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Self-similar real trees defined as fixed points and
their geometric properties*
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Abstract

We consider fixed point equations for probability measures charging measured com-
pact metric spaces that naturally yield continuum random trees. On the one hand,
we study the existence/uniqueness of the fixed points and the convergence of the
corresponding iterative schemes. On the other hand, we study the geometric prop-
erties of the random measured real trees that are fixed points, in particular their
fractal properties. We obtain bounds on the Minkowski and Hausdorff dimension, that
are proved tight in a number of applications, including the very classical continuum
random tree, but also for the dual trees of random recursive triangulations of the
disk introduced by Curien and Le Gall [Ann Probab, vol. 39, 2011]. The method
happens to be especially efficient to treat cases for which the mass measure on the
real tree induced by natural encodings only provides weak estimates on the Hausdorff
dimensions.
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1 Introduction

Since the pioneering work of Aldous [3, 5] who introduced the Brownian continuum
random tree (Brownian CRT) as a scaling limit for uniformly random labelled trees, simi-
lar objects have been shown to play a crucial role in a number of limits of combinatorial
problems that relate to computer science, physics or biology. These objects are real
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Self-similar real trees defined as fixed points

trees, or tree-like compact metric spaces (see Section 3 for a formal definition), and
they are usually equipped with a probability measure that yields a notion of “mass”.
They naturally appear when studying asymptotic properties of discrete combinatorial or
probabilistic objects that are intrinsically “branching” or recursive such as branching
processes and fragmentation processes. More surprisingly, further prominent examples
are that of random maps [17, 36, 40, 46] and of Liouville quantum gravity [23] that
would a priori not be expected to relate to tree structures.

In a number of cases, these continuous objects, or, more precisely, their distributions,
happen to satisfy a stochastic fixed point equation; such fixed point equations are often
formulated in terms of the distribution of functions (later referred to as height functions)
that encode the trees. One may think in particular of the Brownian CRT [6], of trees
that are dual to recursive triangulations of the disk [19], but also of the genealogies
of self-similar fragmentations [32]. We will be more precise about the equations we
consider shortly, but it is nonetheless informative to fix ideas: informally, a distributional
fixed point equation for a random variable (r.v.) X taking values in some Polish space S
of “objects” is an equation of the form

X
d
= T ((Xi)i≥1,Ξ), (1.1)

where (Xi)i≥1 is a family of independent and identically distributed copies of X, T is a
suitable map, and Ξ incorporates additional external randomness. (A precise formulation
of such an equation for random metric spaces is more involved. See display (2.4) below.)
The fact that natural objects satisfy equations such as the one in (1.1) raises many
questions about the properties of such equations and of their possible fixed points:

(i) Under which conditions does there exist a fixed point?

(ii) Under which conditions is this fixed point unique?

(iii) Can the fixed point be obtained by some iterative procedure?

The answers to these questions of course depend on the space S that is considered, and
some special care is needed in specifying it.

One of the striking features of random real trees that appear ubiquitous is their
fractal nature. Among the most classical real trees one may cite the Lévy trees (including
the Brownian CRT and the stable trees), which are the scaling limits of rescaled Galton–
Watson processes, and whose fractal properties have been investigated by Duquesne and
Le Gall [25, 26] and Picard [44]. Another important example is that of the fragmentation
trees encoding certain self-similar fragmentation processes whose fractal properties
have been studied by Haas and Miermont [32] and more recently by Stephenson [47]. In
view of the recursive self-similarity of Equation (1.1), this raises an additional question
about the geometry of the fixed points:

(iv) Can one quantify the fractal dimensions of the fixed points?

Finally, observe that, for instance, the Brownian CRT is binary, in the sense that the
removal of any point disconnects the space into 1, 2 or 3 connected components with
probability one (the number of connected components is called the degree of the point
removed). This is to be compared with the classical decomposition of the Brownian CRT
into three pieces [2, 6, 18]. Another example we have already mentioned, dual trees
of recursive triangulations of the disk happen to have maximal degree three, while the
natural fixed point equation they satisfy only uses two pieces. These considerations raise
yet another question about the geometry of solutions to equations such as (1.1):

(v) Can one fully characterize the degrees of points in fixed points?
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Self-similar real trees defined as fixed points

Our aim in this paper is to provide answers to questions (i)–(v) in a general framework
in which the limit objects are (most often) some classes of measured real trees. This
framework allows for instance to deal with certain recalcitrant cases where the natural
height function for the tree is not a “good” encoding, in the sense that its optimal
Hölder exponent does not yield the fractal dimension of the metric space (we will be
more precise shortly). At this point, let us mention that questions (i), (ii) and (iii) have
recently been studied by Albenque and Goldschmidt [2] for the specific example where
the fixed point equation is the one described by Aldous in [6] and that is satisfied by the
Brownian CRT. In passing, our results answer a question in [2] regarding point (iii) and
the convergence to the (non-unique, but natural) fixed point. Other applications of our
results concern trees arising as scaling limits in the problem of recursive triangulations
of the disk (see [19] and [14]), and but also other natural generalizations. Rembart and
Winkel [45] have also very recently studied questions (i), (ii) and (iii) for a decomposition
of the form (2.4) which is rather different from ours. See the remark at the end of
Section 2.3 for details.

Organization of the paper. The paper is organized as follows: In Section 2, we first give
the relevant background on the objects, metrics and spaces, and geometric properties we
use in the document; we then introduce the precise setting for the recursive equations
we consider, and the corresponding functional point of view. Section 3 is devoted to the
statements of our main results; it also contains a sample of applications and an overview
of the techniques we use. Section 4 contains the proofs of the results about existence
and uniqueness of solutions to our recursive equations, as well the behaviour of iterative
schemes. Section 5 contains the proofs of the geometric properties of the fixed points.
Finally, Section 6 is devoted to applications. Various proofs of technical results are given
in appendix.

2 Settings and preliminaries

2.1 Spaces, metrics and convergence

With the exception of Section 2.5, we assume throughout the paper that metric spaces
are compact. General references on the topics that we are about to discuss include
[15, 30, 31]. For measured spaces, we restrict our attention to probability measures.

The Gromov–Hausdorff–Prokhorov topology. For two compact metric spaces (X , d) and
(X ′, d′), the Gromov–Hausdorff distance dgh((X , d), (X ′, d′)) is defined as

dgh((X , d), (X ′, d′)) = inf
Z,φ,φ′

dZ
h (φ(X ), φ′(X ′)), (2.1)

where the infimum is taken over all compact metric spaces (Z, dZ), and isometries
φ : X → Z and φ′ : X ′ → Z. Here, dZ

h denotes the Hausdorff distance in Z, that is

dZ
h (A,B) = inf{ε > 0 : A ⊆ Bε andB ⊆ Aε},

with Aε = {x ∈ Z : dZ(x,A) ≤ ε}. If (X , d) and (X ′, d′) are isometric, then
dgh((X , d), (X ′, d′)) = 0. dgh induces a metric on the set Kgh of isometry classes of
compact metric spaces and turns this set into a Polish space, see, e.g. [35, Theorem 2.1].

A compact rooted (or pointed) measured metric space (X , d, µ, ρ) is a compact metric
space (X , d) endowed with a probability measure µ and one distinguished point ρ. For
two such spaces X = (X , d, µ, ρ) and X′ = (X ′, d′, µ′, ρ′), we define the Gromov–Hausdorff–
Prokhorov distance by

dghp(X,X′) = inf
Z,φ,φ′

{
dZ(φ(ρ), φ′(ρ′)) + dZ

h (φ(X ), φ′(X ′))

+ dZ
p (φ∗(µ), φ′∗(µ

′))
}
.
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Self-similar real trees defined as fixed points

Here, the infimum is to be understood as in (2.1), φ∗(µ) is the push-forward of µ in Z,
and dZ

p denotes the Prokhorov metric on the set of probability measures on Z, that is,

dZ
p (ν1, ν2) = inf{ε > 0 : ν1(A) ≤ ν2(Aε) + ε and ν2(A) ≤ ν1(Aε) + ε

for all measurable sets A ⊆ X}.

We call X and X′ ghp-isometric if there exists a bijective isometry φ between X and
X ′ that maps ρ to ρ′ and such that φ∗(µ) = µ′. dghp induces a metric on the set Kghp

of ghp-isometry classes of compact rooted measured metric spaces that turns it into a
Polish space [1]. For a compact rooted measured metric space X (or an element of Kghp),
we set ‖X‖ = sup{d(ρ, x) : x ∈ X}.
The Gromov–Prokhorov topology. Analogously to the Gromov–Hausdorff–Prokhorov
distance, for two compact rooted measured metric spaces X = (X , d, µ, ρ) and X′ =

(X ′, d′, µ′, ρ′) 1 we define

dgp(X,X′) = inf
Z,φ,φ′

{
dZ(φ(ρ), φ′(ρ′)) + dZ

p (φ∗(µ), φ′∗(µ
′))
}
.

We call X and X′ gp-isometric if dgp(X,X′) = 0 which happens to be the case if and
only if there exists a bijective isometry φ : supp(µ) → supp(µ′) with ρ′ = φ(ρ) and
µ′ = φ∗(µ). (Here supp(µ) denotes the support of µ.) Endowed with dgp, the set Kgp

of gp-isometry classes of compact rooted measured metric spaces becomes a Polish
space [30, Proposition 5.6]. In general, gp-equivalence classes in Kgp contain spaces
that are not ghp-isometric. But when both µ and µ′ have full support, then X and X′ are
gp-isometric if and only if they are ghp-isometric. Thus, if we denote by Kghp

f the set of
ghp-isometry classes of compact rooted measured metric spaces satisfying

(C1) supp(µ) = X ,

then, there exists a natural bijection ι between the spaces Kghp
f and Kgp. The set Kghp

f is
measurable, and ι bimeasurable so we can and will consider any random variable with
values in Kghp

f also as random variable in Kgp and vice versa. (Proving these statements
makes use of Lemma 3.2 and Corollary 5.6 in [9] as well as the Lusin–Souslin theorem.
See Lemma 25 in the appendix for details.)

Remark. We occasionally use results from [15, 22, 30, 31] which only treat the case of
unrooted compact measured metric spaces. Incorporating a root vertex only generates
marginal modifications that we do not discuss in detail.

2.2 Real trees, continuum trees and recursive decompositions

We are mostly interested in a certain class of metric spaces that are tree-like.

Real trees. A metric space (T , d) is a called real tree if it has the following properties:
i) for every x, y ∈ T there exists a unique isometry ϕx,y : [0, d(x, y)] → T with
ϕx,y(0) = x and ϕx,y(d(x, y)) = y, (we write Jx, yK := ϕx,y([0, d(x, y)]) for the seg-
ment between x and y in T ),

ii) if q : [0, 1] → T is a continuous and injective map with q(0) = x, q(1) = y, then
q([0, 1]) = Jx, yK.

We denote by Tgh the closed subset of Kgh consisting of isometry classes of compact
real trees. For a compact real tree (T , d) and x ∈ T , we denote by deg(x) the number of
connected components of T \ {x}. We call x ∈ T a leaf if deg(x) = 1, and abbreviate L

1When we do not introduce the components of X with a given decoration explicitly, we always suppose that
they would carry the same decoration as done here for X′.
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Self-similar real trees defined as fixed points

for the set of leaves. We call x ∈ T a branch point if deg(x) ≥ 3. By compactness, the
set of branch points B is at most countable.

Measured and continuum real trees. A compact rooted measured real tree T = (T , d, µ, ρ)

is a compact real tree (T , d) endowed with a probability measure µ and a distinguished
point ρ ∈ T called the root. (Recall that we restrict our attention to the setting where the
measure is a probability distribution.) For x ∈ T , the distance d(x, ρ) is called the height
of x and ‖T‖ := sup{d(x, ρ) : x ∈ T } the height of T. By Tghp ⊆ Kghp we denote the closed
subset of ghp-isometry classes of compact rooted measured real trees. Spaces carrying
a measure with full support are particularly important, and we let Tghp

f = K
ghp
f ∩ Tghp

and call elements in Tghp
f continuum real trees (or simply continuum trees). Note that

both Kghp
f and Tghp

f are non-closed subsets of Kghp. In the literature on continuum real
trees, see, e.g. [2, 5], one often finds the following two additional conditions:

(C2) µ has no atoms and (C3) µ(L ) = 1 .

All continuum trees playing a role in this paper satisfy both C2 and C3. However, we
emphasize the fact that we do not impose these conditions beforehand: they can be
proved to hold as a non-trivial consequence of our setting; see Proposition 7.

Real trees encoded by excursions. One natural way to define real trees is via an encoding
by continuous excursions (see e.g., [28, 35]). Let C be the space of continuous functions
on [0, 1], which we always endow with the uniform norm ‖f‖ = supt∈[0,1] |f(t)|. Let also
Cex denote the set of unit-length non-negative continuous excursions, that is, the set
of functions f ∈ C such that f(0) = f(1) = 0 and f(t) ≥ 0 for all t ∈ (0, 1). For f ∈ Cex,
define the pseudometric df by

df (x, y) := f(x) + f(y)− 2 inf{f(s) : x ∧ y ≤ s ≤ x ∨ y} .

Let Tf = [0, 1]/∼ where x ∼ y if and only if df (x, y) = 0. The compact metric space
(Tf , df ) is a real tree, which we call the real tree encoded by f ; we will also sometimes
denote the continuous excursion f as being a height process for the real tree Tf . We use
Lf for the sets of leaves of Tf .

As noted in [35, Remark following Theorem 2.2] (see also [24, Corollary 1.2]), for
every compact real tree (T , d), there exists f ∈ Cex such that (T , d) and (Tf , df ) are
isometric. Two real trees (Tf , df ) and (Tg, dg), encoded by continuous excursions f and
g respectively, are isometric, if, for instance, f = g ◦ φ for a continuous and strictly
increasing function φ : [0, 1]→ [0, 1]. In this case, we call the encoding excursions f and
g time-change-equivalent or simply equivalent.

Let πf : [0, 1]→ Tf be the canonical surjection. Then, we can turn the real tree (Tf , df )

into a compact rooted measured real tree Tf = (Tf , df , µf , ρf ) using the push-forward
measure µf := Leb ◦π−1

f , where Leb denotes the Lebesgue measure on [0, 1], and the
root is ρf := πf (0). Then, µf has full support, and thus Tf satisfies C1. Finally, it is
well-known that the map between (Cex, ‖ · ‖) and (Tghp

f ,dghp) that associates Tf to an
f ∈ Cex is (Lipschitz) continuous [1, Proposition 3.3]). Hence, for any random variable
Z with values in Cex, the corresponding (ghp-equivalence class of the) compact rooted
measured real tree TZ is a random variable with values in Tghp

f .

2.3 Metric spaces described by recursive decompositions

We now introduce a general framework for random compact rooted measured metric
spaces satisfying recursive distributional decompositions. A similar construction has
already been used in the specific context of the Brownian CRT, see for instance [6] and
[2].
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Self-similar real trees defined as fixed points

Let Γ be a rooted plane tree2 with K vertices, where K ≥ 2. We call Γ the structural
tree of the recursive decomposition, and accordingly, the decomposition of a space (or
tree) will involve K subparts. We consider Γ as a labelled tree upon labelling the root
by 1 and the remaining nodes in the depth-first order2. We write i ≺ j if j lies in the
subtree rooted at i. (We always have i ≺ i.) For i ∈ [K] := {1, . . . ,K}, we set

Γi = {i ≤ j ≤ K : i ≺ j}, and Ei = {1 ≤ j < i : j ≺ i}. (2.2)

For i ≥ 2, we denote by $i = maxEi the label of the parent of node i. Next, fix α > 0, and
r, s ∈ ΣK := {(x1, x2, . . . , xK) ∈ (0, 1)K : x1 + . . . + xK = 1}. We consider the following
construction (see Section 1.4 in [2] for a related construction): given compact rooted
measured metric spaces (Xi, di, µi, ρi), i ∈ [K], construct a compact rooted measured
metric space (X , d, µ, ρ) as follows:

i) Independently sample points ηi ∈ Xi, i ∈ [K], according to the probability measures
µi;

ii) Let X ◦ = tKi=1Xi denote the disjoint union of the Xi, i = 1, . . . ,K; let ∼◦ be the
smallest equivalence relation3 on X◦ for which ρi ∼◦ η$i for all i = 2, . . . ,K. We
define X as the quotient X ◦/∼◦ and write ϕ◦ for the canonical surjection from X ◦
onto X .

iii) Let d◦ be the maximal pseudometric on X ◦ that is not greater than rαi di on Xi, and
for which d◦(x, y) = 0 if x ∼◦ y; define d as the metric induced on X by d◦ under
ϕ◦; (see Section 3.1.3 of [15], and especially Lemma 3.1.23, Corollary 3.1.24 and
Theorem 2.1.27 there which guarantee existence and uniqueness of d◦.)

iv) Let µ◦(·) =
∑K
i=1 siµi(· ∩ Xi) be the unique probability measure on X ◦ that is

compatible with siµi when restricted to Xi; define µ as the push-forward of µ◦

under ϕ◦.

v) Finally, let ρ = ϕ◦(ρ1) be the root.

Note that, because of the need to sample η1, . . . , ηK , the ghp-equivalence class of the
resulting space X = (X , d, µ, ρ) is random. It is crucial to observe that it is a random
variable (Lemma 26 in Appendix) whose distribution only depends on the ghp-isometry
classes of X1, . . . ,XK . Hence, denoting by M1(Kghp) the set of probability measures
on Kghp, the map ψ : (Kghp)K × Σ2

K →M1(Kghp) (where Σ2
K incorporates the choice of

(r, s)) whose image is described by the construction above is well-defined and continuous
when considering M1(Kghp) equipped with the Prokhorov distance. (For a technical
proof of continuity using the concept of correspondences and a coupling theorem due to
Strassen [48], we refer to Lemma 27 in the appendix.) For probability measures τ on
Σ2
K and ℵ on Kghp, we define the intensity measure

Ψ(ℵ, τ)(A) := E [ψ(X1, . . . ,XK ,R,S)(A)] , A ⊆ Kghp measurable, (2.3)

where L((R,S)) = τ , L(X1) = . . . = L(XK) = ℵ and (R,S),X1, . . . ,XK are independent.
Here, and throughout the document, we use L(·) to denote the distribution of a random
variable.

2A rooted plane tree is a subset t of ∪n≥0(N \ {0})n, such that (a) if a word u ∈ t then all its prefixes also
are in t and (b) if ui ∈ t then also uj ∈ t for j = 1, . . . , i− 1. The depth-first order on t is the order induced on
t by the lexicographic order.

3Formally, ∼◦ can be defined as follows: first, set ρi ∼1 η$i and η$i ∼1 ρi for all i = 2, . . . ,K. Then, for
x, y ∈ X ◦, set x ∼◦ y if and only if x = y or there exist k ≥ 0 and x1, . . . , xk ∈ X ◦ such that x ∼1 x1 ∼1

x2 . . . ∼1 xk ∼1 y.
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Self-similar real trees defined as fixed points

Given Γ, α > 0 and a probability distribution τ on Σ2
K , we are interested in non-trivial

laws ℵ ∈ M1(Kghp) satisfying

ℵ = Ψ(ℵ, τ). (2.4)

We refer to (2.4) as a stochastic fixed point equation at the level of compact rooted
measured metric spaces. Note that, while we have introduced the map Ψ for distributions
on the space of ghp-isometry classes of spaces, in the same way, one can define Ψ relying
on gp-isometry classes, and we will occasionally use Ψ in this sense.

X1

X2

X3

X4v2

v1

v3

v4

1

2

3

4

ρ3

ρ2

ρ4

ρ1

X

ρ

Γ

Figure 1: The construction of X with law ψ(X1,X2,X3,X4,R,S) with the structural tree
Γ shown in the middle. For simplicity, we have not rescaled any of the distances. An
excursion point of view is depicted in Figure 2. (For the sake of representation, we have
chosen the spaces to be tree-like.) Note that the roots ρ2, ρ4 are identified with the same
point v1 in the parent space X1.

Given Γ and τ , not every α is admissible for (2.4) to have non-trivial solutions. The
parameter α is chosen as the unique value such that the height of an independent point
sampled according to µ has finite mean, see the discussion of (2.6) below. Here, this
condition can be expressed as follows. Recall Γi defined in (2.2), and define α > 0 as the
unique solution to

E

[ ∑
1≤i≤K

Rαi 1{J∈Γi}

]
= 1 with P(J = j |R,S) = Sj , 1 ≤ j ≤ K. (2.5)

Such an α always exists and lies in the interval (0, 1) by monotonicity and continuity in
α of the expected value and the values for α ∈ {0, 1}. From now on, unless specified
otherwise, we will always assume that α has been chosen to satisfy (2.5).

The height of a random point. In a random compact rooted measured metric space
X = (X , d, µ, ρ), heights of points sampled according to µ play an important role. Recall
Ei from (2.2). In our construction, with X (or, rather its distribution) satisfying (2.4) and
abbreviating Y := d(ρ, ζ) where ζ has distribution µ (given X), we have

Y
d
=

K∑
i=1

1{J=i}

[
Rαi Y (i) +

∑
j∈Ei

Rαj Y (j)

]
d
=

K∑
i=1

βαi Y
(i), βi = Ri1{J∈Γi} , (2.6)
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Self-similar real trees defined as fixed points

and Y (1), . . . , Y (K) are distributed like Y , and (J,R,S), Y (1), . . . , Y (K) are independent
with J as in (2.5). By [27, Theorem 2], the distribution of d(ρ, ζ) is uniquely determined
by (2.6) in the space of probability distributions on [0,∞) up to a multiplicative constant.
(To be more precise, in the notation of [27], we have4 α = 1 and v′(1) < 0 and therefore,
as explained in the discussion following Theorem 2 in [27], the fixed points of (2.6) are
parametrized by their means provided their existence.) [27, Theorem 2] further implies
that, for any different choice of α, the random variable d(ρ, ζ) has either infinite mean,
or, almost surely, X = {ρ}.

Finally, we note that, from the last display, one can easily deduce that

P (d(ρ, ζ) > 0) ∈ {0, 1}. (2.7)

Examples. 1) The most celebrated example of a random measured real tree that satisfies
a fixed point equation such as (2.4) is Aldous’ Brownian CRT [3, 5]. Its recursive structure
has been investigated in [6], where it has been proved that it satisfies a fixed point
equation of the type (2.4), with K = 3, Γ is the tree on {1, 2, 3} with 2 and 3 that are
children of 1, R = S = (S1,S2,S3) ∼ Dirichlet(1/2, 1/2, 1/2), and in this case, α = 1/2.

2) An instance has also appeared in the context of recursive triangulations of the
disk [14, 19]. There, K = 2 (and thus Γ is the tree on {1, 2} where 2 is a child of 1),
S = (S1,S2) ∼ Dirichlet(2, 1), R = S and α turns out to be given by (

√
17− 3)/2.

3) Another tree related to 2) is given by K = 2, S = (S1,S2) ∼ Dirichlet(2, 1),
R ∼ Dirichlet(1, 1) independent of S, and for this case, one finds α = 1/3. The tree
has not been considered explicitly, but it appears in [14, 19] via one of its encoding
processes.

Remark. Recently, Rembart and Winkel [45] have also studied recursive constructions
of continuum random trees and the corresponding geometries using fixed points ar-
guments. The decompositions they consider amount to seeing the trees as a forest of
rescaled copies of random tree grafted on some segment (a so-called (random) string
of beads) rather than on a copy of the tree itself. They typically involve an infinite
number of pieces. Technically, Rembart and Winkel use a variant of the contraction
method relying on Wasserstein distances on (a slightly modified version of) Kghp

f ∩Tgh

to verify uniqueness and attractiveness of fixed points. While both approaches rely on
recursive decompositions and contraction arguments, the results seem largely disjoint.
In particular many of the examples our results cover do not seem easily amenable to
a spinal decomposition (e.g. lamination of the disk), and conversely, many examples
covered by the results in [45] are not covered by our combinatorial decompositions.

2.4 Recursive decompositions: an excursion point of view

It is convenient to express the construction in Section 2.3 in terms of excursions. It
is important to note that the excursion point of view developed here forces the spaces
to be real trees, while in the previous section spaces were only required to be compact.
However, we will see later on that this restriction is an important technical ingredient:
we will prove that the support of the mass measure of any fixed point of the equations of
interest is actually almost surely a real tree, see Theorem 1 ii) .

Let Γ be as in Section 2.3, r, s ∈ ΣK and assume for now that α > 0 is arbitrary.
We now describe a decomposition of the unit interval based on the tree Γ. Each node
of Γ will be assigned two intervals, except the leaves that will be assigned a single
one. In the following, we write ∂Γ for the set of leaves of Γ (the nodes i such that
Γi = {i}), and Γo for Γ \ ∂Γ. Set L := 2K − |∂Γ| and let w1, . . . , wL ∈ {1, . . . ,K} be the
sequence of nodes visited by the depth first search process upon counting only the

4The α in the paper [27] should not be confused with the one defined in (2.5).
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first and the last visit of a node. All nodes appear twice in this sequence except for
leaves which appear once. For i ∈ [K], let Vi be the set of times 1 ≤ j ≤ L with wj = i.
More formally, for i ∈ [K], we can set vi = i + #{1 ≤ j < i : j 6∈ Ei ∪ ∂Γ} and obtain
Vi = {vi, vi + 2|Γi| − ∂Γi − 1}. Observe that Vi contains a unique element if i ∈ ∂Γ, and
two otherwise. For u = (u1, . . . , uK) ∈ (0, 1)K , there is a unique decomposition of the
unit interval into L half-open5 intervals I1, . . . , IL (following the natural order on [0, 1]),
such that,

si =
∑
k∈Vi

Leb(Ik) for all i ∈ [K], and ui = Leb(IminVi)/si for all i ∈ Γo.

Then, define
Λi =

⋃
k∈Vi

Ik and ϕi : Λi → [0, 1] (2.8)

as the unique function which is bijective, monotonically increasing and piecewise linear
with constant slope. (Here, we A denotes the closure of a set A.) We can now define the
continuous operator Φ : CKex × Σ2

K × (0, 1)K → Cex, such that g = Φ(f1, . . . , fK , r, s,u) is
the unique excursion satisfying

g(x)− g(y) = rαw` [fw`(ϕw`(x))− fw`(ϕw`(y))] , (2.9)

for all 1 ≤ ` ≤ L and x, y ∈ I`. In other words, up to the scaling factor rαi in space, the
function fi is first fitted to an interval of length si = Leb(Λi) and then used on the set
Λi (which may consist of two intervals). For an illustration see Figure 2 (and compare
it with the corresponding version involving trees on Figure 1). By construction, for
f1, . . . , fK ∈ Cex, r, s ∈ ΣK and Ξ uniformly distributed on (0, 1)K , we have

L
(
TΦ(f1,...,fK ,r,s,Ξ)

)
= ψ(Tf1 , . . . ,TfK , r, s).

Thus, the distribution of the random compact rooted measured real tree (TZ , dZ , µZ , ρZ)

satisfies (2.4) if

Z d
= Φ

(
Z(1), . . . ,Z(K),R,S,Ξ

)
, (2.10)

where Z(1), . . . ,Z(K) are independent copies of Z, independent of (R,S,Ξ), Ξ and (R,S)

being independent and Ξ = (ξ1, . . . , ξK) being uniformly distributed on (0, 1)K ; of course,
in this case, α shall be chosen as in (2.5). The fixed point equation in (2.10) can be
expressed alternatively as

Z(·) d
=

K∑
i=1

Rαi

[
1Λi(·)Z(i)(ϕi(·)) +

∑
j∈Γi\{i}

1Λj (·)Z(i)(ξi)

]
.

Let us also note that, when asking for tree solutions to (2.4), the excursion point of view
of the recursive decomposition is technically preferable since it grants access to random
excursions (and their corresponding encoded real trees) as well as to nodes sampled
independently according to the mass measure using canonical external randomness.

Examples. 1) An identity of the kind in (2.10) holds for the Brownian excursion e, and is
of course intimately related to the corresponding decomposition of the Brownian CRT.
By [6, Corollary 3], we have

e
d
= Φ

(
e(1), e(2), e(3),∆,∆,Ξ

)
, (2.11)

5We call an interval half-open if it is of the form (a, b] with 0 < a ≤ b ≤ 1 or [0, a] with 0 ≤ a ≤ 1.
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1
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�(f1, f2, f3, f4, R, S,⌅)(x)

1t1 t2 t3 t4 t5

Figure 2: An example of the functional construction of Section 2.4: Here K = 4,
L = 6, the structural tree Γ is the tree shown in the center right. The functions
f1, f2, f3, f4 are composed into Φ(f1, f2, f3, f4,R,S,Ξ). In order to keep the focus on the
structure of the construction, we have not used scalings for the distances and the scaling
S = (0.35, 0.20, 0.30, 0.15) for time. Observe that, in the tree encoded by f1, the point
corresponding to ξ1 is not a leaf. The corresponding point of view using trees is depicted
in Figure 1.

with conditions as in (2.10), where ∆ ∼ Dirichlet(1/2, 1/2, 1/2), α = 1/2, and Γ is the
tree of size three with nodes 2 and 3 attached to the root.

2) The functional version of the fixed point equation appearing in Example 2) of
Section 2.3 concerns a certain process Z that satisfies

Z
d
= Φ

(
Z (1),Z (2),∆,∆,Ξ

)
(2.12)

with conditions as in (2.10), where ∆ ∼ Dirichlet(2, 1) and α = (
√

17− 3)/2.
3) Similarly to 2) above, there is a functional version to Example 3) of Section 2.3.

The process H involved satisfies the following modified fixed point equation

H
d
= Φ

(
H (1),H (2),∆, (W, 1−W ),Ξ

)
(2.13)

with conditions as in (2.10), where ∆ ∼ Dirichlet(2, 1), W follows the uniform distribution
on [0, 1], ∆,W are independent and α = 1/3.

2.5 Fractal properties of metric spaces

Let (S, d) be a metric space. (In this section, we do not assume the space to be
compact.) For δ > 0 and a non-empty relatively compact set B let NB(δ) be the smallest
number m such that there exist m open balls of radius δ covering B. We define the lower
Minkowski dimension dimm(B) and the upper Minkowski dimension dimm(B) by

dimm(B) := lim inf
δ→0

logNB(δ)

− log δ
, and dimm(B) := lim sup

δ→0

logNB(δ)

− log δ
.

If both values coincide, we simply call dimm(B) := dimm(B) the Minkowski dimension of
B.
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The Hausdorff dimension of a set A ⊆ S is defined using the family of (outer)
Hausdorff measures (Hs)s≥0 given by

Hs(A) := lim
δ→0

{
inf

{∑
i≥1

|Ui|s : A ⊆
⋃
i≥1

Ui and |Ui| ≤ δ for all i ≥ 1

}}
.

(The map Hs : Kgh → [0,∞] is measurable, see Lemma 29 in the appendix for a proof.)
Here, for a set U ⊆ S, we let |U | = sup{|x− y| : x, y ∈ U}. The Hausdorff dimension of
A ⊆ S is now defined by

dimh(A) := inf{s ≥ 0 : Hs(A) = 0},

where one should notice that Ht(A) <∞ implies Hs(A) = 0 for s > t. We will need the
following version of the mass distribution principle (see, e.g. [29, Proposition 4.9] for a
formulation in Rd which, together with its proof, applies analogously in any separable
metric space). Let Br(x) := {y ∈ S : d(x, y) < r} denote the ball of radius r around x.
Then, for a measurable set A ⊆ S, a finite measure ν on S with ν(A) > 0 and c > 0, we
have

lim sup
r→0

ν(Br(x))/rs ≤ c for all x ∈ A ⇒ dimh(A) ≥ s. (2.14)

Lower and upper Minkowski dimension as well as Hausdorff dimension are invariant
under bijective isometries. Furthermore, for a non-empty relatively compact set B, we
have dimh(B) ≤ dimm(B) ≤ dimm(B).

Recall that a function f : [0, 1]→ R is ω-Hölder continuous with 0 < ω ≤ 1 (or Hölder
with exponent ω) if there exists a constant C > 0 such that

|f(x)− f(y)| ≤ C|x− y|ω, 0 ≤ x, y ≤ 1.

For f ∈ Cex, we let ωf be the supremum of all Hölder exponents over excursions which
are time-change equivalent to f .

Next, for p > 0, the p-variation [f ]p(t), t ∈ [0, 1], of a function f ∈ C is defined by

[f ]p(t) = sup

{
n−1∑
i=0

|f(ti+1)− f(ti)|p : n ≥ 1 and 0 ≤ t0 ≤ . . . ≤ tn ≤ t
}
.

Note that [f ]p is monotonically increasing and, if [f ]p(1) < ∞, then [f ]p ∈ C. It is easy
to see that inf{p > 0 : [f ]p(1) < ∞} ≤ ω−1

f . Furthermore, if f is nowhere constant, the
converse inequality follows from Theorem 3.1 in [16]. Combining this with Theorem 3.1
in Picard [44] shows that, for any f ∈ Cex which is nowhere constant, we have

dimm(Tf ) =
1

ωf
. (2.15)

The last identity is used in Corollary 6.

3 Main results

3.1 Characterizations of solutions to (2.4) and (2.10)

Our first theorem clarifies the set of solutions to the fixed point equations (2.4)
and (2.10). Recall that these involve the structural tree Γ, a probability distribution τ on
Σ2
K and the value α ∈ (0, 1) satisfying (2.5).

Theorem 1. Let c > 0. Then,
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i) there exists a unique continuous excursion Z (in distribution) that satisfies (2.10)
and E[Z(ξ)] = c where ξ follows the uniform distribution on [0, 1] and Z, ξ are
independent;

ii) for any Kghp-valued r.v. X satisfying (2.4) with E[d(ρ, ζ)] = c, where ζ is chosen
according to µ (given X), the random tree TZ encoded by Z, and (supp(µ), d, µ, ρ)

have the same distribution.
Furthermore, for all m ≥ 1, we have E [‖Z‖m] <∞, and, almost surely,

iii) Z(s) > 0 for all s ∈ (0, 1);
iv) Z is nowhere monotonic.

Some comments are in order. First of all, as motivated by the formulation of point ii),
there can exist further solutions to (2.4) which are not almost surely continuum trees,
see Proposition 3 below and the example discussed following Theorem 1.6 in [2]. Next,
there does not exist any random compact rooted measured metric space with values in
Kghp or Kgp solving (2.4) for which one would have E[d(ρ, ζ)] =∞. Similarly, any solution
to (2.4) with values in Kgp or Kghp

f satisfying E[d(ρ, ζ)] = 0 must a.s. be the trivial space
reduced to {ρ}.

Albenque and Goldschmidt [2] show that, in the case of the Brownian CRT, the fixed
point in Example 1) of Section 2.3 is attractive with respect to weak convergence on
the space of probability measures on Kgp. They also raise the question whether this
was true with respect to the Gromov–Hausdorff–Prokhorov distance. Our next result
confirms that it is indeed the case, under certain moment conditions. (Note however that
the results in [2] are not directly comparable to ours since the trees there are unrooted.)

In the following, we let φghp :M1(Kghp)→M1(Kghp) be the map that to ℵ ∈ M1(Kghp)

associates φghp(ℵ) = Ψ(ℵ, τ), where τ is the given probability distribution on Σ2
K and Ψ is

the map defined in (2.3). For n ≥ 1, we write φnghp for the n-th iterate of φghp. Analogously,
we define φgp and φngp, n ≥ 1 for probability measures on Kgp. Finally, for ν ∈M1(Kghp)

orM1(Kgp), we write Eν for the expectation with respect to spaces sampled from ν.

Theorem 2. Fix c > 0 and let Z be the unique continuous excursion (in distribution)
satisfying (2.10) with E[Z(ξ)] = c from Theorem 1. Then, we have the following two
statements:

i) if ν ∈ M1(Kgp) with Eν [d(ρ, ζ)] = c, then the sequence of distributions (φngp(ν))n≥1

converges weakly to the law of TZ .
ii) if ν ∈M1(Tghp

f ) with Eν [d(ρ, ζ)] = c and Eν [‖T‖m] <∞, where

m = 1 + b1/αc = min

{
m ∈ N :

K∑
i=1

E [Rmαi ] < 1

}
, (3.1)

then the sequence of distributions (φnghp(ν))n≥1 converges weakly to the law of TZ .

Note that the assumptions in Theorem 2 i) are rather weak as no conditions on
the probability distribution ν are imposed apart from Eν [d(ρ, ζ)] = c. For instance, if ν
charges only two-point metric spaces {ρ, x} such that d(ρ, x) = c, the theorem applies.
Although the moment condition in Theorem 2 ii) is probably not optimal, one certainly
needs some condition as demonstrated by the following proposition.

Proposition 3. Let c > 0. Fix Γ and let η be a probability distribution on ΣK . Then,
there exists a distribution τ on Σ2

K such that τ(ΣK × · ) = η(·), and furthermore, with α
as in (2.5),

i) there exist infinitely many mutually singular fixed points of (2.4) on Kghp including
some that are almost surely not real trees, such that, writing ν ∈M1(Kghp) for such
a distribution, and X = (X , d, µ, ρ) distributed according to ν, we have Eν [d(ρ, ζ)] = c

and E[‖X‖1/α] =∞;
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ii) there exists ν ∈ M1(Kghp) concentrated on T
ghp
f such that Eν [d(ρ, ζ)] = c,

Eν [‖T‖1/α] =∞ and (φnghp(ν))n≥1 does not converge weakly to the law of TZ with Z
as in Theorem 2.

Let us comment on ii) above: According to Theorem 2 i) , under these conditions,
one has convergence in the sense of Gromov–Prokhorov to TZ , where Z is the random
excursion of Theorem 2; however, as one iterates φghp, the support of the mass measure
converges to TZ , but some of the branches of the tree are drained of their mass without
becoming shorter (see the proof on page 23 for details).

3.2 Geometry, fractal dimensions and optimal Hölder exponents

It is informative to first present a heuristic argument that, at the very least, gives
an idea of the value of the Minkowski dimension that one should expect. Consider
T = (T , d, µ, ρ) satisfying (2.4). In a covering of T by open balls, if one neglects the
contribution of the balls that might intersect more than one subtree in the recursive
decomposition, the fixed point equation (2.4) should imply that we approximately have

NT (δ) ≈
K∑
i=1

NRαi Ti(δ) =

K∑
i=1

NTi(R−αi δ). (3.2)

In particular, if one roughly has NT (δ) ≈ δ−s for some s > 0, then it should be the case
that 1 =

∑K
i=1Rαsi , and thus the constant s should be given by s = α−1. We now provide

results that justify that this is indeed the case under some conditions which happen to
be satisfied in most examples.

In the following theorem and subsequently, we use the generic random variable
R which is distributed like RI with I independent of R and uniformly chosen among
1, . . . ,K.

Theorem 4 (Upper bound on dimm). Assume that T = (T , d, µ, ρ) satisfies (2.4) with
values in Tghp

f . Moreover, assume that R admits a density on (0, 1) (although an atom at
0 is allowed). Then, almost surely,

dimm(T ) ≤ 1/α.

Theorem 5 (Lower bound on dimh). Suppose that T = (T , d, µ, ρ) satisfies (2.4) with
values in Tghp

f , that P(T 6= {ρ}) > 0, and, for some δ > 0, E[R−δ] <∞. Then

dimh(T ) ≥ 1/α.

In the next result, recall that two excursions f and g are said to be equivalent if
f = g ◦ φ for a function φ : [0, 1]→ [0, 1] that is continuous and strictly increasing.

Corollary 6 (Optimal Hölder exponents). Suppose that Z satisfies (2.10), that P(‖Z‖ >
0) > 0 and that the conditions of Theorems 4 and 5 are satisfied. Then, almost surely:
(a) dimh(TZ) = dimm(TZ) = dimm(TZ) = α−1;
(b) for any γ < α, there exists a process Z̃ which is equivalent to Z and has γ-Hölder

continuous paths.
(c) for any γ > α and any distribution ν̃ on Cex such that, for L(Z̃) = ν̃, TZ̃ and TZ have

the same distribution, Z̃ has γ-Hölder continuous paths with probability zero.

Finally, we have the following results about the degrees in TZ . Recall that the degree
of a point in a real tree is defined as the number of connected components in which the
space decomposes upon removal of the point. Let D(TZ) be the (random) set of degrees
of TZ . Let also D(Γ) = {1 + #{j : $j = i} : 1 ≤ i ≤ K}; D(Γ) is the set of degrees in the
tree obtained from Γ by connecting an additional node to its root. Observe that 1 ∈ D(Γ),
but that it is possible that 2 is not an element of D(Γ).
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Proposition 7. Let 0 < c <∞ and Z be the unique solution (in distribution) of (2.10) in
Theorem 1 with E[Z(ξ)] = c and consider TZ = (TZ , dZ , µZ , ρZ). Then, almost surely,

i) the root ρZ is a leaf;
ii) a point sampled from µZ is a leaf;

iii) µZ has no atoms;
iv) the set D(TZ) of degrees of points in TZ is fully determined by D(Γ): we have

D(TZ) =

{
{1, 2, 3} if D(Γ) = {1, 2}
D(Γ) ∪ {2} otherwise .

3.3 A taste of applications

All applications in this work are discussed in detail in Section 6; they cover in
particular generalizations of the trees dual to laminations of the disk. Here, we only
state immediate consequences for the three trees encoded by the functions Z , H and
e that we have used as examples earlier (on page 9). Observe that, the structural tree
Γ is fixed if K = 2, while for K ≥ 3, in order to describe it, it suffices to specify the
parents $3, . . . , $K of the nodes i = 3, . . . ,K. Recall that continuum real tree refers to
an element of Tgp or Tghp

f .

Corollary 8. Up to a multiplicative constant for the distance function, we have (unique-
ness being understood in distribution):
(a) The Brownian CRT (Te, de, µe, πe(0)) is the unique continuum real tree satisfying (2.4)

with K = 3, $3 = 1, α = 1/2, S = R = ∆ as in (2.11).
(b) The tree (TZ , dZ , µZ , πZ (0)) is the unique continuum real tree satisfying (2.4) with

K = 2, S = R = ∆, as in (2.12) and α = (
√

17− 3)/2.
(c) The tree (TH , dH , µH , πH (0)) is the unique continuum real tree satisfying (2.4) with

K = 2, α = 1/3, S = ∆, R = (W, 1−W ) with ∆,W as in (2.13).
Furthermore, these uniqueness results also hold in the spaces Kghp

f and Kgp.

The assertion concerning the Brownian CRT (in the unrooted set-up and using a
slightly different definition of continuum trees) in Corollary 8 is the main result in [2].
Similarly, the claim for the process Z in Corollary 9 has already been given in [14] in
the space C under additional moment assumptions. In terms of processes, we have the
following

Corollary 9. Up to a multiplicative constant, we have (uniqueness being understood in
the sense of distributions):
(a) The Brownian excursion e is the unique continuous excursion satisfying (2.11).
(b) The process Z is the unique continuous excursion satisfying (2.12).
(c) The process H is the unique continuous excursion satisfying (2.13).

We now formulate the implications of results on the fractal dimensions of TZ , TH

and Te. Note that the fractal dimension of the continuum random tree has already
been established in [4] (see also [25] for the more general case of Lévy trees) and the
Minkowski dimension of TZ in [14].

Corollary 10. Almost surely, for the processes e, Z and H satisfying (2.11), (2.12)
and (2.13),
(a) dimm(Te) = dimh(Te) = 2.
(b) dimm(TZ ) = dimh(TZ ) = 2/(

√
17− 3),

(c) dimm(TH ) = dimh(TH ) = 3.

3.4 Overview of the main techniques

Most of our proofs rely on an expansion of the fixed point equation (2.10). For fixed
point equations describing real-valued distributions, this idea is classical, see, e.g. [8,
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Section 2.3]. For the Brownian CRT Te, it was used in [18] as well as, in [2].
Let Θ =

⋃
n≥0[K]n be the complete infinite K-ary tree and, for each n ≥ 0, denote by

Θn = [K]n ⊆ Θ the set of vertices on level n in Θ. Next,

{(Rϑ,Sϑ) : ϑ ∈ Θ}, and {Ξϑ = (ξϑ1 , . . . , ξ
ϑ
K) : ϑ ∈ Θ}

be two independent sets of independent random variables where each (Rϑ,Sϑ) has
distribution τ and each Ξϑ is uniformly distributed on (0, 1)K . The components of Rϑ
and Sϑ are assigned to the edges out of ϑ as follows: for the edge eϑi between ϑ and
ϑi, define R(eϑi ) = Rϑi and S(eϑi ) = Sϑi . These edge-weights then induce values for the
vertices that we define multiplicatively: each node ϑ ∈ Θ is assigned a length L(ϑ) and a
rescaling factor for distances V(ϑ) which are given by

V(ϑ) =
∏
e∈πϑ

R(e) and L(ϑ) =
∏
e∈πϑ

S(e), (3.3)

where πϑ denotes the set of edges on the path from the root ∅ to ϑ. We can think of Θ as
providing the parameters that are required by the recursive decomposition.

In Section 4.2, we will see that, for any c > 0, one can construct a family of random
excursions {Zϑ : ϑ ∈ Θ}, such that

Zϑ = Φ
(
Zϑ1, . . . ,ZϑK ,Rϑ,Sϑ,Ξϑ

)
,

where, for all ϑ ∈ Θ, the distribution of Zϑ does not depend on ϑ, Zϑ is measurable with
respect to {(Rϑσ,Sϑσ,Ξϑσ) : σ ∈ Θ}, and E[Zϑ(ξ)] = c.

It should be clear that, for any ϑ ∈ Θ and n ≥ 0, the unit interval is decomposed in
half-open intervals such that, for σ ∈ Θn, Zϑσ multiplied by (V(ϑσ)/V(ϑ))α governs the
behaviour of the process Zϑ on a set Λϑσ of Lebesgue measure L(ϑσ)/L(ϑ) composed of
a subset of these intervals. Let us give a precise formulation of this decomposition: first,
for all ϑ ∈ Θ set Λϑ∅ = [0, 1] and j ∈ [K], let the set Λϑj and the function ϕϑj be defined as
Λj and ϕj in (2.8) using the vector (Sϑ,Ξϑ). Then, given Λϑσ and ϕϑσ for σ ∈ Θn, n ≥ 1, for
j ∈ [K], let

Λϑσj =
(
ϕϑσ
)−1

(Λϑσj ), (3.4)

and let ϕϑσj be the unique piece-wise linear bijective and increasing function with constant

slope mapping Λϑσj onto [0, 1]. For n ≥ 0, Λϑσ is the disjoint union of the sets Λϑσω, ω ∈ Θn.

In particular, Λϑω, ω ∈ Θn is a partition of the unit interval. Throughout the paper, we
write Λϑ = Λ∅ϑ, ϑ ∈ Θ and Z = Z∅ for the quantities at the root of Θ. (No confusion
should arise in the notation as Z∅ is indeed the process from Theorem 1.)

3.5 Organization of the proofs

The remainder of the paper is organized as follows: In Section 4, we prove Theorems 1
i), ii), Theorem 2 and Proposition 3. Section 4.1 is devoted to showing that, up to a
scaling constant, there exists at most one solution to (2.4) inKghp

f (orKgp). In Section 4.2
this solution is constructed together with a unique continuous excursion satisfying (2.10).
Parts i) and ii) of Theorem 1 are proved at the end of this section. Section 4.3 contains
the proofs of Theorem 2 and Proposition 3.

Section 5 contains the proofs to the remaining statements presented in Section 3. In
Section 5.1, we start with the verification of Theorem 4. In Section 5.2, we give the proof
of the lower bound on the Hausdorff dimension of Theorem 5. In Section 5.3, we discuss
the proofs of Proposition 7 and the statements iii) and iv) of Theorem 1. Corollary 6 is
discussed in Section 5.4.
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Finally, Section 6 is dedicated to applications. We discuss the results formulated
in Section 3.3 for the processes e,Z and H in detail in Sections 6.1–6.3. Section 6.4
contains new results concerning a generalization of the lamination model [14, 19].

4 Proofs of the existence and uniqueness results

4.1 Uniqueness of the encoding function

The proof of Theorem 1 consists of two steps. First, in Proposition 12, we show that,
in distribution, there exists at most one compact rooted measured metric space with full
support satisfying (2.4). Second, as in [14], we use a variant of the functional contraction
method developed in [41] to construct a solution to (2.10) whose supremum has finite
moments of all orders. We indicate how to obtain the statements i) and ii) in Theorem 1
from the next two results right after proving Proposition 13.

For n ∈ N = {0, 1, 2, . . .}, let Mn = {(mij)0≤i,j≤n : mij = mji ≥ 0,mii = 0} be the
set of symmetric (n+ 1) by (n+ 1) matrices with non-negative entries and zeros on the
diagonal. We also write MN for the set of infinite dimensional matrices satisfying these
properties. We always endow this set with the product topology and the corresponding
Borel σ-field. For a fixed compact rooted measured metric space X = (X , d, µ, ρ), let
(ζi)i≥1 be independent and identically distributed (i.i.d.) test points with distribution
µ on X , and set ζ0 = ρ. Observe that the distribution of the random infinite matrix
DX = (d(ζi, ζj))i,j≥0 does not depend on the representative of the Gromov–Hausdorff–
Prokhorov (or Gromov–Prokhorov) isometry class of X. Hence, we can define the distance
matrix distribution νX ∈ M1(MN) for elements X of Kghp (or Kgp)6. For a probability
distribution κ ∈M1(Kghp) (orM1(Kgp)), we also define the probability measure

νκ(A) :=

∫
νx(A)dκ(x), A ⊆MN measurable.

The importance of νX and νκ is highlighted by the following well-known proposition. For
gp-isometry classes, part i) is typically referred to as Gromov’s reconstruction theorem,
see Gromov [31, Section 3 1/2] or Vershik [50, Theorem 4]. Statements ii) and iii) (again
in the gp case and for unrooted structures) are covered by Corollary 3.1 in [30] (see also
[37, Corollary 2.8]). For ghp-isometry classes, these results immediately follow from the
bimeasurability of ι discussed at the end of Section 2.1.

Proposition 11. We have the following results:
i) For fixed X1,X2 ∈ Kghp

f (or Kgp) we have νX1 = νX2 if and only if X1 = X2.

ii) For κ1, κ2 ∈M1(Kghp
f ) (orM1(Kgp)) we have νκ1 = νκ2 if and only if κ1 = κ2.

iii) For probability distributions κ and κn, n ≥ 1, on Kgp, we have κn → κ weakly if and
only if νκn → νκ weakly.

With Proposition 11 at hand, we can now compare the distance matrix distributions of
two solutions of the fixed point equation (2.4). To this end, for a random variable X with
values in Kghp (or Kgp), set E[νX] = νL(X), that is, E[νX](A) = E[νX(A)] for a measurable
set A. Further, for n ≥ 0 and fixed X ∈ Kghp (or Kgp), we write νXn ∈ M1(Mn) for the
distribution of the distance matrix induced by the first n + 1 points ζ0, ζ1, . . . , ζn. The
quantities νκn for a probability distribution κ ∈M1(Kghp) (orM1(Kgp)) and E[νXn ] for a
random variable X shall be defined correspondingly.

Proposition 12. Let X = (X , d, µ, ρ) and U = (U , d′, µ′, ρ′) be Kghp
f (or Kgp)-valued r.v.’s

satisfying (2.4) (in distribution) and E[d(ρ, ζ)] = E[d′(ρ′, ζ ′)] where ζ (resp. ζ ′) is chosen
on X (resp. U) according to µ (resp. µ′). Then, E[νX] = E[νU], hence L(X) = L(U).

6The map X→ νX is continuous for the Gromov–Prokhorov topology (via the equivalence with the so-called
Gromov-weak topology; see [22, 30] for details).
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Proof. For n ≥ 1, let Dn (resp. D′n) be a random variable on Mn with distribution E[νXn ]

(resp. E[νUn ]). Both D1 and D′1 satisfy fixed point equation (2.6). As elaborated in the
discussion of (2.6) it follows from the results in [27] that D1 and D′1 are identically dis-
tributed since both random variables have mean c. Our aim is to show by induction on n
that, for all n ≥ 2, both Dn and D′n satisfy the same stochastic fixed point equation known
to admit at most one solution. Taking that for granted for now, it follows immediately
that E[νXn ] = E[νUn ] for all n ≥ 1; Proposition 11 ii) then proves the assertion.

Let A ⊆Mn be measurable. With τ = L((R,S)), ℵ = L(X) and X1, . . . ,XK i.i.d. with
distribution ℵ, also independent of (R,S), we deduce from (2.4) that

P(Dn ∈ A) = νℵn(A) = νΨ(ℵ,τ)
n (A) = E[νψ(X1,...,XK ,R,S)

n (A)]

=

∫
Σ2
K

dτ(r, s)

∫
(Kghp)K

dℵ⊗K(x1, . . . , xK)E[νX
∗(x1,...,xK ,r,s)

n ](A), (4.1)

where X∗(x1, . . . , xk, r, s) has distribution ψ(x1, . . . , xk, r, s). (Here, we could apply Fu-
bini’s theorem thanks to the product measurability of the map ψ proved in the supple-
mentary material.) We now keep r = (r1, . . . , rK), s = (s1, . . . , sK) and x1, . . . , xK fixed.
Let x̄1, . . . , x̄K be arbitrary representatives of x1, . . . , xK and write x̄i = (x̄i, d̄i, µ̄i, ρ̄i).
Let ηi, i ∈ [K] be independent points on x̄i with distribution µ̄i. Let x∗ = (x∗, d∗, µ∗, ρ∗)

be the space constructed with the help of Γ, α, r, s, x̄1, . . . , x̄K , η1, . . . , ηK following the
steps ii) - iv) on page 6. To sample independent test points (ζ`)1≤`≤n, on x∗ according
to µ∗, we consider a family of independent random variables {θi,j : i ∈ [K], j = 1, . . . , n}
which is independent of the glue points ηi, i ∈ [K], where each θi,j takes values in x̄i and
has distribution µ̄i. Let also J = (J1, . . . , Jn) be a vector of i.i.d. random variables with
values in [K], independent of the remaining quantities, with P(J` = j) = sj for j ∈ [K].
Define ζ` = ϕ◦(θJ`,`), where ϕ◦ is introduced in step ii) of the construction on page 6.

Then (ζi)1≤i≤n is a family of i.i.d. points with distribution µ∗. Set ζ0 := ρ∗. By construc-

tion, the matrix Wn = (d(ζi, ζj))0≤i,j≤n has distribution E[ν
X∗(x1,...,xk,r,s)
n ]. (In particular,

its distribution does not depend on the choice of the representatives x̄1, . . . , x̄K .)
We now decompose Wn by looking in which of the subspaces (or, more precisely,

their images under ϕ◦) the random points ζ1, . . . , ζn fall. In each space, the trace of the
paths induce a rescaled distance matrix with a potentially different number of points
which maybe the original points, the root of the subspace or glue points. To this end,
first recall that the root ρ∗ = ζ0 is the (image of the) root ρ̄1 of x̄1. Set j0 := 1 and, for
j = (j1, . . . , jn) ∈ [K]n and i ∈ [K] define Lj

i = {0 ≤ ` ≤ n : j` = i}. Then, set `1 = #Lj
1− 1

and, for 2 ≤ i ≤ K define `i = #Lj
i. Further, for i ∈ [K], let `∗i = `i + 1 if there exists

some 1 ≤ ` ≤ n such that j` ∈ Γi \ {i} and `∗i = `i otherwise. (`i is the number of test
points falling in (the image of) x̄i, and `∗i accounts for the glue point ηi which plays a role
if there is some segment Jζp, ζqK containing its image under ϕ◦.)

For j ∈ [K]n let E j be the event that J` = j` for all ` ∈ [n]. For integers p ≥ 1, i ∈ [K],

we write Y
(p)
xi for a generic random variable with distribution νxip . Now note that,

on E j, the distance matrix Wn has the same distribution as a linear combination of
deterministic linear operators evaluated at independent copies of Y

(`∗i )
xi , i ∈ [K]. To this

end, for ` = 1, 2, . . . , n, let rk(`) := #{p ∈ Lj
j`

: 1 ≤ p ≤ `} be the rank of ` in the set Lj
j`

,

and set rk(0) = 0. Then, for i ∈ [K], we define operators G(j)
i : M`∗i

→Mn in two steps.
Let A ∈M`∗i

and 1 ≤ p, q ≤ n. First, set

G
(j)
i (A)p,q =


Ark(p),rk(q) if p, q ∈ Lj

i,

A0,rk(p) if p ∈ Lj
i, jq /∈ Γi,

A0,rk(q) if q ∈ Lj
i, jp /∈ Γi.

(4.2)
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This does not define all the entries of G(j)
i (A). For the remaining entries: if `∗i = `i, then

G
(j)
i (A)p,q = 0 for all p, q which are not covered in one of the cases in (4.2); or else we

have `∗i = `i + 1, and then

G
(j)
i (A)p,q =


Ark(p),`∗i

if p ∈ Lj
i, jq ∈ Γi \ {i},

Ark(q),`∗i
if q ∈ Lj

i, jp ∈ Γi \ {i},
A0,`∗i

if jp ∈ Γi \ {i}, jq /∈ Γi or jq ∈ Γi \ {i}, jp /∈ Γi,

(4.3)

and G(j)
i (A)p,q = 0 for all p, q which are covered neither in (4.2) nor in (4.3). Note that, if

`∗i = 0, we have G(j)
i ≡ 0.

The following observation is the crucial ingredient of the proof: When conditioning
on E j, as the points θk,`, ` = 1, . . . , n, and ηk, are all independent and distributed on x̄k
according to µ̄k, we may think of ηk as an additional test point on x̄k. Thus, on E j, we
obtain the following distributional equality

Wn
d
=

K∑
i=1

rαi ·G(j)
i (Y

(`∗i )
xi ), (4.4)

where the Y
(`∗i )
xi , i ∈ [K], are independent. (For the sake of convenience, we agree to set

Y
(0)
xi to be the matrix containing a single entry which is 0.)

The cases where `∗i = n for some i ∈ [K] need to be considered in detail: indeed,
they are the cases that yield (n + 1) × (n + 1) distance matrices from the constituant
subspaces, and are thus crucial to the fixed point argument. To this end, we define the
following subsets of [K]n: Ci = {(i, . . . , i)} and

C∗i =

K⋃
k=1

{
(j1, . . . , jn) : j` = i for all ` 6= k, jk ∈ Γi \ {i}

}
,

as well as C = C1 ∪ · · · ∪ CK and C∗ = C∗1 ∪ · · · ∪ C∗K . Then, for i ∈ [K] we have `∗i = n

if and only if j ∈ Ci ∪ C∗i . In the following, we distinguish these two cases. Recall the
definition of Ei from (2.2).

a) If j ∈ Ci, the operator G(j)
i is the identity and, as observed previously, G(j)

k ≡ 0 if

k /∈ Ei ∪ {i} since `∗k = 0. For k ∈ Ei, however, we have `∗k = 1 and G
(j)
k : M1 → Mn is

defined in (4.2) and (4.3). Thus, in this case, (4.4) can be written as

Wn
d
= rαi · Y (n)

xi +

K∑
k=1,k 6=i

rαk ·G(j)
k (Y

(`∗k)
xk ), (4.5)

where Y (n)
xi , Y

(1)
xk , k ∈ [K] \ {i} are independent. As just observed, `∗k ∈ {0, 1} for all k 6= i.

b) For j ∈ C∗i , letting k∗ 6= i denote the unique value with Lj
k∗ 6= ∅, we have `∗k = 1 for

all k ∈ {k∗} ∪ (Ek∗ \ {i}) and `∗k = 0 for all k /∈ {k∗} ∪ Ek∗ .
The operators G(j)

k for k 6= i are defined in (4.2) and (4.3). The operator G(j)
i acts

on a matrix A ∈ Mn by permuting the indices as follows: 0 → 0, k → rk(k) for k 6= m

and m→ `∗i = n. As the distribution of Y (n)
xi is invariant under such permutations, the

random variable Wn satisfies (4.5).
Upon collecting our findings for the different cases and performing the integration

in (4.1), it follows that the random matrix Dn satisfies

Dn
d
= UnDn + Vn, (4.6)
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where Un ∈ [0, 1], Vn ∈Mn, the (Un, Vn), Dn are independent, and we have

Un =

K∑
i=1

Rαi · 1J∈Ci∪C∗i (4.7)

and

Vn =

K∑
i=1

∑
j∈Ci∪C∗i

1J=j

K∑
k 6=i

Rαk ·G(j)
k (D

(k)
`∗k

) +
∑

j/∈C∪C∗
1J=j

K∑
k=1

Rαk ·G(j)
k (D

(k)
`∗k

). (4.8)

Here, recall that we have J = (J1, . . . , Jn), where, given (R,S), the random variables

J1, . . . , Jn are independent and each Ji is distributed as J in (2.5), and {D(k)
` : 0 ≤ ` ≤

n − 1, k ∈ [K]} is an independent family of random variables, which is independent of

(R,S,J), where each D(k)
` is distributed like D`.

A random variable satisfying a fixed point equation of type (4.6) is called a perpetuity.
It follows from classical results on perpetuities, e.g. from [51, Theorem 1.5], that (4.6)
has at most one solution (in distribution). Repeating the arguments shows that D′n
satisfies a distributional identity of the form D′n = U ′nD

′
n + V ′n with U ′n = Un and the

additive term V ′n, can be obtained from Vn by replacing each D(k)
` by a copy of D′` while

maintaining the independence structure. Hence, by our induction hypothesis, (Un, Vn)

and (U ′n, V
′
n) are identically distributed which shows that Dn and D′n are identically

distributed and concludes the proof of the induction.

4.2 Construction of a solution

In this section, we construct the family of processes {Zϑ : ϑ ∈ Θ} mentioned in
Section 3.4 that plays a central role in a number of proofs later on. The following
proposition is a generalization of Theorem 6 and Theorem 17 in [14]. We keep the
presentation rather compact and refer to [14] for more details on technical points; this
applies in particular to a number of tedious but straightforward inductions occurring
throughout the proof. Recall that ‖ · ‖ denotes the uniform norm on Cex and the definition
of m in (3.1). For a > 0, let

Ma =

{
µ ∈M1(Cex) :

∫∫ 1

0

x(t)dtµ(dx) = a and

∫
‖x‖mµ(dx) <∞

}
.

Fix c > 0 and let Qϑ0 = c, ϑ ∈ Θ. Recall the map Φ defined in Section 2.4. Recursively, for
n ≥ 1 and ϑ ∈ Θ, define

Qϑn = Φ(Qϑ1
n−1, . . . , Q

ϑK
n−1,Rϑ,Sϑ,Ξϑ). (4.9)

Proposition 13. For any ϑ ∈ Θ, almost surely, the sequence Qϑn defined in (4.9) con-
verges uniformly to a process Zϑ. For any ϑ ∈ Θ, we have, almost surely,

Zϑ = Φ(Zϑ1, . . . ,ZϑK ,Rϑ,Sϑ,Ξϑ). (4.10)

Furthermore, L(Zϑ) is the unique solution to (2.10) in the setMc and E[‖Zϑ‖m] < ∞
for all m ≥ 1.

Remark 1. The proof of the proposition also shows the following: Let µ ∈Mc, and let
{Yϑ : ϑ ∈ Θ} be a family of independent random processes with L(Yϑ) = µ for all ϑ ∈ Θ

which is independent of {(Rϑ,Sϑ,Ξϑ) : ϑ ∈ Θ}. Then, the sequence Qϑn initiated with
{Yϑ : ϑ ∈ Θ}, that is, Qϑ0 = Yϑ, converges almost surely uniformly to Zϑ.
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Proof of Proposition 13. First of all, note that, for n ≥ 1, (4.9) says that, for all t ∈ [0, 1],

Qϑn(t) =

K∑
i=1

1Λϑi
(t)

[
(Rϑi )αQϑin−1(ϕϑi (t)) +

∑
j∈Ei

(Rϑj )αQϑjn−1(ξϑj )

]
. (4.11)

Throughout the proof, ξ denotes a random variable with the uniform distribution on
[0, 1] which is independent of all remaining quantities. Recalling the choice of α in (2.5)
and the fact that E[Qϑ0 (ξ)] = c, it follows by induction that E[Qϑn(ξ)] = c for all n ≥
0. From (4.9) (or (4.11)), it should be clear that the sequences (Qϑn)n≥0, ϑ ∈ Θ, are
identically distributed. (A formal proof could again be given by induction.) Next, set
∆Qϑn := Qϑn+1 −Qϑn for n ≥ 0. From (4.9), we have for all t ∈ [0, 1],

∆Qϑn(t) =

K∑
i=1

1Λϑi
(t)

[
(Rϑi )α∆Qϑin−1(ϕϑi (t)) +

∑
j∈Ei

(Rϑj )α∆Qϑjn−1(ξϑj )

]
. (4.12)

In particular, one finds ∆Qϑn = h(Qϑ1
n−1, . . . , Q

ϑK
n−1,Rϑ,Sϑ,Ξϑ) for a suitable deterministic

continuous function h (see (4.12)). By induction on n, it follows that, for any fixed n ≥ 1,
the random variables ∆Qϑn, ϑ ∈ Θ, are identically distributed.

For i ∈ [K], we now define βϑi = Rϑi if ξ ∈ ⋃k∈Γi
Λϑk and βϑi = 0 otherwise. The random

variable βϑi is distributed like βi defined in (2.6). From (4.12), using the independence
of (Rϑ,Sϑ) and Ξϑ and the fact that, conditional on ξ ∈ Λϑi , the relative position of ξ in
this interval is uniform and independent of (Rϑ,Sϑ), it follows from the last display that
E[∆Qϑn(ξ)2] is equal to

K∑
i=1

E[β2α
i ]E[∆Qϑn−1(ξ)2]

+

K∑
i=1

∑
j1 6=j2∈Ei∪{i}

E
[
1Λϑi

(ξ)(Rϑj1)α(Rϑj2)α∆Qϑj1n−1(ξϑj1)∆Qϑj2n−1(ξϑj2)
]
.

Here the Λϑi have distjoint interior, and all the squared terms are collected in the first
sum (recall the definition of βi from (2.6)). Conditional on ξ ∈ Λϑi and on Rϑj1 and Rϑj2 ,

the random variables ∆Qϑj1n−1(ξϑj1) and ∆Qϑj2n−1(ξϑj2) are zero-mean independent random
variables. Thus, the second term in the last display vanishes. Hence:

E[∆Qϑn(ξ)2] =

K∑
i=1

E[β2α
i ]E[∆Qϑn−1(ξ)2] = E[∆Qϑ1 (ξ)2]

(
K∑
i=1

E[β2α
i ]

)n−1

. (4.13)

Recalling that q2 :=
∑K
i=1 E[β2α

i ] ∈ (0, 1), this implies that E[∆Qϑn(ξ)2] ≤ C2q
n
2 for

C2 = 1/q2.
Next, we aim at showing that, for all m ≥ 1, we have E[|∆Qϑn(ξ)|m] ≤ Cmqnm for some

constants Cm > 0 and qm ∈ (0, 1). The previous argument verifies this claim for m = 2

(and m = 1 by the Cauchy–Schwarz inequality). Let m ≥ 3 and assume it is true for all
1 ≤ ` ≤ m− 1 and let C∗ = max(C1, . . . , Cm−1), q∗ = max(q1, . . . , qm−1) < 1. Then, again
from (4.12), we deduce that

E[|∆Qϑn(ξ)|m] ≤
K∑
i=1

E[βmαi ]E[|∆Qϑn−1(ξ)|m]

+

K∑
i=1

∑
j1,...,jm

E

[
1Λϑi

(ξ)

m∏
k=1

|∆Qϑjkn−1(ξϑjk)|
]
, (4.14)
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where the inner sum of the second term ranges over all tuples (j1, . . . , jm) ∈ (Ei ∪ {i})m
for which #{j1, . . . , jm} ≥ 2. (Note that we have dropped some factors (Rϑj )α in the
product in the right-hand side.) Now, similarly to the argument above, on the event that
ξ ∈ Λϑi , the random variables in the product on the right-hand side of the last display are
independent for different values of jk. Since no jk appears more than m− 1 times in the
product, we can use the induction hypothesis to obtain the loose, but sufficient, bound

E[|∆Qϑn(ξ)|m] ≤
K∑
i=1

E[βmαi ]E[|∆Qϑn−1(ξ)|m]

+

K∑
i=1

∑
j1,...,jm

(C∗q
n−1
∗ )#{j1,j2,...,jm}, (4.15)

with j1, . . . , jm as in the sum in (4.14). From here, since m ≥ 3 we have
∑K
i=1 E[βmαi ] < 1

and a simple induction on n shows that E[|∆Qϑn(ξ)|m] decays exponentially in n, as
desired.

The exponential decay for all moments at a uniform point ξ can be bootstrapped to
yield exponential decay for sufficiently high (hence all) moments of the supremum. For
m ≥ 1 it follows from (4.12) that E[‖∆Qϑn‖m] equals

E

 max
1≤i≤K


∥∥∥∥∥∥(Rϑi )α∆Qϑin−1(ϕϑi (t)) +

∑
j∈Ei

(Rϑj )α∆Qϑjn−1(ξϑj )

∥∥∥∥∥∥
m


≤ E

 max
1≤i≤K

(Rϑi )mα‖∆Qϑin−1‖m +
∑

j1,...,jm

‖∆Qϑin−1‖`i
∏
k

|∆Qϑjkn−1(ξϑjk)|




with j1, . . . , jm as in the sum in (4.14), `i = #{1 ≤ k ≤ m : jk = i} and the product over
k only ranges over those values 1 ≤ k ≤ m with jk 6= i. (Observe that `i < m for all
i.) Bounding the maximum by the sum, abbreviating C∗∗ = max(C1, . . . , Cm) and q∗∗ =

max(q1, . . . , qm) and using the stochastic independence of ∆Qϑ1
n−1, . . .∆Q

ϑK
n−1, ξ

ϑ
1 , . . . , ξ

ϑ
K ,

gives

E[‖∆Qϑn‖m]

≤
K∑
i=1

E[Rmαi ]E[‖∆Qϑn−1‖m] +

K∑
i=1

∑
j1,...,jm

E[‖∆Qϑn−1‖`i ](C∗∗qn−1
∗∗ )p

∗
i

≤
K∑
i=1

E[Rmαi ]E[‖∆Qϑn−1‖m] +

K∑
i=1

∑
j1,...,jm

E[‖∆Qϑn−1‖m]`i/m(C∗∗q
n−1
∗∗ )p

∗
i ,

where we used p∗i = #{jk : 1 ≤ k ≤ m, jk 6= i}. Recall m from (3.1); for m ≥ m

we have
∑K
i=1 E[Rmαi ] < 1 and a simple induction on n shows that E[‖∆Qϑn‖m] decays

exponentially in n. From there, standard arguments (see, e.g. the proof Theorem 6 in
[14]) imply that, almost surely, Qϑn converges uniformly and, writing Zϑ for its limit, the
identity in (4.10) holds. Furthermore, the random variable ‖Zϑ‖ has finite polynomial
moments of all orders.

It remains to show that the constructed process is the unique solution to (2.10) in
distribution in Mc. As this part does not require significantly new ideas, we remain
brief. Let µ ∈Mc and consider a set of independent random variables {Yϑ0 , ϑ ∈ Θ} with
L(Yϑ0 ) = µ that is independent of {(Rϑ,Sϑ,Ξϑ) : ϑ ∈ Θ}. Then, analogously to (4.9), for
n ≥ 1 and ϑ ∈ Θ, recursively define

Yϑn = Φ(Yϑ1
n−1, . . . ,YϑKn−1,Rϑ,Sϑ,Ξϑ).
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By repeating the steps of the proof of uniform convergence of (Qϑn)n≥0, we find that
the sequence (Yϑn )n≥0 converges almost surely uniformly to a solution Yϑ of (2.10).
Furthermore, by following the same inductive arguments as before, one can show that
E[(Qϑn(ξ) − Yϑn (ξ))2] → 0 exponentially fast. (To be precise, we have the same bound
as in (4.13) for this term with E[∆Qϑ1 (ξ)2] replaced by E[(Yϑ0 (ξ) − c)2].) The fact that
E[|Qϑn(ξ) − Yϑn (ξ)|m] → 0 exponentially fast for all 1 ≤ m ≤ m follows as in (4.14)
and (4.15). Based on this, the same steps as before yield that E[‖Qϑn − Yϑn‖m]→ 0 for all
1 ≤ m ≤ m. Hence, Yϑ = Zϑ almost surely. This concludes the proof.

Proof of Theorem 1 i) and ii). The statement in ii) is an immediate consequence of Propo-
sition 12 and Proposition 11 ii) since E[νX] remains invariant upon replacing X by the
support of the measure. The uniqueness claim for the process in Theorem 1 i) can be
deduced as follows: Let Z be the process constructed in Proposition 13, and assume
that Y is a continuous excursion satisfying (2.10) with E[Y(ξ)] = E[Z(ξ)]. Then, by
Proposition 12, E[νTZn ] = E[νTYn ] for all n ≥ 1. Let fn : M1(Mn) → M1([0,∞)) be the
map that, to ν ∈ M1(Mn), associates the law of sup{A0,i : 0 ≤ i ≤ n}, where L(A) = ν.
Then, as n→∞, we have the following weak convergences:

fn
(
E[νTZn ]

)
→ L(‖Z‖), and fn

(
E[νTYn ]

)
→ L(‖Y‖).

Hence, L(‖Y‖) = L(‖Z‖), and in particular, by Proposition 13, ‖Y‖ must have finite
moments of all orders. The uniqueness statement under the finite moment condition in
Proposition 13 then implies that L(Y) = L(Z).

4.3 Attractiveness of the fixed points of (2.4)

In this section, we prove Theorem 2 and construct the counter-examples of Proposi-
tion 3. We start with the following lemma that provides a height function representation
of random elements in Tghp

f . For technical reasons, we work in the space D of càglàd
functions f : [0, 1] → R satisfying f(t) = lims↑t f(s) for all t ∈ (0, 1] and for which the
right-hand limits f(t+) = lims↓t f(s) exist for all t ∈ [0, 1). The set D is equipped with
the Skorokhod J1-topology ([12, Chapter 3]). Let Dex ⊂ D be the set of non-negative
functions f ∈ D with f(0) = f(0+) = 0 and f(t)− f(t+) ≥ 0 for all t ∈ [0, 1]. Analogously
to continuous excursions, every f ∈ Dex encodes a compact rooted measured real tree
(Tf , df , µf , ρf ) satisfying C1 via the construction outlined in Section 2.2 ([24, Lemma
2.1]). The proof of the following lemma is found in the appendix.

Lemma 14. Let ν be a probability distribution on Tghp
f . Then, there exists a probability

distribution η on Dex such that L(TZ) = ν for a random variable Z with law η.

Proof of Theorem 2. i) For m,n ≥ 1, write D̃
(m)
n for a generic random variable with

distribution ν
φm(ν)
n . Recall from the proof of Proposition 12 that, if T satisfies (2.10),

then for n ≥ 1, a r.v. Dn with distribution E[νTn ] satisfies the fixed point equation (4.6),

that is, Dn
d
= UnDn + Vn, where Un is a real-valued r.v. with Un ∈ (0, 1) a.s. that is given

in (4.7), Vn is a random matrix with non-negative entries given in (4.8), and (Un, Vn), Dn

are independent. Since φm+1 = φ ◦ φm, the arguments from the proof of Proposition 12
show that

D̃(m+1)
n

d
= UnD̃

(m)
n + V (m)

n ,

where (Un, V
(m)
n ) and D̃

(m)
n are independent and V

(m)
n is given as Vn in (4.8) upon

replacing each copy of D(k)
` by a copy of D̃(m)

` and maintaining the independence

between R,S,J and the copies of D̃(m)
1 , . . . , D̃

(m)
n−1. The remainder of the proof consists in

showing that, in distribution (and in mean) for all n ≥ 1, we have D̃(m)
n → Dn as m→∞.

By Proposition 11 (iii), this implies the assertion. The proof relies on a contraction
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argument. In the following, as matrices in Mn are symmetric with zeros on the diagonal,

we use the natural identification of Mn with R(n+1
2 ). For p ∈ N, p ≥ 1, let M1

1(Rp) be
the set of probability measures on Rp whose max-norm ‖ · ‖∞ is integrable. Recall the
Wasserstein distance onM1

1(Rp) defined by, for µ1, µ2 ∈M1
1(Rp),

`1(µ1, µ2) = inf
{
E[‖X − Y ‖∞] : L(X) = µ1,L(Y ) = µ2

}
.

For random variables X,Y in Rp, we abbreviate `1(X,Y ) := `1(L(X),L(Y )). We proceed

by induction on n ≥ 1, and assume that, for all 1 ≤ i < n, `1(D̃
(m)
i , Di) → 0 as m → ∞.

First, observe that ‖Gj
i(A)‖∞ ≤ ‖A‖∞ for all matrices A and linear operators Gj

i in and
around (4.2)–(4.3). Since the random variables Ri, i ∈ [K], lie in [0, 1], conditioning on
(R,S,J) shows that

`1(D̃(m+1)
n , Dn) ≤ E[Un] · `1(D̃(m)

n , Dn) + sup
1≤`≤n−1

`1(D̃
(m)
` , D`).

From here, since E[Un] < 1 and `1(D̃
(m)
` , D`)→ 0 for all 1 ≤ ` ≤ n− 1 by the induction

hypothesis, it follows by induction on m that the sequence (`1(D̃
(m)
n , Dn))m≥1, is bounded.

Taking the limit superior in the last display then shows that `1(D̃
(m)
n , Dn)→ 0 as m→∞

since E[An] < 1. This concludes the proof of the induction step, and it only remains

to establish the base case n = 1. Note that, under our identification, D̃(m)
1 and D1 are

real-valued and non-negative random variables. Distributional convergence D̃(m)
1 → D1

as m→∞ follows immediately from Theorem 2 b) in [27]. Furthermore, by construction
φm preserves the expected distance between the root and an independent random point
and therefore E[D̃

(m)
1 ] = E[D1] for all m ≥ 1. But convergence in `1 for non-negative

random variables is equivalent to distributional convergence together with convergence
of the mean, see, e.g. [11, Lemma 8.3]. This concludes the proof of i).

ii) If ν ∈M1(Tghp
f ) the claim follows easily from the proof of Proposition 13. Indeed,

by Lemma 14, there exists a probability distribution ν∗ on Dex such that the (isometry
class of the) tree encoded by a random variable with law ν∗ has distribution ν. Then,
for any n ≥ 0, φn(ν) is the distribution of the real tree encoded by Q∅n from the proof
of Proposition 13 when Qϑ0 , ϑ ∈ Θn, are i.i.d. with distribution ν∗; see Remark 1. (All
arguments in the proof of Proposition 13 apply analogously to càglàd functions.) As we
have seen there, Q∅n converges almost surely to a solution of (2.4). (It is here where we
need the moment assumption on ‖T‖.) This proves the claim.

Proof of Proposition 3. i) The example we provide generalizes the one by Albenque and
Goldschmidt [2] in the special case of Example 1). Let τ = L((S,S)) where L(S) = η.
(In other words, we choose L(R) = η and the coupling R = S.) Let νc be the unique
law solving (2.4) in Tghp

f with E[dc(ρc, ζc)] = c, where ζc is sampled according to µc on Tc
and (Tc, dc, µc, ρc) has distribution νc. Such a solution exists by Theorem 1. The idea is
to construct another random compact rooted measured real tree in Tghp by appending
massless hair to a tree sampled from νc.

Choose an integer κ ≥ 1. Let c+0 be the set of all non-negative sequences converging
to zero. Let X = (X , d, µ, ρ) be a fixed compact measured metric space. For a sequence of
points u = (un)n≥0 in X and s ∈ c+0 , let χ1(u, s) be the isometry class of the space obtained
upon attaching κ disjoint segments of length si at the point ui, each by one extremity,
for all i ≥ 1. As s ∈ c+0 , the resulting space is compact. Hence, χ1 : XN × c+0 → Kghp is
well-defined. The map is continuous as proved in Lemma 28 in the appendix.

Let P be a Poisson point process with intensity measure µ⊗ s−1−1/αds on X × [0,∞).
P can be considered a (XN × c+0 )-valued random variable. The isometry class f(P) is a
random variable whose distribution does not depend on the choice of the representative
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of the isometry class of X. Hence, this operation defines a map ψ1 : Kghp →M1(Kghp),
which is continuous (Lemma 28 in the appendix) and a version at the level of measures
Ψ1 :M1(Kghp)→M1(Kghp) that is defined by

Ψ1(υ)(A) = E[ψ1(Y )(A)], with L(Y ) = υ.

The important observation is that, because of the choice of intensity measure with
exponent −1− 1/α in the length, the effects of a multiplication of the mass by C and of
a multiplication lengths by Cα are equivalent, and thus Ψ and Ψ1 commute. In other
words, for υ ∈M1(Kghp), we have

Ψ(Ψ1(υ),L((S,S))) = Ψ1(Ψ(υ,L((S,S)))).

It follows immediately, that for any fixed point ν of (2.4), the measure Ψ1(ν) also
solves (2.4). In particular, Ψ1(νc) is such a fixed point and it charges only Tghp \Tghp

f .
Let T = (T , d, µ, ρ) be a random variable with distribution Ψ1(νc). The height ‖T‖ is

at least as large as the length of the longest attached segment. Hence, for h > 0, we
have

P(‖T‖ ≥ h) ≥ P(Po(
∫∞
h
s−1−1/αds) ≥ 1) = 1− exp(−αh−1/α), (4.16)

where Po(λ) denotes a Poisson random variable with parameter λ. Since m ≥ 1/α (see
above (3.1)) it follows readily that E[‖T‖m] =∞.

Furthermore, for different values of κ the corresponding laws are mutually singular.
Finally, note that there is nothing specific to massless segments in the argument. Indeed,
we can replace the segments by loops, or equivalently identify the extremities of all the
segments together when κ ≥ 2. This proves that there exist fixed points which are real
trees with probability zero.

ii) The measure Ψ1(νc) we have just constructed charges only spaces in Tghp \Tghp
f

since the hair has no mass; we now provide a modified example where (a) the metric
part of the spaces is the unique (up to scaling) fixed point in Tghp

f on which we graft hair,
just as in i) before, but (b) we modify the mass measure so that it also charges the hair.
We then prove that the diameter of spaces obtained by iteration does not converge in
distribution to the diameter of TZ .

Let X◦ = (X ◦, d◦, µ◦, ρ◦) be any fixed compact measured metric space where µ◦ has
no atoms; to fix ideas, one may take X ◦ = [0, 1] equipped with the Euclidean metric, the
Lebesgue measure, and ρ◦ = 0. From X◦, we construct the “hairy” compact measured
metric space (X , d, µ, ρ) using the decoration by a Poisson point process as above. Here,
and subsequently, we focus on the case κ = 1. Now, we construct a new measure µP
on X as follows. We first set µP(X ◦) = 0. Then, for (u, s) ∈ P, we associate a total µP
mass min{s, 1}1/α+1 to the segment of length s attached to u; we distribute this mass
along this segment with density α · (1 + α)−1 · r1/α1{0≤r≤s}dr if s ≤ 1, and with density
e−r(1− e−r)−11{0≤r≤s}dr if s > 1. Then,

E[µP(X )] =

∫ ∞
0

min{s, 1}1/α+1s−(1+1/α)ds =

∫ 1

0

ds+

∫ ∞
1

s−(1+1/α)ds

= 1 + α <∞ ,

and it follows that µP(X ) <∞ almost surely. We let µ∗ be the unique probability measure
on X that is proportional to µ+ µP . For a random point ζ∗ sampled according to µ∗, we
have

E[d(ρ, ζ∗)] ≤ E

[∫
d(ρ, u)(µ+ µP)(du)

]
≤ E[d(ρ, ζ)] + E

[∫
d(ρ, u)µP(du)

]
,
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and

E

[∫
d(ρ, u)µP(du)

]
≤ ‖X◦‖+ 1 + sup

s≥1

∫ s

0

e−r(1− e−r)−1dr = ‖X◦‖+ 2.

It follows that λ∗ := E[d(ρ, ζ∗)] < ∞, so we may rescale the metric and define
d∗(·, ·) = d(·, ·) × c/λ∗. Finally, let X∗ = (X , d∗, µ∗, ρ) which satisfies E[d∗(ρ, ζ∗)] = c

and E[‖X∗‖1/α] = ∞. As for the function ψ1 in part i), technical proofs which we omit
show that the isometry class of X∗ is a random variable whose distribution only depends
on the ghp-equivalence class of X◦. We denote this distribution by ν∗ = ν∗c ∈M1(Kghp

f ).
Note that it is not difficult to construct explicitly a random variable g ∈ Cex in terms of
the points in P such that Tg = X∗ (with respect to isometry classes).

Fix n ≥ 1 and let X∗n be a random variable with distribution φnghp(ν∗). We now
study the diameter of X∗n. To this end, let ν̃ be the distribution of the isometry class of
X̃ = (X, d, µ∗, ρ) and X̃n be a random variable with distribution φnghp(ν̃). As the rescaling

for distances is deterministic, in distribution, we obtain X∗n from X̃n by multiplying
distances in X̃n by c/λ∗. We can think of the random variable X̃n as constructed from a
family of independent copies {X̃ϑ : ϑ ∈ Θn} of X̃ relying on the family of independent
rescaling factors {(Rϑ,Sϑ) : ϑ ∈ Θn}, where glue points are chosen with respect to
the mass measures. (Formally, we can use the space TQ∅n with Q∅n from the proof of

Proposition 13 when Qϑ0 , ϑ ∈ Θn, are i.i.d. copies of g mentioned above.) Recall that the
distribution of P has been tailored precisely so that it is not affected by the rescaling:
the distribution of lengths of the segments on the union of the rescaled copies of the X̃ϑ

is equal to the distribution of lengths of the segments on X̃ 7. In particular, it follows that
the diameter of X̃n is bounded from below in a stochastic sense by the largest segment
appearing in the Poisson process. From these considerations and (4.16), it follows that,
for x > 0,

P(diam(X∗n) ≥ λ∗x/c) = P(diam(X̃n) ≥ x) ≥ 1− exp(−αx−1/α).

As ‖TZ‖ has finite moments of all orders and the last display is valid for all n, it follows
that, for all x large enough, the left hand side of the last display does not converge to
P(diam(T∗Z) ≥ λ∗x/c). This concludes the proof.

5 Proofs of the geometric properties

All arguments in this section rely on a generalization of the decomposition of the tree
TZ into K subtrees corresponding to TZ1 , . . . , TZK when the fixed point equation (2.10) is
developed for several levels. Throughout Section 5, let Tϑ = (T ϑ, dϑ, µϑ, ρϑ) := TZϑ with
Zϑ as in Proposition 13 where, for the sake of convenience, we assume

∫ 1

0
E[Zϑ(t)]dt = 1.

The structural tree Γ describes the way the trees T 1, . . . , T K (or rather, their images
under the canonical surjection ϕ◦), are arranged in T = TZ . Similarly, we introduce a
structural tree for the decomposition at level n ≥ 1 as follows: Let Γn be the plane tree
on Kn nodes labelled with elements of Θn that describes the adjacencies between the
subtrees at level n of the decomposition, that is, Tϑ, ϑ ∈ Θn, when carried out up to this
level. We think of Γn as rooted at 1 . . . 1. Observe that Γn is a random object, since the
adjacency relations depend on the random points used to glue the trees. The tree Γn

is measurable with respect to {(Sϑ,Ξϑ) : 0 ≤ |ϑ| < n}. Analogously to the construction
on page 6, we shall consider T = TZ as the disjoint union tϑ∈ΘnT ϑ upon identifying
each root of a tree T ϑ, ϑ 6= 1 . . . 1 with the glue point on the associated parent tree. We
write ϕ◦n : tϑ∈ΘnT ϑ → T for the corresponding canonical surjection. See Figure 3 for an
illustration.

7This is true, regardless of the fact that these segments may not be hair any longer in X̃, since the gluing
occurs after the rescalings.
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Figure 3: The construction of T from the first two levels of Θ, and the corresponding
structural tree Γ2 on the right-hand side.

5.1 The upper Minkowski dimension: Proof of Theorem 4

In the following, for the sake of clarity, we write aX for the metric space (X , ad),
where a constant a > 0 and a metric space (X , d). The approach here is to turn the
heuristic presented in (3.2) into a rigorous argument.

Given x > 0, the idea consists in (1) expanding the recurrence for each subspace
that has a scaling factor (for distances) greater than xα, until we are left with spaces
(potentially in different generations) with scaling factor no greater than xα; (2) prove
that, with high probability and for any ε > 0, we can cover the whole space by using a
single ball of radius xα−ε per subspace, which ends up being a collection of no more
than x−1−ε balls, and finally (3) show that the bounds ensure that this occurs for all x
small enough with probability one. Let us move on to the details.

With x > 0 fixed, we first look for the suitable portion of the space that should
intuitively be covered with balls of size roughtly xα. For ϑ ∈ Θ \ {∅}, we let ϑ+ be the
direct ancestor (parent) of ϑ in Θ. Let Lx := {ϑ ∈ Θ : V(ϑ) ≤ x,V(ϑ+) > x}. The set Lx

separates the root ∅ from infinity, and no two elements of Lx lie on the same ancestral
path. It follows that

∑
ϑ∈Lx

V(ϑ) = 1 almost surely, and Lx provides a natural partition
of the entire space T . The cardinality of Lx has been studied finely by Janson and
Neininger [33]; we only need rather weak results: it turns out that under the conditions
of Theorem 4 (their Condition A), as one would expect, E[#Lx] = O(1/x) as x→ 0, and
therefore, for any ε > 0, by Markov’s inequality,

P(Lx > x−1−ε) ≤ Cxε,

for some constant C.

Now, for each ϑ ∈ Lx, the corresponding portion of the space is stochastically smaller
(coupling of the scale factor) than xX , and since the height has moments of all orders,
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by choosing k as the smallest integer such that kε > 2, we have

P(∃ϑ ∈ Lx : V(ϑ)α‖Tϑ‖ > xα−ε) ≤ P(∃ϑ ∈ Lx : ‖Tϑ‖ > x−ε)

≤ Cxε + x−1−εE[‖T‖k]xkε

≤ Cxε + C ′x1−ε,

where the constant C ′ only depends on ε.
As a consequence, using balls of radius xα−ε centered at the roots ρϑ for ϑ ∈ Lx,

it follows that NT (xα−ε) is such that P(NT (xα−ε) > x−1−ε) ≤ C ′′xε for ε ∈ (0, 1/2).
Choosing x = 2−n, a straightforward application of the Borel–Cantelli lemma implies that
with probability one, NT (2−n(α−ε)) ≤ 2n(1+ε) for all but finitely many natural numbers
n. This is then easily extended to any value of x by considering the unique n ∈ N for
which 2−n < x ≤ 2−n+1, and the fact that one then has NT (xα−ε) ≤ N (2−n). It follows
that with probability one,

lim sup
x→0

logNT (xα−ε)

log 1/xα−ε
≤ 1 + ε

α− ε .

Since ε ∈ (0, 1/2) is arbitrary, this completes the proof of Theorem 4.

5.2 Lower bound on the Hausdorff dimension: Proof of Theorem 5

For a real tree Tf with f ∈ Cex, natural candidates for measures giving lower bounds
on dimh(Tf ) using the mass distribution principle (2.14) are the push-forward measures
µ∗f := µ∗ ◦π−1

f of measures µ∗ on [0, 1] under the surjection πf : [0, 1]→ Tf . In our setting,
in the case R = S which covers both examples in (2.11) and (2.12), it is intuitive that
the Lebesgue measure on [0, 1], or, equivalently, the canonical measure on T , leads to
an efficient choice. But when scaling factors in time and space are independent such
as in example (2.13), it turns out that one first has to find an appropriate time-change
on the unit interval in order to re-correlate the masses of fragments in the tree with
the extent of distances in the corresponding subtrees. Time-changes constructed in this
context are typically random, and one is led to construct the pair “tree+time-change”
simultaneously. It is this situation in which the almost sure construction in Section 4.2
turns out especially useful.

The construction of a suitable time-change is presented in the following proposition
which requires the introduction of additional notation. Let Φ1 be the analog of the
map Φ defined in (2.9) for α = 1 that combines functions of the space C1 = {f ∈ C :

f ≥ 0, f(0) = 0, f(1) = 1}. In other words: Φ1 : CK1 × Σ2
K × (0, 1)K → C1, such that

g = Φ(f1, . . . , fK , r, s,u) is the unique function of C1 for which

g(x)− g(y) = rw` [fw`(ϕw`(x))− fw`(ϕw`(y))] ,

for all 1 ≤ ` ≤ L and x, y ∈ I` (see around the definition of Φ for the notation). Further,
for i ∈ Γo let Λϑ−i and Λϑ+

i be the two half-open intervals forming Λϑi where inf Λϑ−i ≤
sup Λϑ+

i . For the various quantities playing a role in the proposition, we refer the reader
to Section 3.4.

Proposition 15. Almost surely, for any ϑ ∈ Θ, there exists a probability measure µϑ on
[0, 1] = Λϑ∅ , such that, for every σ ∈ Θ,

µϑ(Λϑσ) = V(ϑσ)/V(ϑ).

The (random) distribution function Fϑ of µϑ is measurable with respect to {Rϑσ,Sϑσ,Ξϑσ :

σ ∈ Θ}, and if ξ is an independent random variable uniform in [0, 1], then E[Fϑ(ξ)] = 1/2.
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All Fϑ, ϑ ∈ Θ, have the same law and satisfy

Fϑ = Φ1(Fϑ1, . . . , FϑK ,Rϑ,Sϑ,Ξϑ) . (5.1)

Furthermore, in distribution, Fϑ is the unique continuous distribution function on [0, 1]

satisfying (5.1).

Proof. Let µϑn be the unique probability measure on [0, 1] which corresponds to the mass
distribution on the partition {Λϑσ : σ ∈ Θn} such that µϑn(Λϑσ) = V(ϑσ)/V(ϑ), and µϑn
has constant density on each of the sets Λϑσ, σ ∈ Θn. This construction is consistent
in the sense that, for m ≥ n and σ ∈ Θn, we have µϑm(Λϑσ) = µϑn(Λϑσ). The measure µϑ

is constructed as the almost sure limit of the sequence of random measures (µϑn)n≥0.
Denote by Fϑn the distribution function of µϑn. By construction, almost surely,

Fϑn = Φ1(Fϑ1
n−1, . . . , F

ϑK
n−1,Rϑ,Sϑ,Ξϑ). (5.2)

Note that {(Fϑn )n≥0 : ϑ ∈ Θ} is a family of identically distributed random variables.
The uniform convergence of Fϑn is shown analogously to the convergence of Qϑn in
Proposition 13: write Fϑn as a telescoping sum, prove almost sure convergence of the
corresponding series at an independent uniform point, and bootstrap to almost sure
uniform convergence; we omit the details. Here, it is important to note that, since
Fϑ0 (t) = t for all t ∈ [0, 1], one can verify inductively that E[Fϑn (ξ)] = 1/2 for all n ≥ 1.
The relevant constant that takes a value smaller than one, which allows to establish the
convergence of Fϑn at a uniformly chosen point by a contraction argument is

∑K
i=1 E[β2

i ]

(this is similar to the constant in (4.13) with α replaced by 1, just as Φ1 is similar to Φ with
α replaced by 1). From the convergence of Fϑn and (5.2), it follows that Fϑ satisfies (5.1)
and is a continuous distribution function. The induced measure µϑ satisfies the desired
properties.

In the remainder of the section (and here only), let µ̄ = µ∅ ◦ π−1
Z with µ∅ as in

Proposition 15.

Lemma 16. Assume that E[R−δ] <∞ for some δ > 0 and let ζ be drawn on T according
to µ and ζ̄ be drawn according to µ̄, where these random variables are independent
given T. Then, there exists an ε > 0, such that,

max
{
P(d(ρ, ζ) < r),P(d(ρ, ζ̄) < r),P(d(ζ, ζ̄) < r)

}
= O(rε), r ↓ 0.

Remark. In most classical examples, we have µ = µ̄ and invariance by rerooting at a
random point distributed according to µ. This applies in particular to TZ and Te. The
tree TH is invariant under rerooting but the time-change is non-trivial. The random
variable e(ξ) has the Rayleigh distribution, thus P(e(ξ) ≤ t) = 1− e−t2/8 = t2/8 + o(t2)

as t→ 0.

Proof. Since the arguments are similar: we give all the details for the bound on d(ρ, ζ)

and only discuss the relevant modifications for d(ρ, ζ̄) and d(ζ, ζ̄). Recall the construction
discussed at the beginning of this section involving the random tree Γn for n ≥ 1.

i) The lower bound on d(ρ, ζ). Fix n ≥ 1 and let ζ be as in the lemma. We define Γ∗

as the set of nodes of Γn containing all vertices ϑ ∈ Θn such that ϕ◦n(T ϑ) intersects the
segment Jρ, ζK. Note that Γ∗ forms a path in Γn. By construction, N = #Γ∗ is distributed
as the number of individuals in the n-th generation of a discrete-time branching process
with offspring distribution ν = L (1 + #EJ) . Note that ν({0}) = 0 and ν({1}) < 1. For
ϑ ∈ Γ∗, the contribution of the intersection of Jρ, ζK with ϕ◦n(T ϑ) to d(ρ, ζ) is distributed
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as a scaled copy of Y , the height of a random point (see around (2.6)). More precisely,
we have

Y
d
=
∑
ϑ∈Γ∗

V(ϑ)αY ϑ, (5.3)

with a family of independent random variables {Y ϑ : ϑ ∈ Θn} distributed as Y which
is independent of {(Rϑ,Sϑ) : |ϑ| < n},Γ∗. (Note that Γ∗ and {(Rϑ,Sϑ) : |ϑ| < n} are
typically not independent.) Therefore, with mn = min{V(ϑ) : |ϑ| = n} and c > 0, we
obtain

P(Y ≤ r) ≤ P

(∑
ϑ∈Γ∗

e−cαnY ϑ < r

)
+ P

(
mn < e−cn

)
.

We now consider a crude (stochastic) bound on N which turns out to be sufficient: as
ν({0}) = 0, we may alternatively think of the branching process as a path from the
root to a leaf in level n such that all nodes on the path produce additional offspring
in the next generation according to a copy of #EJ , and all nodes created in this way
reproduce according to ν. Upon keeping only a single node in the offspring of the
latter set of particles, we can bound N from below by a random variable with a binomial
distribution with parameters n and ν([2,∞)) hereafter denoted by Bin(n, ν([2,∞))). Thus,
for 0 < γ < ν([2,∞)), we have

P(N < dγne) ≤ P (Bin(n, ν([2,∞))) < dγne) ≤ Ce−εn,

for some C > 0 and ε > 0 both depending on γ. Next, choose δ > 0 such that E[R−δ] <∞.
Then,

P(mn < e−cn) ≤ KnP

(
n∏
i=1

Ri < e−cn

)
≤ exp

(
n
[
log
(
KE[R−δ]

)
− cδ

])
.

With c large enough, the right-hand side is O(e−δ
′n) for some δ′ > 0. Hence, with

n = dC log(1/r)e and independent copies Y1, . . . , Yn of Y , we obtain

P (Y ≤ r) ≤ P

dγne∑
i=1

e−cαnYi ≤ r

+O(e−min(δ′,ε)n)

≤ P (Y ≤ recαn)
dγne

+O(e−min(δ′,ε)n)

≤ r−Cγ log P(Y≤eαcr1−cαC) +O(rCmin(δ′,ε)).

Choosing C < (αc)−1 the exponent in the first term actually tends to +∞ as r → 0; hence
this yields the assertion for d(ρ, ζ).

ii) The lower bound on d(ρ, ζ̄). We proceed similarly and write Γ̄ for the set of nodes on
the path in Γn containing those ϑ ∈ Θn with ϕ◦n(T ϑ) intersecting Jρ, ζ̄K. Let ϑ∗ = 11 . . . 1

denote the root of Γn. Upon disregarding the contribution of T ϑ∗ , we have the following
inequality which is the analogue of (5.3) (≥P denotes stochastic order):

d(ρ, ζ̄) ≥P
∑

ϑ∈Γ̄\{ϑ∗}

V(ϑ)αY ϑ. (5.4)

Let N̄ = #Γ̄−1. Then, N̄ is distributed as the number of particles of type 2 in generation
n in a two-type branching process, where each particle reproduces independently with
the following dynamics: the process starts at time 0 with a type 1 particle which
remains alive forever. We can think of this particle as the subtree in the decomposition
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whose corresponding image contains ζ̄. Let J̄ be a random variable satisfying P(J̄ =

j |R,S) = Rj for j = 1, . . . ,K. In each generation, the immortal particle gives birth to
an independent number of type 2 particles distributed as #EJ̄ corresponding to those
subtrees intersecting Jρ, ζ̄K which do not contain ζ̄ and arise in the decomposition of the
subtree associated with the immortal particle. Finally, since particles corresponding to
(images of) subtrees intersecting Jρ, ζ̄K which were created on earlier levels are further
decomposed, every type 2 particle generates type 2 offspring according to ν. (Type 2
particles do not generate offspring of type 1.)

Similarly to the bound on N derived above, upon only keeping track of type 2 children
of the immortal particle, we can bound N̄ from below by a random variable with a
binomial distribution with parameters n,P (EJ̄ ≥ 2). As P(EJ̄ ≥ 2) > 0, for γ > 0

sufficiently small, we find that P(N̄ < dγne) decays exponentially in n. The claim now
follows as above.

iii) The lower bound on d(ζ, ζ̄). Write Γ′ for the path of nodes in Γn whose associated
subtree (image) intersects Jζ, ζ̄K. Let ϑ1, ϑ2 be the two (non-necessarily distinct) end-
points of Γ′, and ϑ3 their highest common ancestor. Similarly to (5.3) and (5.4), we
have

d(ζ, ζ̄) ≥P
∑

ϑ∈Γ′\{ϑ2,ϑ3}

V(ϑ)αY ϑ. (5.5)

Describing N ′ = #Γ′ − 2 now leads to a branching process with as many types as kinds
of portions of the path between ζ and ζ̄, which correspond to rescaled copies d(ζ, ζ̄)

(type 1), d(ρ, ζ) (type 2), d(ρ, ζ̄) (type 3), and d(ζ, ζ ′) (type 4), where ζ ′ is an independent
copy of ζ. The initial particle has type 1; once it reproduces, type 1 never reappears and
there is an immortal particle of type 3; all other particles are of type 2 except the one
corresponding to the portion of the path in ϑ3 which as type 4; hence the representation
in (5.5). Again, the number of children generated by the immortal particle up to time n
grows linearly in n except on an event of exponentially small probability. We omit further
details.

The proof of Theorem 5 requires more details about the tree Γn: For a node ϑ ∈ Γn,
let C′(ϑ) denote the (random) set of its children in Γn. By construction, if ϑ = ϑ1ϑ2 . . . ϑn,
then C′(ϑ) only contains nodes of the form ϑ1 . . . ϑ`γ1 . . . 1 with 0 ≤ ` < n and 2 ≤ γ ≤ K
satisfying $γ = ϑ`+1 where ϑ0 := 1 (that is, γ is a child of ϑ`+1 in Γ). By C(ϑ) ⊆ C′(ϑ) we
denote the subset of children of ϑ where, for any 1 ≤ ` < n, if ϑ1 . . . ϑ`γ1 . . . 1 ∈ C′(ϑ) for
some γ, we keep only that child with minimal γ. (We also keep a child γ1 . . . 1 with γ ≥ 2

in C(ϑ) if it exists in C′(ϑ).) From Proposition 7 iii), whose proof given in Section 5.3
does not make use of any results from the current section, we know that all the trees
corresponding to nodes in C(ϑ) are glued on the tree corresponding to ϑ at points that are
distinct with probability one. By construction, C(ϑ) is a maximal set with this property,
and #C(ϑ) ≤ n. Informally, #C(ϑ) counts the number of distinct “exit points” of the
subtree ϕ◦n(T ϑ) in the decomposition of T , that is, the points distinct from the root ϕ◦n(ρϑ)

where geodesics may leave ϕ◦n(T ϑ). See Figure 3 for an illustration of the construction
and of the sets C(ϑ). In particular, in this figure, we have C′(12) = {13, 21, 41}, C(12) =

{13, 21} while C′(24) = C(24) = {31}.

Proof of Theorem 5. Fix n ∈ N and γ < 1/α. We need to show that dimh(T) ≥ γ almost
surely. Let P =

⋃
ϑ∈Θn

ϕ◦n({ρϑ}). For x ∈ T \ P let ϑ(x) be the unique node in Γn with

x ∈ ϕ◦n(T ϑ(x)). Set T(x) = Tϑ(x). Furthermore, let Hx = d(x, ϕ◦n(ρϑ(x))) be the height of
x in (the image of) T (x) and Ex = d(x, T \ ϕ◦n(T (x))) the distance to exit (the image of)
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T (x) from x. With C(x) := C(ϑ(x)), for all x ∈ T , we have

Ex =

{
minσ∈C(x) d(x, ϕ◦n(T σ)) if ϑ(x) = 1 . . . 1

minσ∈C(x) d(x, ϕ◦n(T σ)) ∧Hx if ϑ(x) 6= 1 . . . 1 .

Recall that Br(x) = {y ∈ T : d(x, y) < r} for x ∈ T , r > 0. For any x ∈ T \ P and r > 0,
we have either Br(x) ⊆ ϕ◦n(T (x)) or Ex ≤ r.

We aim at using the mass distribution principle with the measure µ̄ = µ∅ ◦ π−1
Z

constructed thanks to Proposition 15. As in the previous proof, we let ζ̄ be a random
variable drawn on T according to µ̄ (given T). Formally, we can let ζ̄ = πZ((F ∅)−1(ξ))

for a random variable ξ with the uniform distribution on [0, 1] which is independent of all
remaining quantities. As µ̄ has no atoms (F ∅ is continuous and Proposition 7 iii) ), we
obtain

P(µ̄(Br(ζ̄)) > rγ) ≤ P(µ̄(ϕ◦n(T (ζ̄))) > rγ) + P(Eζ̄ ≤ r).

For any ϑ ∈ Θn, we denote by σ0(ϑ), . . . , σn−1(ϑ) the potential elements of C(ϑ) where,
seen as words on [K], σ`(ϑ) and ϑ have a common prefix of length `. Then, abbreviating
σ` := σ`(ϑ(ζ̄)),

P(Eζ̄ ≤ r) ≤ P
(
Hζ̄ ≤ r

)
+ P

(
n−1⋃
`=0

{d(ζ̄, ϕ◦n(T σ`)) ≤ r, σ` ∈ C(ζ̄)}
)
. (5.6)

Let ζ̄ ′ = πZ((F ∅)−1(ξ′)) and ζ ′′ = πZ(ξ′′), where ξ′, ξ′′ are independent random
variables with uniform distribution on [0, 1], independent of the remaining quantities.
Then, for ` ∈ {0, 1, . . . , n− 1}, we have

P
(
d(ζ̄, ϕ◦n(T σ`)) ≤ r, σ` ∈ C(ζ̄)

)
= P(V(ϑ(ζ̄))α · d(ζ̄ ′, ζ ′′) ≤ r, σ` ∈ C(ζ))

≤ P(V(ϑ(ζ̄))α · d(ζ̄ ′, ζ ′′) ≤ r).

Similarly, Hζ̄ is distributed like V(ϑ(ζ̄))α · d(ρ, ζ̄ ′), for ζ̄ ′ an independent copy of ζ̄. Let
η ∈ (0, 1) be a parameter to be chosen later. Applying the union bound on the right-hand
side of (5.6) yields

P(Eζ̄ ≤ r) ≤ n
{
P(V(ϑ(ζ̄)) ≤ rη/α) + P(d(ρ, ζ̄) ≤ r1−η)

+ P(d(ζ̄, ζ ′′) ≤ r1−η)
}
.

As µ̄(ϕ◦n(T (ζ̄))) = V(ϑ(ζ̄)), combining the bounds and using Lemma 16, we see that there
exists universal constants ε1 > 0 and C > 0 such that

P(µ̄(Br(ζ̄)) > rγ) ≤ P
(
V(ϑ(ζ̄)) > rγ

)
+ Cn

{
P(V(ϑ(ζ̄)) ≤ rη/α) + rε1(1−η)

}
.

We now choose the parameters. Note that − logV(ϑ(ζ̄)) is distributed like the sum
of n independent copies of the random variable − log

∑K
i=1 1{J̄=i}Ri; furthermore, as

R∗ :=
∑K
i=1 1{J̄=i}Ri is stochastically larger than R, the tail bound on R implies that

− logR∗ has exponential moments, and hence that the expected value q := E[− logRJ̄ ] <

∞ governs the asymptotics. First, let η ∈ (γα, 1). Then choose δ ∈ (γ/q, η/(qα)).
Finally, let n = n(r) = b−δ log rc. Hence, by Cramér’s theorem for large deviations,
there exist C2, ε2 > 0 (depending on the remaining parameters but not on r), such that
P(V(ϑ(ζ̄)) > rγ) ≤ C2r

ε2 and P(V(ϑ(ζ̄)) ≤ rη/α) ≤ C2r
ε2 . Summarizing, there exists

C > 0 (which may depend on all parameters but not on r), such that,

P(µ̄(Br(ζ̄)) > rγ) ≤ C log(1/r) · (rε2 + rε1(1−η)), 0 < r < 1.
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It follows that for rn = 2−n, ∑
n≥1

P(µ̄(Brn(ζ̄)) > rγn) <∞.

Hence, by the Borel–Cantelli lemma, almost surely,

lim sup
r→0

µ̄(Br(ζ̄))

rγ
≤ 2.

Thus, denoting A = {x ∈ T : lim supr→0 µ̄(Br(x))/rγ ≤ 2}, we have 1 = P
(
ζ̄ ∈ A

)
=

E[µ̄(A)] implying µ̄(A) = 1 almost surely. From (2.14), it follows that, almost surely,
dimh(T ) ≥ dimh(A) ≥ γ which completes the proof.

5.3 Degrees and properties of the encoding: Proof of Proposition 7

The proofs of the missing parts of Theorem 1, i.e., iii) and iv), rely on the dynamics
governing the number of points in the set C(ϑ) as ϑ follows a path in Θ away from the
root. The following lemma is straightforward from the construction, since the exit points
counted by #C(ϑ) are chosen on T ϑ according to the mass measure µϑ. Recall that, for
ϑ ∈ Θ, we write L(ϑ) for the Lebesgue measure of the set Λϑ (see (3.3)). Recall also that
Γo = Γ \ ∂Γ, where ∂Γ is the set of leaves of Γ.

Lemma 17. i) Let ε1, ε2, . . . ∈ [K] and, for each n ≥ 1, ϑn = ε1 . . . εn ∈ Θn. Then,
L(ϑn+1) = L(ϑn) · Sϑnεn+1

. The sequence (#C(ϑn),L(ϑn)), n ≥ 0 is a Markov chain on N×
[0, 1] starting at (0, 1), whose evolution can be described as follows: given (#C(ϑn),L(ϑn)),
we have

(#C(ϑn+1),L(ϑn+1)) = (1{εn+1∈Γo} + Bin
(
#C(ϑn),Sϑnεn+1

)
,L(ϑn) · Sϑnεn+1

).

ii) Let ξ be uniformly distributed on [0, 1], independent of all remaining quantities and,
for n ≥ 0, let ϑ̃ ∈ Θn be the unique node with ξ ∈ Λϑ̃. Define (C̃n, L̃n) := (#C(ϑ̃n),L(ϑ̃n)).
Then, the sequence (C̃n, L̃n), n ≥ 0 is a homogeneous Markov chain on N× [0, 1] starting
at (0, 1), whose evolution can be described as follows: given (C̃n, L̃n), we have

(C̃n+1, L̃n+1) = (1{Jn+1∈Γo} + Bin(C̃n,Sn+1
Jn+1

), L̃n · Sn+1
Jn+1

),

where (Sn)n≥0 is a family of independent copies of S and P(Jn+1 = i | Sn+1) = Sn+1
i .

Proof of Proposition 7 i), ii) and iii). We start with the proof of i). Let A = {s ∈ [0, 1] :

Z(s) = 0} denote the zero-set of Z. For n ≥ 1, let Λn = Λϑn where ϑn = 1 . . . 1. Then
for every n ≥ 0, ϕ◦n(T ϑn) is the subtree that contains the root ρ of T. Furthermore, Λn

is the union of #C(ϑn) + 1 disjoint intervals. Clearly, (Λn)n≥1 is decreasing and we set
Λ :=

⋂
n≥1 Λn. Since E[S1] < 1, Lemma 17 i) and a routine drift argument (see, e.g.,

Chapter 8 of [39]) shows that, almost surely, #C(ϑn) = 1 infinitely often, and thus Λn

consists of only two intervals for infinitely many n. As {0, 1} ∈ A, for any n ≥ 1 with this
property, we have

Λn ⊆ [0, inf{t > 0 : t /∈ Λn}] ∪ [sup{t < 1 : t /∈ Λn}, 1] .

Since L(ϑn) = Leb(Λn)→ 0 with probability one, it follows that Λ = {0, 1} almost surely.
Now, for any s 6∈ Λ, there is some n large enough for which s 6∈ Λn and Λn consists of

two intervals. Then, since the path between ρ and the projection of s in the tree must
cross ϕ◦n(T ϑn), Z(s) is at least a rescaled copy of Z(ξ), for a uniform random variable
ξ which is independent of Z. However, in the context of fixed point equation (2.6), we
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have already seen that Z(ξ) > 0 almost surely (see (2.7)). It follows that A ⊆ Λ, and
since Λ = {0, 1} the root ρ of T is a leaf.

ii) Since µZ has full support, this reduces to showing that for a random point ζ
sampled from µZ and any ε > 0, with probability one, there exists some x ∈ T = TZ
such that ζ lies in the subtree of T rooted at x, namely T ↑(x) := {u ∈ T : x ∈ Jρ, uK}, and
µZ(T ↑(x)) < ε. To prove this, we choose ζ = πZ(ξ) with ξ as in Lemma 17 ii) , and follow
ζ in the refining decomposition of the tree according to Θn, as n increases. For n ≥ 1, let
ϑ̃n ∈ Θn be as in Lemma 17 ii) . In particular, ζ ∈ ϕ◦n(TZϑ̃n ). Thus, ζ lies in the subtree of

T rooted at ϕ◦n(ρϑ̃n), and thus it suffices to show that for any ε > 0,

Aε = inf{n ≥ 0 : µZ(ϕ◦n(Tϑ̃n)) < ε} <∞ .

Observe that, if L̃n = µZ(ϕ◦n(Tϑ̃n)) < ε and C̃n = 0, then Aε ≤ n. As in the proof of

i) above, since E[SnJn ] < 1, a classical drift argument shows that (C̃n)n≥0 is positive

recurrent, and in particular, C̃n = 0 infinitely often. Then, for some subsequence (ni)i≥1

with ni →∞, we have C̃ni = 0. But, by Lemma 17, L̃n → 0 almost surely, so that there is
an i0 for which L̃ni < ε for all i ≥ i0. One then has Aε ≤ ni0 <∞, which completes the
proof.

Finally, we consider iii). Since d(ρ, ζ) > 0 almost surely, no mass can add up at exit
points in the construction of the excursion Z in (2.10). Hence,

E

[
sup
t∈[0,1]

µZ({πZ(t)})
]
≤ E [max(S1, . . . ,SK)] ·E

[
sup
t∈[0,1]

µZ({πZ(t)})
]
.

It follows that the left-hand side is zero which concludes the proof.

Proof of Theorem 1 iii) and iv). The point iii) was established in the proof of Proposi-
tion 7 i) . The argument we have used above for the proof of Proposition 7 ii) also
implies iv), that is, almost surely, Z is nowhere monotonic: indeed, if this were not the
case, then, with positive probability, a randomly chosen point would be contained in an
interval where Z is monotonic. In particular, for some ε > 0 and a uniformly chosen
point ξ, Z(ξ) would fall in a interval of length at least ε on which Z is monotonic with
positive probability. Recall the quantites ϑ̃n and C̃n from the proof of Proposition 7
ii) . Let I ⊆ N be the (a.s. infinite) set of indices n for which C̃n = 0. For n ∈ I, the
set Λϑ̃n ⊆ [0, 1] consists of a single half-open interval, and ξ ∈ Λϑ̃n . For every n ∈ I

large enough, we have L(ϑ̃n) < ε/2. But Z is non-monotonic on Λϑ̃n since ξ ∈ Λϑ̃n and
Z(inf Λϑ̃n) = Z(sup Λϑ̃n) < Z(ξ) almost surely by Theorem 1 iii) . This concludes the
proof.

Proof of Proposition 7 iv). Let T = TZ . First note that 2 ∈ D(T ) almost surely since µ
has no atoms, the set of branch points of T is at most countable, and T is not reduced
to a point. Further, since Z is nowhere monotonic, there exist local minima, and hence
branch points. It follows that the maximum degree of T is at least 3 (and, a priori,
possibly infinite).

Next, for every k ∈ D(Γ), k ≥ 3, almost surely, there exists a point x ∈ T with degree
k. This follows immediately from the fixed point equation satisfied by T and the fact
that the root has degree 1 and µ is concentrated on the leaves (see parts i) and ii) of
the proposition). For example, if a ∈ Γ has degree k, then (the image of) the root of
Ta+1 is a point in T with degree k. The main part of the proof consists in showing that,
if k + 1 /∈ D(Γ), k ≥ 3, then there do not exist points in T with degree k + 1. To this
end, let (Ui)i≥1 be a family of independent r.v. with the uniform distribution on [0, 1]

and ζi = πZ(Ui) be the corresponding test points on T . Further, let U0 = 0 and ζ0 = ρ.
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Since µ has full support on T , if there exists x ∈ T with degree k + 1, then all connected
components of T \ {x} have positive mass. In particular, with positive probability, any
two of the segments Jζi, ζjK, 0 ≤ i < j ≤ k, intersect at a point with degree k + 1. Let I
be the collection of points in T that are contained in some intersection Jζi, ζjK ∩ Jζi′ , ζj′K,
for distinct elements i, i, j, j′ ∈ {0, . . . , k}. Let T ≥ 1 be the minimal integer such that,
for some pairwise distinct nodes σi, i = 0, . . . , k in ΘT , we have Ui ∈ Λσi , i = 0, . . . , k.
Clearly, T <∞ almost surely as maxσ∈Θn L(σ)→ 0 almost surely. Let us denote the most
recent common ancestor of the nodes σi, i = 1, . . . , k by σ∗. (That is, σ∗ is the node of
maximal depth such that all σi, i = 1, . . . ,K are contained in its subtree.) Write σ∗ = σ̄∗ε

with σ̄∗ ∈ ΘT−1 and ε ∈ [K]. I is a singleton if and only if the nodes σi, i = 1, . . . , k

lie in subtrees of pairwise distinct nodes of the form σ̄∗γ, where $γ = ε. In particular,
x is equal to the roots of trees Tσ, σ ∈ {σ̄∗γ : $γ = ε} under the canonical surjection
tσ∈ΘT Tσ → T . As roots have degree 1 and the mass measure is concentrated on the
leaves, the degree of x must be equal to the degree of ε in Γ. In particular, the degree of
x lies in the set D(Γ). Summarizing, almost surely, the set I does not exist of a singleton
with degree k + 1 /∈ D(Γ) which concludes the argument. sup D(T ) <∞ almost surely
can be deduced easily. For, if this was not the case, for any natural number L ≥ 3, the
above construction with k = L− 1 would show that, with positive probability, there exists
L′ ≥ L such that I is reduced to a singleton of degree L′ ∈ D(Γ). Choosing L strictly
larger than the maximal degree in Γ contradicts this fact. It remains to prove that, if
max D(Γ) ≥ 4 and 3 /∈ D(Γ), then, almost surely, there are no nodes of degree 3 in T .
Set I = Jζ1, ζ2K ∩ Jζ1, ζ3K ∩ Jζ2, ζ3K. Almost surely, I is a singleton, say x. There exists a
node with degree 3 in T with positive probability if and only if, with positive probability,
x has degree 3. Let ϑ1, ϑ2 ∈ [K] such that Ui ∈ Λϑi , i = 1, 2. Let σ∗ be their most recent
common ancestor. If U1, U2 ∈ Λσ∗ , then let U ′i = ϕσ∗(Ui), where ϕσ∗ is defined in (2.8). If
U1 ∈ Λσ∗ and U2 /∈ Λσ∗ , then set U ′1 = ϕσ∗(U1) and U ′2 = ξσ∗ . Proceed analogously if the
roles of U1, U2 are interchanged. Note that, given that one of these cases occurs, the
random variables U ′1, U

′
2 are independent, uniformly distributed on [0, 1] and independent

of {(Rϑ,Sϑ,Ξϑ) : |ϑ| > 0}. Let ζ ′i = πZσ∗ (U ′i), i = 1, 2, 3, where U ′3 = 0. Note that, x has
degree 3 if and only if the node Jζ ′1, ζ ′2K ∩ Jζ ′1, ζ ′3K ∩ Jζ ′2, ζ ′3K in Tσ∗ has degree 3. By the
same arguments as above, if U1, U2 /∈ Λσ∗ , then the degree of x is equal to the degree of
σ∗ in Γ and therefore at least 4. It follows that

P (deg(x) = 3) = P (deg(x) = 3) (1−P (U1, U2 /∈ Λσ∗))

As P (U1, U2 /∈ Λσ∗) > 0 it follows that P (deg(x) = 3) = 0 which concludes the proof.

5.4 Optimal Hölder exponents

The proof of Corollary 6 merely consists in putting together the information we have
gathered in previous sections.

Proof of Corollary 6. (a) Note that under the conditions of Theorem 4, E[R−δ] <∞ for
any δ ∈ (0, γ). Thus the conclusion of Theorem 5 holds. On the one hand, we have
dimm(TZ) ≥ dimh(TZ) ≥ α−1 because of Theorem 5; on the other hand, dimm(TZ) ≤ α−1.

(b) By Theorem 1, Z is nowhere constant, hence (2.15) holds and α = ωZ . By
definition of ωZ , for any γ < ωZ = α, almost surely, there exists a process Z̃ time-change
equivalent to Z with γ-Hölder continuous paths.

(c) This follows immediately from part (a) since the existence of a process Z ′ whose
sample paths are γ-Hölder continuous with positive probability for γ > αwould contradict
the statement there.
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1 1

Figure 4: On the left, a lamination and the corresponding rooted dual tree. Distances in
the tree correspond to the number of chords separating the fragments in the lamination.
On the right, an example of 3-angulation, together with its dual tree. The tree is rooted
at the node containing the point (1, 0) ∈ ∂D . The shaded portions correspond to the
triangles inserted, while the white portions are essential fragments, i.e. the regions of
the disk with a positive Lebesgue measure on the circle.

6 Applications

In the first three sections, we discuss the corollaries stated in Section 3.3 concerning
the processes e, Z , and H . Then, in the fourth section, we study a new application.

6.1 The Brownian continuum random tree

The Brownian CRT Te encoded by a Brownian excursion is a fundamental tree arising
as scaling limit for various classes of random trees. We quote the classical case of
uniform random labelled trees [4, Theorem 2], but also binary unordered unlabeled
trees (Otter trees) [38], random trees with a prescribed degree sequence [13], general
unordered unlabeled trees (Pólya trees) [42], unlabeled unrooted trees [49], and random
graphs from subcritical classes [43] to name a few examples. (See also [35].)

Theorem 18 (Aldous [4], see also [35]). Let Tn be the family tree of a critical branching
process with offspring mean one and finite offspring variance σ2 conditioned on having n
vertices. Let dn denote the graph distance on Tn and µn the uniform probability measure
on the leaves. Then, as n→∞, in distribution with respect to the Gromov–Hausdorff–
Prokhorov distance,

(Tn,
σ
2 · n−1/2dn, µn, ρn)→ (Te, de, µe, ρe).

Corollary 8 (a) and Corollary 9 (a) follow immediately from (2.11) and Theorem 1. Sim-
ilarly, Corollary 10 (a) follows from Theorems 4 and 5 noting that R has the Beta(1/2, 1)

distribution with density 1
2 t
−1/21[0,1](t).

6.2 Random self-similar recursive triangulations of the disk

The processes Z and H arise in the problem of random recursive decompositions
of the disk by non-crossing chords [14, 19]. They encode the trees that are the planar
dual of the limit triangulation in the same sense that the Brownian CRT is the dual of the
limit uniform triangulation of the disk studied by Aldous [6, 7]. We now proceed to the
precise definitions.

The unit disk D := {x ∈ R2 : ‖x‖ ≤ 1} is decomposed at discrete time steps as
follows: At time n = 1, a chord is inserted connecting two uniformly chosen points
on the boundary ∂D . Then, given the configuration at time n, at time n + 1: pick two
independent points on the circle ∂D uniformly at random; add the chord connecting
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Figure 5: A comparison of the processes Z and H . On the left, the process Z encoding
the dual tree of the self-similar recursive triangulation of the disk. On the right, the
process H encoding the dual tree of the homogeneous recursive triangulation of the
disk. (The scales are not given since they are irrelevant.)

them if it does not intersect any previously inserted chord, otherwise reject the points
and continue. This procedure yields an increasing sequence of non-intersecting chords
(Ln)n≥1, also called a lamination. For each n ≥ 1, D \ Ln consists of a finite number
of connected components, and by Tn, we denote the discrete tree which is planar dual
to the decomposition (nodes correspond to connected components, and two nodes are
adjacent if the corresponding connected components share a chord). The tree Tn is
rooted at the node corresponding to a fragment containing a fixed point on the circle,
say (1, 0). (See Figure 4). It has been proved in [14] that Tn suitably rescaled converges
almost surely towards a limit tree encoded by a certain random process which satisfies a
fixed point equation of type (2.10). More precisely, for β := (

√
17− 3)/2, with respect to

the Gromov–Hausdorff distance and as n→∞, we have

(Tn, n
−β/2dn)→ (TZ , dZ ), (6.1)

for the unique random excursion Z satisfying (2.12) with E [Z (ξ)] = κ > 0, where κ
denotes a scaling constant whose value is irrelevant in the present context. (It is given
in Theorem 3 in [14].)

Corollary 8 (b) , Corollary 9 (b) and Corollary 10 (b) follow from (2.12), Theorems 1, 4
and 5 since R has the uniform distribution on [0, 1].

For any γ < β, by Corollary 6, there exists a process equivalent to Z with γ-Hölder
continuous paths. Moreover, for γ > β, no equivalent process can be γ-Hölder continuous
with positive probability. Indeed, by Theorem 1.1 in [19], the process Z itself has γ-
Hölder continuous paths for any γ < β and is therefore optimal with respect to regularity.
Z is a good encoding of the real tree TZ since its fractal dimension corresponds precisely
to what should be expected from the regularity of Z . (The fact that the rescaling of Tn
is n−β/2 in (6.1) rather than n−β is reminiscent of the number of chords in Ln, which is
only of order

√
n, so Tn has only order

√
n nodes, see [14, 19].)

6.3 Homogeneous recursive triangulation of the disk

We have a completely different situation if we consider a partition of the disk D using
random chords, but this time, the chords are inserted using a different strategy that is
homogeneous: in each step, given the current configuration, one connected component
is chosen uniformly at random and split by the insertion of a chord linking two uniformly
random points on the boundary conditioned on splitting the chosen component. Now,
there is no rejection, and at time n we have a collection of chords Lhn consisting of n
elements. As before, we can define a tree that is dual to the lamination, and we denote it
by Thn (the discrete tree Thn has n+ 1 nodes). It has been proved in [14] that a suitably
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rescaled version of Thn converges: in distribution with respect to the Gromov–Hausdorff
distance and as n→∞, we have

(Thn , n
−1/3dn)→ (TH , dH ) , (6.2)

where H is the unique random excursion satisfying (2.13) and E[H (ξ)] = 1/Γ(4/3). (No
characterization of H was given in [14]; one is given in Corollary 9 (c) .) The rescaling
n−1/3 in (6.2) suggests that the limit tree TH should have fractal dimension 3. However,
a first natural grasp that one has on the tree TH is the encoding excursion H , but a
quick look at Figure 5 suggests that some trouble is around the corner since H does
not look Hölder with exponent 1/3− ε for ε > 0 arbitrary.

It is precisely in this kind of situation that our general framework is most useful,
since it permits to verify that TH indeed has fractal dimension 3, and more precisely
that dimm(TH ) = dimh(TH ) = 3 with probability one. This is reminiscent of the fact
that, for any γ < 1/3, there exists excursions equivalent to H that have γ-Hölder
continuous paths. As expected, unlike the process Z , H is suboptimal with respect to
path regularity: the following proposition is given for the sake of completeness, and its
proof can be found in the supplementary material.

Proposition 19. Let % = 1− 2
3

√
2 = 0.057 . . . Then, almost surely,

sup{γ > 0 : H is γ-Hölder continuous} = %.

Corollaries 8 (c), 9 (c) and 10 (c) follow as in the recursive case discussed in the
previous section.

6.4 Recursive k-angulations

In this section we consider a generalization of the lamination process described
in Sections 6.2 and 6.3, where, for some fixed k ≥ 2, in each step, one adds the k-
gon connecting k points sampled on the circle (for a precise definition, see below).
Certain quantities in this model were studied by Curien and Peres [20]. Again, we
are interested in non-intersecting structures and investigate both the recursive and
the homogeneous model. Of course, for k = 2, we recover the processes studied in
Sections 6.2 and 6.3. The techniques in [14] and [19] yield detailed information on the
height processes of the corresponding dual trees and their limits. For example, in [14],
we gave explicit expressions for the leading constants and rates of convergence for the
mean functions. Furthermore, the limit mean function had already been obtained in
[19] (up to a multiplicative constant). Most of these results do not play a significant role
in proving convergence of the dual trees or determining the fractal dimensions of the
limiting objects. (The leading constants in Propositions 20 and 21 could be given by
lengthy implicit formulas but they are of no particular relevance.)

The recursive k-angulation In the recursive framework, in each step, we choose k
points uniformly at random on the circle and insert the corresponding k-gon if none of
its edges intersects any previously inserted one. The dual tree Tn is defined analogously
to the case k = 2 upon identifying fragments in the decomposition with nodes in Tn. It
is endowed with the graph distance dn. The mass of a fragment in the decomposition
of the disk is the one-dimensional Lebesgue measure of its intersection with the circle.
Fragments with positive mass will subsequently be called essential (all fragments are
essential for k = 2.) See Figure 4 for an illustration. Keeping the notation introduced
in [14], we denote by Cn(s) the depth of the node associated to the fragment covering
the point s in the tree Tn. Here, and subsequently, we identify the unit interval with
∂D through s 7→ (cos 2πs, sin 2πs). (We do not indicate k in the notation for the height
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functions.) Denote the first inserted k points in increasing order by 0 ≤ U1 ≤ . . . ≤ Uk ≤ 1

and define ∆1 = 1 − Uk + U1, ∆i = Ui − Ui−1, 2 ≤ i ≤ k, as well as ξ∗ = U1/∆1.

Furthermore, let In = (I
(1)
n , . . . , I

(k)
n ), where I(i)

n is the number of attempted insertions up
to time n in the fragment of mass ∆i. Given (U1, . . . , Uk), for any 1 ≤ i ≤ k, the random

variable I(i)
n has the binomial distribution with parameters n− 1 and ∆k

i . In particular,
we have, almost surely,

In
n
→ (∆k

1 , . . . ,∆
k
k). (6.3)

Proposition 20. Let k ≥ 2 and Nn be the number of inserted k-gons at time n. Then, as
n → ∞, we have n−1/kNn → ck in probability and with respect to all moments, where
ck > 0 is a constant.

Proof. Let τ1, τ2, . . . be the times of homogeneous a Poisson point process with unit
intensity on R+. We consider the continuous-time analogue of Nn, n ∈ N denoted by
Nt, t > 0 where, for all times τi, i ≥ 1, a set of k independent points are drawn at
random on the circle and the corresponding k-gon inserted if the decomposition remains
non-crossing. In other words, Nt = Ni for t ∈ [τi, τi+1) where τ0 := 0. It is easy to
see and explained in detail in [19] for k = 2, that this process can alternatively be
obtained without the necessity of rejecting any k-gons as follows: starting with the disk
at time t = 0, add a k-gon chosen uniformly at random after an exponentially distributed
time with mean one. Then, independently on the k essential sub-fragments, run the
same process with times slowed down by a factor xk where x denotes the mass of the
fragment. The masses of essential fragments at time t > 0 in this process constitute a
conservative fragmentation process with index of self-similarity k and reproduction law
Dirichlet(1, . . . , 1). Hence, by Theorem 1 in [10], we deduce t−1/kNt → ck in probability

and in L2, with ck as in the proposition In particular, τ−1/k
n Nτn → ck in probability as

n→∞. In order to obtain moment convergence, note that, for any ε > 0, by monotonicity
and since Nn ≤ n almost surely,

τ−2/k
n N 2

τn ≤ ((1− ε)n)−2/kN 2
(1+ε)n + τ2−2/k

n 1{|τn−n|/∈(−εn,εn)}.

By the L2 convergence for the continuous-time process and the concentration of τn
(which has a Gamma(n) distribution), the right hand side is uniformly integrable. Hence,

τ
−1/k
n Nτn → ck in L2. Since τn/n→ 1 almost surely and with convergence of all moments

and τn,Nτn are independent, we obtain the convergence in probability and in L2. Finally,
let Ñn = n−1/kNn. Then,

Ñn
d
= 1 +

k∑
i=1

(
I

(i)
n

n

)1/k

Ñ
(i)

I
(i)
n

,

where (Ñ
(1)
n )n≥1, . . . , (Ñ

(k)
n )n≥1 are independent copies of (Nn)n≥1, independent of In.

Using (6.3), it is easy to prove that Ñn is bounded in Lm,m ≥ 1 by induction over m
since we have already shown it for m = 1, 2.

By construction, the random process (Cn(s))s∈[0,1] satisfies the following recurrence in
distribution on the space of càdlàg functions endowed with the Skorokhod J1-topology:

Cn( · ) d
=1[0,U1)( · )C(1)

I
(1)
n

( ·
∆1

)
+ 1[Uk,1]( · )C(1)

I
(1)
n

( · − Uk
∆1

)
+

k−1∑
i=2

1[Ui−1,Ui]( · )
(
C(i)

I
(i)
n

( · − Ui−1

∆i

)
+ C(1)

I
(1)
n

(ξ∗)

)
. (6.4)
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Here (C(1)
i (·))i≥0, . . . , (C(k)

i (·))i≥0 are independent copies of (Ci(·))i≥0 independent of
(U1, . . . , Uk, In). The first step of our analysis is to investigate Cn(ξ) for uniformly chosen
point ξ. In [14], an explicit expression for the mean was obtained by solving the
underlying recursion. Here, we proceed as in [19] relying on results from fragmentation
theory. Subsequently, let αk ∈ (0, 1) be the unique solution to

gk(x) := E [∆x
1 ] + (k − 1)E

[
1[U1,U2](ξ)∆

x
2

]
=

k!Γ(x+ 2)

Γ(k + x+ 1)
+

(k − 1)k!Γ(x+ 2)

Γ(k + x+ 2)
= 1.

(Note that gk(x) decreases in x, gk(0) > 1 and gk(1) < 1. Thus, αk exists.)

Proposition 21. Let k ≥ 2. As n → ∞, in probability and with convergence of all
moments, we have n−αk/kCn(ξ) → Xk for some random variable Xk with mean κk :=

E[Xk] > 0.

Proof. We use the same continuous-time model as in the previous proof. Let Ct(ξ) be the
height of the node associated to ξ in the dual tree at time t and Et(ξ) be the number
of essential fragments associated to nodes on the path from 0 to ξ. For k ≥ 3, we
have Ct(ξ) = 2(Et(ξ) − 1). As explained in [19] in the case k = 2, the sizes of essential
fragments form a non-conservative fragmentation process with index of self-similarity k
and reproduction law L((∆1,1[U1,U2)(ξ)∆2, . . . ,1[Uk−1,Uk)(ξ)∆k)). Hence, by [10, Theorem
1], as t→∞, t−αk/kE [Et(ξ)]→ κk/2 for some κk > 0. Furthermore, by [10, Theorem 5],
there exists a random variable X ′k such that, t−αk/kEt(ξ) → X ′k in L2. With Xk = 2X ′k,
the claim follows by standard depoissonization arguments as in the previous proof.

Let Yn(s) = Cn(s)/E [Cn(ξ)]. We expect that, as n → ∞, we have n−αk/kE [Cn(s)] →
mk(s) for some continuous excursion mk ∈ Cex with E [mk(ξ)] = κk. Thus, from (6.5), it
follows that, if Yn(s)→ Z (s) for some continuous process Z , then the limit should have
mean function mk/κk and satisfy

Z ( · ) d
=1[0,U1)( · )∆αk

1 Z (1)

( ·
∆1

)
+ 1[Uk,1]( · )∆αk

1 Z (1)

( · − Uk
∆1

)
+

k∑
i=2

1[Ui−1,Ui]( · )
(

∆αk
i Z (i)

( · − Ui−1

∆i

)
+ ∆αk

1 Z (1) (ξ∗)

)
, (6.5)

where Z (1)(·), . . . ,Z (k)(·) are independent copies of Z (·) independent of (U1, . . . , Uk).
This fixed point equation is of type (2.10) where K = k, L = k+1, $3 = . . . = $k = 1,R =

S ∼ Dirichlet(2, 1, . . . , 1). Let Z be the unique process (in distribution) solving (6.5) with
E [Z (ξ)] = κk whose existence is guaranteed by Theorem 1. (We use the same notation
for the limit process as in Section 6.2 without indicating the choice of k.) The verification
of Yn → Z in distribution in the space of càdlàg functions can be worked out by the same
arguments as in [14, Section 3] relying on the contraction method both for real-valued
random variables and for regular processes. Here, starting with an independent family
(U

(i)
1 , . . . , U

(i)
k ), i ≥ 1 of copies of (U1, . . . , Uk) one constructs the sequence Yn and its limit

Z satisfying (6.5) on the same probability space and shows convergence in probability.
The steps are very similarly to the arguments in the proof of Proposition 13. First, one
shows the convergence Yn(ψ) → Z (ψ) in L2, where ψ corresponds to the point ξ∗ in
the coupling. From the last proposition we know that this convergence also holds in
Lm for all m ≥ 1. Finally, one shows that E [‖Yn −Z ‖m]→ 0 for all m ≥ 1. (The almost
sure convergence in [14] relies on a convergence rate for the mean of Yn(ξ). We do
not pursue this line here but note that, sufficient rates in the continuous-time case can
be extracted from [10], compare the discussion of Theorem 1 there.) Summarizing, we
obtain the following result.
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Theorem 22. Let k ≥ 3. In distribution with respect to the Gromov–Hausdorff topology,
we have

(Tn, n−αk/kdn)→ (TZ , dZ ).

In distribution, the process Z is the unique continuous excursion solving (6.5) up to a
multiplicative constant. Almost surely, dimm(TZ ) = dimh(TZ ) = α−1

k . For any γ < αk,
almost surely, there exists a process Z̃ equivalent to Z which has γ-Hölder continuous
paths.

Remark. 1) For k = 2, almost surely, the process Z has γ-Hölder continuous path for
any γ < α2 = β [19, Theorem 1.1]. We think that this remains true for all k ≥ 3, that is,
the function Z is a good encoding of the tree. However, we do not pursue this here.

2) Let Ln be the set of chords inserted at time n. By Proposition 7, D(TZ ) = {1, 2, k}, and
it is not hard to see that

⋃
n≥1 Ln is indeed a k-angulation of the disk: every connected

component in its complement is a convex k-gon with vertices on the circle.

For k ≥ 3, we have no explicit expression for mk = E [Z (t)]. It follows from (6.5)
that mk is the unique continuous excursion on [0, 1] with E [mk(ξ)] = κk such that
mk(t) = E [Φ(mk, . . . ,mk,∆,∆,Ξ)(t)] , t ∈ [0, 1] whereK = k, L = k+1, $3 = . . . = $k = 1

and ∆ ∼ Dirichlet(2, 1, . . . , 1).

Using this observation and some geometric arguments relying directly on the con-
struction of the process, one can show that mk is infinitely differentiable on (0, 1),
symmetric at t = 1/2 and monotonically increasing and concave on [0, 1/2]. Since we do
not use these observation, we omit the details and the proofs.

The homogeneous k-angulation In the homogeneous setting, in each step, one
essential fragment is chosen uniformly at random and k uniformly chosen points se-
lected to create a new k-gon. At time n this leads to a decomposition of the disk into
1 + (k − 1)n essential fragments and n non-essential fragments. The definitions of
T hn , Chn, U1, . . . , Uk,∆1 = 1 − Uk + U1,∆i = Ui − Ui−1, 2 ≤ i ≤ K, ξ∗ = U1/∆1 as well

as In = (I
(1)
n , . . . , I

(k)
n ) should be clear by now. By construction, the random variable

In is independent of (U1, . . . , Uk) and grows like the vector of occupation numbers in
a Polya urn model. It is well-known that, almost surely, In/n → (∆̃1, . . . , ∆̃k), where
∆̃ = (∆̃1, . . . , ∆̃k) ∼ Dirichlet(1/(k − 1), . . . , 1/(k − 1)). By construction, the random
process (Chn(s))s∈[0,1] satisfies a recursion analogous to (6.4), the only difference being
the distribution of (U1, . . . , Uk, In).

Proposition 23. Let k ≥ 2. As n → ∞, almost surely and with convergence of all
moments, we have n−1/(k+1)Chn(ξ) → Xh

k for some random variable Xh
k with mean

κhk := E[Xh
k ] > 0.

Proof. In the standard continuous-time embedding of the process, every essential frag-
ment splits into k essential subfragments at unit rate, independently of its mass. Hence,
the number of essential fragments Nt, t ≥ 0, forms a continuous-time branching process
with offspring distribution δk. It is well-known that e−t(k−1)Nt, t > 0, is a uniformly
integrable martingale with mean one converging almost surely to a limiting random
variable denoted by N having the Gamma((k− 1)−1, (k− 1)−1) distribution. For the time
of n-th split τn in the process, since Nτn = 1 + (k− 1)n, by the optional stopping theorem,
it follows that (k − 1)ne−τn(k−1) → N almost surely and in mean. Similarly, the number
of essential fragments on the path from 0 to ξ in the dual tree denoted by Eht (ξ) forms
a branching process with offspring distribution L(1 + 1[U1,Uk)(ξ)). Again, the process
e−t(k−1)/(k+1)Eht (ξ), t > 0, is a uniformly-integrable martingale with unit mean and we

EJP 26 (2021), paper 88.
Page 40/50

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP647
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Self-similar real trees defined as fixed points

denote its almost sure limit by E . Writing

e−τn(k−1)/(k+1)Ehτn(ξ)

= e−τn(k−1)/(k+1)((k − 1)n)1/(k+1) · ((k − 1)n)−1/(k+1)Ehτn(ξ),

and noting that the random variables τn, Ehτn(ξ) are independent, it follows that ((k −
1)n)1/(k+1)Ehτn(ξ)→ E ′ a.s. and in mean where E = E ′N 1/(k+1). The claimed convergence
follows from the identity Chn(ξ) = 2(Ehτn(ξ)−1). Convergence of moments can be deduced
as in the recursive model.

For s ∈ [0, 1], let Yhn(s) = Chn(s)/E[Chn(ξ)]. A limit H (s) of Yhn(s) should satisfy
E[H (ξ)] = κhk and

H
d
= ∆

1/(k+1)
1

(
1[0,U1)( · )Z̃ h,(1)

( ·
∆1

)
+ 1[Uk,1]( · )Z̃ h,(1)

( · − Uk
∆1

))
(6.6)

+

k∑
i=2

1[Ui−1,Ui]( · )
(

∆̃
1/(k+1)
i Z h,(i)

( · − Ui−1

∆i

)
+ ∆̃

1/(k+1)
1 Z h,(1) (ξ∗)

)
,

where Z h,(1), . . . ,Z h,(k) are independent copies of H independent of (U1, . . . , Uk), ∆̃.
This fixed point equation is of type (2.10) where K = k, L = k + 1, $3 = . . . = $k =

1,R ∼ Dirichlet(1, 1, . . . , 1) and S ∼ Dirichlet(2, 1, . . . , 1), and R and S are independent.
(We use the same notation for the limit process as in Section 6.3.) As in the recursive
model, one can prove the following theorem.

Theorem 24. Let k ≥ 3. In distribution with respect to the Gromov–Hausdorff topology,
we have

(T hn , n−1/(k+1)dhn)→ (TH , dH ).

In distribution, the process H is the unique continuous excursion satisfying (6.6) up
to a multiplicative constant. Almost surely, dimm(TH ) = dimh(TH ) = k + 1. For any
γ < 1/(k + 1), almost surely, there exists a process H̃ equivalent to H which has
γ-Hölder continuous paths.

A Continuity and measurability statements

Lemma 25. The set Kghp
f is a measurable subset of Kghp and the bijection ι between

K
ghp
f and Kgp is bimeasurable.

Proof. For any δ > 0, the quantity κδ(X) = inf{µ({y ∈ X : d(x, y) ≤ δ}) : x ∈ X}, only
depends on the ghp-equivalence class of X. Moreover, Kghp

f = {X ∈ Kghp : κδ(X) >

0 for all δ > 0}. A straightforward application of the Portemanteau lemma shows that
κδ is upper semi-continuous with respect to dghp. (The details are given in the proof
of Lemma 3.2 in [9].) It follows easily that Kghp

f is a measurable set. The map ι is
continuous since convergence with respect to the Gromov–Hausdorff–Prokhorov topology
implies convergence with respect to the Gromov–Prokhorov topology. Its inverse ι−1 is
not continuous, and the space Kghp

f (considered as subspace of Kghp) is not complete.

Nevertheless, it is important to note that, by [9, Corollary 5.6], Kghp
f endowed with the

relative topology generated by dghp is Polish. It follows from the Lusin–Souslin theorem,
see, e.g. [34, Theorem 15.1], that ι−1 is measurable. (We thank Stephan Gufler for
pointing out the short argument showing the measurability of ι−1.)

Proof of Lemma 14. Let (T , d, µ, ρ) be a compact rooted measured real tree. We borrow
notation from [24]. Recall that B denotes the set of branch points of T . Let σ ∈ B∗ :=
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B ∪ {ρ} and note that the degree of a point σ ∈ B∗ is at most countably infinite. For
σ ∈ B∗, let

Iσ =


∅ if deg(σ) = 1,

{1, 2, . . . ,deg(σ)− 1} if 1 < deg(σ) <∞,
N \ {0} if deg(σ) =∞.

Further, let Cσ be the set of connected components in T \ {σ} which do not contain ρ.
The cardinality of Cσ is given by the cardinality of Iσ. Fix a bijection pσ : Iσ → Cσ (e.g. by
considering the order in which the elements of Cσ are visited by a fixed dense sequence
in T ). Let D = {(σ, k) : σ ∈ B∗, k ∈ Iσ} and U be the set of elements u ∈ [0, 1]D such
that ui 6= uj for all i 6= j, i, j ∈ D. For σ, σ′ ∈ T , set σ ≤ σ′ if σ ∈ Jρ, σ′K and σ′ ≤ σ if
σ′ ∈ Jρ, σK. Otherwise, denoting by γ = σ ∧ σ′ ∈ B∗ the most recent common ancestor of
σ and σ′ (that is, the unique node satisfying Jρ, σ ∧ σ′K = Jρ, σK ∩ Jρ, σ′K), and assuming
that σ 6= γ 6= σ′, there exist 1 ≤ i 6= i′ such that σ ∈ pγ(i) and σ′ ∈ pγ(i′). Set σ ≤ σ′ if
u(γ,pγ(i)) < u(γ,pγ(i′)) and σ′ ≤ σ otherwise. By Proposition 2.4 in [24], ≤ is a total order
on T satisfying the following two properties:

(Or1) For σ, σ′ ∈ T , σ ∈ Jρ, σ′K implies σ ≤ σ′.

(Or2) For σ1 ≤ σ2 ≤ σ3 and γ defined by Jρ, γK = Jρ, σ1K ∩ (Jρ, σ2K ∪ Jρ, σ3K), we have
γ ∈ Jρ, σ2K.

Note that, by Lemma 2.5 in [24], for γ ∈ B∗ and two connected components C,C ′ ∈ Cγ ,
we have either σ ≤ σ′ for all σ ∈ C, σ′ ∈ C ′ or σ′ ≤ σ for all σ ∈ C, σ′ ∈ C ′.

Next, let ≤ be a total order on T satisfying (Or1) and (Or2). We construct a
function h ∈ Dex such that Th = T (with respect to isometry classes). First, set m(σ) =

µ({σ′ ∈ T : σ′ ≤ σ}). By construction, m : T → [0, 1] is monotonically increasing
with respect to the order ≤. As µ has full support and upon setting σ < σ′ if σ ≤ σ′

and σ 6= σ′, m is strictly increasing; in particular, m(y) > 0 for all y 6= ρ. For σ 6= ρ,
we have m(σ−) := m(σ) − µ({σ}) = limσ′→σ,σ′<σm(σ′). For σ /∈ B∗ we also have
m(σ) = limσ′→σ,σ′>σm(σ′). For µ({ρ}) ≤ x < 1, let m−1(x) = sup{σ ∈ T : m(σ) < x}
be the generalized inverse of m. For x < µ({ρ}), set m−1(x) = ρ. Finally, let m−1(1) =

limx→1m
−1(x). Then, m−1(x) = limy→x,y<xm

−1(y) and m−1(x+) = limy→x,y>xm
−1(y).

Set h(x) = d(ρ,m−1(x)), x ∈ [0, 1]. It immediately follows that h ∈ Dex. Further, T and
Th are ghp-isometric via σ 7→ πh(m(σ)), where πh is the canonical surjection from [0, 1]

onto Th. From the point of view of measurability, the important observation is that the
map which assigns to u ∈ U the function h constructed from the order induced by u is
continuous. This follows from the fact that, for any ε > 0, there exist only finitely many
points σ ∈ B∗ such that two distinct elements of Cσ have mass or diameter exceeding
ε. We omit a formal proof. Let η̃ be the distribution of the random variable h when
choosing u uniformly at random, that is, following the distribution Leb⊗D. Note that,
formally, η̃ may depend on T and the choice of the bijections πσ, σ ∈ B∗. Thanks to
the symmetry of the distribution Leb⊗D under permuting entries, however, it follows
that η̃ only depends on the ghp-isometry class of T. Therefore, we shall denote this
distribution by η̃(T). The corresponding map η̃ : Tghp

f →M1(Dex) can be shown to be

continuous, hence measurable. Now, for a random variable T on Tghp
f with distribution ν,

the annealed measure η(·) = E[η̃(T)(·)] is the desired probability distribution.

The following three lemmas concern continuity of functions arising in the definition
of Ψ in Section 2.3 and in the proof of Proposition 3. The proofs rely on the concept of
correspondences and have many ideas in common. In our presentation, we focus on a
detailed proof of Lemma 27 and sketch the arguments needed to prove continuity of ψ1

in Lemma 28. The remaining statements have simpler proofs, and we omit them.
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Lemma 26. Let r, s ∈ ΣK and X1, . . . ,XK be compact rooted metric measured spaces.
Let χ : X1×. . .×XK → Kghp be the map which assigns to each (x1, . . . , xk) ∈ X1×. . .×XK
the space X when the construction described on page 6 is carried out with these values
r, s and the glue points ηi = xi for 1 ≤ i ≤ K. Then χ is continuous.

Lemma 27. The map ψ : (Kghp)K×Σ2
K →M1(Kghp) defined in Section 2.3 is continuous.

Lemma 28. The functions χ1 : XN × c+0 → Kghp and ψ1 : Kghp →M1(Kghp) defined in
the proof of Proposition 3 are continuous.

Proof of Lemma 27. Let ε > 0 and X1, . . . ,XK ,X
′
1, . . . ,X

′
K be compact rooted measured

metric spaces. Let (Z1, d
Z1), . . . , (Zk, d

Zk) be compact metric spaces such that Xi,X′i ⊆ Zi
and dZi = di on Xi and dZi = d′i on X ′i for all i = 1, . . . ,K. (Such spaces exist. One can,
for instance, choose Zi = Xi t X ′i .) Further, assume that,

i) dZi

h (Xi,X ′i ) < ε, dZi(ρi, ρ′i) < ε, and dZi
p (µi, µ

′
i) < ε for all i = 1, . . . ,K,

ii) r, r′, s, s′ ∈ ΣK with max{‖r− r′‖, ‖s− s′‖} < ε.

(ΣK is endowed with the Euclidean distance.) Finally, assume that the constructions of
the spaces X = (X , d, µ, ρ), and X′ = (X ′, d′, µ′, ρ′) described on page 6 are carried out
with fixed glue points ηi, η′i satisfying dZi(ηi, η′i) < ε for all i = 1, . . . ,K. Below, we show
that

dghp(X,X′) ≤ (K + 1)

(
ε+

εα

2
max

1≤i≤K
‖Xi‖

)
. (A.1)

Taking this deterministic statement for granted, we can argue as follows to conclude the
proof: First, we keep the compact rooted measured metric spaces fixed and choose the
glue points randomly. Then, by the previous lemma, (the equivalence classes of) X and X′

are Kghp-valued random variables. Further, by a coupling theorem due to Strassen [48,
Page 438], we may sample the pairs of gluepoints (ηi, η

′
i) on Xi ×X ′i in such a way that

L(ηi) = µi, L(η′i) = µ′i and P(dZi(ηi, η
′
i) ≥ ε) ≤ ε for all i = 1, . . . ,K. Using this coupling

and writing γ for the right-hand side of (A.1) yields P(dghp(X,X′) ≥ γ) ≤ Kε. Hence,
again using Strassen’s theorem, it follows that dp(L(X),L(X′)) ≤ γ. Since γ can be made
arbitrarily small by choice of ε > 0, this implies the claimed continuity. (The remainder
of the proof also shows that, for fixed r, s, the map ψ with domain (Kghp)K is uniformly
continuous.)

It remains to show (A.1). To this end, we recall the well-known characterization of the
Gromov–Hausdorff distance using correspondences: for two sets S, T , a set R ⊆ S × T is
called a correspondence if for all s ∈ S there exists t ∈ T with (s, t) ∈ R and vice versa.
For metric spaces (S, dS), (T, dT ), the distorsion of a correspondence R is defined by

dis(R) = sup{|dS(s, s′)− dT (t, t′)| : (s, t), (s′, t′) ∈ R}.

Define the Gromov–Hausdorff distance between compact rooted metric spaces (S, dS , ρS),
and (T, dT , ρT ) using the notation from Eq. (2.1) by

dgh((S, dS , ρS), (T, dT , ρT )) = inf
Z,φ,φ′

max
{

dZ
h (φ(S), φ′(T )), dZ(φ(S), φ′(T ))

}
.

It is standard ([see, e.g., 15, Theorem 7.3.5] in the unrooted set-up) that, for compact
rooted metric spaces (S, dS , ρS) and (T, dT , ρT ), we have

dgh((S, dS , ρS), (T, dT , ρT ))

=
1

2
inf{dis(R) : R is a correspondence with (ρS , ρT ) ∈ R}. (A.2)
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It easy to construct optimal correspondences explicitly: For i = 1, . . . ,K, we can set

Ri = {(x, y) : x ∈ Xi, y ∈ X ′i , dZi(x, y) < ε}.

By the triangle inequality, we have dis(Ri) ≤ 2ε. Recall the projections ϕ◦, (ϕ◦)′ in step
ii) of the construction and define a correspondence for X and X ′ by

R =

K⋃
i=1

{(ϕ◦(x), ϕ◦(x′)) : (x, x′) ∈ Ri}.

(Note that the roots are already identified in the Ri.) From (A.2), we see that
dgh((X , d, ρ), (X ′, d′, ρ′)) ≤ 1

2dis(R). In order to extend the result to the Gromov–
Hausdorff–Prokhorov distance, we consider a specific embedding of the spaces. The
following construction is standard, see, e.g. the proof of Theorem 7.3.5 in [15]. Let
Z = X t X ′ and set dZ = d on X 2, dZ = d′ on X ′ ×X ′ while, for x ∈ X , y ∈ X ′, define

dZ(x, y) = inf{d(x, x1) + d′(x2, y) : (x1, x2) ∈ R}+
1

2
dis(R).

Finally, for x ∈ X ′, y ∈ X , set dZ(x, y) = dZ(y, x). A straightforward computation shows
that dZ is a metric on Z. Further, by construction, dZ

h ((X , d, ρ), (X ′, d′, ρ′)) = dZ(ρ, ρ′) =
1
2dis(R). To study the Prokhorov distance between µ and µ′, let (σi, σ

′
i), i = 1, . . . ,K

be pairs of random variables on Xi × X ′i with L(σi) = µi,L(σ′i) = µ′i and P(|σi − σ′i| ≥
ε) ≤ ε. By our assumptions on s, s′, there exists a pair of random variables (J, J ′) with
P (J = i) = si and P(J ′ = i) = s′i for all i = 1, . . . ,K and P(J 6= J ′) ≤ Kε. Note
that L(ϕ◦(σJ)) = µ and L((ϕ◦)′(σ′J′)) = µ′. Hence, as dZi(x, y) < ε for x ∈ Xi, y ∈ X ′i
implies dZ(ϕ◦(x), (ϕ◦)′(y)) ≤ 1

2dis(R), it follows that P(|ϕ◦(σJ)−(ϕ◦)′(σ′J′)| > 1
2dis(R)) ≤

(K + 1)ε. Thus, dp(µ, µ′) ≤ max{ 1
2dis(R), (K + 1)ε} and the same bound applies to

dghp(X,X′).
It remains to find an upper bound on dis(R). We have

dis(R) = sup
1≤i,j≤K

sup{|d(ϕ◦(x), ϕ◦(y))− d′((ϕ◦)′(x′), (ϕ◦)′(y′))| :

(x, x′) ∈ Ri, (y, y
′) ∈ Rj}.

For (x, x′), (y, y′) ∈ Ri, it follows that under our imposed assumptions, we have

|d(ϕ◦(x), ϕ◦(y))− d′(ϕ◦(x′), ϕ◦(y′))| ≤ 2ε+ εα‖Xi‖.

An application of the triangle inequality shows that

dis(R) ≤ K
(

2ε+ εα max
i=1,...,K

‖Xi‖
)
,

which completes the proof.

Proof of Lemma 28. We only sketch the arguments necessary to prove of continuity of
ψ1 which go beyond the details presented in the previous proof. Fix X ∈ Kghp. Let ε > 0

and X′ ∈ Kghp with dghp(X,X′) ≤ ε. Let (X , d, µ, ρ) and (X ′, d′, µ′, ρ′) be representatives
of these classes embedded in the same compact metric space (Z, dZ). For n ∈ Z,
let In = [2−(n+1), 2−n). We can construct coupled Poisson processes P on X × [0,∞)

and P ′ on X ′ × [0,∞) by superposing coupled independent Poisson processes Pn on
X × In and P ′n on X ′ × In as follows: first, independently for different values of n, let

(U
(n)
1 , S

(n)
1 ), (U

(n)
2 , S

(n)
2 ), . . . , be a sequence of independent and identically distributed

(X × In)-valued random variables, where U (n)
i , S

(n)
i are independent, U (n)

i is distributed
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according to µ and S
(n)
i follows the distribution of a non-negative random variable

with density s−1−1/α conditioned on taking a value in In. As dZ
p (µ, µ′) ≤ ε, for any

n ∈ Z, we can construct a sequence of independent and identically distributed X ′-valued
random variables V (n)

1 , V
(n)
2 , . . . such that P(dZ(U

(n)
i , V

(n)
i ) ≥ ε) ≤ ε for all i ≥ 1. Let

Nn, n ∈ Z, be a family of independent random variables which is independent of all
previously defined quantities, where Nn follows the Poisson distribution with parameter∫
In
s−1−1/αds = α2n/α(21/α − 1). The sets of points {(U (n)

i , S
(n)
i ) : 1 ≤ i ∈ Nn} and

{(V (n)
i , S

(n)
i ) : 1 ≤ i ≤ Nn} constitute Poisson processes Pn on X × In, and P ′n on

X ′× In, respectively. Upon superposing the processes for different values of n, we obtain
the sought coupled processes P and P ′. It should be clear and can be shown using
correspondences that, for any δ > 0, supX′ P (dghp(f(P), f(P ′)) ≥ δ)→ 0 as ε→ 0, where
the supremum is taken over all X′ ∈ Kghp satisfying dghp(X,X′) ≤ ε. (Recall that X is kept
fixed.) Thus, supX′ dp(L(f(P)),L(f(P ′))→ 0 as ε→ 0 showing the claimed continuity.

Lemma 29. For any s > 0, the map Hs is measurable for dgh, and thus dimh as well.

Proof. For fixed δ > 0, let

Hs
δ (A) := inf

{∑
i≥1

|Ui|s : A ⊆
⋃
i≥1

Ui and |Ui| ≤ δ for all i ≥ 1

}
.

Then, Hs = limδ↓0H
s
δ and it is enough to prove the measurability of Hs

δ : Kgh → [0,∞]

for fixed δ > 0. To this end, we show that the function is upper-semicontinuous. Let
δ > 0, s ≥ 0 and X,X1,X2, . . . be compact metric spaces with dgh(Xn,X)→ 0. For ε > 0,
by compactness, there exists a natural number N and sets U1, . . . , Un with |Ui| < δ for all
i = 1, . . . , N such that X ⊆ ⋃Ni=1 Ui and Hs

δ (X) ≥ ∑N
i=1 |Ui|s − ε. Now, let 0 < ε′ < ε be

sufficiently small such that |Uε′i | < δ for all i = 1, . . . N . Choose n large enough such that
dgh(Xn,X) < ε′/2. We may assume that Xn and X are embedded in a compact metric

space (Z, dZ) such that dZ
h (Xn,X) < ε′/2. Then, Hs

δ (Xn) ≤∑N
i=1 |Uε

′

i |s ≤ (1+ε)Hs
δ (X)+2ε.

As this inequality is true for sufficiently large n, we can take the limit superior on the
left-hand side. Then, letting ε→ 0 on the right-hand side shows the claim. Finally, it is
easy to deduce measurability of dimh, e.g. from the representation

{X ∈ Kgh : dimh(X) > t} =
⋃
q>t

⋂
ε>0

⋂
δ>0

{X ∈ Kgh : Hs
δ (X) < ε}, t ≥ 0,

where q, ε, δ take rational values.

The proof of the next lemma runs along the same lines as the proof of Lemma 29.
(Technically, N·(δ) plays a very similar role as Hs

δ (·).) We omit the details.

Lemma 30. Let δ > 0. The map from Kgh to N that to X ∈ Kgh assigns NX (δ), the
smallest number of open balls of radius δ needed to cover X , is upper-semicontinuous In
particular, the maps dimm,dimm : Kgh → [0,∞] are measurable.

B Hölder continuity of H

Proof of Proposition 19. The positive result for α < % follows from bounds on the mo-
ments of H provided in Lemma 31 and Kolmogorov’s criterion. Next, recall from [14]
that h(t) := E [H (t)] = κ′

√
t(1− t) for some κ′ > 0. Let % < α < γ. With Qϑn defined

in Eq. (4.9), where Qϑ0 = h, the uniform almost sure limit X of Q∅n in Proposition 13 is
measurable with respect to {(Rσ,Sσ,Ξσ) : σ ∈ Θ}. Thus, since γ-Hölder continuity is
a tail event of this σ-algebra, by Kolmogorov’s zero-one law, it suffices to show that X
fails to be γ-Hölder continuous with positive probability. For n ≥ 1, let Cn = ∪|ϑ|=n∂Λϑ.
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Observe that, for some r > 0, we have |h(y) − h(x)| ≥ r|y − x|2 for all x, y ∈ [0, 1/2]

and x, y ∈ [1/2, 1]. Fix ϑ ∈ Θ`. Let x, y ∈ Λϑ with (x, y) ∩ C` = ∅ and denote by x`, y`
their relative positions inside Λϑ, that is x` = (x − inf Λϑ)/L(ϑ), analogously for y`. If
x`, y` ∈ [0, 1/2] or x`, y` ∈ [1/2, 1], then

V(ϑ)1/3 ≥ `2−αL(ϑ)α

implies

|Q∅` (y)−Q∅` (x)| = V(ϑ)1/3|h(y`)− h(x`)|
≥ `2−αL(ϑ)α|h(y`)− h(x`)| ≥ r`2−α|y − x|α|y` − x`|2−α.

As Λϑ is the union of at most ` + 1 intervals, we can find x, y ∈ Λ(ϑ), (x, y) ∩ C` = ∅
satisfying the latter inequality with |y` − x`| ≥ 1/(4`) where x`, y` ∈ [0, 1/2] or x`, y` ∈
[1/2, 1]. Hence, for these x, y we deduce

|Q∅` (y)−Q∅` (x)| ≥ |y − x|
α

16/r
.

As n → ∞, almost surely, the maximal distance between consecutive points in Cn
converges to zero. Hence, X is not γ-Hölder continuous if there exists n ∈ N and an
infinite path ϑ = ε1ε2 . . . such that, for all k ∈ N, with ϑn = ε1 . . . εn,

V(ϑkn)1/3 ≥ (kn)2−αL(ϑkn)α.

Below, we will show that this event has positive probability for some n ∈ N (in fact, for
all n large enough). For ϑ, σ ∈ Θ, let

Aϑσ =

{V(ϑσ)1/3

V(ϑ)1/3
≥ |σ|2−αL(ϑσ)α

L(ϑ)α

}
.

Let N := 2n and Θ∗ be the complete N -ary tree with nodes on level k denoted by
Θk,n. Moreover, let S be the random subtree of Θ∗ in which a node ϑ∗ = ϑ∗1 . . . ϑ

∗
k with

ϑ∗1, . . . , ϑ
∗
k ∈ Θn on level k exists if, for all 0 ≤ i ≤ k − 1, the event A

ϑ∗1 ...ϑ
∗
i

ϑ∗i+1
occurs. By

construction, for fixed n ≥ 1,{(
1Aϑσ

)
σ∈Θn

: ϑ ∈ Θk,n, k ∈ N ∪ {0}
}

is a family of independent and identically distributed random vectors. Thus, S is a
branching process with offspring mean∑

ϑ∈Θn

P(A∅ϑ) =
∑
ϑ∈Θn

P
(
V(ϑ)1/3 > n2−αL(ϑ)α

)
.

By the elementary formula P (A ∪B) = P (A) + P (B)−P (A ∩B) it is easy to see that∑
ϑ∈Θn

P(A∅ϑ) = 2nP

(
n∏
i=1

W
1/3
i > n2−α

n∏
i=1

Wα
i

)
,

where W1,W 1, . . . ,Wn,Wn are independent and identically uniformly distributed on the
unit interval. We may assume α < 1/3. Let δ > 0 and E1, F1, . . . , En, Fn be independent
standard exponentials. Then, by an application of Cramér’s theorem for sums of inde-
pendent and identically distributed random variables with finite momentum generating
function in a neighborhood of zero, for all n sufficiently large,

P

(
n∏
i=1

W
1/3
i > n2−α

n∏
i=1

Wα
i

)
≥ P

(
n∑
i=1

(
αFi −

1

3
Ei

)
> δn

)
= exp(−I(δ)n+ o(n)),
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where I(x), x ∈ [α − 1/3,∞) denotes the large deviations rate function of the random
variable αF1 − E1/3 (see, e.g., [21]) given by

I(x) = sup
−3<s<1/α

sx− log
3

3 + s

1

1− sα ≤
x

α
− inf
−3<s<1/α

log
3

3 + s

1

1− sα

=
x

α
− log

12α

(3α+ 1)2
.

Thus, for all n large enough,∑
ϑ∈Θn

P(A∅ϑ) ≥ (2c(1 + o(1)))n, c =
24α

(3α+ 1)2
e−δ/α.

Since α > %, upon choosing δ > 0 sufficiently small, we obtain c > 1/2. Thus, for all n
sufficiently large, with positive probability, there exists an infinite path ϑ∗1ϑ

∗
2 . . . in Θ∗

with ϑ∗i ∈ Θn such the events A
ϑ∗1 ...ϑ

∗
i

ϑ∗i+1
occur for all i ∈ N∪ {0}. Along this path written as

ϑ = ε1ε2 . . ., we deduce

V(ϑkn) ≥ n(2−α)kL(ϑkn)α ≥ (kn)2−αL(ϑkn)α.

for all k ∈ N. This concludes the proof.

The final lemma generalizes Proposition 4.1 in [19] to non-integer values of p.

Lemma 31. For all ε > 0 and p ∈ [0,∞), there exists K > 0 such that, for all x ∈ [0, 1],

E[H (x)p] ≤ K(x(1− x))2p/(p+3)−ε

Proof. We provide the minor modifications necessary to extend Proposition 4.1 in [19]
to the non-integer case without presenting tedious calculations. First, by Jensen’s
inequality, since E [H (x)] = κ′

√
x(1− x) with κ′ = 1/Γ(4/3), we have

E [H (x)p] ≤ (κ′)p(x(1− x))p/2, 0 ≤ p ≤ 1, (B.1)

E [H (x)p] ≥ (κ′)p(x(1− x))p/2, p ≥ 1. (B.2)

Thus, for 0 ≤ p ≤ 1, the assertion follows immediately from (B.1). For p ∈ (1,∞), we
do not have a integral recursion for mp(t) = E [H (t)p] such as (17) in [19] unless p
is integer. However, applying the inequality (a + b)p ≤ ap + bp + C1(ap−1b + abp−1) for
a, b ≥ 0 and some C1 = C1(p), to the stochastic fixed point equation Eq. (2.13), we have,
in a stochastic sense,

H (t)p

≤ 1[0,U1)(t)W
p/3(H (1))p

(
t

∆1

)
+ 1[U2,1](t)W

p/3(H (1))p
(
t−∆2

∆1

)
+ 1[U1,U2)(t)

(
(1−W )p/3(H (2))p

(
t− U1

∆2

)
+W p/3(H (1))p (ξ)

)
+ 1[U1,U2)(t)

(
C1(1−W )(p−1)/3W 1/3(H (2))p−1

(
t− U1

∆2

)
H (1) (ξ)

)
(B.3)

+ 1[U1,U2)(t)

(
C1(1−W )1/3W (p−1)/3(H (2))

(
t− U1

∆2

)
(H (1))p−1 (ξ)

)
, (B.4)

with conditions as in Eq. (2.13) on the right hand side. Subsequently, we consider
0 ≤ t ≤ 1/2 which suffices by symmetry. With q = 3/(3 + p), taking the expectation on
both sides of the last display leads to

mp(t) ≤ 2q(1− t)2

∫ t

0

mp(x)(1− x)−3dx+ 2qt2
∫ 1

t

mp(x)x−3dx+ sp(t),
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where sp(t) is the sum of the expectation of (B.3) and (B.4). As in the proof of Proposition
4.1 in [19], relying on first, Lemma 4.2 there for H instead ofM , and second, a stochastic
inequality inverse to the display above based on (a+ b)p ≥ ap + bp for a, b ≥ 0, one can
show that the first summand has negligible contribution as t→ 0. In other words, for
any δ > 0, there exists t0 such that, for t ≤ t0, we have

mp(t) ≤ 2(1 + δ)qt2
∫ 1

t

mp(x)x−3dx+ 2sp(t). (B.5)

Furthermore, for some C2 = C2(p, t0, δ) > 0,

mp(t) ≤ 2(1 + δ)qt2
∫ t0

t

mp(x)x−3dx+ 2sp(t) + C2t
2.

Now, if we were to drop sp(t), then, by applying Gronwall’s lemma to the function
mp(t)t

−2, we could deduce
mp(t) ≤ C3t

2p/(p+3)−δq

for all t ∈ [0, 1] and some C3 = C3(p, t0, δ). This would give the assertion as δ was chosen
arbitrarily. For a rigorous verification, we start with the case 1 < p ≤ 2. Then, a direct
computation shows that, for some C4 = C4(p), we have sp(t) ≤ C4t

(p+2)/2. Thus, by (B.2),
sp(t) is asymptotically negligible compared to mp(t). Using (B.5), for any δ′ > 0, upon
decreasing t0 if necessary, we have

mp(t) ≤ 2(1 + δ)(1 + δ′)qt2
∫ 1

t

mp(x)x−3dx.

As indicated, the claim now follows from Gronwall’s lemma with a suitable choice of δ
and δ′. For p > 2, we proceed by induction. We may assume that ε > 0 is chosen small
enough such that 3/2 + 2(p− 1)/(p+ 2)− ε > 2. By the induction hypothesis, there exists
C5 = C5(p), such that sp(t) ≤ C5t

3/2+2(p−1)/(p+2)−ε. Thus, sp(t)t−2 is bounded on [0, 1]

and the result follows as indicated from inequality (B.5).
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