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Abstract

Consider jump processes on a connected compact smooth Riemannian manifold,
which are constructed by the canonical projection of the processes on the bundle of
orthonormal frames. The condition under which the M -valued process is Markovian
will be revisited as seen in Applebaum-Estrade [1]. Moreover, the gradient formula,
which will be also called the integration by parts formula, can be also studied. The
obtained formula can be regarded as the extended version of the celebrated Bismut
formula on the case of diffusion processes.

Keywords: jump processes on manifolds; stochastic differential equations with jumps; integra-
tion by parts formulas.
MSC2020 subject classifications: 60J76; 58J65; 60H07; 60H10.
Submitted to EJP on July 10, 2020, final version accepted on June 7, 2021.

1 Introduction

Stochastic differential equations on the Euclidean space have been quite well studied
for a long time, and they have given us a lot of fruitful issues in wide areas. Moreover, as
the natural interest on the study, it has been also done to extend our field of the equations
to the ones on manifolds. Since the geometrical structure in each local coordinate of the
manifold is the same as the Euclidean space, it seems us very natural to construct the
process given by the equation by connecting the local solution to the equation in each
local coordinate. We can also construct the process by rolling the manifold on the flat
space along the inked trajectory of the process on the plane without slipping. This idea
can be done by projecting the process valued in the bundle of the orthonormal frames
over the manifold, which is determined by the stochastic differential equation on the
bundle. In fact, the Brownian motion on the Riemannian manifold, whose infinitesimal
generator is the Laplace-Beltrami operator, can be obtained by the projection of the
horizontal Brownian motion on the bundle of the orthonormal frames over the manifold.
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Gradient formulas for jump processes on manifolds

The horizontal Brownian motion is the solution to the stochastic differential equation,
and its infinitesimal generator is the horizontal Laplacian of Bochner. See Hsu [6] and
Ikeda-Watanabe [8] on the detailed explanations.

It is very natural to consider whether the Lévy process on the manifold can be
constructed or not, similarly to the case of the Brownian motion on the manifold. There
are some studies: Hunt [7] studied the Lévy processes on Lie groups from the viewpoint of
functional analysis, that is, the semigroup approach. Applebaum-Kunita [2] constructed
the Lévy processes on Lie groups as the solutions to the jump-type stochastic differential
equations, and studied the Lévy flows on manifolds. See also Fujiwara [5] and Kunita
[11]. And Applebaum-Estrade [1] studied the isotropic Lévy processes on Riemannian
manifolds. They proposed as one of sufficient conditions that the isotropic property
on the Lévy measure of the driving process of the stochastic differential equation is
required to the projecting procedure to define the manifold-valued process from the
process valued in the bundle of the orthonormal frames.

In the present paper, we shall discuss the gradient formulas, which is often called
the integration by parts formulas, for jump processes on Riemannian manifolds. In
the case of the diffusion process without any jumps on the manifold, the formula is
called the celebrated Bismut formula. The formula plays a crucial role in the study
of the detailed property of the density function, and the study of the computations of
the Greeks in mathematical finance. The Bismut formula can be obtained by some
approaches: the Malliavin calculus on the Wiener space (cf. Nualart [12]) and the
martingale method based upon the Kolmogorov backward equation of the corresponding
infinitesimal generator of the diffusion process (cf. Elworthy-Li [4]). The martingale
method is interpreted as the martingale representation theorem, or the Clark-Ocone
formula which is famous in the study of mathematical finance. See also Bismut [3],
and Hsu [6] and the references therein. Now, our strategy to attack the gradient
formulas for jump processes on the manifold in the present paper is via the martingale
approach. And our jump processes is defined by the projection of the jump-diffusion
processes determined by the jump-type stochastic differential equation on the bundle of
the orthonormal frames of the manifold, whose equation is often called the Marcus-type
canonical stochastic differential equation of jump type (cf. Kunita [11] and Ishikawa [9]).
In Takeuchi [15], the integration by parts formula for jump processes on the Euclidean
space has been discussed, and our approach in the paper is almost parallel. Before doing
it, we shall revisit the work on the Lévy process on the manifold by Applebaum-Estrade
[1], in order to compare the obtained formula with the celebrated Bismut one for the
diffusion process.

The organization of the paper is as follows: In Section 2, we shall prepare some
notations and introduce the framework from the viewpoint of the differential geometry
and the probability. The detailed description can be found in Kobayashi-Nomizu [10] and
Sakai [13] on the differential geometry, and in Hsu [6] and Ikeda-Watanabe [8] on the
probability. Moreover, the result by Applebaum-Estrade [1] on the sufficient condition,
under which the M -valued process projected by the O(M)-valued process is Markovian,
is revisited in Proposition 2.2. Section 3 is the main part of the present paper. The main
results on the gradient formulas about the M -valued process are mentioned, according
to the situations focused on the effects by the diffusion term, the jump one and the hybrid
one. Especially, the first result (Theorem 3.3) can be also interpreted as the extension of
the celebrated Bismut formula on the M -valued diffusion process without any jumps, as
introduced in Bimut [3] and Hsu [6]. Another two results (Theorems 3.10 and 3.12) are
very interesting in the sense that those formulas are focused by the effects of the jump
term in the process. Those results will be proved in Section 4. The strategy to attack the
proofs are almost parallel to the paper by Takeuchi [15] on the Euclidean space.
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Gradient formulas for jump processes on manifolds

2 Preliminaries

First of all, we shall prepare some notations from differential geometry. Details can
be seen in Kobayashi-Nomizu [10] and Sakai [13]. Let (M, g) be a connected, compact
and smooth Riemannian manifold of dimension m with the Levi-Civita connection ∇ ={

Γijk ; 1 ≤ i, j, k ≤ m
}

. And let X(M) or X
(
O(M)

)
the family of C∞-vector fields over M ,

respectively O(M). Denote the bundle of linear frames on M by

GL(M) =
{
r = (x, ex) ; x ∈M, ex =

(
(e1)x, . . . , (em)x

)
is a basis in TxM

}
.

Remark that in a local coordinate
(
xi, e

j
i ; 1 ≤ i, j ≤ m

)
, each (ei)x ∈ TxM can be

expressed as

(ei)x =

m∑
j=1

eji

(
∂

∂xj

)
x

.

Define the submanifold of GL(M) by

O(M) =
{
r = (x, ex) ∈ GL(M) ; ex =

(
(e1)x, . . . , (em)x

)
is an orthonormal basis in TxM

}
,

which is called the bundle of orthonormal frames on M . Remark that O(M) is compact,
because so is M . The canonical projection π : O(M) → M is defined by π(r) = x for
r = (x, ex) ∈ O(M). Let H1, . . . ,Hm be in X

(
GL(M)

)
such that Hi(r) is the horizontal lift

of (ei)x ∈ TxM for each r = (x, ex) ∈ O(M) and 1 ≤ i ≤ m, which are often called the
canonical horizontal vector fields in O(M). In a local coordinate

(
xi, e

j
i ; 1 ≤ i, j ≤ m

)
,

those vector fields are written as follows:

Hi =

m∑
j=1

eji
∂

∂xj
−

m∑
k,l,p,q=1

Γqkl(x) eki e
l
p

∂

∂eqp
, 1 ≤ i ≤ m. (2.1)

Write H = (H1, . . . , Hm) for the sake of simplicity. Finally, we shall give a small remark
that

Remark 2.1. For f ∈ C∞(M ; R) and r = (x, ex) ∈ O(M), it holds that(
H(f ◦ π)

)
(r) = (ef)(x). (2.2)

Write Rm0 = Rm\{0}. For given z ∈ Rm0 , let Ξz =
{

Ξz,σ(r) ; σ ∈ [0, 1], r ∈ O(M)
}

be the one parameter group of diffeomorphisms over O(M), which is often denoted by
Ξz,σ(r) = Exp [σHz] (r), that is, the unique solution to the ordinary differential equation
of the form:

d

dσ
Ξz,σ(·) = (H z)

(
Ξz,σ(·)

)
, Ξz,0(·) = idO(M)(·), (2.3)

where idO(M) : O(M)→ O(M) is the identity. More precisely, the equation (2.3) means
that for any F ∈ C∞

(
O(M) ; R

)
,

F
(
Ξz,σ(r)

)
= F (r) +

∫ σ

0

(
(H z)F

)(
Ξz,u(r)

)
du. (2.4)

Denote by Ξz∗ =
{

Ξz,σ∗ (r) ; σ ∈ [0, 1], r ∈ O(M)
}

the family of the derivatives of the
diffeomorphism Ξz,σ(·) : O(M)→ O(M) for each z ∈ Rm0 and σ ∈ [0, 1]. Then, the family
Ξz∗(r) satisfies the equation

d

dσ
Ξz,σ∗ (·) =

(
(H z)∗(Ξ

z,σ(·))
)
◦
(
Ξz,σ∗ (·)

)
, Ξz,0∗ (·) = idO(M)(·). (2.5)
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And, the diffeomorphic property of the mapping Ξz tells us to see that
(
Ξz,σ∗ (·)

)−1
=

Ξ−z,σ∗ (·), and that the inverse satisfies the equation

d

dσ

(
Ξz,σ∗ (·)

)−1
= −

(
Ξz,σ∗ (·)

)−1 ◦ ((H z)∗(Ξ
z
σ(·))

)
,
(
Ξz,0∗ (·)

)−1
= idO(M)(·). (2.6)

Moreover, the z-derivative ∂zΞz =
{
∂zΞ

z,σ(r) ; σ ∈ [0, 1], r ∈ O(M)
}

satisfies the equa-
tion

d

dσ
∂zΞ

z,σ(·) = (H z)∗
(
Ξz,σ(·)

)
◦ ∂zΞz,σ(·) +H

(
Ξz,σ(·)

)
, ∂zΞ

z,0(·) = 0. (2.7)

Then, it can be solved as

∂zΞ
z,σ(·) =

∫ σ

0

(
Ξz,σ∗ (·)

)
◦
(
Ξz,u∗ (·)

)−1 ◦H(Ξz,u(·)
)
du. (2.8)

Moreover, we see from Proposition 6.3 of [10] that, for each z ∈ Rm0 , the curve ξz ={
ξz,σ(x) ; σ ∈ [0, 1], x ∈M

}
defined by

ξz,σ
(
x
)

:= π
(
Ξz,σ(r)

)
, r = (x, e) ∈ O(M) (2.9)

is the geodesic on M .
Now, we shall proceed our position to introduce the probabilistic setting in our

framework. Let T > 0 be fixed throughout the paper. Denote by ν(dz) a Lévy measure
over Rm0 such that ∫

Rm
0

(
|z|2 ∧ 1

)
ν(dz) < +∞.

On a probability space (Ω,F ,P), let B =
{
Bt = (B1

t , . . . , B
m
t ) ; t ∈ [0, T ]

}
be an m-

dimensional Brownian motion with B0 = 0 ∈ Rm, and J =
{
Jt ; t ∈ [0, T ]

}
the Rm-valued

pure-jump Lévy process defined by

Jt =

∫ t

0

∫
Rm

0

z N̄(ds, dz),

where N(dt, dz) is a Poisson random measure on [0, T ]×Rm0 with the intensity N̂(dt, dz) =

dt ν(dz), Ñ(dt, dz) = N(dt, dz)− N̂(dt, dz) is the compensated Poisson random measure.
For the sake of simplicity of notations, write

N̄(dt, dz) = I(|z|≤1) Ñ(dt, dz) + I(|z|>1)N(dt, dz).

For r = (x, ex) ∈ O(M), let R =
{
Rt ; t ∈ [0, T ]

}
be the O(M)-valued process deter-

mined by the jump-type stochastic differential equation on O(M) of the form:

dRt = H(Rt) ◦ dBt +

∫
Rm

0

{
Ξz,1(Rt−)−Rt−

}
N̄(dt, dz), R0 = r, (2.10)

where ◦dBt is the Stratonovich stochastic integral with respect to the m-dimensional
Brownian motion B. More precisely, the equation (2.10) should be written as

F (Rt) = F (r) +

∫ t

0

(HF )(Rs) ◦ dBs

+

∫ t

0

∫
Rm

0

{
F
(
Ξz,1(Rs−)

)
− F (Rs−)

}
N̄(ds, dz)

+

∫ t

0

∫
Rm

0

{
F
(
Ξz,1(Rs)

)
− F (Rs)−

(
(H z)F

)
(Rs) I(|z|≤1)

}
N̂(ds, dz)

(2.11)

EJP 26 (2021), paper 101.
Page 4/15

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP660
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gradient formulas for jump processes on manifolds

for all F ∈ C∞
(
O(M) ; R

)
with a compact support. In our situation, there exists the

pathwise unique solution to the equation (2.10) such that the process lies in O(M), and
that the explosion time of the process is infinity a.s. (cf. Kunita [11]-Proposition 7.1.1).
In order to emphasize the dependence on the initial point r ∈ O(M) of the equation
(2.10), we shall also write R(r) =

{
Rt(r) ; t ∈ [0, T ]

}
. Then, we can easily check that the

O(M)-valued process R is Markovian, and its infinitesimal generator A is

(AF )(r) =
1

2

m∑
i=1

(
Hi(HiF )

)
(r)

+

∫
Rm

0

{
F
(
Ξz,1(r)

)
− F (r)−

(
(H z)F

)
(r) I(|z|≤1)

}
ν(dz)

(2.12)

for F ∈ C∞
(
O(M) ;R

)
with a compact support. See Applebaum-Kunita [2], Fujiwara [5]

and Kunita [11] on the detailed studies.
Recall that x = π(r) ∈ M for r = (x, ex) ∈ O(M), and define the M -valued process

X =
{
Xt ; t ∈ [0, T ]

}
by Xt = π(Rt). Then, for f ∈ C∞(M ; R), we see from (2.11) that

f(Xt) = (f ◦ π)(Rt)

= (f ◦ π)(r) +

∫ t

0

(
H(f ◦ π)

)
(Rs) ◦ dBs

+

∫ t

0

∫
Rm

0

{
(f ◦ π)

(
Ξz,1(Rs−)

)
− (f ◦ π)(Rs−)

}
N̄(ds, dz)

+

∫ t

0

∫
Rm

0

{
(f ◦ π)

(
Ξz,1(Rs)

)
− (f ◦ π)(Rs)−

(
(H z)(f ◦ π)

)
(Rs) I(|z|≤1)

}
N̂(ds, dz)

= f(x) +

∫ t

0

(
(π∗H)f

)
(Xs) ◦ dBs +

∫ t

0

∫
Rm

0

{
f
(
ξz,1(Xs−)

)
− f(Xs−)

}
N̄(ds, dz)

+

∫ t

0

∫
Rm

0

{
f
(
ξz,1(Xs)

)
− f(Xs)−

(
((π∗H) z)f

)
(Xs) I(|z|≤1)

}
N̂(ds, dz),

that is, the M -valued process X =
{
Xt ; t ∈ [0, T ]

}
satisfies the following equation:

dXt = (π∗H)(Xt) ◦ dBt +

∫
Rm

0

{
ξz,1(Xt−)−Xt−

}
N̄(dt, dz), X0 = x. (2.13)

Remark that theM -valued processX depend on the initial point r = (x, ex) ∈ O(M) of the
equation (2.10), in general, because so do the push-forward vector fields π∗Hi (1 ≤ i ≤
m). We shall also denote the solution to the equation (2.13) by

{
Xt

(
(x, ex), (B, J)

)
; t ∈

[0, T ]
}

, in order to emphasize the dependence of the initial point (x, ex) and the driving
processes (B, J). Define the linear operator L by

(Lf)(x) =
1

2

m∑
i=1

(
(π∗Hi)

(
(π∗Hi)f

))
(x)

+

∫
Rm

0

{
f
(
ξz,1(x)

)
− f(x)−

(
((π∗H) z)f

)
(x) I(|z|≤1)

}
ν(dz).

(2.14)

Since the solution process X and the operator L depend on the choice of the initial point
r = (x, ex) ∈ O(M) of the equation (2.10), the process X is not always Markovian.

Proposition 2.2 (cf. [1]-Theorem 3.1). Suppose that the measure ν(dz) is rotationally
invariant, that is, ν(K) = ν(AK) for K ∈ B(Rm0 ) and A ∈ O(m,R), where O(m,R) ⊂
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Rm ⊗Rm is the family of orthogonal matrices, and AK = {Ax ; x ∈ K} is the image of
the set K ⊂ Rm0 by A ∈ Rm ⊗Rm. Then, for each t ∈ [0, T ],

Xt

(
(x, exA), (B, J)

) L
= Xt

(
(x, ex), (AB,AJ)

)
.

Proof. For an orthogonal matrix A ∈ O(m,R), we shall write

exA =
(
(exA)1, . . . , (exA)m

)
, (exA)i =

m∑
j=1

(ej)xAji.

Then, since the m-dimensional Brownian motion B and the Lévy measure ν(dz) over Rm0
are rotationally invariant, the process (AB,AJ) =

{
(ABt, AJt) ; t ∈ [0, T ]

}
has the same

law as (B, J), which implies that

Xt

(
(x, ex), (AB,AJ)

) L
= Xt

(
(x, ex), (B, J)

)
.

On the other hand, the uniqueness of the solutions to the equation (2.13) tells us to see
that

Xt

(
(x, ex), (AB,AJ)

) L
= Xt

(
(x, exA), (B, J)

)
.

Hence, combining these two results leads us to get the conclusion.

Example 2.3. The Lévy measures of the stable process and the truncated stable process
are typical examples with rotationally invariance property.

3 Results

In this section, let us introduce our results of the paper, which will be proved in the
next section. Write

(Ttf)(x) := E
[
f(Xt(x))

]
, (StF )(r) := E

[
F (Rt(r))

]
for f : M → R and F : O(M) → R with nice properties on the boundedness and the
regularity. Here, we have used the expressions Xt(x) and Rt(r), in order to emphasize
the dependence on the initial points x and r of the processes X and R, respectively.
It can be easily checked that the family

{
St ; t ∈ [0, T ]

}
is the Feller semigroup with

the infinitesimal generator A. Furthermore, under the rotationally invariant setting
on the measure ν(dz), the family

{
Tt ; t ∈ [0, T ]

}
is also the Feller semigroup with the

infinitesimal generator L (cf. Applebaum-Estrade [1]). Our main interest here is to
construct the gradient formula(

e(Ttf)
)
(x) = E

[
f(Xt(x)) Γt

]
in the situation where the measure ν(dz) is not always rotationally invariant, where
ex =

(
(e1)x, . . . , (em)x

)
is the orthonormal basis in TxM . So, we don’t know whether the

M -valued process X is Markovian or not. The formula raised above is also called the
celebrated Bismut formula for the diffusion process on M without any jumps, that is,
the M -valued Brownian motion with the infinitesimal generator 4M/2, where 4M is the
Laplace-Beltrami operator on M . See Hsu [6]-Theorems 8.3.3 and 8.3.4 on the details.

At the beginning, we shall add the additional condition on the Lévy measure ν(dz), in
order to guarantee the higher-order moments of the processes in our framework.

Assumption 3.1. Suppose that

∫
|z|>1

|z|p ν(dz) < +∞ for all p ≥ 1.
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Example 3.2. The Lévy measure of the truncated stable process, and the product one
of the 1-dimensional gamma processes or the 1-dimensional tempered stable processes,
satisfy Assumption 3.1.

Recall that the operator A given by (2.12) is the infinitesimal generator of the process
R, and write [A, V ] = AV − VA for V ∈ X

(
O(M)

)
. Let

{
Lt ; t ∈ [0, T ]

}
be the Rm ⊗Rm-

valued function determined by the ordinary differential equation of the form:

dLt
dt

= −Lt C(Rt), L0 = Im, (3.1)

where Im is the identity, H∗k(r) ∈ T ∗rO(M) is the dual of Hk(r) ∈ TrO(M), and

C(r) =


(
H∗1
(
[A, H1]

))
(r) · · ·

(
H∗m

(
[A, H1]

))
(r)

...
...(

H∗1
(
[A, Hm]

))
(r) · · ·

(
H∗m

(
[A, Hm]

))
(r)


for r ∈ O(M).

Theorem 3.3. Let 0 < t ≤ T . Then, under Assumption 3.1, it holds that(
e(Ttf)

)
(x) = E

[
f(Xt(x))

It
t

]
(3.2)

for f ∈ C∞(M ; R), where It :=

∫ t

0

(
Ls dBs

)∗
.

Remark 3.4. The equation (3.2) in Theorem 3.3 is exactly the same representation as
the celebrated Bismut formula for the Brownian motion on M (cf. Hsu [6]-Theorems
8.3.3 and 8.3.4).

Theorem 3.3 is the result on the gradient formula focused on the diffusion term in the
equation (2.13) only. Since (2.13) also has the jump term, our next interest is to discuss
the problem whether the effect of the jump term can be included in the gradient formula
or not. Now, we shall proceed our position to discuss such a problem. Before doing it,
we shall add the following conditions on the measure ν(dz):

Assumption 3.5. Suppose that

(i) there exists α > 0 such that lim inf
ρ↘0

ρα
∫
Rm

0

(∣∣∣∣z · θρ
∣∣∣∣2 ∧ 1

)
ν(dz) > 0,

(ii) the measure ν(dz) has the smooth density g(z) with respect to the Lebesgue
measure on Rm0 such that lim

|z|→+∞
|z|2 g(z) = 0.

Remark 3.6. Whenever the regularity of the density for the solution to a stochastic
differential equation of jump type in the Euclidean space is discussed, we often see the
conditions on the measure ν(dz):

(a) the order condition: there exists a constant 0 < β < 2 such that

lim inf
ρ↘0

ρ−β
∫
|z|≤ρ

|z|2 ν(dz) > 0,

(b) the non-degenerate condition: there exists a positive definite matrix Θ ∈ Rm ⊗Rm
such that

lim inf
ρ↘0

(∫
|z|≤ρ

|z|2 ν(dz)

)−1 ∫
|z|≤ρ

|z · θ|2 ν(dz) ≥ θ ·Θ θ

for any θ ∈ Rm with |θ| = 1.
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See Ishikawa [9] on the detailed statements. The conditions (a) and (b) stated above
implies the condition (i) in Assumption 3.5. In fact, it is easy to check that∫

Rm
0

(∣∣∣∣z · θρ
∣∣∣∣2 ∧ 1

)
ν(dz) ≥ ρ−2

∫
|z|≤ρ

|z · θ|2 ν(dz) ≥ c ρ−2+β θ ·Θ θ.

Moreover, we shall suppose the geometric condition as follows:

Assumption 3.7. The manifoldM is simply connected and has the non-positive sectional
curvature.

Remark 3.8. Since the manifold M is compact, so is the orthonormal frame bundle
O(M). Hence, the vector fields

{
Hi ; 1 ≤ i ≤ m

}
on O(M) are complete. Then, the

Cartan-Hadamard theorem yields that the mapping Rm0 3 z 7−→ ξz,σ(x) = π
(
Ξz,σ(r)

)
∈M

is the diffeomorphism for each r = (x, e) ∈ O(M) and σ ∈ [0, 1]. See Sakai [13] on the
detailed statement.

Then, taking the (partial) derivative of (2.9) in z ∈ Rm0 implies that(
π∗(Ξ

z,σ(r))
)
◦
(
∂zΞ

z,σ(r)
)

= ∂zξ
z,σ(π(r)).

Since the inverse of ∂zξz,σ(r) is well-defined as stated above, we see that the inverse of
∂zΞ

z,σ(r) is also well-defined, and that(
∂zΞ

z,σ(r)
)−1

=
{
∂zξ

z,σ(r)
}−1 ◦ (π∗(Ξz,σ(r))

)
.

Remark 3.9. We shall give a remark on the case where the manifold M doesn’t always
satisfy Assumption 3.7. Then, we need another condition on the Lévy measure ν(dz)

such that the support of the measure ν(dz) is included in the closed ball centered at the
origin with the injectivity radius of the manifold M . Remark that the injectivity radius is
strictly positive in our such situation. Hence, the inverse of ∂zξz,σ(r) is well-defined on
the support of the measure ν(dz), and so is the inverse of ∂zΞz,σ(r).

Recall that x ∈ M is the initial point of the process X. Let h(= hx) : [0, T ] ×Rm0 →
[0,+∞) be deterministic such that h(t, ·) ∈ C1

b (Rm0 ; [0,+∞)) for each t ∈ [0, T ], and that
h(t, z) ≤ CT

(
|z|2∧1

)
, where CT is the positive constant depending on T . Let us introduce

the following notations:

At =

∫ t

0

∫
Rm

0

h(s, z)N(ds, dz), v(s, z) =
(
∂zΞ

z,1(Rs)
)−1 ◦ (H(Ξz,1 ◦Rs)

)
(r) h(s, z),

Jt =

∫ t

0

∫
Rm

0

divz
(
g(z) v(s, z)

)
g(z)

Ñ(ds, dz), Kt =

∫ t

0

∫
Rm

0

∂zh(s, z) v(s, z)N(ds, dz).

Theorem 3.10. Let 0 < t ≤ T . Then, under Assumptions 3.1, 3.5 and 3.7, it holds that,
for f ∈ C∞(M ; R), (

e(Ttf)
)
(x) = E

[
f(Xt)

(
− Jt
At

+
Kt

A2
t

)]
. (3.3)

Remark 3.11. From the property on the function h, we can check, similarly to Remark
3.2 in Takeuchi [15], that 1/At ∈ Lp(Ω) for any p > 1. In fact, define

Mλ
t :=

∫ t

0

∫
Rm

0

{
exp(−λh(s, z))− 1

}
N̂(ds, dz). (3.4)

Then, we see that

E
[
A−pt

]
=

1

Γ(p)

∫ +∞

0

λp−1E
[

exp(−λAt)
]
dλ
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=
1

Γ(p)

∫ +∞

0

λp−1E
[

exp(−λAt −Mλ
t )
]

exp(Mλ
t ) dλ

≤ 1

Γ(p)

∫ +∞

0

λp−1 exp

{
−CT λ

∫
Rm

0

(
|z|2 ∧ 1

)
ν(dz)

}
dλ < +∞,

where Γ(p) =

∫ +∞

0

xp−1e−xdx is the usual gamma function.

Theorem 3.10 is only focused on the effect of the jump term in the equation (2.10)
or (2.13). We can also derive the hybrid result on the diffusion and the jump terms as
follows:

Theorem 3.12. Let 0 < t ≤ T . Then, under Assumptions 3.1, 3.5 and 3.7, it holds that,
for f ∈ C∞(M ; R),(

e(Ttf)
)
(x) = E

[
f(Xt)

(
It − Jt
t+At

+
Kt

(t+At)2

)]
. (3.5)

Remark 3.13. Since

dimL
[
(π∗Hi)(x) ; 1 ≤ i ≤ m

]
= dimL

[
ei(x) ; 1 ≤ i ≤ m

]
= m

for any x ∈ M , where L[ai ; 1 ≤ i ≤ m] represents the linear space spanned by the
vectors a1, . . . , am ∈ TxM , we can justify from Theorems 3.3, 3.10 and 3.12 that, for
each 0 < t ≤ T , the probability law of the M -valued random variable Xt is absolutely
continuous with respect to the volume element on M , via the Sobolev-type inequality.
See Takeuchi [14] and Taniguchi [16] on the detailed argument.

4 Proofs

In this section, we shall give the sketch of the proofs on the results raised in the
previous section only. Our strategy is almost parallel to the method in Takeuchi [15] on
the study of the integration by parts formula in the case of the Euclidean space.

For f ∈ C2(M ; R) with a compact support, define

Φ(s, r) := E
[
(f ◦ π)(Rt−s(r))

]
for s ∈ [0, t) and r = (x, e) ∈ O(M). Then, we see that Φ ∈ C1,2

b ([0, t) × O(M) ; R), and
that the Kolmogorov backward equation(

∂Φ

∂s

)
(s, r) + (AΦ)(s, r) = 0, (s ∈ [0, t)) lim

s↗t
Φ(s, r) = f(x) (4.1)

is satisfied. Hence, the Itô formula leads us to obtain that, for s ∈ [0, t),

Φ(s,Rs) = Φ(0, r) +

∫ s

0

(HΦ)(u,Ru) dBu

+

∫ s

0

∫
Rm

0

{
Φ(u,Ξz,1(Ru−))− Φ(u,Ru−)

}
Ñ(du, dz).

(4.2)

Taking the limit as s↗ t implies that

f(Xt) = E
[
f(Xt)

]
+

∫ t

0

(HΦ)(u,Ru) dBu

+

∫ t

0

∫
Rm

0

{
Φ(u,Ξz,1(Ru−))− Φ(u,Ru−)

}
Ñ(du, dz),

(4.3)

because of f ∈ C2(M ; R) with a compact support.
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4.1 Proof of Theorem 3.3

In this subsection, let us give the proof of Theorem 3.3. Before doing it, we shall
prepare the following lemma, which will play a key role in the argument.

Lemma 4.1. For s ∈ [0, t] and 1 ≤ i ≤ m, it holds that

m∑
j=1

Lijs (HjΦ)(s,Rs) = (HiΦ)(0, r) +

∫ s

0

m∑
j,k=1

Liju (HkHjΦ)(u,Ru) dBku

+

∫ s

0

∫
Rm

0

m∑
j=1

Liju−
{

(HjΦ)(u,Ξz,1(Ru−))− (HjΦ)(u,Ru−)
}
Ñ(du, dz).

(4.4)

Proof. Let s ∈ [0, t), 1 ≤ j ≤ m, and [V1, V2] = V1 V2 − V2 V1 for V1, V2 ∈ X
(
O(M)

)
. Then,

since
(
[(z H), Hi]Φ

)
(u, r) = 0 for 1 ≤ i ≤ m, we have

(
[A, Hj ]Φ

)
(u,Ru) =

1

2

m∑
i=1

(
[HiHi, Hj ]Φ

)
(u,Ru)

+

∫
Rm

0

{
(HjΦ)

(
u,Ξz,1(Ru)

)
−
(
Hj(Φ ◦ Ξz,1)

)
(u,Ru)

}
ν(dz).

Thus, applying the Itô formula implies that

(HjΦ)(s,Rs) = (HjΦ)(0, r) +

∫ s

0

m∑
k=1

(
Hk(HjΦ)

)
(u,Ru) dBku

+

∫ s

0

∫
Rm

0

{
(HjΦ)(u,Ξz,1(Ru−))− (HjΦ)(u,Ru−)

}
Ñ(du, dz)

+

∫ s

0

{
∂

∂u

(
(HjΦ)(u,Ru)

)
+
(
A(HjΦ)

)
(u,Ru)

}
du

= (HjΦ)(0, r) +

∫ s

0

m∑
k=1

(
Hk(HjΦ)

)
(u,Ru) dBku

+

∫ s

0

∫
Rm

0

{
(HjΦ)(u,Ξz,1(Ru−))− (HjΦ)(u,Ru−)

}
Ñ(du, dz)

+

∫ s

0

1

2

m∑
i=1

(
[HiHi, Hj ]Φ

)
(u,Ru) du

+

∫ s

0

∫
Rm

0

{
(HjΦ)

(
u,Ξz,1(Ru)

)
−
(
Hj(Φ ◦ Ξz,1)

)
(u,Ru)

}
ν(dz) du

for s ∈ [0, t), from the equation (4.1). Remark that

(
V (f ◦ π)

)
(r) =

m∑
j=1

((
H∗j (V )Hj

)
(f ◦ π)

)
(r)

for V ∈ X
(
O(M)

)
, and that

m∑
j=1

dLijs
ds

(HjΦ)(s,Rs) = −
m∑
j=1

Lijs
(
[A, Hj ]Φ

)
(s,Rs)

for 1 ≤ i ≤ m. Then, the Itô product formula enables us to get the assertion (4.4) for
s ∈ [0, t). Finally, taking the limit in the equality (4.4) for s ∈ [0, t) as s ↗ t leads us to
justify the equality (4.4) for s ∈ [0, t], because of f ∈ C2(M ; R) with a compact support.
The proof is complete.
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(Proof of Theorem 3.3.) From Lemma 4.1, the process
{
Ns ; s ∈ [0, t]

}
defined by

Ns = Ls

 (H1Φ)(s,Rs)
...

(HmΦ)(s,Rs)


is a martingale. Since(

e(Ttf)
)
(x) = ex

(
E
[
f(Xt(x))

])
= Hr

(
E
[
(f ◦ π)(Rt(r))

])
= (H Φ)(0, r),

we have (
e(Ttf)

)
(x) = N∗0 = E

[
N∗t
]
. (4.5)

Denote the inner product in Rm by 〈 ·, · 〉m. Then, the expressions (4.3) and (4.5), and
the Itô product rule enable us to see that, for v ∈ Rm,〈(

e(Ttf)
)
(x)∗, v

〉
m

=
〈
E
[
Nt
]
, v
〉
m

=

〈
E

[
1

t

∫ t

0

Ns ds

]
, v

〉
m

=
1

t
E

∫ t

0

m∑
i,j=1

Lijs (HjΦ)(s,Rs(r)) vi ds


= E

[∫ t

0

(HΦ)(s,Rs(r)) dBs

〈
1

t

∫ t

0

Ls dBs, v

〉
m

]
= E

[{
Φ(t, Rt(r))− Φ(0, r)

}〈 1

t

∫ t

0

Ls dBs, v

〉
m

]
= E

[
f(Xt(x))

〈
1

t

∫ t

0

Ls dBs, v

〉
m

]
=

〈
E

[
f(Xt(x))

I∗t
t

]
, v

〉
m

.

Here, the fourth equality can be justified by the computation of the quadratic variation
on stochastic integrals with respect to the Brownian motions, while the fifth equality is
just the result by the Itô product rule and (4.3). The proof of Theorem 3.3 is complete.

4.2 Proof of Theorem 3.10

Here, we shall give the proof of Theorem 3.10. Assume Assumptions 3.1 and 3.5 on
the measure ν(dz), and Assumption 3.7 on the manifold M , throughout this subsection.
Let us introduce the following notations:

Ât =

∫ t

0

∫
Rm

0

h(s, z) N̂(ds, dz), Ãt =

∫ t

0

∫
Rm

0

h(s, z) Ñ(ds, dz),

Lt =

∫ t

0

∫
Rm

0

{
Φ
(
s,Ξz,1(Rs−)

)
− Φ(s,Rs−)

}
N(ds, dz),

L̂t =

∫ t

0

∫
Rm

0

{
Φ
(
s,Ξz,1(Rs−)

)
− Φ(s,Rs−)

}
N̂(ds, dz),

L̃t =

∫ t

0

∫
Rm

0

{
Φ
(
s,Ξz,1(Rs−)

)
− Φ(s,Rs−)

}
Ñ(ds, dz).

Our strategy to attack the main interest in this section is almost parallel to the method
on the Euclidean space studied in [15].
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Lemma 4.2.

E
[
f(Xt)At

]
= E

[∫ t

0

∫
Rm

0

Φ(s,Ξz,1(Rs))h(s, z) N̂(ds, dz)

]
. (4.6)

Proof. Write Wt :=

∫ t

0

(HΦ)(s,Rs) dBs. Then, the Itô product formula yields that

E
[
WtAt

]
= E

[∫ t

0

∫
Rm

0

Ws h(s, z) N̂(ds, dz)

]
,

E
[
L̃tAt

]
= E

[∫ t

0

∫
Rm

0

L̃s h(s, z) N̂(ds, dz)

]

+ E

[∫ t

0

∫
Rm

0

(
Φ(s,Ξz,1(Rs))− Φ(s,Rs)

)
h(s, z) N̂(ds, dz)

]
.

Since f(Xt) = E
[
f(Xt)

]
+Wt + L̃t from (4.3), we have

E
[
f(Xt)At

]
= E

[
E
[
f(Xt)

]
At

]
+ E

[
WtAt

]
+ E

[
L̃tAt

]
= E

[
f(Xt)

]
E
[
At
]

+ E

[∫ t

0

∫
Rm

0

Ws h(s, z) N̂(ds, dz)

]

+ E

[∫ t

0

∫
Rm

0

L̃s h(s, z) N̂(ds, dz)

]

+ E

[∫ t

0

∫
Rm

0

{
Φ(s,Ξz,1(Rs))− Φ(s,Rs)

}
h(s, z) N̂(ds, dz)

]

= E
[
f(Xt) Ât

]
− E

[∫ t

0

∫
Rm

0

(
Wt −Ws

)
h(s, z) N̂(ds, dz)

]

− E

[∫ t

0

∫
Rm

0

(
L̃t − L̃s

)
h(s, z) N̂(ds, dz)

]

+ E

[∫ t

0

∫
Rm

0

(
Φ(s,Ξz,1(Rs))− Φ(s,Rs)

)
h(s, z) N̂(ds, dz)

]
=: I1,t + I2,t + I3,t + I4,t.

As for I1,T , since the process
{

Φ(s,Rs) ; s ∈ [0, t]
}

is a martingale from (4.2) and (4.3),
we have

I1,t = E

[
Φ(t, Rt)

∫ t

0

∫
Rm

0

h(s, z) N̂(ds, dz)

]

=

∫ t

0

∫
Rm

0

E
[
E
[
Φ(t, Rt)

∣∣Fs]h(s, z)
]
N̂(ds, dz)

=

∫ t

0

∫
Rm

0

E
[
Φ(s,Rs)h(s, z)

]
N̂(ds, dz)

= E

[∫ t

0

∫
Rm

0

Φ(s,Rs)h(s, z) N̂(ds, dz)

]
.
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As for I2,t and I3,t, since W =
{
Ws ; s ∈ [0, t]

}
and L̃ =

{
L̃s ; s ∈ [0, t]

}
are martingales,

we see that

I2,t = −
∫ t

0

∫
Rm

0

E
[
E
[
Wt −Ws

∣∣Fs]h(s, z)
]
N̂(ds, dz) = 0,

I3,t = −
∫ t

0

∫
Rm

0

E
[
E
[
L̃t − L̃s

∣∣Fs]h(s, z)
]
N̂(ds, dz) = 0.

Therefore, we can get that

E
[
f(Xt)At

]
= I1,t + I4,t = E

[∫ t

0

∫
Rm

0

Φ(s,Ξz,1(Rs))h(s, z) N̂(ds, dz)

]
.

The proof is complete.

Lemma 4.3.

E
[
ex
(
f(Xt(x))

)
At
]

= −E
[
f(Xt(x)) Jt

]
. (4.7)

Proof. Remark that

E

[∫ t

0

∫
Rm

0

Φ(s,Ξz,1(Rs)) ex(h(s, z)) N̂(ds, dz)

]

= E

[
f(Xt)

∫ t

0

∫
Rm

0

ex(h(s, z))N(ds, dz)

]
= E

[
f(Xt) ex(At)

]
,

similarly to Lemma 4.2. Furthermore, by using the equality (4.3) and the divergence
formula on the usual integral over Rm0 , we see that

E
[
f(Xt) Jt

]
= E

[
L̃t

∫ t

0

∫
Rm

0

divz(g(z) v(s, z))

g(z)
Ñ(ds, dz)

]

= E

[∫ t

0

∫
Rm

0

{
Φ(s,Ξz,1(Rs))− Φ(s,Rs)

}
divz(g(z) v(s, z)) dz ds

]

= −E

[∫ t

0

∫
Rm

0

∂z
(
Φ(s,Ξz,1(Rs))

)
v(s, z) N̂(ds, dz)

]

= −E

[∫ t

0

∫
Rm

0

Hr

(
Φ(s,Ξz,1(Rs(r)))

)
h(s, z) N̂(ds, dz)

]
.

Hence, Lemma 4.2 enables us to get

E
[
ex(f(Xt))At

]
= E

[
ex(f(Xt)At)

]
− E

[
f(Xt) ex(At)

]
= ex

(
E
[
f(Xt)At

])
− E

[∫ t

0

∫
Rm

0

Φ(s,Ξz,1(Rs)) ex(h(s, z)) N̂(ds, dz)

]

= ex

(
E

[∫ t

0

∫
Rm

0

Φ(s,Ξz,1(Rs))h(s, z) N̂(ds, dz)

])

− E

[∫ t

0

∫
Rm

0

Φ(s,Ξz,1(Rs)) ex(h(s, z)) N̂(ds, dz)

]
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= E

[∫ t

0

∫
Rm

0

ex
(
Φ(s,Ξz,1(Rs))

)
h(s, z) N̂(ds, dz)

]

= E

[∫ t

0

∫
Rm

0

Hr

(
Φ(s,Ξz,1(Rs(r)))

)
h(s, z) N̂(ds, dz)

]
= −E

[
f(Xt) Jt

]
,

which completes the proof.

(Proof of Theorem 3.10.) Recall the definition (3.4) of Mλ
t in Remark 3.11. For each

λ > 0, we shall define
dPλ

dP

∣∣∣∣
Ft

:= exp
(
− λAt −Mλ

t

)
. (4.8)

Since the [0,+∞)-valued function h is deterministic, the Girsanov theorem for jump
processes tells us to see that N(ds, dz) is also the Poisson random measure with the
intensity

N̂λ(ds, dz) := exp
(
− λh(t, z)

)
N̂(dt, dz)

under the new probability measure dPλ, which can be checked easily as a routine work
by the application of the Itô formula.

Since

divz(exp(−λh(s, z)) g(z) v(s, z))

exp(−λh(s, z)) g(z)
=

divz(g(z) v(s, z))

g(z)
− λ∂zh(s, z) v(s, z),

we have

Jλt :=

∫ t

0

∫
Rm

0

divz(exp(−λh(s, z)) g(z) v(t, z))

exp(−λh(s, z)) g(z)
Ñλ(ds, dz)

= Jt − λKt,

(4.9)

where Ñλ(ds, dz) = N(ds, dz) − N̂λ(ds, dz). Applying Lemma 4.3 to the measure dPλ

implies that

Eλ
[
ex
(
f(XT )

)
AT

]
= −Eλ

[
f(Xt) J

λ
t

]
.

Since the [0,+∞)-valued function h is deterministic, we see that

E
[
ex
(
f(XT )

)]
=

∫ ∞
0

Eλ
[
ex
(
f(XT )

)
AT

]
exp(Mλ

T ) dλ

=

∫ ∞
0

Eλ
[
f(Xt)

(
− Jt + λKt

)]
exp(Mλ

T ) dλ

= E

[
f(Xt)

(
− Jt
At

+
Kt

A2
t

)]
,

which completes the proof of Theorem 3.10.

4.3 Proof of Theorem 3.12

In this subsection, let us give the proof of Theorem 3.12. Since our strategy to attack
the problem is almost parallel to Subsection 4.2, we shall explain its sketch, only.

(Proof of Theorem 3.12.) Recall the function Mλ
t given by (3.4) in Remark 3.11, and

the probability measure Pλ defined by (4.8) in Subsection 4.2. Then, similarly to the
arguments discussed in Subsections 4.1 and 4.2, we can obtain that

Eλ
[
ex
(
f(Xt(x))

) (
t+At

)]
= Eλ

[
f(Xt(x))

{
It − Jt + λKt

}]
.
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Gradient formulas for jump processes on manifolds

Hence, similarly to the proof of Theorem 3.10, we see that

ex

(
E
[
f(Xt)

])
= E

[
ex
(
f(Xt)

)
(t+At)

∫ ∞
0

exp{−λ (t+At)} dλ
]

=

∫ ∞
0

Eλ
[
ex
(
f(Xt)

)
(t+At)

]
exp(−λt+Nλ

t ) dλ

=

∫ ∞
0

Eλ
[
f(Xt)

(
It − Jt + λKt

)]
exp(−λt+Nλ

t ) dλ

= E

[
f(Xt)

(
It − Jt
t+At

+
Kt

(t+At)2

)]
.

The proof of Theorem 3.12 is complete.
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