

0

(
(LA − x)2 + s

)
ds+

∫ ρ−2

(LA−x)/ρ

s ds

.
(LA − x)3

ρ
+

(LA − x)2

ρ2
+

1

ρ4

� 1

ρ4
. (8.9)

The result follows from (8.7), (8.8), and (8.9).

Lemma 8.6. Under the assumptions of Lemma 2.10, we have

II .
β2/3

ρ4
eρxeρLA . (8.10)

Proof. We use Lemma 2.7 to bound pLAs (x, z) and Lemma 2.5 to bound pLAt−s(z, y). Recall
from the proof of Lemma 8.5 that when z ≥ LA − l(t), y ≥ KA(t), and s ≤ t/2, we can
apply (2.23) to get

II .
∫ b

ρ−2

∫ LA

LA−l(t)

(LA − x)(LA − z)
s3/2

exp

(
ρx− ρz − (z − x)2

2s
− ρ2s

2
+ βLAs

)
×
(∫ LA

KA(t)

β1/3e−βA(t−s)/ρeρzα(LA − z)α(LA − y) dy

)2

dz ds.

It follows from (2.1) that when s ≤ 8β−2/3, the quantity βLAs− ρ2s/2 is bounded above
by a positive constant. Using also that A ≥ 0, we get

II . β2/3eρx(LA − x)

∫ b

ρ−2

1

s3/2

∫ LA

LA−l(t)
eρz−(z−x)2/2s

× (LA − z)α(LA − z)2

(∫ LA

KA(t)

α(LA − y) dy

)2

dz ds.

Next, we apply Lemma 8.3 with k = 1, interchange the roles of z and LA − z, and use
that α(z) . β1/3z to get

II . β2/3eρxeρLA(LA − x)

∫ b

ρ−2

1

s3/2

∫ ∞
0

z3e−ρze−(z−(LA−x))2/2s dz ds. (8.11)

To evaluate the double integral, we will apply Lemma 8.1 with k = 3, t = 2s, and a = L−x.
This will involve considering two cases, depending on the value of x.
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First, suppose LA − x ≤ 1/ρ. Then, when s > ρ−2, we have LA − x < ρs. Therefore,
we apply (8.2), discarding the e−a

2/t term there, to get∫ b

ρ−2

1

s3/2

∫ ∞
0

z3e−ρze−(z−(LA−x))2/2s dz ds .
∫ b

ρ−2

s5/2

(ρs− (LA − x))4 + s2
ds

.
∫ 2ρ−2

ρ−2

s1/2 ds+

∫ 8β2/3

2ρ−2

1

ρ4s3/2
ds

.
1

ρ3
.

Combining this with (8.11) and using that LA − x ≤ 1/ρ, we get that (8.10) holds in this
case.

Next, suppose LA − x > 1/ρ. We split the double integral in (8.11) into three pieces,
denoted J1, J2, and J3, depending on whether ρ−2 ≤ s ≤ (LA − x)/ρ, (LA − x)/ρ < s <

2(LA − x)/ρ, or 2(LA − x)/ρ ≤ s ≤ 8β−2/3 respectively. When s ≤ (LA − x)/ρ, we can
apply (8.1) to get

J1 �
∫ (LA−x)/ρ

ρ−2

1

s3/2
· s1/2

(
(LA − x− ρs)3 + s3/2

)
eρ

2s/2−ρ(LA−x) ds.

Now using the bound 1/s ≤ ρ2 and then making the substitution u = ((LA−x)/ρ−s)ρ2/2,
so that ds/du = −2/ρ2, we get

J1 . ρ2e−ρ(LA−x)

∫ (LA−x)/ρ

ρ−2

(
(LA − x− ρs)3 + s3/2

)
eρ

2s/2 ds

≤ ρ2e−ρ(LA−x)

∫ (LA−x)/ρ

ρ−2

(
(LA − x− ρs)3 +

(LA − x
ρ

)3/2
)
eρ

2s/2 ds

≤ ρ2e−ρ(LA−x)

∫ ∞
0

((2u

ρ

)3

+
(LA − x

ρ

)3/2
)
e(ρ(LA−x)/2)−u · 2

ρ2
du

. e−ρ(LA−x)/2

∫ ∞
0

(
u3

ρ3
+

(LA − x)3/2

ρ3/2

)
e−u du

. e−ρ(LA−x)/2

(
1

ρ3
+

(LA − x)3/2

ρ3/2

)
.

1

ρ4(LA − x)
· (ρ(LA − x))5/2e−ρ(LA−x)/2. (8.12)

When s > (LA − x)/ρ, we instead apply (8.2) and get

J2 �
∫ 2(LA−x)/ρ

(LA−x)/ρ

s5/2

(ρs− (LA − x))4 + s2
e−(LA−x)2/2s ds

≤
∫ 2(LA−x)/ρ

(LA−x)/ρ

s1/2e−(LA−x)2/2s ds

.
(LA − x)3/2

ρ3/2
e−ρ(LA−x)/4

=
1

ρ4(LA − x)
· (ρ(LA − x))5/2e−ρ(LA−x)/4. (8.13)

Also, using that ρs− (LA − x) � ρs when s ≥ 2(LA − x)/ρ, we have

J3 �
∫ 8β−2/3

2(LA−x)/ρ

s5/2

(ρs− (LA − x))4 + s2
e−(LA−x)2/2s ds .

1

ρ4

∫ 8β−2/3

2(LA−x)/ρ

1

s3/2
e(LA−x)2/2s ds.
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Therefore, by Lemma 4.1,

J3 .
1

ρ4(LA − x)
. (8.14)

It follows from (8.12), (8.13), and (8.14) that

J1 + J2 + J3 .
1

ρ4(LA − x)
,

which, in combination with (8.11), implies that (8.10) also holds when LA − x > 1/ρ.

Lemma 8.7. Under the assumptions of Lemma 2.10, we have

III .
β2/3eρLA

ρ4

(
eρx + β2/3tzA(x)

)
. (8.15)

Proof. We may, and will, assume that 8β−2/3 < t/2, as otherwise the term III is zero.
Write

m = max

{
8β−2/3, 8

√
LA − x
β

}
.

Now define

III1 =

∫ t/2

m

∫ LA

LA−βs2/64

pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds.

Note that if s ≥ m, then LA − x ≤ βs2/64. Therefore, if s ≥ m and LA − z ≤ βs2/64, then

(2β)1/6[(LA − x)1/2 + (LA − z)1/2]− 2−1/3β2/3s ≤ β2/3s

(
21/6

4
− 2−1/3

)
< −β

2/3s

8
≤ −1,

(8.16)
so we can use Lemma 2.5 to estimate pLAs (x, z). We can also use Lemma 2.5 to estimate
pLAt−s(z, y) as in the proofs of Lemmas 8.5 and 8.6. Therefore, using that A ≥ 0 along with
Lemma 8.3 and the bound α(z) . β1/3z, we get

III1 .
∫ t/2

m

∫ LA

LA−βs2/64

β1/3eρxα(LA − x)e−ρzα(LA − z)

×
(∫ LA

KA(t)

β1/3eρzα(LA − z)α(LA − y) dy

)2

dz ds

= βzA(x)

∫ t/2

m

∫ LA

LA−βs2/64

eρzα(LA − z)3

(∫ LA

KA(t)

α(LA − y) dy

)2

dz ds

. β1/3zA(x)eρLA
∫ t/2

m

∫ βs2/64

0

e−ρzβz3 dz ds

.
β4/3

ρ4
zA(x)eρLAt. (8.17)

Next, we consider the case in which s ≥ m but LA − z > βs2/64. Define

III2 =

∫ t/2

m

∫ LA−βs2/64

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds.
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In this case, we use Lemma 2.7 to bound pLAs (x, z) and Lemma 2.5 to bound pLAt−s(z, y).
Using also Lemma 8.3, we have

III2 .
∫ t/2

m

∫ LA−βs2/64

LA−l(t)

(LA − x)(LA − z)
s3/2

exp

(
ρx− ρz − ρ2s

2
+ βLAs

)
×
(∫ LA

KA(t)

β1/3eρzα(LA − z)α(LA − y) dy

)2

dz ds

= β2/3eρxeρLA(LA − x)

∫ t/2

m

eβLAs−ρ
2s/2

s3/2

∫ l(t)

βs2/64

e−ρzzα(z)2

×
(∫ LA

KA(t)

α(LA − y) dy

)2

dz ds

. eρxeρLA(LA − x)

∫ t/2

m

eβLAs−ρ
2s/2

s3/2

(∫ l(t)

βs2/64

e−ρzzα(z)2 dz

)
ds. (8.18)

Because A ≥ 0, we have
eβLAs−ρ

2s/2 ≤ e−2−1/3γ1β
2/3s. (8.19)

Because the function α is bounded and βs2 � 1/ρ by (1.2) whenever s & β−2/3, it follows
from (8.3) when k = 1 that∫ l(t)

βs2/64

e−ρzzα(z)2 dz .
∫ ∞
βs2/64

e−ρzz dz .
βs2

ρ
e−ρβs

2/64. (8.20)

Combining (8.18), (8.19), and (8.20), and then using that ρβs2 & ρβ1/3s� β2/3s by (1.2)
when s ≥ 8β−2/3, we get

III2 .
β

ρ
eρxeρLA(LA − x)

∫ ∞
m

s1/2 exp

(
− 2−1/3γ1β

2/3s− ρβs2

64

)
ds

.
β

ρ
eρxeρLA(LA − x)

∫ ∞
m

s1/2 exp

(
− ρβs2

128

)
ds. (8.21)

By (8.4) with k = 1/2, ∫ ∞
m

s1/2 exp

(
− ρβs2

128

)
ds .

e−ρβm
2/128

m1/2ρβ
. (8.22)

We now claim that
ρ2(LA − x)

β2/3m1/2
e−ρβm

2/128 → 0. (8.23)

It will then follow from (8.21), (8.22), and (8.23) that

III2 �
β2/3

ρ4
eρxeρLA . (8.24)

To prove (8.23), we consider two cases. First, suppose LA−x ≤ β−1/3, so thatm = 8β−2/3.
Then (1.2) implies that

ρ2(LA − x)

β2/3m1/2
e−ρβm

2/128 .

(
ρ

β1/3

)2

e−ρβ
−1/3/2 → 0.

Alternatively, suppose LA − x > β−1/3. Then m = 8
√

(LA − x)/β and we have

ρ2(LA − x)

β2/3m1/2
e−ρβm

2/128 .
ρ2(LA − x)3/4

β5/12
e−ρ(LA−x)/2

=

(
ρ

β1/3

)5/4

[ρ(LA − x)]3/4e−ρ(LA−x)/2.
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Using that LA − x > β−1/3 and that the function x 7→ x3/4e−x/2 is decreasing for
sufficiently large x, we have(

ρ

β1/3

)5/4

[ρ(LA − x)]3/4e−ρ(LA−x)/2 .

(
ρ

β1/3

)5/4(
ρ

β1/3

)3/4

e−ρβ
−1/3/2 → 0,

and again (8.23) holds.
It remains to consider the case in which 8β−2/3 ≤ s < m, which is possible only when

LA − x > β−1/3 and m = 8
√

(LA − x)/β. Define

III3 =

∫ m

8β−2/3

∫ LA

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds.

We again use Lemma 2.7 to bound pLAs (x, z) and Lemma 2.5 to bound pLAt−s(z, y). Using
also Lemma 8.3 and the bound α(z) . β1/3z, we get

III3 ≤
∫ m

8β−2/3

∫ LA

LA−l(t)

(LA − x)(LA − z)
s3/2

exp

(
ρx− ρz − (z − x)2

2s
− ρ2s

2
+ βLAs

)
×
(∫ LA

KA(t)

β1/3eρzα(LA − z)α(LA − y) dy

)2

dz ds

. eρx(LA − x)

∫ m

8β−2/3

eβLAs−ρ
2s/2

s3/2

∫ LA

LA−l(t)
eρz(LA − z)α(LA − z)2e−(z−x)2/2s dz ds

= eρxeρLA(LA − x)

∫ m

8β−2/3

eβLAs−ρ
2s/2

s3/2

∫ l(t)

0

e−ρzzα(z)2e−(z−(LA−x))2/2s dz ds

. β2/3eρxeρLA(LA − x)

∫ m

8β−2/3

eβLAs−ρ
2s/2

s3/2

(∫ ∞
0

e−ρzz3e−(z−(LA−x))2/2s dz

)
ds.

(8.25)

We now estimate the inner integral using Lemma 8.1 with k = 3, t = 2s, and a = L−x.
We need to consider three cases. First, suppose s ≥ 2(LA − x)/ρ. Then LA − x ≤ 1

2ρs, so
we use (8.2) and the fact that s ≤ m to get∫ ∞

0

e−ρzz3e−(z−(LA−x))2/2s dz � s4

(ρs− (LA − x))4 + s2
e−(LA−x)2/2s .

1

ρ4
e−(LA−x)2/2m.

(8.26)
Combining (8.25) with (8.26), and using (8.19) again along with the fact that m =

8
√

(LA − x)/β, we get

(LA − x)

∫ m

8β−2/3∨2(LA−x)/ρ

eβLAs−ρ
2s/2

s3/2

(∫ ∞
0

e−ρzz3e−(z−(LA−x))2/2s dz

)
ds

.
LA − x
ρ4

e−2−1/3γ1β
2/3me−(LA−x)2/2m

∫ m

8β−2/3

1

s3/2
ds

.
1

ρ4
· β1/3(LA − x)e−28/3γ1β

1/6(LA−x)1/2e−β
1/2(LA−x)3/2/16

.
1

ρ4
. (8.27)

Next, suppose (LA − x)/ρ ≤ s < 2(LA − x)/ρ. Then LA − x ≤ ρs, so again we use (8.2).
This time, we keep the s2 term in the denominator, and we get∫ ∞

0

e−ρzz3e−(z−(LA−x))2/2s dz � s4

(ρs− (LA − x))4 + s2
e−(LA−x)2/2s . s2e−ρ(LA−x)/4.
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Combining this result with (8.25) and (8.19), we get

(LA − x)

∫ 2(LA−x)/ρ

(LA−x)/ρ

eβLAs−ρ
2s/2

s3/2

(∫ ∞
0

e−ρzz3e−(z−(LA−x))2/2s dz

)
ds

. (LA − x)e−22/3γ1β
2/3(LA−x)/ρe−ρ(LA−x)/4

∫ 2(LA−x)/ρ

(LA−x)/ρ

s1/2 ds

. (LA − x)

(
LA − x

ρ

)3/2

e−22/3γ1(β2/3/ρ2)ρ(LA−x)e−ρ(LA−x)/4

.
1

ρ4
· (ρ(LA − x))5/2e−22/3γ1(β2/3/ρ2)ρ(LA−x)e−ρ(LA−x)/4

.
1

ρ4
. (8.28)

Now, suppose s < (LA − x)/ρ. Then LA − x > ρs, so this time we use (8.1) to get∫ ∞
0

e−ρzz3e−(z−(LA−x))2/2s dz � s1/2
(
(LA − x− ρs)3 + s3/2

)
eρ

2s/2e−ρ(LA−x).

We may assume that (LA− x)/ρ > 8β−2/3, which implies that ρ(LA− x) ≥ 8ρ2β−2/3 →∞
and therefore s3/2 ≤ (LA − x)3/2ρ−3/2 � (LA − x)3. It follows that∫ ∞

0

e−ρzz3e−(z−(LA−x))2/2s dz . s1/2(LA − x)3eρ
2s/2e−ρ(LA−x).

Therefore,

(LA − x)

∫ (LA−x)/ρ

8β−2/3

eβLAs−ρ
2s/2

s3/2

(∫ ∞
0

e−ρzz3e−(z−(LA−x))2/2s dz

)
ds

. (LA − x)4e−ρ(LA−x)

∫ (LA−x)/ρ

8β−2/3

1

s
eβLAs ds

. (LA − x)4e−ρ(LA−x) · ρ

βLA(LA − x)
eβLA(LA−x)/ρ.

Because LA ≤ 2ρ2/3β for sufficiently large n, we have eβLA(LA−x)/ρ ≤ e2ρ(LA−x)/3, and
therefore

(LA − x)

∫ (LA−x)/ρ

8β−2/3

eβLAs−ρ
2s/2

s3/2

(∫ ∞
0

e−ρzz3e−(z−(LA−x))2/2s dz

)
ds

. (LA − x)4e−ρ(LA−x) · 1

ρ(LA − x)
e2ρ(LA−x)/3

=
1

ρ4
· (ρ(LA − x))3e−ρ(LA−x)/3

.
1

ρ4
. (8.29)

It now follows from (8.25), (8.27), (8.28), and (8.29) that

III3 .
β2/3

ρ4
eρxeρLA . (8.30)

The result follows from (8.17), (8.24), and (8.30).

Lemma 8.8. Under the assumptions of Lemma 2.10, we have

IV .
β4/3

ρ4
eρLAtzA(x).
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Proof. We may, and will, assume that 8β−2/3 < t/2, as otherwise the term IV is zero.
When s ≥ t/2, x ≥ KA(t) = LA − l(t)/2, and z ≥ LA − l(t), we have

(LA − x)1/2 + (LA − z)1/2 ≤ 2l(t)1/2 =
2√
33
β1/2t ≤ 4√

33
β1/2s.

Therefore, using that β−2/3 . s, we see that

(2β)1/6[(LA − x)1/2 + (LA − z)1/2]− 2−1/3β2/3s

is bounded above by a negative constant, so we can apply Lemma 2.5 to approximate
pLAs (z, y) and use (2.23).

If LA − y ≤ β(t− s)2/64 and LA − z ≤ β(t− s)2/128, then reasoning as in (8.16), we
have

(2β)1/6[(LA − z)1/2 + (LA − y)1/2]− 2−1/3β2/3(t− s) ≤ −1,

so we can use Lemma 2.5 to estimate pLAt−s(z, y). We define

IV1 =

∫ t−8β−2/3

t/2

∫ LA

LA−β(t−s)2/128

pLAs (x, z)

(∫ LA

LA−β(t−s)2/64

eρypLAt−s(z, y) dy

)2

dz ds.

Therefore, using also that A ≥ 0 along with Lemma 8.3 and the bound α(z) . β1/3z, we
have

IV1 .
∫ t−8β−2/3

t/2

∫ LA

LA−β(t−s)2/128

β1/3eρxα(LA − x)e−ρzα(LA − z)

×
(∫ LA

LA−β(t−s)2/64

β1/3eρzα(LA − z)α(LA − y) dy

)2

dz ds

= βzA(x)

∫ t−8β−2/3

t/2

∫ LA

LA− β(t−s)
2

128

eρzα(LA − z)3

(∫ LA

LA− β(t−s)
2

64

α(LA − y) dy

)2

dz ds

. β1/3zA(x)eρLA
∫ t−8β−2/3

t/2

∫ β(t−s)2/128

0

e−ρzβz3 dz ds

.
β4/3

ρ4
zA(x)eρLAt. (8.31)

Next, we consider the case in which LA − z > β(t− s)2/128. Define

IV2 =

∫ t−8β−2/3

t/2

∫ LA−β(t−s)2/128

LA−l(t)
pLAs (x, z)

(∫ LA

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds.

We use Lemma 2.5 to bound pLAs (x, z) as before and Lemma 2.7 to bound pLAt−s(z, y). We
get

IV2 .
∫ t−8β−2/3

t/2

∫ LA−β(t−s)2/128

LA−l(t)
β1/3eρxα(LA − x)e−ρzα(LA − z)

×
(∫ LA

KA(t)

(LA − z)(LA − y)

(t− s)3/2
eρz−(z−y)2/2(t−s)−ρ2(t−s)/2+βLA(t−s) dy

)2

dz ds

= β1/3zA(x)

∫ t−8β−2/3

t/2

1

(t− s)2
e(2βLA−ρ2)(t−s)

∫ LA−β(t−s)2/128

LA−l(t)
eρz(LA − z)2α(LA − z)

×
(∫ LA

KA(t)

1√
t− s

(LA − y)e−(z−y)2/2(t−s) dy

)2

dz ds.
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Now interchanging the roles of s and t− s, z and LA − z, and y and LA − y, we get

IV2 . β1/3zA(x)eρLA
∫ t/2

8β−2/3

e(2βLA−ρ2)s

s2

∫ l(t)

βs2/128

e−ρzz2α(z)

·
(∫ l(t)/2

0

y√
s
e−(z−y)2/2s dy

)2

dz ds. (8.32)

Note that if W has a normal distribution with mean z ≥ 0 and variance s, then∫ l(t)/2

0

y√
s
e−(z−y)2/2s dy ≤

∫ ∞
0

y√
s
e−(z−y)2/2s dy =

√
2π E[max{0,W}] . z +

√
s. (8.33)

Also, because the function α is bounded and βs2 � 1/ρ when s & β−2/3 by (1.2), it
follows from (8.3) that∫ l(t)

βs2

128

e−ρzz2α(z)(z +
√
s)2 dz .

∫ ∞
βs2

128

e−ρz(z4 + z2s) dz . e−ρβs
2/128

(
(βs2)4

ρ
+

(βs2)2s

ρ

)
.

Because A ≥ 0, we have
e(2βLA−ρ2)s ≤ e−22/3γ1β

2/3s. (8.34)

Combining these bounds, we get

IV2 . β1/3zA(x)eρLA
∫ t/2

8β−2/3

1

s2
e−22/3γ1β

2/3se−ρβs
2/128

(
(βs2)4

ρ
+

(βs2)2s

ρ

)
ds

= β1/3zA(x)eρLA
∫ t/2

8β−2/3

1

s2
e−22/3γ1β

2/3se−ρβs
2/128

(
(ρβs2)4

ρ5
+

(ρβs2)2s

ρ3

)
ds.

Now β2/3s� ρβs2 when s & β−2/3, which implies that for any k > 0, we have

e−22/3γ1β
2/3se−ρβs

2/128(ρβs2)k � e−ρβs
2/256.

It follows, using (8.4) with k = 0 for the third inequality, that

IV2 . β1/3zA(x)eρLA
∫ t/2

8β−2/3

e−ρβs
2/256

(
1

s2ρ5
+

1

sρ3

)
ds

. β1/3zA(x)eρLA
(
β4/3

ρ5
+
β2/3

ρ3

)∫ t/2

8β−2/3

e−ρβs
2/256 ds

. β1/3zA(x)eρLA
(
β4/3

ρ5
+
β2/3

ρ3

)
· eρβ

−1/3/4 1

ρβ1/3

=
β2/3

ρ4
zA(x)eρLA

(
β2/3

ρ2
+ 1

)
eρβ

−1/3/4.

Finally, using the assumption that t & β−2/3, we have

IV2 �
β2/3

ρ4
zA(x)eρLA .

β4/3

ρ4
eρLAtzA(x). (8.35)

Now, we consider the remaining case in which LA − z ≤ β(t− s)2/128 and LA − y >
β(t− s)2/64. Define

IV3 =

∫ t−8β−2/3

t/2

∫ LA

LA−β(t−s)2/128

pLAs (x, z)

(∫ LA−β(t−s)2/64

KA(t)

eρypLAt−s(z, y) dy

)2

dz ds.
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We again use Lemma 2.5 to bound pLAs (x, z) and Lemma 2.7 to bound pLAt−s(z, y), and
following the same steps that led to (8.32), IV3 is bounded above by a constant times

β1/3zA(x)eρLA
∫ t/2

8β−2/3

e(2βLA−ρ2)s

s2

∫ βs2

128

0

e−ρzz2α(z)

(∫ l(t)/2

βs2/64

y√
s
e−(z−y)2/2s dy

)2

dz ds.

Note that if z ≤ βs2/128 and y ≥ βs2/64, then letting δ = 1/(4 · 1282),

e−(z−y)2/2s = e−(z−y)2/4se−(z−y)2/4s ≤ e−δβ
2s3e−(z−y)2/4s.

Therefore, reasoning as in (8.33),∫ l(t)/2

βs2/64

y√
s
e−(z−y)2/2s dy ≤ e−δβ

2s3
∫ ∞

0

y√
s
e−(z−y)2/4s dy . e−δβ

2s3(z +
√
s).

Using also that α(z) . β1/3z and (8.34), we get

IV3 . β1/3zA(x)eρLA
∫ t/2

8β−2/3

e(2βLA−ρ2)s

s2

∫ βs2/128

0

e−ρzz2α(z) · e−2δβ2s3(z2 + s) dz ds

. β2/3zA(x)eρLA
∫ t/2

8β−2/3

1

s2
e−22/3γ1β

2/3se−2δβ2s3
∫ ∞

0

e−ρz(z5 + sz3) dz ds

. β2/3zA(x)eρLA
∫ t/2

8β−2/3

1

s2
e−22/3γ1β

2/3se−2δβ2s3
(

1

ρ6
+

s

ρ4

)
ds.

When s ≥ 8β−2/3, we have s/ρ4 � 1/ρ6 by (1.2), so we may disregard the 1/ρ6 term.
Therefore, making the substitution u = β2/3s and then using that β−2/3 . t,

IV3 .
β2/3

ρ4
zA(x)eρLA

∫ ∞
8β−2/3

1

s
e−22/3γ1β

2/3se−2δβ2s3 ds

=
β2/3

ρ4
zA(x)eρLA

∫ ∞
8

1

u
e−22/3γ1u−2δu3

du

.
β2/3

ρ4
zA(x)eρLA

.
β4/3

ρ4
eρLAtzA(x). (8.36)

The result follows from (8.31), (8.35), and (8.36).

Lemma 8.9. Under the assumptions of Lemma 2.10, we have

V .
β4/3

ρ4
eρLAtzA(x).

Proof. As in the proof of Lemma 8.8, we can apply Lemma 2.5 to estimate pLAs (z, y). To
bound pt−s(z, y), we will use either the bound from Lemma 2.6 or the bound from Lemma
2.7, whichever is smaller. Using also that, when t− s ≤ β−2/3, we have

exp

(
βLA(t− s)− ρ2(t− s)

2

)
. 1,
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we get

V .
∫ t

t−b

∫ LA

LA−l(t)
β1/3eρxα(LA − x)e−ρzα(LA − z)

×
(∫ LA

KA(t)

min

{
1√
t− s

,
(LA − z)(LA − y)

(t− s)3/2

}
exp

(
ρz − (z − y)2

2(t− s)

)
dy

)2

dz ds

. β1/3zA(x)

∫ t

t−b

∫ LA

LA−l(t)
eρzα(LA − z)

×
(∫ LA

KA(t)

min

{
1,

(LA − z)(LA − y)

t− s

}
· 1√

t− s
e−(z−y)2/2(t−s) dy

)2

dz ds.

Interchanging the roles of s and t− s, z and LA − z, and y and LA − y, we get

V . β1/3zA(x)eρLA
∫ b

0

∫ l(t)

0

e−ρzα(z)

(∫ l(t)/2

0

min

{
1,
yz

s

}
· 1√

s
e−(z−y)2/2s dy

)2

dz ds.

(8.37)
We now use (8.33) to estimate the integral with respect to y, which yields

∫ l(t)/2

0

min

{
1,
yz

s

}
· 1√

s
e−(z−y)2/2s dy

. min

{∫ l(t)/2

0

1√
s
e−(z−y)2/2s ds,

z

s

∫ l(t)/2

0

y√
s
e−(z−y)2/2s dy

}
. min

{
1,
z

s
(z +

√
s)

}
.

Now noting that z2/s ≥ z/
√
s whenever either of these expressions is larger than one, it

follows that ∫ l(t)/2

0

min

{
1,
yz

s

}
· 1√

s
e−(z−y)2/2s dy ≤ min

{
1,
z2

s

}
.

Plugging this result into (8.37), and using that α(z) . β1/3z, we get

V . β2/3zA(x)eρLA
∫ b

0

∫ l(t)

0

e−ρzzmin

{
1,
z4

s2

}
dz ds

. β2/3zA(s)eρLA
(∫ ρ−2

0

∫ ∞
0

e−ρzz dz ds+

∫ 8β−2/3

ρ−2

1

s2

∫ ∞
0

e−ρzz5 dz ds

)
. β2/3zA(s)eρLA

(∫ ρ−2

0

1

ρ2
ds+

1

ρ6

∫ 8β−2/3

ρ−2

1

s2
ds

)
.
β2/3

ρ4
zA(x)eρLA .

Because t & β−2/3, the result follows.

Lemma 8.10. Under the assumptions of Lemma 2.10, we have

VI� β4/3

ρ4
eρLAtzA(x).

EJP 26 (2021), paper 103.
Page 68/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP673
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian particle distribution for BBM with inhomogeneous branching

Proof. We use Lemma 2.7 to bound both pLAs (x, z) and pLAt−s(z, y) and get

VI .
∫ t

0

∫ LA−l(t)

−∞

(LA − x)(LA − z)
s3/2

exp
(
ρx− ρz − (z − x)2

2s
− ρ2s

2
+ βLAs

)
×
(∫ LA

KA(t)

(LA − z)(LA − y)

(t− s)3/2
exp

(
ρz − (y − z)2

2(t− s)
− ρ2(t− s)

2
+ βLA(t− s)

)
dy

)2

dz ds

= eρx(LA − x)

∫ t

0

1

s3/2(t− s)3
exp

((
βLA −

ρ2

2

)
(2t− s)

)
×
∫ LA−l(t)

−∞
eρz(LA − z)3e−(x−z)2/2s

(∫ LA

KA(t)

(LA − y)e−(y−z)2/2(t−s) dy

)2

dz ds.

Note that if x > KA(t), y > KA(t), and z < LA − l(t), then (x − z)2 ≥ l(t)2/4 and
(y − z)2 ≥ l(t)2/4. Also, recalling that γ1 < 0 and A ≥ 0, we have that for s ≥ 0,(

βLA −
ρ2

2

)
(2t− s) =

(
− 2−1/3β2/3γ1 −

βA

ρ

)
(2t− s) ≤ −(2β)2/3γ1t.

It follows that

VI . eρx(LA − x)e−(2β)2/3γ1t

(∫ t

0

1

s3/2(t− s)3
e−l(t)

2/8se−l(t)
2/4(t−s) ds

)
×
(∫ LA−l(t)

−∞
eρz(LA − z)3 dz

)(∫ LA

KA(t)

(LA − y) dy

)2

. (8.38)

Because t & β−2/3, we have l(t)� 1/ρ and therefore by (8.3),∫ LA−l(t)

−∞
eρz(LA − z)3 dz � eρ(LA−l(t)) · l(t)

3

ρ
. (8.39)

Also, ∫ LA

KA(t)

(LA − y) dy =
l(t)2

8
. (8.40)

Because
∫∞

0
s−be−a/s ds = a1−b ∫∞

0
ub−2e−u du � a1−b when b > 1, we have, using Lemma

4.1,∫ t/2

0

1

s3/2(t− s)3
e−l(t)

2/8se−l(t)
2/4(t−s) ds .

e−l(t)
2/4t

t3

∫ t/2

0

1

s3/2
e−l(t)

2/8s ds .
e−l(t)

2/4t

t3l(t)

and, interchanging the roles of s and t− s to evaluate the integral,∫ t

t/2

1

s3/2(t− s)3
e−l(t)

2/8se−l(t)
2/4(t−s) ds .

e−l(t)
2/8t

t3/2

∫ t

t/2

e−l(t)
2/4(t−s)

(t− s)3
ds .

e−l(t)
2/8t

t3/2l(t)4
.

Because l(t) � βt2 and t & β−2/3, we have t3l(t) . t3/2l(t)4. Therefore, summing the
previous two integrals gives∫ t

0

1

s3/2(t− s)3
e−l(t)

2/8se−l(t)
2/[4(t−s)] ds .

1

t3l(t)
e−l(t)

2/8t. (8.41)

Combining (8.38), (8.39), (8.40), and (8.41), we get

VI .
zA(x)l(t)6

ρt3
exp

(
ρ(LA − l(t))− (2β)2/3γ1t−

l(t)2

8t

)
=
β4/3

ρ4
eρLAtzA(x) · l(t)2

ρβ4/3t4
· ρ4l(t)4e−ρl(t) · exp

(
− (2β)2/3γ1t−

l(t)2

8t

)
. (8.42)
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We will show that the second and third factors on the right-hand side of (8.42) tend to
zero, while the fourth is bounded above, which will complete the proof of the lemma.
Because l(t) � βt2 and t & β−2/3, we have

l(t)2

ρβ4/3t4
� β2/3

ρ
→ 0.

Also, ρl(t) � ρβt2 & ρβ−1/3 → ∞ by (1.2), so ρ4l(t)4e−ρl(t) → 0. Finally, l(t)2/8t � β2t3,
which implies that the fourth factor is bounded because t & β2/3.

8.3 Proof of Lemma 2.11

Standard second moment calculations (again see p. 146 of [25]) give

Ex
[(N(t)∑

i=1

g
(
Xi(t)

√
β/ρ

))2]
=

∫ L

−∞
g
(
y
√
β/ρ

)2
pLt (x, y) dy

+ 2

∫ t

0

∫ L

−∞
pLu (x, z)bn(z)

(∫ L

−∞
g
(
y
√
β/ρ

)
pLt−u(z, y) dy

)2

dz du.

When n is large, the birth rate bn(z) is bounded for z ≤ L by (1.4), and g is also bounded,
so

Ex
[(N(t)∑

i=1

g
(
Xi(t)

√
β/ρ

))2]

.
∫ L

−∞
pLt (x, y) dy +

∫ t

0

∫ L

−∞
pLu (x, z)

(∫ L

−∞
pLt−u(z, y) dy

)2

dz du. (8.43)

From (2.12) and the fact that s ≥ 0, we get∫ L

−∞
pLt (x, y) dy ≤

∫ ∞
−∞

pt(x, y) dy = exp

(
βxt+

β2t3

6
− βρt2

2

)
= exp

(
ρx− βxs− ρ3

3β
+
ρ2s

2
− β2s3

6

)
.

Because s ≥ 0, and because the assumption L − x � ρ2/β implies that x ≥ 0 for
sufficiently large n, it follows that∫ L

−∞
pLt (x, y) dy . exp

(
ρx− ρ3

3β
+
ρ2s

2

)
. (8.44)

We claim that

exp

(
− ρ3

3β
+
ρ2s

2

)
�
(
ρ3

β

)−2/3

exp

(
− ρ3

6β
− γ1ρ

(2β)1/3
− β2s3

3

)
.

Indeed, comparing the two sides of the inequality, we see that because s� ρ/β by as-
sumption, the dominant terms are those of order ρ3/β inside the exponentials; therefore
the left-hand side is smaller when n is large. Substituting this into (8.44), we obtain∫ L

−∞
pLt (x, y) dy �

(
ρ3

β

)−2/3

exp

(
ρx− ρ3

6β
− γ1ρ

(2β)1/3
− β2s3

3

)
=
β2/3

ρ2
exp

(
ρx+ ρL− 2ρ3

3β
− β2s3

3

)
� β2/3

ρ4
exp

(
ρx+ ρL− 2ρ3

3β
− β2s3

3

)
.
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It remains to bound the second term on the right-hand side of (8.43). We will use
three different bounds for pLu (x, z) depending on the value of u. When ρ1/2/β5/6 ≤ u ≤ t,
we will use that pLAu (x, z) ≤ pu(x, z) and then use (2.11). Noting that

β(z + x)u

2
= βLu− β(L− z)u

2
− β(L− x)u

2
≤ βLu− β(L− z)u

2
,

we get

pLu (x, z) .
1

u1/2
exp

(
ρx− ρz − (x− z)2

2u
− ρ2u

2
+ βLu− β(L− z)u

2
+
β2u3

24

)
.

We will use Lemma 2.6 when 0 ≤ u ≤ 1/ρ2 and Lemma 2.7 when 1/ρ2 < u < ρ1/2/β5/6.
Combining these estimates yields that if we set

M(u, x, z) = min

{
(L− x)(L− z)

u3/2
,

1

u1/2
,

1

u1/2
exp

(
− β(L− z)u

2
+
β2u3

24

)}
, (8.45)

then

pLu (x, z) .M(u, x, z) exp

(
ρx− ρz − (x− z)2

2u
− ρ2u

2
+ βLu

)
. (8.46)

To bound pLt−u(z, y), we use (2.12) when ρ1/2/β5/6 ≤ u ≤ t and Lemma 2.9 when
0 ≤ u < ρ1/2/β5/6. From (2.12) with t− u = ρ

β − s− u in place of t, we get∫ L

−∞
pLt−u(z, y) dy ≤

∫ ∞
−∞

pt−u(z, y) dy

= exp

(
βz
( ρ
β
− (u+ s)

)
+
β2

6

( ρ
β
− (u+ s)

)3

− βρ

2

( ρ
β
− (u+ s)

)2
)

= exp

(
ρz +

(ρ2

2
− βz

)
(u+ s)− ρ3

3β
− β2(u+ s)3

6

)
.

Therefore, using also that (u+ s)3 ≥ u3 + s3, we have(∫ L

−∞
pLt−u(z, y) dy

)2

≤ exp

(
2ρz + (ρ2 − 2βz)(u+ s)− 2ρ3

3β
− β2u3

3
− β2s3

3

)
. (8.47)

Using Lemma 2.9 and following the same calculation, we get that if u� t, then(∫ L

−∞
pLt−u(z, y) dy

)2

. β2/3(L− z)2 exp

(
2ρz + (ρ2 − 2βz)(u+ s)− 2ρ3

3β
− β2u3

3
− β2s3

3
+ 2β2/3(u+ s)

)
.

(8.48)

Combining (8.47) and (8.48), and using that ρ1/2/β5/6 � t by (1.2), we get that if we set

N(u, z) = β2/3(L− z)21{u<ρ1/2/β5/6} + 1{u≥ρ1/2/β5/6},

then(∫ L

−∞
pLt−u(z, y) dy

)2

. N(u, z) exp

(
2ρz + (ρ2 − 2βz)(u+ s)− 2ρ3

3β
− β2u3

3
− β2s3

3
+ 2β2/3(u+ s)

)
.

(8.49)

EJP 26 (2021), paper 103.
Page 71/76

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP673
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian particle distribution for BBM with inhomogeneous branching

Denoting the second term on the right-hand side of (8.43) by T and then combining
(8.46) and (8.49), we get

T . exp

(
ρx− 2ρ3

3β
− β2s3

3

)∫ t

0

∫ L

−∞
M(u, x, z)N(u, z)

× exp

(
ρz − ρ2u

2
+ βLu− β2u3

3
− (x− z)2

2u
+ (ρ2 − 2βz + 2β2/3)(u+ s)

)
dz du.

Interchanging the roles of z and L− z, and separating out three terms from the expo-
nential that involve only u, we get

T . exp

(
ρx+ ρL− 2ρ3

3β
− β2s3

3

)∫ t

0

exp

(
− ρ2u

2
+ βLu− β2u3

3

)∫ ∞
0

M(u, x, L− z)

×N(u, L− z) exp

(
− ρz − ((L− x)− z)2

2u
+ (ρ2 − 2β(L− z) + 2β2/3)(u+ s)

)
dz du.

Now, using (2.1) and (1.5), we have ρ2 − 2βL+ 2β2/3 = (22/3γ1 + 2)β2/3 < 0, so we can
discard the term (ρ2 − 2βL+ 2β2/3)(u+ s). Therefore,

T . exp

(
ρx+ ρL− 2ρ3

3β
− β2s3

3

)∫ t

0

exp

(
− ρ2u

2
+ βLu− β2u3

3

)
×
∫ ∞

0

M(u, x, L− z)N(u, L− z) exp

(
− (ρ− 2β(u+ s))z − ((L− x)− z)2

2u

)
dz du.

(8.50)

Thus, denoting the double integral in the expression above by R, the proof will be
complete if we can show that R . β2/3/ρ4. To do this, choose a positive number r such
that

√
3/7 < r < 2/3, and write

R = R1 +R2 +R3 +R4,

where R1 is the portion of the double integral for which 0 ≤ u ≤ 1/ρ2, R2 is the
portion of the double integral for which 1/ρ2 < u < ρ1/2/β5/6, R3 is the portion with
ρ1/2/β5/6 ≤ u < rρ/β, and R4 is the portion with rρ/β ≤ u ≤ t.

We first estimate R1. Because γ1 < 0 and the function x 7→ bx− cx3 is bounded above
on [0,∞) for any b > 0 and c > 0, we have

− ρ2u

2
+ βLu− β2u3

3
= −2−1/3β2/3γ1u−

β2u3

3
= −2−1/3γ1(β2/3u)− 1

3
(β2/3u)3 = O(1).

(8.51)
Therefore, using also that 2β(u+ s)� ρ when u ≤ 1/ρ2, we have

R1 .
∫ 1/ρ2

0

∫ ∞
0

1

u1/2
· β2/3z2 exp

(
− (ρ− 2β(u+ s))z − ((L− x)− z)2

2u

)
dz du

. β2/3

∫ 1/ρ2

0

1

u1/2

∫ ∞
0

z2 exp

(
− (ρ− 2β(u+ s))z

)
dz du

. β2/3

∫ 1/ρ2

0

1

u1/2ρ3
du

.
β2/3

ρ4
. (8.52)
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Next, we estimate R2. Suppose 1/ρ2 < u < ρ1/2/β5/6. Since u � ρ/β and s � ρ/β,
we have ρ− 2β(u+ s) ≥ ρ/2 for sufficiently large n. Using also (8.51) again, we get

R2 ≤
∫ ρ1/2/β5/6

1/ρ2

∫ ∞
0

(L− x)z

u3/2
· β2/3z2 exp

(
− ρz

2
− ((L− x)− z)2

2u

)
dz du.

= β2/3(L− x)

∫ ρ1/2/β5/6

1/ρ2

1

u3/2

∫ ∞
0

z3 exp

(
− ρz

2
− ((L− x)− z)2

2u

)
dz du. (8.53)

To evaluate the inner integral, we will apply Lemma 8.1 with k = 3, with L− x in place
of a, with 2u in place of t, and with ρ/2 in place of ρ. The condition a ≥ ρt/2 in Lemma
8.1 becomes u ≤ 2(L− x)/ρ. Noting that ρ2t/4− aρ ≤ −aρ/2 when a ≥ ρt/2, we have

β2/3(L− x)

∫ 2(L−x)/ρ

1/ρ2

1

u3/2

∫ ∞
0

z3 exp

(
− ρz

2
− ((L− x)− z)2

2u

)
dz du

. β2/3(L− x)

∫ 2(L−x)/ρ

1/ρ2

1

u3/2
· u1/2

(
(L− x)3 + u3/2

)
e−ρ(L−x)/4 du

. β2/3e−ρ(L−x)/4

(
(L− x)4

∫ 2(L−x)/ρ

1/ρ2

1

u
du+ (L− x)

∫ 2(L−x)/ρ

1/ρ2
u1/2 du

)
.
β2/3

ρ4
e−ρ(L−x)/4

(
ρ4(L− x)4 log(2ρ(L− x)) + ρ5/2(L− x)5/2

)
.
β2/3

ρ4
. (8.54)

When u > 2(L−x)/ρ, we apply instead the second part of Lemma 8.1. When 2(L−x)/ρ <

u ≤ 4(L− x)/ρ, we disregard the first term in the denominator on the right-hand side of
(8.2) and get

β2/3(L− x)

∫ 4(L−x)/ρ

2(L−x)/ρ

1

u3/2

∫ ∞
0

z3 exp

(
− ρz

2
− ((L− x)− z)2

2u

)
dz du

. β2/3(L− x)

∫ 4(L−x)/ρ

2(L−x)/ρ

1

u3/2
· u2e−(L−x)2/2u du

. β2/3(L− x)e−ρ(L−x)/8

(
L− x
ρ

)3/2

.
β2/3

ρ4
e−ρ(L−x)/8ρ5/2(L− x)5/2

.
β2/3

ρ4
. (8.55)

Finally, when 4(L− x)/ρ < u ≤ ρ1/2/β5/6, we disregard the second term in the denomi-
nator on the right-hand side of (8.2) and then apply Lemma 4.1 to get

β2/3(L− x)

∫ ρ1/2/β5/6

4(L−x)/ρ

1

u3/2

∫ ∞
0

z3 exp

(
− ρz

2
− ((L− x)− z)2

2u

)
dz du

.
β2/3(L− x)

ρ4

∫ ∞
0

1

u3/2
e−(L−x)2/2u du

.
β2/3

ρ4
. (8.56)
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By combining (8.53), (8.54), (8.55), and (8.56), we get

R2 .
β2/3

ρ4
. (8.57)

Next, we estimate R3. For u ≥ ρ1/2/β5/6, we have N(u, L − z) = 1. Bounding
M(u, x, L− z) by the third expression in (8.45), we get from (8.50)

R3 .
∫ rρ/β

ρ1/2/β5/6

1

u1/2
exp

(
− ρ2u

2
+ βLu− 7β2u3

24

)
×
∫ ∞

0

exp

(
− (ρ− 2β(u+ s))z − βuz

2
− ((L− x)− z)2

2u

)
dz du. (8.58)

We now discard the ((L− x)− z)2/2u term and apply (8.51) with 1/24 in place of 1/3 as
the constant in front of β2u3. Using also that r < 2/3 and s� ρ/β, we get

R3 .
∫ rρ/β

ρ1/2/β5/6

1

u1/2
exp

(
− β2u3

4

)∫ ∞
0

exp

((
− ρ+

3βu

2
+ 2βs

)
z

)
dz du

.
1

ρ

∫ rρ/β

ρ1/2/β5/6

1

u1/2
exp

(
− β2u3

4

)
du.

Noting that the integrand is decreasing in u and therefore largest when u = ρ1/2/β5/6,
we get

R3 .
1

ρ
· rρ
β
· β

5/12

ρ1/4
exp

(
− ρ3/2

4β1/2

)
=
rβ2/3

ρ4

(
ρ3

β

)5/4

exp

(
− 1

4

(
ρ3

β

)1/2)
� β2/3

ρ4
. (8.59)

To evaluate R4, we reason as in (8.58) and use that, by the well-known formula for
the moment generating function of the normal distribution,∫ ∞

−∞
exp

(
− (ρ− 2β(u+ s))z − βuz

2
− ((L− x)− z)2

2u

)
dz

=
√

2πu exp

(
(L− x)

(
− ρ+

3βu

2
+ 2βs

)
+
u

2

(
− ρ+

3βu

2
+ 2βs

)2)
,

to get

R4 .
∫ t

rρ/β

exp

(
− ρ2u

2
+ βLu− 7β2u3

24

)
× exp

(
(L− x)

(
− ρ+

3βu

2
+ 2βs

)
+
u

2

(
− ρ+

3βu

2
+ 2βs

)2)
du.

Because u ≤ ρ/β, we have −ρ + 3βu/2 + 2βs ≤ ρ/2 + 2βs. Considering also that
L− x� ρ2/β and s� ρ/β, it follows that

exp

(
(L− x)

(
− ρ+

3βu

2
+ 2βs

)
+
u

2

(
− ρ+

3βu

2
+ 2βs

)2)
≤ exp

(
ρ2u

8
+ o

(
ρ3

β

))
.

Also, we have −ρ2u/2 + βLu = −2−1/3γ1β
2/3u� ρ3/β. Therefore,

R4 .
∫ t

rρ/β

exp

(
− 7β2u3

24
+
ρ2u

8
+ o

(
ρ3

β

))
du

.
ρ

β
max

rρ/β≤u≤t
exp

(
− 7β2u3

24
+
ρ2u

8
+ o

(
ρ3

β

))
.
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Because r >
√

1/7, the function f(x) = − 7
24x

3 + x
8 is decreasing over [r, 1], and therefore

the contribution from the sum of the first two terms in the exponential above is maximized
when u = rρ/β. This leads to

R4 .
β2/3

ρ4

(
ρ3

β

)5/3

exp

((
− 7r3

24
+
r

8

)
ρ3

β
+ o

(
ρ3

β

))
.

Because r >
√

3/7, the coefficient in front of ρ3/β in the exponential is negative. It
follows that R4 � β2/3/ρ4, which in combination with (8.52), (8.57), and (8.59) completes
the proof.
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