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Exponential forgetting of smoothing distributions for
pairwise Markov models*
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Abstract

We consider a bivariate Markov chain Z = {Zk}k≥1 = {(Xk, Yk)}k≥1 taking values on
product space Z = X ×Y, where X is possibly uncountable space and Y = {1, . . . , |Y|}
is a finite state-space. The purpose of the paper is to find sufficient conditions
that guarantee the exponential convergence of smoothing, filtering and predictive
probabilities:

sup
n≥t
‖P (Yt:∞ ∈ ·|Xl:n)− P (Yt:∞ ∈ ·|Xs:n)‖TV ≤ Ksα

t, a.s.

Here t ≥ s ≥ l ≥ 1, Ks is σ(Xs:∞)-measurable finite random variable and α ∈ (0, 1)

is fixed. In the second part of the paper, we establish two-sided versions of the
above-mentioned convergence. We show that the desired convergences hold under
fairly general conditions. A special case of above-mentioned very general model is
popular hidden Markov model (HMM). We prove that in HMM-case, our assumptions
are more general than all similar mixing-type of conditions encountered in practice,
yet relatively easy to verify.
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1 Introduction

We consider a bivariate Markov chain Z = {Zk}k≥1 = {(Xk, Yk)}k≥1 defined on a
probability space (Ω,F ,P) and taking values on product space Z = X × Y, where X is
possibly uncountable space and Y = {1, . . . , |Y|} is a finite set, typically referred to as the
state-space. Process X = {Xk}k≥1 is seen as the observed sequence and Y = {Yk}k≥1

is seen as hidden or latent variable sequence, often referred to as the signal process.
The process Z is sometimes called the pairwise Markov model (PMM) [34, 5, 6, 14] and
covers many latent variable models used in practice, such as hidden Markov models
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Exponential forgetting of PMM’s

(HMM) and autoregressive regime-switching models. For a classification and general
properties of pairwise models, we refer to [34, 6, 14]. Generally, neither Y nor X is a
Markov chain, although for special cases they might be. In many practical models, such
as above-mentioned HMM’s and Markov switching models, the signal process Y remains
to be a Markov chain. However, for every PMM, conditionally on the realization of X
(resp. Y ), the Y (resp. X process) is always an inhomogenous Markov chain. The fact
that we consider finite Y might seem restrictive at the first sight. The study of such
models is mainly motivated by the fact that in the most applications of PMM’s, specially
of HMM’s, the state space is finite, often rather small and so it is clear that this case
needs special treatment. Strictly speaking, the term “hidden Markov model” refers
to the case of discrete Y, the models with uncountable state space Y are often called
“state-space models” (see e.g. [1]). Their difference is not only the level of mathematical
abstraction, rather than different research objectives, techniques and algorithms – the
finite Y allows effectively use many classical HMM tools like Viterbi, forward-backward
and Baum-Welch algorithm, and under finite Y all these tools are applicable also for
PMM case. Thus the model considered in the present article could be considered as a
generalization of standard HMM, where the state space is still finite, but the structure
of the model is more involved allowing stronger dependence between the observations.
It turns out that with finite Y many abstract conditions simplify so that they are easy to
apply in practice and many general conditions can be weakened. Also, finite Y allows us
to employ different technique. The observation space X , however, is very general, as it
usually is in practice.

In the current paper, the main object of interest is the conditional signal process,
i.e. the process Y conditioned on X. More specifically, the purpose of the present work
is to study the distributions P (Yt:t+m−1 ∈ ·|Xs:n), where m ≥ 1, ∞ ≥ n ≥ t ≥ s and
where we adopt the notation al:n for any vector (al, . . . , an) with n ≤ ∞. For m = 1, the
probabilities P (Yt ∈ ·|X1:n) are traditionally called smoothing probabilities, when t < n,
filtering probabilities, when t = n and predictive probabilities, when t > n. In our paper,
we deal with probabilities P (Yt:t+m−1 ∈ ·|Xs:n), where m ≥ 1 and t ≤ n, and we call all
these distributions (m-block) smoothing distributions even if t = n or t + m > n. Our
first main result (Theorem 3.4 below) states that when Z is positive Harris chain, then
under some additional conditions, stated as A1 and A2, the following holds: there exists
a constant α ∈ (0, 1) such that for every t ≥ s ≥ l ≥ 1, it holds

sup
n≥t

sup
m≥1
‖P (Yt:t+m−1 ∈ ·|Xl:n)− P (Yt:t+m−1 ∈ ·|Xs:n)‖TV ≤ Csαt−s = Ksα

t, a.s., (1.1)

where Cs is a σ(Xs:∞)-measurable finite random variable, Ks
def
= Csα

−s and for any

signed measure ξ on Y, ‖ξ‖TV
def
=
∑
i∈Y |ξ(i)| denotes the total variation norm of ξ. Here

and in what follows, when not stated otherwise, a.s. statements are with respect to
measure P. In this case, the distribution of Z1 is not specified. Sometimes we would like
to specify it, like Z1 ∼ π, and then we write Pπ-a.s. instead. In words, (1.1) states that
the total variation distance of two smoothing distributions decrease exponentially in t.
In Subsection 3.3, we shall see that a martingale convergence argument allows us to
deduce from (1.1) the following bound (the inequality (3.20) below)

‖P (Yt:∞ ∈ ·|Xl:∞)− P (Yt:∞ ∈ ·|Xs:∞)‖TV ≤ Ksα
t, a.s..

We also argue that the same approach (and the same assumptions) yields to the inequality

‖Pπ(Yt:∞ ∈ ·|Xs:n)− Pπ̃(Yt:∞ ∈ ·|Xs:n)‖TV ≤ Ksα
t, Pπ − a.s.. (1.2)

where π and π̃ are two initial distributions of Z1 respectively, π̃ is absolutely continuous
with respect to π, denoted by π̃ � π, Pπ and Pπ̃ are the distributions of Z under π and
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π̃ and, as previously, ∞ ≥ n ≥ t ≥ s ≥ 1. Since Ks is Pπ-a.s. finite, the inequality (1.2)
implies that for Pπ-a. e. realization of X, the difference ‖Pπ(Yt:∞ ∈ ·|Xs:∞)− Pπ̃(Yt:∞ ∈
·|Xs:∞)‖TV tends to zero exponentially fast in t. The convergence to zero is sometimes
referred to as the weak ergodicity of Markov chain in random environment [41], we thus
prove that the weak ergodicity is actually geometric. Although (1.2) implies (1.1), in the
present paper we concentrate on the inequalities of type (1.1), because they allow us to
obtain the two sided generalizations. For two-sided versions of these inequalities, let us
consider the two-sided stationary Markov chain {Zk}k∈Z. In Subsection 3.3, we shall see
that

lim
l,s→∞

P (Yt:t+m−1 ∈ ·|Xt−l:t+s) = P (Yt:t+m−1 ∈ ·|X−∞:∞), a.s..

We strengthen this result by proving that under general conditions the following holds
(Corollary 3.9): there exists α ∈ (0, 1) and a stationary process {Ck}k∈Z, Ck <∞, such
that for all t ∈ Z, m ≥ 1, and l, s ≥ 0

‖P (Yt:t+m−1 ∈ ·|Xt−l:t+s)− P (Yt:t+m−1 ∈ ·|X−∞:∞)‖TV ≤ Ctαl∧s, a.s., (1.3)

where ∧ denotes the minimum. The random variable Ct is σ(X−∞:t, Xt+m−1,∞)-measur-
able and the process {Ck}k∈Z is ergodic when {Zk}k∈Z is ergodic. Another result of this
type (Corollary 3.10 below) states that under the same assumptions (we take m = 1, for
simplicity)

‖P (Yt ∈ ·|X1:n)− P (Yt ∈ ·|X−∞:∞)‖TV ≤ C1α
t−1 + C̄kα

k−t, a.s., (1.4)

where C1 is σ(X1:∞)-measurable, C̄k is σ(X−∞:k)-measurable and the process {C̄k}k∈Z is
ergodic when {Zk}k∈Z is. Although the constants C and C̄ in all above-stated inequalities
are random, nevertheless the bounds can be useful in various situations when pathwise
limits are of interest. For example, the inequality (1.2) implies that

lim sup
t

ln
1

t
sup
n≥t
‖Pπ(Yt:∞ ∈ ·|X1:n)− Pπ̃(Yt:∞ ∈ ·|X1:n)‖TV ≤ lnα < 0

(for similar type of bounds see also [13, 8, 25]) and the inequality (1.3) is very useful
when one needs to approximate the smoothing probability P (Yt:t+m−1 ∈ ·|Xt−l:t+s) with
something being independent of l and s. We shall briefly discuss the motivation of
inequalities type (1.4) and (1.3) in the point of view of segmentation theory below. The
assumptions A1 and A2 are stated, discussed and interpreted in Subsection 3.1.

Relation with the previous work The most popular type of PMM’s are HMM’s,
where the underlying process Y is a Markov chain, and given Yn = i, the observation
Xn is generated according to a probability distribution attached to the state i and
independently of everything else. Therefore, the vast majority of the study of smoothing
and filtering probabilities are done for HMM’s, where the study of these issues has
relatively long history dating back to 1960’s, where well-known forward-backwards
recursions for calculating these probabilities (for HMM’s) were developed. The forgetting
properties typically refer to the convergence

‖Pπ(Yt ∈ ·|Xs:n)− Pπ̃(Yt ∈ ·|Xs:n)‖TV → 0, a.s. (1.5)

(as t→∞, n ≥ t) and the inequalities of type (1.2) are often referred to as exponential
smoothing. For n = t, the convergence (1.5) is called filter stability, and it is probably
the most studied convergence in the literature. For an overview of several forgetting
properties and mixing type conditions ensuring forgetting (in HMM case), we refer to
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[1, Ch. 3,4]. Some of these conditions are also restated in Subsection 4.3. The list of
research articles dealing with various aspects of forgetting and filtering problems in
HMM setting is really long including [2, 3, 7, 8, 9, 25, 12, 13, 21, 20, 27], just to mention a
few more prominent articles. Majority of above-mentioned papers deal with (exponential)
forgetting of filters and filter stability of the state space models i.e. they consider the
case where the state space Y of Markov chain is very general, possibly uncountable. In
these papers, various mixing conditions for filter stability and forgetting properties are
stated. These conditions are often appropriate and justified for general Y, but when
applied to the case of finite Y, they might become too restrictive or limited. Hence the
case of finite Y needs special treatment and so it is also quite expected that in the case
of finite Y our main assumption A1, designed for discrete Y, is more general that the
ones made in all above-mentioned papers. For many models mentioned in the literature,
A1 is easy to verify, but we provide a more practical condition – cluster condition – which
is more general than many similar assumptions encountered in the HMM-literature, yet
very easy to check. Since HMM’s are so important class of models, Subsection 4.3 is
fully devoted to HMM-case. Besides presenting the results, Subsection 4.3 also aims to
give a state-of-art overview of mixing-type conditions for finite-state HMM’s.

Recently, a significant contribution to the study of smoothing probabilities (with
continuous state space) was made by van Handel and his colleagues [39, 42, 41, 40, 4,
43, 37, 38, 35]. Again, most of the papers deals with HMM’s, but in [37, 38], also more
general PMM’s are considered. In particular, they consider a special class of PMM’s,
called non-degenerate PMM’s. The crucial feature of non-degenerate PMM’s is that by
some change of measure the dynamics of X and Y -process can be made independent
(see Subsection 4.2 for precise definition). While natural in continuous-space setting,
for finite Y this assumption might be restrictive and in Subsection 4.2 we show that the
assumptions in [37] imply A1 and A2. For HMM’s, the non-degeneracy simply means
strictly positive emission densities and in Subsection 4.3 we show several ways how to
relax it.

The present work generalizes and builds on the approach in [27, 26], where solely
the HMM-case was considered. In many ways, HMM is technically much simpler model
to handle, hence the generalization from HMM to PMM is far from being straightforward.
Moreover, our second main result, Theorem 3.8 cannot be found in the earlier papers
even in HMM case. Also, for the HMM case, the cluster condition introduced in the
present paper is significantly weaker than the one in [27, 26]. The proofs of our main
results rely on the Markovian block-decomposition of the conditional hidden chain, A1 is
used to bound from above the Dobrushin coefficient of certain block-transitions.

Applications in segmentation The motivation of studying the inequalities (1.1) and
the two-sided inequalities (1.3) and (1.4) (instead of just filtering ones) comes from the
so-called segmentation problem that aims to prognose or estimate the hidden underlying
path y1:n given a realization x1:n of observed process X1:n. The goodness of any path
s1:n ∈ Yn is typically measured via loss function L : Yn ×Yn → [0,∞], where L(y1:n, s1:n)

measures the loss when the actual state sequence is y1:n and the estimated sequence is
s1:n. The best path is then the one that minimizes the expected loss

E[L(Y1:n, s1:n)|X1:n = x1:n] =
∑

y1:n∈Yn
L(y1:n, s1:n)P (Y1:n = y1:n|X1:n = x1:n).

over all possible state sequences s1:n. A common loss function measures the similarity of
the sequences entry-wise, i.e.

L(y1:n, s1:n) =
∑
t=1

Iyt 6=st ,
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where Iyt 6=st = 0 if and only if yt = st, otherwise Iyt 6=st = 1. Thus L(y1:n, s1:n) counts the
classification errors of path s1:n and the expected number of classification errors is

E[L(Y1:n, s1:n)|X1:n = x1:n] = n−
n∑
t=1

P (Yt = st|X1:n = x1:n).

Now it is clear that the path ŷ1:n that minimizes the expected loss is also the path that
minimizes the expected number of classification errors and it can obtained by pointwise
maximization of smoothing probabilities, i.e.

ŷ1:n = arg min
s1:n

E[L(Y1:n, s1:n)|X1:n = x1:n] = arg max
s1:n

n∑
t=1

P (Yt = st|X1:n = x1:n) ⇔

ŷt = arg max
y∈Y

P (Yt = y|X1:n = x1:n), t = 1, . . . , n.

Any such path is called pointwise maximum a posteriori (PMAP) (see, e.g. [22, 23, 24]).
The PMAP path is easy to calculate via forward-backward algorithms that hold for PMM
as well as for HMM. When n varies, it is convenient to divide the expected loss by n, and
so we study the time-averaged expected number of classification errors of PMAP path as
follows:

1− 1

n

n∑
t=1

max
y∈Y

P (Yt = y|X1:n).

This number can be considered as the (best possible) expected number of classification
errors per one time entry. It turns out that when Z is an ergodic process satisfying our
general assumptions A1 and A2, then there exists a constant R ≥ 0 so that

1− 1

n

n∑
t=1

max
y∈Y

P (Yt = y|X1:n)→ R, a.s.,

where R is a constant. The number R is solely depending on the model and characterizes
the its segmentation capacity – the smaller R, the easier the segmentation. The proof of
this convergence in HMM-case is given in [26, 23], but it holds without changes in more
general PMM case as well. The proof relies largely on the inequality (1.4), being thus an
example of the use of this kind of inequalities. For the discussion about the importance
of the existence of limit R as well as for another applications of inequalities of type (1.4)
and (1.1) in the segmentation context, see [23, 24]. These papers deal with HMM’s only,
but with the exponential forgetting results of the present paper, the generalization to
PMM case is possible.

It is interesting to notice that our main condition A1 is not only relevant to smoothing
distributions. This condition has been used, albeit in slightly more restricted form, in
the development of the Viterbi process theory [31, 32, 29, 28]. This suggests that the
condition A1 is essential form many different aspects and captures well the mixing
properties. When the observation space X is finite, then A1 essentially becomes what is
known in ergodic theory as the subpositivity of some observation string.

2 Preliminaries

The model and some basic notation We will now state the precise theoretical frame-
work of the paper. We assume that observation-space X is a Polish (separable completely
metrizable) space equipped with its Borel σ-field B(X ). We denote Z = X ×Y, and equip
Z with product topology τ × 2Y , where τ denotes the topology of X . Furthermore, Z is
equipped with its Borel σ-field B(Z) = B(X )⊗2Y , which is the smallest σ-field containing
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sets of the form A×B, where A ∈ B(X ) and B ∈ 2Y . Let µ be a σ-finite measure on B(X )

and let c be the counting measure on 2Y . Finally, let

q : Z2 → [0,∞), (z′, z) 7→ q(z′|z)

be a measurable non-negative function such that for each z ∈ Z the function z′ 7→ q(z′|z)
is a probability density function with respect to product measure µ × c. We define
random process Z = {Zk}k≥1 = {(Xk, Yk)}k≥1 as a homogeneous Markov chain on the
two-dimensional space Z having the transition kernel density q(z′|z). This means that
the transition kernel of Z is defined as follows:

P (Z2 ∈ C|Z1 = z) =

∫
C

q(z′|z)µ× c(dz′), z ∈ Z, C ∈ B(Z). (2.1)

Since every C ⊂ B(Z) is in the form C = ∪j∈YAj ×{j}, where Aj ∈ B(X ), the probability
(2.1) reads

P (Z2 ∈ C|X1 = x, Y1 = i) =
∑
j∈Y

P (X2 ∈ Aj , Y2 = j|X1 = x, Y1 = i)

=
∑
j

∫
Aj

q(x′, j|x, i)µ(dx′).

We also assume that Z1 has density with respect to product measure µ × c. Then, for
every n, the random vector Z1:n has a density with respect to the measure (µ× c)n. In
what follows, with a slight abuse of notation the letter p will be used to denote the various
joint and conditional densities. Thus p(zk) = p(xk, yk) is the density of Zk evaluated
at zk = (xk, yk), p(z1:n) = p(z1)

∏n
k=2 q(zk|zk−1) is the density of Z1:n evaluated at z1:n,

p(z2:n|z1) =
∏n
k=2 q(zk|zk−1) stands for the conditional density and so on. Sometimes it

is convenient to use other symbols beside xk, yk, zk as the arguments of some density;
in that case we indicate the corresponding probability law using the equality sign, for
example

p(x2:n, y2:n|x1 = x, y1 = i) = q(x2, y2|x, i)
n∏
k=3

q(xk, yk|xk−1, yk−1), n ≥ 3.

The notation Pz(·) will represent the probability measure, when the initial distribution of
Z is the Dirac measure on z ∈ Z (i.e. Pz(A) = P (A|Z1 = z)). For a probability measure ν
on B(Z), Pν(·) denotes the probability measure, when the initial distribution of Z is ν
(i.e. Pν(A) =

∫
Pz(A) ν(dz)).

The marginal processes {Xk}k≥1 and {Yk}k≥1 will be denoted with X and Y , respec-
tively. It should be noted that even though Z is a Markov chain, this doesn’t necessarily
imply that either of the marginal processes X and Y are Markov chains. However, it is
not difficult to show that conditionally given X1:n, Y1:n is a (generally non-homogeneous)
Markov chain and vice-versa.

For any set A consisting of vectors of length r > 1 we adopt the following notation:

A(k)
def
= {xk | x1:r ∈ A}, 1 ≤ k ≤ r.

Alternatively, A(k) = fk(A), where fk is the k-th projection.

General state space Markov chains We will now recall some necessary concepts
from the general state Markov chain theory. Markov chain Z is called ϕ-irreducible for
some σ-finite measure ϕ on B(Z), if ϕ(A) > 0 implies

∑∞
k=2 Pz(Zk ∈ A) > 0 for all z ∈ Z.
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If Z is ϕ-irreducible, then there exists [33, Prop. 4.2.2.] a maximal irreducibility measure
ψ in the sense that for any other irreducibility measure ϕ′ the measure ψ dominates ϕ′,
ψ � ϕ′. The symbol ψ will be reserved to denote the maximal irreducibility measure
of Z. Chain Z is called Harris recurrent, when it is ψ-irreducible and ψ(A) > 0 implies
Pz(Zk ∈ A i.o.) = 1 for all z ∈ Z. Chain Z is called positive if its transition kernel admits
an invariant probability measure. Any ψ-irreducible chain admits a cyclic decomposition
[33, Th. 5.4.4]: there exists disjoint sets D0, . . . , Dd−1 ⊂ Z, d ≥ 1, such that

(i) for z ∈ Dk, Pz(Z2 ∈ Dk+1) = 1, k = 0, . . . , d− 1 (mod d);

(ii) (∪dk=1Dk)c is ψ-null.

The cycle length d, called the period of Z, is chosen to be the largest possible in the
sense that for any other collection {d′, D′k, k = 0, . . . , d′ − 1} satisfying (i) and (ii), we
have d′ dividing d; while if d = d′, then, by reordering the indices if necessary, D′k = Dk

a.e. ψ. A ψ-irreducible chain Z is called aperiodic, when its period is 1, d = 1.

Overlapping r-block process For every r > 1, define Zk
def
= Zk:k+r−1, k ≥ 1. Thus

Z = {Zk} is a Markov process with the state space Zr and transition kernel

P (Z2 ∈ A|Z1 = z1:r) = P
(
Z2:r+1 ∈ A|Z1:r = z1:r

)
= P

(
Zr+1 ∈ A(z2:r)|Z1 = z1),

where A ∈ B(Z)r,

A(z2:r)
def
= {z : (z2:r, z) ∈ A}.

Similarly, for every set A ⊂ Zr, and z1 ∈ Z, we denote A(z1)
def
= {z2:r | z1:r ∈ A}. The

following proposition (proof in Appendix) specifies the maximal irreducible measure of
Z.

Proposition 2.1. If Z is positive Harris with stationary probability measure π and
maximal irreducible measure ψ, then Z is a positive Harris chain with maximal irreducible
measure ψr, where

ψr(A)
def
=

∫
A(1)

P
(
Z2:r ∈ A(z1) | Z1 = z1

)
ψ(dz1), A ∈ B(Z)⊗r. (2.2)

3 Exponential forgetting

3.1 The main assumptions

We shall now introduce the basic assumptions of our theory for the non-stationary
case. For every n ≥ 2 and i, j ∈ Y we denote

pij(x1:n)
def
=

∑
y2:n : yn=j

p(x2:n, y2:n|x1, y1 = i) = p(x2:n, yn = j|x1, y1 = i).

For any n ≥ 2, define

Y+(x1:n)
def
= {(i, j) | pij(x1:n) > 0}, x1:n ∈ Xn. (3.1)

Recall the definition of A(k) and A(x1). Thus

Y+(x1:n)(1) ={i|∃j such that pij(x1:n) > 0}, Y+(x1:n)(2) = {j |∃i such that pij(x1:n) > 0}.

Observe that it is not generally the case that Y+(x1:n) = Y+(x1:n)(1) × Y+(x1:n)(2). The
following are the main assumptions.
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A1 There exists integer r > 1 and a set E ⊂ X r such that Y+ def
= Y+(x1:r) 6= ∅ is the

same for all x1:r ∈ E, and Y+ = Y+
(1) × Y

+
(2).

A2 Chain Z is ψ-irreducible, with ψ(E(1) × Y+
(1)) > 0. Furthermore, µr−1(E(x1)) > 0 for

all x1 ∈ E(1).

The condition A1 is the central assumption of our theory. The intuitive meaning of A1
is fairly simple, because it can be considered as the “irreducibility and aperiodicity”
of conditional signal process as follows. Suppose we have an inhomogeneous Markov
chain Y = {Yt}t≥1, with Yt being the finite state space of Yt. The canonical concepts of
irreducibility and aperiodicity are not defined for such a Markov chain, but a natural
generalization would be the following: for every time t, there exists a time n > t such
that P (Yn = j|Yt = i) > 0 for every i ∈ Yt and j ∈ Yn. If Y is homogeneous, then this
property implies that Y is irreducible and aperiodic, hence also geometrically ergodic.
When we fix n > t and define

Y+ = {(i, j) : i ∈ Yt, j ∈ Yn, P (Yn = j|Yt = i) > 0},

then the above-stated condition reads Y+ = Yt × Yn. The assumption A1 generalizes
that idea to conditional signal process. Indeed, A1 states that for every x1:r ∈ E, and for
every fixed t ≥ 1, it holds that Y+ = Y+

(1) × Y
+
(2), where

Y+ = {(i, j) ∈ Y2 : P (Yt+r−1 = j|Yt = i,Xt:t+r−1 = x1:r) > 0}

and

Y+
(1) = {i ∈ Y : ∃j ∈ Y such that P (Yt+r−1 = j|Yt = i, Xt:t+r−1 = x1:r) > 0}

Y+
(2) = {j ∈ Y : ∃i ∈ Y such that P (Yt+r−1 = j|Yt = i, Xt:t+r−1 = x1:r) > 0}.

Observe that since Z is homogenous, the set Y+(x1:r) (and therefore also the sets
Y+

(1) and Y+
(2)) is independent of t, and A1 also ensures that it is independent of

x1:r, provided x1:r ∈ E. If now x1:∞ is a realization of X1:∞ such that x1:r ∈ E

and we define Y+(x1:∞) as previously, just x1:r replaced by x1:∞, then Y+
(1)(x1:∞) =

Y+
(1)(x1:r), Y+

(2)(x1:∞) ⊆ Y+
(2)(x1:r), hence when Y+(x1:r) = Y+

(1)(x1:r) × Y+
(2)(x1:r), then

also Y+(x1:∞) = Y+
(1)(x1:∞) × Y+

(2)(x1:∞). This observation makes A1 comparable with
the definition of irreducibility of conditional signal process defined by van Handel in
[41]. Van Handel’s definition, when adapted to our case of finite Y, states that for
every t and for a.e. realization xt:∞ of Xt:∞, there exists n > t such that the measures
P (Yn ∈ ·|Yt = i1, Xt:∞ = xt:∞) and P (Yn ∈ ·|Yt = i2, Xt:∞ = xt:∞) are not mutually
singular, provided P (Yt = ik|Xt:∞ = xt:∞) > 0 for k = 1, 2 (for non-Markov case this con-
dition is generalized in [38]). This condition is weaker than A1, and it has to be, because
by Theorem 2.3 in [41], for stationary X, the above-defined irreducibility condition is
necessary and sufficient for the convergence ‖Pπ(Yt ∈ ·|X1:∞)−Pπ̃(Yt ∈ ·|X1:∞)‖TV → 0,
Pπ-a.s. and Pπ̃-a.s., where π � π̃ and π corresponds to the stationary measure (weak
ergodicity). On the other hand, the condition A1 is typically met and relatively easy
to verify. Moreover, as already mentioned, our main result, Theorem 3.4 states that
for positive Harris Z, A1 and A2 do ensure not only the weak ergodicity but also the
exponential rate of convergence. So one possibility to generalize A1 for uncountable Y
would be replacing “not mutually singular” in the definition of regularity of conditional
signal process in [41] by “having the same support”.

The condition A2 ensures that X returns to the set E in appropriate regularity under
certain stability conditions on Z. Conditions A1–A2 will be discussed in more detail in
case of specific models in Section 4.
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We note that under A1 and A2 we may without loss of generality assume that for
some n0 ≥ 1

1

n0
≤ pij(x1:r) ≤ n0, ∀(i, j) ∈ Y+, ∀x1:r ∈ E. (3.2)

Indeed, let for n ≥ 1

En =

{
x1:r ∈ E

∣∣∣∣ 1

n
≤ min

(i,j)∈Y+
pij(x1:r) ≤ max

(i,j)∈Y+
pij(x1:r) ≤ n

}
.

By A1 pij(x1:r) > 0 for every x1:r ∈ E and (i, j) ∈ Y+, and so En ↗ E. Define measure ψ0

on X by ψ0(A) = ψ(A× Y+
(1)). Take n0 so large that ψ0 × µr−1(En0) > 0; this is possible

by A2. We would like to replace E by Eno . Clearly A1 holds for Eno as well, and we also
have

ψ0 × µr−1(En0
) =

∫
En0

(1)

µr−1(En0
(x))ψo(dx) > 0.

Unfortunately, the positive integral does not imply that µr−1(En0
(x)) > 0 for every

x ∈ En0
(1), a property needed for A2. But surely there exists a set E′ ⊂ En0

such that
ψ0(E′(1)) > 0 and µr−1(E′(x1)) > 0 for all x1 ∈ E′(1) (otherwise the integral would be zero).
Thus E′ satisfies both A1 and A2, and so with no loss of generality we may and shall
assume that (3.2) holds.

3.2 Bounding the Dobrushin coefficient

The Dobrushin coefficient δ(M) of a stochastic matrix M(i, j) is defined as the
maximum total variation difference over all row pairs of M divided by 2, i.e.

δ(M)
def
=

1

2
max

1≤i<i′≤n
‖M(i, ·)−M(i′, ·)‖TV,

where ‖ · ‖TV stands for total variation norm. As is well known, for any two probability
rows vectors ξ, ξ′ of length n, and for any n× n stochastic matrix,

‖ξM − ξ′M‖TV ≤ δ(M)‖ξ − ξ′‖TV ≤ 2δ(M).

The Dobrushin coefficient is sub-multiplicative: for any two n× n stochastic matrices
M and M ′, δ(MM ′) ≤ δ(M)δ(M ′). A stochastic matrix M is said to satisfy the Doeblin
condition, if there exists a probability row vector ξ and ε > 0 such that each row of M is
uniformly greater than εξ, i.e. M(i, j) ≥ εξ(j) for all i, j ∈ {1, . . . , n}. If M satisfies such
condition, then its Dobrushin coefficient has an upper bound δ(M) ≤ 1− ε.

In what follows we prove our own version of the Doeblin condition. We shall consider
the observation sequences x1:n, where x1:r ∈ E and n ≥ r. For those sequences define
probability distribution on Y as follows:

λ[xr:n](j)
def
=


1

c(xr:n)
p(xr+1:n|yr = j, xr)IY+

(2)
(j), if n > r

IY+
(2)

(j)/|Y+
(2)|, if n = r

,

where c(xr:n)
def
=
∑
yr∈Y+

(2)
p(xr+1:n|xr, yr) is the normalizing constant, IA denotes the

indicator function on A, and the set Y+ is given by A1. Define the stochastic matrix

U [x1:n](i, j)
def
=


p(yr = j, x2:n|x1, y1 = i)

p(x2:n|x1, y1 = i)
, if p(x2:n|x1, y1 = i) > 0

λ[xr:n](j), if p(x2:n|x1, y1 = i) = 0 and c(xr:n) > 0
,

EJP 26 (2021), paper 70.
Page 9/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP628
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Exponential forgetting of PMM’s

where i, j ∈ Y represent the row and column index of the matrix, respectively. The matrix
U [x1:n] is well-defined stochastic matrix for all x1:n satisfying c(xr:n) > 0. Furthermore,
j 7→ U [x1:n](i, j) is (a regular) version of the conditional distribution

P (Yk+r = j|Xk+1:k+n = x1:n, Yk+1 = i) ∀k ≥ 0.

Lemma 3.1. Suppose A1 is satisfied. Let n ≥ r, and let x1:n be such that x1:r ∈ E and
p(x2:n|x1, y1 = i∗) > 0 for some i∗ ∈ Y. Then

U(i, j)[x1:n] ≥ 1

n2
0

λ[xr:n](j), ∀i, j ∈ Y. (3.3)

Proof. We only consider the case n > r; the proof for n = r follows along similar,
although simpler arguments. Let x1:n be such that x1:r ∈ E and p(x2:n|x1, y1 = i∗) > 0

for some i∗ ∈ Y. First we show that

p(x2:n|x1, y1) > 0 if and only if y1 ∈ Y+
(1). (3.4)

Indeed, since by assumption, p(x2:n|x1, y1 = i∗) =
∑
j pi∗j(x1:r)p(xr+1:n|xr, yr = j) > 0,

then there exists a j∗ such that

pi∗j∗(x1:r) > 0 and p(xr+1:n|xr, yr = j∗) > 0. (3.5)

Thus (i∗, j∗) ∈ Y+, which by A1 implies that (i, j∗) ∈ Y+ for every i ∈ Y+
(1). This together

with (3.5) shows that p(x2:n|x1, y1) > 0 for every y1 ∈ Y+
(1), and so (3.4) is proved in one

direction. In the other direction, if i /∈ Y+
(1), then, by definition of Y+, pij(x1:r) = 0 for

every j ∈ Y, which in turn implies that p(x2:n|x1, y1 = i) = 0.
Next, note that c(xr:n) > 0, and so U [x1:n] is well-defined. Indeed, we saw above that

j∗ ∈ Y+
(2) and therefore by (3.5) c(xr:n) ≥ p(xr+1:n|xr, yr = j∗) > 0. When i /∈ Y+

(1) then

by (3.4), U [x1:n](i, j) = λ[xr:n](j) for every j ∈ Y and hence the inequality (3.3) is fulfilled
for every j ∈ Y. Thus in what follows we assume that i ∈ Y+

(1). We have

U [x1:n](i, j) =
p(yr = j, x2:n|y1 = i, x1)

p(x2:n|x1, y1 = i)

=
p(yr = j, x2:r|x1, y1 = i)p(xr+1:n|yr = j, xr)

p(x2:n|y1 = i, x1)

=
pij(x1:r)p(xr+1:n|yr = j, xr)∑

j′∈Y pij′(x1:r)p(xr+1:n|yr = j′, xr)
.

By A1 pij(x1:r) > 0 if and only if j ∈ Y+
(2), and so we obtain

U [x1:n](i, j) =
pij(x1:r)p(xr+1:n|yr = j, xr)IY+

(2)
(j)∑

j′∈Y+
(2)
pij′(x1:r)p(xr+1:n|yr = j′, xr)

.

Together with (3.2) this implies

U [x1:n](i, j) ≥ 1

n2
0 · c(x1:r)

p(xr+1:n|yr = j, xr)IY+
(2)

(j) =
1

n2
o

λ[x1:n](j).

Remark 3.2. Inspired by the technique in [9], one can add to the condition A1 the
following: there exists t ∈ {2, . . . , r − 1} and state l ∈ Y so that for every x1:r ∈ E

pil(x1:t)plj(xt:r)

pij(x1:r)
> 0, ∀i, j ∈ Y+

(1) × Y
+
(2). (3.6)
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Then, for every i ∈ Y+
(1),

p(yt = l, x2:n|x1, y1 = i)

p(x2:n|x1, y1 = i)
=

∑
j∈Y+

(2)
pil(x1:t)plj(xt:r)p(xr+1:n|yr = j, xr)∑

j′∈Y(2)
pij′(x1:r)p(xr+1:n|xr, yr = j′)

=

∑
j∈Y+

(2)

pil(x1:t)plj(xt:r)
pij(x1:r) pij(x1:r)p(xr+1:n|yr = j, xr)∑

j′∈Y(2)
pij′(x1:r)p(xr+1:n|xr, yr = j′)

≥ min
i,j∈Y+

(1)
×Y+

(2)

pil(x1:t)plj(xt:r)

pij(x1:r)

def
= λ.

Thus the matrix of conditional probabilities V (i, j) = P (Yk+t = j|Xk+1:k+n = x1:n, Yk+1 =

i) could be defined so that it satisfies: V (i, l) ≥ λ, for every i ∈ Y. Thus, the Dobrushin
condition holds with λ(j) = I{l}(j). Although formally (3.6) restricts A1, for many models
like HMM, it is actually equivalent to A1. One advantage of (3.6) is that λ might be bigger
than 1/n2

o. The condition (3.6) is more useful in linear state space models (continuous
Y), see [9].

3.3 Exponential forgetting results

Conditional transition matrices and distributions Let now, for every m ≥ 1 and
for every k ≥ 1,

Fk;m[x1:n] = (Fk;m[x1:n](u, v))u∈Y,v∈Ym

be the |Y| × |Y|m-matrix such that

Fk;m[x1:n](u, v)
def
= P (Yk+1:k+m = v|X1:n = x1:n, Y1 = u).

Observe that Ym is countable and so every version of conditional probability above is
regular. Note that since the process Z is homogeneous, for every 1 < s < n and x1:n, we
can take

Fk;m[xs:n](u, v) = P (Ys+k:s+k+m−1 = v|Xs:n = xs:n, Ys = u)

= P (Ys+k:s+k+m−1 = v|X1:n = x1:n, Ys = u), (3.7)

where the last equality follows from Markov property. Thus

F1;1[xs:n](u, v) = P (Ys+1 = v | Xs:n = xs:n, Ys = u) = P (Ys+1 = v | X1:n = x1:n, Ys = u)

is the one-step conditional transition matrix. The matrix F0;1[x1:n] ≡ I, where I stands
for |Y| × |Y| identity matrix, and for m > 1,

F0;m[x1:n](u, v)
def
=

{
0, if u 6= v1;
F1;m−1[x1:n](v1, v2:m) if u = v1.

(3.8)

The definition (3.8) is clearly justified, since if m > 1 and u = v1, then

P (Y1 = v1, Y2:m = v2:m|X1:n = x1:n, Y1 = u) = P (Y2:m = v2:m|X1:n = x1:n, Y1 = v1).

Note that without loss of generality we may assume Fr−1;1[x1:n] ≡ U [x1:n]. For every
m ≥ 1 and 1 ≤ l ≤ t, n define

νtl:n;m[xl:n](v)
def
= P (Yt:t+m−1 = v|Xl:n = xl:n), v ∈ Ym.
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The notation νtl:n;m represents the random function νtl:n;m[Xl:n] taking values [0, 1]m. The
domain of that function is finite and so we identify the random function with random
vector. Observe that for any m, k, l,≥ 1, s ≥ l and n ≥ s+ k it holds

νs+kl:n;m(v) = E[P (Ys+k:s+k+m−1 = v|Xl:n, Ys)|Xl:n] = E[Fk;m[Xs:n](Ys, v)|Xl:n]

=
∑
u∈Y

Fk;m[Xs:n](u, v)νsl:n;1[Xl:n](u) = (νsl:n;1Fk;m[Xs:n])(v),

where the second equality follows from (3.7), and the third equality follows from the fact
that νsl:n;1 is a regular conditional distribution. Thus

νs+kl:n;m = νsl:n;1Fk;m[Xs:n], a.s.. (3.9)

Remark about a.s. The stochastic process Z is defined on an underlying probability
space (Ω,F ,P). (Regular) conditional probabilities ν and F are defined up to P-a.s., only.
Therefore, the (in)equalities like (3.9) or the statement (3.11) of Proposition 3.3 below
are all stated in terms of P-a.s.. Observe also that there are countable many indexes
l, n,m, s, k. Therefore (3.9) implies: there exists Ωo ⊂ Ω such that P(Ωo) = 1 and for any
ω ∈ Ωo (3.9) holds for any s, k, l,m, n. The same holds for other similar equalities like
(3.11).

The main theorem In what follows, we take r′ = r − 1; for any t > r′ and for any
string xs:t ∈ X t−s+1, we define

τk
def
= b t− k − s

r′
c, and κk(xs:t)

def
=

τk−1∑
u=0

IE(xur′+s+k:(u+1)r′+s+k), k = 0, . . . r′ − 1

Thus κ0(xs:t) counts the number of vectors from set E in the string xs:t in almost non-
overlapping positions starting from s. Here “almost non-overlapping positions” means
that the last entry of previous position and the first entry of the next one overlap.
Similarly, κk(xs:t) counts the number of vectors from set E in the string xs+k:t (k =

0, . . . , r′ − 1).

Let us also define reversed time counterpart of κ0 as follows

κ̄(xs:t)
def
=

τ0−1∑
u=0

IE(xt−(u+1)r′:t−ur′). (3.10)

Thus also κ̄(xs:t) counts the number of vectors from set E in the string xs:t in almost
non-overlapping positions; the difference with κ is that κ̄ starts counting from t. Note
that with k = (t− s) mod r′ κ̄(xs:t) = κk(xs:t).

Proposition 3.3. Suppose A1 is satisfied, n ≥ t ≥ s ≥ l ≥ 1 and m ≥ 1. Then with
ρ = 1− n−2

0 , the following inequality holds for every k = 0, . . . , r′ − 1,

‖νtl:n;m − νts:n;m‖TV ≤ 2ρκk(Xs:t), a.s. (3.11)

Moreover, the inequality (3.11) also holds when κk(Xs:t) is replaced be κ̄(Xs:t).

Proof. By (3.9),

νtl:n;m = νsl:n;1Ft−s;m[Xs:n], νts:n;m = νss:n;1Ft−s;m[Xs:n].
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Note that

Ft−s;m[Xs:n] = Fk;1[Xs:n]U [Xs+k:n]U [Xs+k+r′:n] · · ·
· · ·U [Xs+k+(τk−1)r′:n]Ft−s−k−τkr′;m[Xs+k+τkr′:n].

Thus

‖νtl:n;m − νts:n;m‖TV = ‖(νsl:n;1 − νss:n;1)Fk;1[Xs:n]U [Xs+k:n]U [Xs+k+r′:n] · · ·
· · ·U [Xs+k+(τk−1)r′:n]Ft−s−k−τkr′;m[Xs+k+τkr′:n]‖TV

≤ 2δ(U [Xs+k:n])δ(U [Xs+k+r′:n]) · · · δ(U [Xs+k+(τk−1)r′:n]),

where δ(U) denotes the Dobrushin coefficient of matrix U . Note that if x1:n is such that
p(x1:n) > 0, then for any u = 1, . . . , n−1 there exists a state yu such that p(xu+1:n|xu, yu) >

0 so that the assumption of Lemma 3.1 is fulfilled. Since p(X1:n) > 0, a.s., we have by
Lemma 3.1

δ(U [Xs+k+ur′:n]) ≤ ρIE(Xs+k+ur′:s+k+(u+1)r′) u = 0, . . . , τk − 1,

and so the statement follows. Since for some k, κ̄[xs:t] = κk[xs:t], we have that
maxk κk[Xs:n] ≥ κ̄[Xs:t] and so the second statement follows.

We are now ready to prove the first of the two main results of the paper. Recall
that we do not assume any specific initial distribution π of the chain Z, hence all a.s.-
statements below are with respect to the measure P in underlying probabilty space.

Theorem 3.4. Assume A1–A2 and let Z be Harris recurrent.

(i) Then for all l, s ≥ 1

sup
n≥t

sup
m≥1
‖νtl:n;m − νts:n;m‖TV −→

t
0, a.s.

(ii) If Z is positive Harris, then there exists a constant 1 > α > 0 such that the following
holds: for every s ≥ 1 there exist a σ(Xs:∞)-measurable random variable Cs <∞
such that for all t ≥ s ≥ l ≥ 1

sup
n≥t

sup
m≥1
‖νtl:n;m − νts:n;m‖TV ≤ Csαt−s, a.s. (3.12)

Proof. (i) First we show that

Pz(X1:r ∈ E) > 0, ∀z ∈ E(1) × Y+
(1). (3.13)

Recall that we denoted E(x1) = {x2:r | x1:r ∈ E}. We have for any (x1, i) ∈ E(1) × Y+
(1)

P(x1,i)(X1:r ∈ E) =

∫
E(x1)

∑
j∈Y

pij(x1:r)µ
r−1(dx2:r)

≥
∫
E(x1)

∑
j∈Y+

(2)

1

n0
µr−1(dx2:r) =

|Y+
(2)|
n0

µr−1(E(x1)) > 0,

and so (3.13) holds. Here the first inequality follows from A1 and (3.2), and the sec-
ond inequality follows from A2. Since by A2 ψ(E(1) × Y+

(1)) > 0, then it follows from
Lemma A.1 and (3.13) that X goes through E infinitely often a.s. Assuming for the sake
of concreteness that s ≥ l, we have that there must exist T (s) ∈ {1, . . . , r′} such that
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κ0(Xs+T :s+T+u) −→
u
∞, a.s.. Thus, as u→∞, we have maxk∈{0,...,r′−1} κk(Xs:u)→∞ and

so the first part of the statement follows from Proposition 3.3.
(ii) Define Zk = Zk:k+r−1, k ≥ 1. From Proposition 2.1 we know that Z is a positive

Harris chain with maximal irreducibility measure ψr. Recall that the chain Z admits a
cyclic decomposition {Dk, k = 0, . . . , d− 1}, where d denotes the period of Z. Also recall
that by A2 ψ(E(1) × Y+

(1)) > 0; hence by (2.2) and (3.13) ψr(E × Yr) > 0. Thus with no
loss of generality we may assume that

ψr

(
D0 ∩ (E × Yr)

)
> 0. (3.14)

Let s ≥ 1, and let T (s) ≥ 0 be a σ(Xs:∞)-measurable integer-valued random variable
defined as the smallest integer such that Zs+T ∈ D0. Since Z is Harris recurrent, then
T <∞, a.s.. We have thus by the strong Markov property that {Zs+T+k}k≥0 is a Markov
chain with the same transition kernel as Z, hence also positive Harris. Also, by the
cyclic decomposition of Z and by the fact that Zs+T ∈ D0, we have that the Markovian
sub-process {Zs+T+kd}k≥0 can be seen seen as the process Z on D0, i.e. as a process that
starts from Zs+T , the next value is the one of Z at the next visit of D0 and so on. With
this observation, it is easy to see that {Zs+T+kd}k≥0 is ψr |D0

-irreducible (ψr |D0
stands

for restriction), positive Harris (if ψr |D0
(A) > 0, then also ψr(A) > 0 and so for every

z1 ∈ D0, P (Zk ∈ A, i.o | Z1 = z1) = 1, so it is Harris; since the restriction of invariant
probability measure of Z to D0 is the invariant measure of Z on D0, [33, Th.10.4.9], we
see that the process on D0 has a positive invariant measure) and aperiodic (aperiodicity
here follows from the fact that d is defined as the largest cycle length possible). It then
follows [33, Th. 9.1.6] that the Markov chain {Zs+T+kdr′}k≥0 is positive Harris, having
the same invariant probability measure as the process {Zs+T+kd}k≥0. This invariant
probability measure is the one of Z conditioned on the set D0, hence Pπ(Z1 ∈ · | Z1 ∈ D0),
where π denotes the invariant distribution of Z. Define

S(n)
def
=

n−1∑
k=0

IE×Yr (Zs+T+kdr′)

p0
def
= Pπ(Z1 ∈ (E × Yr) | Z1 ∈ D0) =

Pπ(Z1 ∈ D0 ∩ (E × Yr))
Pπ(Z1 ∈ D0)

.

Since the invariant measure Pπ(Z1 ∈ ·) dominates the maximal irreducibility measure
ψr [33, Prop. 10.1.2(ii)], then by (3.14), Pπ(Z1 ∈ D0 ∩ (E × Yr)) > 0 and so p0 > 0. By
SLLN for positive Harris chains [33, Th. 17.1.7]

lim
n

1

n
S(n) = p0, a.s. (3.15)

We have for all u ≥ 0

κ0(Xs+T :s+T+u) ≥ S(bu/(dr′)c). (3.16)

To see (3.16) note that by the definition of Z,

Zs+T+(n−1)dr′ = Zs+T+(n−1)dr′:s+T+((n−1)d+1)r′ .

Thus, when n ≤ u
dr′ , then (n− 1)d ≤ (u/r′ − 1) and

s+ T +
(
(n− 1)d+ 1

)
r′ ≤ s+ T + u.

By (3.15), for every 0 < p < p0
dr′ , there exists a σ(Xs:∞)-measurable finite random variable

U (depending on s and p) such that for all k ≥ 0,

S
(
bU + k

dr′
c
)
> (pdr′)

(U + k)

dr′
⇒ κ0(Xs+T :s+T+U+k) > (U + k)p.
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Therefore, if t ≥ s+ T + U , by taking k = t− (s+ T + U), we have

κ0(Xs:t) ≥ κ0(Xs+T :t) = κ0(Xs+T :s+T+U+k) ≥ (U + k)p = p(t− s− T ).

If t < s+ T + U , then T + U > t− s and defining α
def
= ρp and N

def
= T + U , we have that

by Proposition 3.3 for any t ∈ {s, . . . , n} the following inequalities hold a.s.

‖νtl:n;m − νts:n;m‖TV ≤ 2ρκ0(Xs:t) ≤ 2ρp(t−s−T )I(N≤t−s) ≤ 2α−N · αt−s.

So the statement holds with Cs
def
= 2α−2N .

In the above theorem we can let m→∞ and derive the following more general result
pertaining to the infinite-dimensional random distributions P (Yt:∞ ∈ ·|Xk:n). These
distributions are defined on the cylindrical σ-algebra of Y∞, which will be denoted
with F .

Corollary 3.5. Assume A1–A2 and let Z be Harris recurrent.

(i) Then for all l, s ≥ 1

lim
t

sup
n≥t
‖P (Yt:∞ ∈ ·|Xl:n)− P (Yt:∞ ∈ ·|Xs:n)‖TV = 0, a.s. (3.17)

(ii) If Z is positive Harris, then there exists a constant 1 > α > 0 such that the following
holds: for every s ≥ 1 there exist a σ(Xs:∞)-measurable random variable Cs <∞
such that for all t ≥ s ≥ l ≥ 1

sup
n≥t
‖P (Yt:∞ ∈ ·|Xl:n)− P (Yt:∞ ∈ ·|Xs:n)‖TV ≤ Csαt−s, a.s. (3.18)

Proof. Let A be the algebra consisting of all cylinders of Y∞. Thus F = σ(A). The
statement (i) of Theorem 3.4 means that for P-a.s.,

sup
n≥t

sup
A∈A
|νtl:n;∞(A)− νts:n;∞(A)| → 0.

Since for every two probability measures P and Q on F = σ(A), it holds by monotone
class theorem that

sup
A∈A
|P (A)−Q(A)| = sup

F∈σ(A)

|P (F )−Q(F )|,

we have as t→∞,

sup
n≥t
‖P (Pt:∞ ∈ ·|Xl:n)− P (Yt:∞ ∈ ·|Xs:n)‖TV = sup

n≥t
sup
F∈F
|νtl:n;∞(F )− νts:n;∞(F )| → 0, a.s.

The proof of the second statement is the same.

By Levy martingale convergence theorem, for every l, t and F ∈ F

lim
n
P (Yt:∞ ∈ F |Xl:n) = P (Yt:∞ ∈ F |Xl:∞), a.s..

Since F is countable generated, then (3.17) implies by Dynkin π − λ theorem

lim
t
‖P (Yt:∞ ∈ ·|Xl:∞)− P (Yt:∞ ∈ ·|Xs:∞)‖TV = 0. (3.19)

Similarly, from (3.12), it follows (s ≥ l)

‖P (Yt:∞ ∈ ·|Xl:∞)− P (Yt:∞ ∈ ·|Xs:∞)‖TV ≤ Csαt−s, a.s. (3.20)
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Remark 3.6. Suppose we have two different initial distributions, say π and π̃ of Z1,
where π̃ � π (to avoid zero-likelihood observations). Let νts:n;m and ν̃ts:n;m (1 ≤ s ≤ t ≤ n)
be the corresponding smoothing distributions. It is easy to see that the very proof of
Proposition 3.3 yields for every k = 0, . . . r′ − 1,

‖νts:n;m − ν̃ts:n;m‖TV ≤ 2ρκk(Xs:t), Pπ − a.s. (3.21)

Therefore also the statements of Corollary 3.5 hold: under A1 and A2, if Z is Harris
recurrent, then as t→∞,

sup
n≥t
‖Pπ(Yt:∞ ∈ ·|Xs:n)− Pπ̃(Yt:∞ ∈ ·|Xs:n)‖TV → 0, Pπ − a.s.. (3.22)

As mentioned in Introduction, for n = t, such convergences – filter stability – are studied
by van Handel et al. in series of papers [37, 42, 41, 39, 43]. If Z is positive Harris, then
there the convergence above holds in exponential rate, i.e. there exists an almost surely
finite random variable Cs and α ∈ (0, 1) so that

sup
n≥t
‖Pπ(Yt:∞ ∈ ·|Xs:n)− Pπ̃(Yt:∞ ∈ ·|Xs:n)‖TV ≤ Ksα

t, Pπ − a.s., (3.23)

where Ks = Csα
−s. Of course, just like in (3.19) and (3.20), we have that (3.22) and

(3.23) also hold with n = ∞. The convergence (3.22) with n = ∞ is studied by van
Handel in [41] (mostly in HMM setting) under the name weak ergodicity of Markov chain
in random environment.

3.4 Two-sided forgetting

A1 and A2 under stationarity In this section we consider a two-sided stationary
extension of Z, namely {Zk}∈Z = {(Xk, Yk)}k∈Z. As previously, the process is defined on
underlying probability space (Ω,F ,P), but in this section, the measure P is such that
the process Z is stationary. All a.s. statements are with respect to P. Denote for n ≥ 1

and x1:n ∈ Xn,

Y∗(x1:n)
def
= {(y1, yn) |∃y2:n−1 : p(x1:n, y1:n) > 0}.

In the stationary case it is convenient to replace A1 and A2 with the following conditions.

A1’ There exists a set E ⊂ X r, r > 1, such that Y∗ def
= Y∗(x1:r) 6= ∅ is the same for any

x1:r ∈ E, and Y∗ = Y∗(1) × Y
∗
(2).

A2’ It holds µr(E) > 0.

It is easy to see that A1′ and A2′ imply

P (X1:r ∈ E) > 0. (3.24)

Let us compare conditions A1 and A1′. Suppose E is any set such that Y∗(x1:r) is the
same for any x1:r ∈ E and also Y+(x1:r) is the same for any x1:r ∈ E. Then clearly
Y∗(1) ⊂ Y

+
(1), and these sets are equal, if for every i ∈ Y+

(1), there exists x1 ∈ E(1) such that

p(x1, i) > 0 (recall that we consider stationary case, thus p(x1, i) = p(xt, yt = i) for any t).
Therefore, if there exists i ∈ Y+

(1) \ Y
∗
(1), then p(x1, i) = 0 for every x1 ∈ E(1). This implies

that such a state i almost never occurs together with an observation x1 from E(1) and
without loss of generality we can leave such states out of consideration. Indeed, recall
the proof of Proposition 3.3, where for given xs:n, we calculated, for any k = 0, . . . , r′ − 1,

νts:n;m =

νss:n;1[xs:n]Fk;1[xs:n]U [xs+k:n]U [xs+k+r′:n] · · ·U [xs+k+(τk−1)r′:n]Ft−s−k−τkr′;m[xs+k+τkr′:n]
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so that for any v ∈ Ym and for any k

νts:n;m(v) =
∑

i0,i1,i2···iτk

[
p(ys+k = i0|xs:n)p(ys+k+r′ = i1|ys+k = i0, xs+k:n)×

p(ys+k+2r′ = i2|ys+k+r′ = i1, xs+k+r′:n) · · ·
p(ys+k+τkr′ = iτk |ys+k+(τk−1)r′ = iτk−1, xs+k+(τk−1)r′:n)×

p(yt:t+m−1 = v|ys+k+τkr′ = iτk , xs+k+τkr′:n)
]
.

Now observe: when p(xs:n) > 0, but p(xs+k, ys+k = i0) = 0, then also p(ys+k =

i0 | xs:n) = 0, and such i0 could be left out from summation. Similarly, if, for a
l = 1, . . . , τk − 1, p(xs+k+lr′ , ys+k+lr′ = il) = 0, we have that p(ys+k+lr′ = il|ys+k+(l−1)r′ =

il−1, xs+k+(l−1)r′:n) = 0 and such il can left out from summation. Therefore, in what fol-
lows, without loss of generality, we shall assume Y+

(1) = Y∗(1). As the following proposition

shows, in this case the conditions A1,A2 and A1′,A2′ are equivalent.

Proposition 3.7. Let Z be stationary. Then A1 and A2 imply A1′ and A2′. Conversely,
A1′ and A2′ with the set E satisfying Y∗(1) = Y+

(1) imply A1 and A2.

Proof. Assume A1 and A2 hold and let E be the corresponding set. Since π is stationary
probability measure, it is equivalent to ψ [33, Thm. 10.4.9]. Therefore, by A2, π(E(1) ×
Y+

(1)) > 0 and so there exists i∗ ∈ Y+
(1) such that π(E(1) × {i∗}) > 0. Consequently, there

exists a set U ⊂ E(1) such that µ(U) > 0 and p(x, i∗) > 0 for every x ∈ U . Let for every
x ∈ U , C(x) = {j ∈ Y : p(x, j) > 0}. Clearly there exists Uo ⊂ U so that µ(Uo) > 0

and C(x) = C for every x ∈ Uo. Note that i∗ ∈ C ∩ Y+
(1). Define Eo = ∪x∈Uo{x} × E(x).

Since µ(Uo) > 0, we have µr(Eo) > 0. For any i ∈ C ∩ Y+
(1), for any j ∈ Y+

(2) and

for any x1:r ∈ Eo, it holds that p(x1:r, y1 = i, yr = j) = pij(x1:r)p(x1, i) > 0 (because
i ∈ Y+

(1), j ∈ Y
+
(2), x1:r ∈ E and so by A1 pij(x1:r) > 0; since i ∈ C and x1 ∈ Uo, it also

holds that p(x1, i) > 0). Therefore, if x1:r ∈ Eo, then Y∗(x1:r) =
(
C ∩ Y+

(1)

)
× Y∗(2) and so

A1′ holds with Eo. Since µr(Eo) > 0, we have that A2 holds as well.
Assume that A1′ and A2′ hold and let E be the corresponding set. If Y∗(1) = Y+

(1), then

for every x1 ∈ E(1) and i ∈ Y+
(1), it holds p(x1; i) > 0, and as argued above, A1′ implies

A1. By (3.24), π(E(1)×Y) > 0 and since π is equivalent to ψ, it holds that ψ(E(1)×Y) > 0.
Thus A1 and A2 hold.

Reversing the time As previously, let for every l ≤ n, l, n ∈ Z ∪ {−∞,∞}, t ∈ Z and
m ≥ 1

νtl:n;m[xl:n](v)
def
= P (Yt:t+m−1 = v|Xl:n = xl:n), v ∈ Ym

and, like before, νtl:n;m denotes the random probability distribution νtl:n;m−1[Xl:n]. Note

that for any z ∈ Z, we have that the random vectors νtl:n;m and νt+zl+z:n+z;m have the same
distribution, thus w.l.o.g. we shall consider the case t = 0. Under A1 and A2, it follows
from (3.12) using triangular inequality that for every −l2 ≤ −l1 ≤ −s < 0 and m ≥ 1, it
holds

sup
n≥0
‖ν0
−l1:n;m − ν0

−l2:n;m‖TV ≤ Csαs, a.s., (3.25)

where the random variable Cs is σ(X−s:∞)-measurable and so depends on s. Assuming

that the reversed-time chain {Z̄k}k≥0, where Z̄k
def
= Z−k is also positive Harris satisfying

A1 and A2, then (3.25) implies

sup
n≥0
‖ν0
−n:l3;m − ν0

−n:l4;m‖TV ≤ C̄sᾱs−m+1, a.s., (3.26)
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where 1 ≤ m ≤ s ≤ l4 ≤ l3, the random variable C̄s is σ(X−∞:s)-measurable and ᾱ ∈ (0, 1).
The following theorem shows that when using reversed-time chain and backward-counter
κ̄, we have the inequality (3.25) with Cs replaced by another random variable C0 that
is σ(X−∞:0)-measurable, but independent of s. Similarly, the random variable C̄s could
be replaced by a σ(Xm−1:∞)-measurable random variable C̄m−1 that is also independent
of s (but dependent on m). Because of the stationarity, the assumptions A1–A2 are
replaced by the (formally) weaker assumptions A1′−A2′, but as we argued, they can be
considered to be equivalent. Throughout the section we assume m ≥ 1 is a fixed integer.

Theorem 3.8. Assume that Z is a stationary and positive Harris chain such that A1′

and A2′ hold. Assume also that reversed-time chain {Z̄k}k≥0 is also Harris recurrent.
Then there exists a σ(X−∞:0)-measurable random variable C0 and α ∈ (0, 1) such that
for every −l ≤ −s < 0 < n it holds

sup
n≥0
‖ν0
−l:n;m − ν0

−s:n;m‖TV ≤ C0α
s, a.s.. (3.27)

There also exists a σ(Xm−1:∞)-measurable random variable C̄m−1 and ᾱ ∈ (0, 1) such
that for every s and l such that m ≤ s ≤ l,

sup
n≥0
‖ν0
−n:l;m − ν0

−n:s;m‖TV ≤ C̄m−1ᾱ
s−(m−1) a.s.. (3.28)

Proof. By stationarity the reversed-time chain Z̄ is positive Harris. Now we apply

the proof of (ii) of Theorem 3.4 to the reversed-times block chain Z̄k
def
= Z̄k:k+r′ =

(Z−k, . . . , Z−k−r′), k ≥ 0. Let f : X r → X r be the mapping that reverses the ordering of

vector: f(x1, . . . , xr) = (xr, . . . , x1), and let Ē
def
= {f(x1:r) : x1:r ∈ E}. Thus Z̄k ∈ Ē × Yr

if and only if Z−k−r′:−k ∈ E × Yr. Now, just like in the proof of (ii) of Theorem 3.4, we
define

S(n)
def
=

n−1∑
k=0

IĒ×Yr (Z̄T+kd′r′),

where, as previously, T is a random variable so that Z̄T ∈ D0, where D0, . . . , Dd′−1 is a
cyclic decomposition of Z̄k. The set D0 is such that P

(
Z1 ∈ D0 ∩ (E×Yr)

)
> 0, by (3.24),

such a set D0 exists. Therefore, S(n)/n→ po, a.s., where

po
def
= P

(
Z̄1 ∈ D0 ∩ (Ē × Yr)

∣∣Z̄1 ∈ D0) > 0.

We denote X̄t
def
= X−t. Thus, for any u, X̄T :T+u = (X−T , . . . , X−T−u) and so for

any k = 0, 1, 2, . . ., X̄T+kd′r′:T+(k+1)d′r′ ∈ Ē, equivalently, Z̄T+kd′r′ ∈ Ē × Yr only if
X−T−(k+1)d′r′:T−kd′r′ ∈ E. Hence the inequality (3.16) now is

κ0(X̄T :T+u) = κ̄(X−T−u:−T ) ≥ S
(⌊ u

(d′r′)

⌋)
, (3.29)

where κ̄ is defined as in (3.10). Now everything is the same as in the proof of (ii)
of Theorem 3.4: for every for 0 < p < p0

d′r′ , there exists a finite random variable U

(depending on p) such that for all k ≥ 0,

κ̄(X̄T :T+U+k) > (U + k)p.

Therefore, if s ≥ T + U , by taking k = s− (T + U), we have

κ̄(X̄0:s) > (U + k)p.
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By assumption all conditions of Proposition 3.3 and applying it with −l ≤ −s ≤ 0 ≤ n

(and with κ̄), we obtain just like in the proof of (ii) of Theorem 3.4

‖ν0
−l:n;m − ν0

−s:n;m‖TV ≤ 2ρκ̄(X−s:0) ≤ 2ρp(s−T )I(T+U≤s) ≤ 2α−(U+T ) · αs, a.s..

So the statement holds with C0
def
= 2α−(U+T ) and the the random variable C0 is indepen-

dent of s. This proves (3.27).
If Z satisfies A1′ and A2′, then the reversed-time chain Z̄ satisfies A1′ and A2′ with

Ē instead of E. Then the inequality (3.27) applied to Z̄ yields to (3.28). The constants
are generally different, because the transition kernel of Z̄ is typically different from that
of Z.

The limits By Levy’s martingale convergence theorem, for every s there exists limits
(recall that ν0

−s:n;m are just | Y |m-dimensional random vectors)

lim
n
ν0
−s:n;m

def
= ν0

−s:∞;m, a.s., lim
l
ν0
−l:∞;m

def
= ν0

−∞:∞;m, a.s.. (3.30)

Plugging (3.30) into (3.27), we obtain

‖ν0
−∞:∞;m − ν0

−s:∞;m‖TV ≤ C0α
s a.s.. (3.31)

Similar, for any s > 1, the limit

lim
l
ν0
−s:l;m

def
= ν0

−s:∞;m, a.s. (3.32)

exists and plugging (3.32) into (3.28), we obtain for any s′ > m− 1

‖ν0
−s:∞;m − ν0

−s:s′;m‖TV ≤ C̄m−1ᾱ
s′−(m−1), a.s.. (3.33)

The inequalities (3.31) and (3.33) together imply the following approximation inequality

‖ν0
−∞:∞;m − ν0

−s:s′;m‖TV ≤ C0α
s + C̄m−1ᾱ

s′−(m−1), a.s.. (3.34)

Applying (3.34) to νt1:n;m, we obtain the following corollary.

Corollary 3.9. Suppose the assumptions of Theorem 3.8 hold. Then there exists αo ∈
(0, 1) such that for every n, t satisfying n ≥ t+m− 1, t ≥ 1, it holds

‖P (Yt:t+m−1 ∈ ·|X1:n)− P (Yt:t+m−1 ∈ ·|X−∞:∞)‖TV ≤ Ctα(t−1)∧(n−t−m+1)
o , a.s., (3.35)

where Ct is a σ(X−∞:t, Xt+m−1:∞)-measurable random variable.

With inequalities (3.25) (letting first n→∞ and then l2 →∞) and (3.26) (with n = l1
and l3 →∞), the approximation inequality (3.34) would be

‖ν0
−∞:∞;m − ν0

−l1:l4;m‖TV ≤ Csαs + C̄s′ ᾱ
s′ , a.s., (3.36)

where, l1 ≥ s and l4 ≥ s′, the random variables Cs and C̄s′ depend on s and s′, respectively.
Applying this inequality to νt1:n;m, we obtain the following counterpart of Corollary 3.9

Corollary 3.10. Suppose the assumptions of Theorem 3.8 hold. Then there exist α, ᾱ ∈
(0, 1) such that for every t, k, n satisfying n ≥ k ≥ t+m− 1, t ≥ 1 it holds

‖P (Yt:t+m−1 ∈ ·|X1:n)− P (Yt:t+m−1 ∈ ·|X−∞:∞)‖TV ≤ C1α
t−1 + C̄kᾱ

k−t−m+1, a.s.,

(3.37)
where, C1 is σ(X1:∞)-measurable and C̄k is σ(X−∞:k)-measurable.

Corollary 3.10 is a PMM-generalization of Theorem 2.1 in [26] (see also [23]). As
mentioned in the introduction, (3.37) is very useful in many applications of segmentation
theory.
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Ergodicity In (3.37), we can replace 1 by any l ∈ Z, and consider the stochastic
process {Cl}l∈Z. The construction of Cl reveals that for any l, Cl = f(Xl,∞), where the
function f is independent of l. This means that the process {Cl}l∈Z is a stationary coding
of the process Z (see e.g. [36, Ex. I.1.9] or [15, Sec. 4.2.]). Since stationary coding
preserves stationarity and ergodicity ([15, Lemma 4.2.3] or [36, Ex. I,2,12]), we see that
the process {Cl}l∈Z is stationary (since Z was assumed to be stationary) and, when Z is
ergodic process (in the sense of ergodic theory), then so is {Cl}l∈Z. The same holds for
the process {C̄k}k∈Z. The ergodicity of these processes is key for proving the existence
of limit R in PMAP segmentation (recall paragraph “Applications in segmentation”).

4 Examples

4.1 Countable X
When X is countable, then Z is a Markov chain with countable state space and Z

is (positive) Harris recurrent if and only if Z is (positive) recurrent. If X is finite, then
every irreducible Markov chain is positive recurrent. If X is countable, then A1 is
fulfilled if and only if for some r > 1 there exists a vector x1:r ∈ X r such that Y+(x1:r) =

Y+(x1:r)(1) × Y+(x1:r)(2) 6= ∅. For irreducible Z, the assumption A2 automatically holds
if Y+(x1:r) 6= ∅ and that is guaranteed by A1. The interpretation of A1′ in the case
of countable X is very straightforward: for every two vectors y1:r, ȳ1:r ∈ Yr satisfying
p(x1:r, y1:r) > 0 and p(x1:r, ȳ1:r) > 0, there exists a third vector ỹ1:r ∈ Yr such that ỹ1 = y1,
ỹr = ȳr and p(x1:r, ỹ1:r) > 0. In ergodic theory, this property is called as the subpositivity
of the word x1:r for factor map π : Z → X , π(x, y) = x, see ([45], Def 3.1). Thus A1′

ensures that a.e. realization of X process has infinitely many subpositive words.

4.2 Nondegenerate PMM’s

In [37, 38], Tong and van Handel introduce the non-degenerate PMM. When adapted
to our case, the model is non-degenerate when the kernel density factorizes as follows

q(x′, j|x, i) = pijr(x
′|x)g(x, i, x′, j), (4.1)

where P = (pij) is a transition matrix and r(x′|x) is a density of transition kernel, i.e

for every x, x′ 7→ r(x′|x) is a density with respect to µ so that R(A|x)
def
=
∫
A
r(x′|x)µ(dx′)

is a transition kernel on X × B(X ). The third factor g(x, i, x′, j) is a strictly positive
measurable function. For a motivation and general properties of non-degenerate PMM’s
see [37], the key property is that the function g is strictly positive. The non-degenerate
property does not imply that Y is a Markov chain and even if it is, its transition matrix
need not be P. Under (4.1), for every x1:n, n ≥ 2, i, j ∈ Y

pij(x1:n) = pn−1
ij gn(i, j, x1:n)

n∏
k=1

r(xk|xk−1), (4.2)

where pn−1
ij stands for the i, j-element of Pn−1 and gn(i, j, x1:n) > 0, (see also [37, Lemma

3.1]). From (4.2) it immediately follows that when P is primitive, i.e. for some R ≥ 1, PR

has strictly positive entries, then any x1:r with r = R+ 1 such that p(x1:r) > 0 satisfies
A1: Y+(x1:r) = Y × Y. Thus, when P is primitive, then A1 and A2 both hold with
E = {x1:r : p(x1:r) > 0}. Barely the non-degeneracy is not sufficient for the primitivity of
P. We now show that when combined with some natural ergodicity assumptions, then P

is primitive. Let Pn(i, j)
def
= P (Yn = j|Y1 = i), n > 1. Recall that π is a stationary measure

of Z, and with a slight abuse of notation, let π(i)
def
= π({i} × X ) be a marginal measure of
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π. Surely π(i) > 0 for every i ∈ Y and so the convergence∑
i∈Y

π(i)‖Pn(i, ·)− π(·)‖TV → 0, (4.3)

equivalently, P (Yn = j|Y1 = i)→ π(j), ∀i, j ∈ Y implies that Pn(i, j) must consist of all
positive entries when n is big enough. If Y happens to be a Markov chain with transition
matrix P, then it is primitive. Otherwise observe that by (4.2)

Pn(i, j) =

∫
Xn

p(x1|y1 = i)pij(x1:n)µn(dx1:n)

= pn−1
ij

∫
Xn

p(x1|y1 = i)gn(i, j, x1:n)

n∏
k=1

r(xk|xk−1)µn(dx1:n)

so that if there exists n such that Pn(i, j) > 0 for every i, j ∈ Y, then Pn−1 consists of
strictly positive entries and so it is primitive. Hence for non-degenerate PMM’s (4.3)
implies A1 and A2. A stronger version of (4.3) (so-called marginal ergodicity) is assumed
in [37] for proving the filter stability for non-degenerate PMM’s [37, Th 2.10]. Thus, for
finite Y, Theorem 3.4 generalizes that result. We believe that the key assumption of
non-negative g can be relaxed in the light of cluster-assumption introduced in the next
subsection for HMM’s.

4.3 Hidden Markov model

In case of HMM the transition kernel density factorizes as q(x′, j|x, i) = pijfj(x
′).

Here P = (pij) is the transition matrix of the Markov chain Y and fj are the emission
densities with respect to measure µ. Thus

pij(x1:n) =
∑

k1,...,kn−2

pik1fk1(x2)pk1k2fk2(x3) · · · pkn−2jfj(xn).

Let Gi
def
= {x | fi(x) > 0}. The process Z is irreducible (with respect to some measure) if

and only if Y is irreducible and in this case the maximal irreducible measure is

ψ
(
∪i∈Y Ai × {i}

)
= µ

(
∪i∈Y Ai ∩Gi

)
, Ai ∈ B(X ).

Since HMM’s are by far the most popular PMM’s in practice, it would be desirable to
have a relatively easy criterion to check the assumptions A1 and A2 for HMM’s. In
this subsection, we introduce a fairly general but easily verifiable assumption called
cluster assumption. Lemma 4.1 below shows that cluster assumption implies A1 and A2.
The rest of the subsection is mostly devoted to show that the cluster assumption still
generalizes many similar assumptions encountered in the literature.

A subset C ⊂ Y is called a cluster, if

µ [(∩i∈CGi) \ (∪i/∈CGi)] > 0. (4.4)

Surely, at least one cluster always exists. Also, it is important to observe that every
state i belongs to at least one cluster. Distinct clusters need not be disjoint and a cluster
can consist of a single state. The cluster assumption states: There exists a cluster
C ⊂ Y such that the sub-stochastic matrix PC = (pij)i,j∈C is primitive, that is PRC
has only positive elements for some positive integer R. Thus the cluster assumptions
implies that the Markov cain Y is aperiodic but not vice versa – for a counterexample
consider a classical example appearing in [1] (Example 4.3.28) as well as in [3, 35]. Let
Y = {0, 1, 2, 3}, X = {0, 1} and let the Markov chain Y be be defined by Yk = Yk−1 + Uk

EJP 26 (2021), paper 70.
Page 21/30

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP628
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Exponential forgetting of PMM’s

(mod 4), where {Uk} is an i.i.d. Bernoulli sequence with P (Uk = 1) = p for some p ∈ (0, 1).
The observations are defined by Xk = I{0,2}(Yk) and the initial distribution of Y is given
by P (Y1 = 0) = P (Y1 = 1) = 1

2 . Here G0 = G2 = {1} and G1 = G3 = {0}. Thus
the clusters are {0, 2} and {1, 3} and the corresponding matrices PC are both diagonal
so that cluster-condition is not fulfilled. In this example also A1–A2 is not fulfilled –
indeed for every x1:r ∈ X r, there exists a pair i, j ∈ {0, 1, 2, 3}, depending on x1:r so that
Y+(x1:r) = {(i, j), (i + 2 (mod 4), j + 2 (mod 4))}. Thus Y+(x1:r)(1) = {i, i + 2 (mod 4)}
and Y+(x1:r)(2) = {j, j + 2 (mod 4)} and Y+(x1:r) 6= Y+(x1:r)(1) × Y+(x1:r)(2). Finally,
we observe that forgetting properties fail. To see that observe: knowing X1:n one can
completely determine the hidden sequence Y1:n. For example if X1:8 = 01110010 then
Y1:8 = 12223301. One the other hand from X2:n it is not possible to fully determine any
Yk, provided X2 = 1. For example, if X2:8 = 1110010, then Y1:8 is either 12223301 (when
X1 = 0) or 00001123 (when X1 = 1). In particular we have for 3 ≤ t ≤ n,

νt3:n;1(i) =
∑
j∈Y

P (Y3 = j|X3:n)P (Yt = i|Y3 = j,X3:n)

= X3

∑
j∈{0,2}

P (Y3 = j|Y3 ∈ {0, 2})P (Yt = i|Y3 = j,X3:n)

+ (1−X3)
∑

j∈{1,3}

P (Y3 = j|Y3 ∈ {1, 3})P (Yt = i|Y3 = j,X3:n).

Now observe that there exists 1/2 > ε > 0 such that minj∈{0,2} P (Y3 = j|Y3 ∈ {0, 2}) and
minj∈{1,3} P (Y3 = j|Y3 ∈ {1, 3}) are both greater than ε and, therefore, less than 1 − ε.
We therefore obtain

νt3:n;1(i) ≥ ε[X3(φt(i, 0) + φt(i, 2)) + (1−X3)(φt(i, 1) + φt(i, 3))],

νt3:n;1(i) ≤ (1− ε)[X3(φt(i, 0) + φt(i, 2)) + (1−X3)(φt(i, 1) + φt(i, 3))],

where φt(i, j) = P (Yt = i|Y3 = j,X3:n). Noting that φt(i, j) is always either zero or one
and

X3(φt(i, 0) + φt(i, 2)) + (1−X3)(φt(i, 1) + φt(i, 3)) = 1,

it follows that for every i, νt3:n;1(i) ∈ (ε, 1 − 2ε). Since for every i, νt1:n;1(i) ∈ {0, 1}, we
have that

‖νt1:n;1 − νt3:n;1‖TV ≥ 2ε

for all 3 ≤ t ≤ n, and so neither (i) nor (ii) of Theorem 3.4 holds.

Lemma 4.1. Let Z be hidden Markov chain with irreducible hidden chain Y . Then the
cluster-assumption implies A1–A2.

Proof. There must exist integer R ≥ 1 such that PRC consists of only positive elements.
Defining YC = {i ∈ Y | pij > 0, j ∈ C} and taking

E = (∪i∈YCGi)× [(∩i∈CGi) \ (∪i/∈CGi)]
R+1

,

we have that A1 holds with Y+ = YC × C. Observe that E(1) = ∪i∈YCGi. Since

ψ(E(1) × Y+
(1)) = µ

(
∪i∈YC Gi

)
> 0

we see that A2 also holds.

The cluster-assumption was introduced in [30, 29, 19] in other purposes than exponen-
tial forgetting. Later it was successfully exploited in many different setups [23, 24, 27].
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In those earlier papers, the concept of cluster was stronger than (4.4), namely C ⊂ Y
was called a cluster if

µ (∩i∈CGi) > 0 and µ [(∩i∈CGi) ∩ (∪i/∈CGi)] = 0. (4.5)

The weaker definition of cluster (4.4) was first introduced in [31].
We shall now show how in the case of finite Y, the cluster-assumption naturally

generalizes many existing mixing conditions encountered in the literature. The following
assumption is known as strong mixing condition (Assumption 4.3.21 in [1]): for every
x ∈ X , there exists probability measure Kx on Y and strictly positive functions ζ−, ζ+ on
X such that

ζ−(x)Kx(j) ≤ pijfj(x) ≤ ζ+(x)Kx(j) ∀i ∈ Y. (4.6)

A stronger version of the strong mixing condition is the following: there exists positive
numbers σ− and σ+ and a probability measure K on Y such that

σ−K(j) ≤ pij ≤ σ+K(j), ∀i and 0 <
∑
j

K(j)fj(x) <∞, ∀x ∈ X . (4.7)

This is Assumption 4.3.24 in [1]. It is easy to verify that under the strong mixing
condition the Dobrushin coefficent of r-step transition matrix U(xs:n) = Fr−1;1(xs:n) can
be bounded above by

δ(U) ≤
s+r−1∏
i=s+1

(
1− ζ−(xi)

ζ+(xi)

)
.

Under (4.7) the upper bound (1− σ+

σ− )r−1 – a constant less than 1. Now it is clear that
under (4.7) the exponential forgetting holds with non-random universal constant C∗, i.e.
in the inequality (3.12) Cs ≡ C∗ for every s. In the book [1], the Assumptions 4.3.21 and
4.3.24 as well as Assumptions 4.3.29 and 4.3.31 below are stated for general state space
model, where Y is general space, and so (4.6) and (4.7) are just the versions of these
assumptions for the discrete (finite or countable infinite) Y. We now briefly argue that
for the case of discrete Y they are rather restrictive and our cluster-assumption naturally
generalizes them. Indeed, it is easy to see that (4.7) holds if pij > 0 for every i, j and
for every x, there exists j so that fj(x) > 0 (this is a very natural condition, otherwise
leave x out of X ). On the other hand, if the transition matrix is is irreducible then every
row has at least one positive entry and then (4.7) implies that pij > 0 for every i, j – a
rather strong restriction on transition matrix. The same holds for (4.6). Indeed, since for
every j, there exists x so that fj(x) > 0 and for every j there exists i such that pij > 0

(implied by irreducibility), then for every j there exists x and i so that pijfj(x) > 0. Then
pi′j > 0 for every i′ so that all entries of transition matrix are positive. If the entries of
P are all positive (as it is sometimes assumed, e.g. [21]), then any cluster satisfies the
requirement of cluster assumption (with R = 1), so that strong mixing condition trivially
implies cluster-assumption.

In order to incorporate zero-transition, the primitivity of one-step transition matrix P
could be replaced by that of R-step transition matrix for some R > 1. An example of such
kind of mixing assumptions is the following (Assumption 4.3.29 in [1], see also [12, 20]):
There exists positive numbers σ− and σ+, for some strictly positive functions f+ and f−,
an integer R and a probability measure K on Y such that with pRij being i, j-element of
PR, we have

1. σ−K(j) ≤ pRij ≤ σ+K(j), ∀i, j;

2. f−(x) ≤ mini fi(x) ≤ maxi fi(x) ≤ f+(x) ∀i.
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When the densities are bounded away from below and above, i.e. 0 < infx f
−(x) <

supx f
+(x) <∞, (for example, if X is finite) then the constant Cs in (3.12) is non-random

and independent of s. We see that 1. relaxes the first requirement of (4.7), because
(under irreducibility) now all elements of PR must be non-negative. For aperiodic chain,
such R always exists and so 1. is not restrictive. On the other hand, the assumption
on emission densities is stronger, because they all must be strictly positive. When
densities are all positive, then there is only one cluster C = Y, hence under 1. and
2. above, the cluster-assumption holds. The assumption 2. about the positivity of
densities is often made in literature (e.g.. [2, 7, 8]). In particular, it is the HMM-version
of the nondegeneracy-assumption [41, 35]. Of course, the above-mentioned articles
deal with continuous state space X , where the technique is different. However, at least
in finite state case, the mutual equivalence of emission distributions excludes many
important models and can be restrictive. The cluster assumption, however, combines the
zero-densities and zero-transitions, being therefore applicable for much larger class of
models.

Another assumption of similar type, originally also applied in the case of finite Y, can
be found in [25, 13]: the matrix P is primitive and∫

X

mini fi(x)

maxi fi(x)
fj(x)µ(dx) > 0, ∀j ∈ S.

This assumption relaxes the requirement of positive densities, but it implies that µ{x :

mini fi(x) > 0} > 0 so that Y is a cluster that satisfies cluster assumption. Although we
have seen that the cluster assumption is weaker than many mixing assumptions in the
literature, it is still strictly stronger than A1 and A2. To illustrate this fact, consider
a following example (a modification of Example 5.1 in [30]) of four state HMM with
transition matrix 

1/2 0 1/4 1/4

0 1/2 1/4 1/4

1/2 0 1/2 0

0 1/2 0 1/2

 .

Suppose G1 = G2, G3 = G4, G1 ∩ G3 = ∅. There are two clusters: C1 = {1, 2} and
C2 = {3, 4}, the corresponding sub-transition matrices are not primitive. Thus cluster-
assumption fails. To see that A1 and A2 hold, take X = {1, 2} and f1(1) = f2(1) =

1, f3(2) = f4(2) = 1. Now, take x1:3 = 112 and observe that p13(x1:3) = p11f1(1)p13f3(2) =
1
8 . Similarly, it holds that

p14(x1:3) = p23(x1:3) = p24(x1:3) = p33(x1:3) = p34(x1:3) = p43(x1:3) = p44(x1:3) = 1/8.

Since f1(2) = f2(2) = 0, we have

p11(x1:3) = p12(x1:3) = p21(x1:3) = p22(x1:3) =

p41(x1:3) = p42(x1:3) = p31(x1:3) = p32(x1:3) = 0.

Thus Y+(x1:3) = Y × {3, 4} and hence A1 and A2 hold. We conclude the section with
some examples of assumptions made in the literature that are weaker than cluster
assumption (or not comparable with it), but still stronger than A1 and A2. First of them
is Assumption 4.3.31 in [1]. When adapted to our case of discrete Y, one of the main
conditions of this assumption is (there are also some other conditions, making it more
stronger) as follows: there exists a µ-a.s. non-identically null function α : X → [0, 1] and
C ⊂ Y such that for all i, j ∈ Y and for all x ∈ X∑

k∈C pikfk(x)pkj∑
k∈Y pikfk(x)pkj

≥ α(x).
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This condition implies A1. Indeed, let C ′ ⊂ Y be a cluster. Then there exists X ′ such that
µ(X ′) > 0 and fi(x) > 0 for x ∈ X ′ if and only if i ∈ C ′. Take E = X × {x | α(x) > 0} × X ′.
Thus for x1:3 ∈ E,

Y+(x1:3) =

{
(i, j)

∣∣∣∣max
k

pikfk(x2)pkjfj(x3) > 0

}
= Y × C ′,

and so A1 holds. It is also implicitly assumed that {x | α(x) > 0} is µ-positive, whence
A2 also follows. This assumption is not comparable with cluster assumption.

Another example of the kind can be found in [9], where one of the main conditions,
when adapted to our case of discrete Y (the article [9] deals with state-space models),
is the following: there exists a state l such that pil(x1:r−1)plj > 0 for every i, j ∈ Y. The
state l is called uniformly accessible. Clearly this condition is of type (3.6) and as argued
in the Remark in Subsection 3.2, slightly stronger that A1. Interestingly, although
the methods in [9] are different as the ones in our paper (coupling), the same kind of
condition appears.

Yet another way to re-define the cluster assumption is the following: let C ⊂ Y be a
cluster, but the matrix PC satisfies the following assumption: every column of PC either
consists of strictly positive entries or has all entries equal to 0. Such matrix satisfies
Doeblin condition and therefore the set C is sometimes called to have local Doeblin
property. In [7, 8], this condition is applied for general state-space Y, our statement is
again the discrete Y version of it. If all entries are positive, then PC is primitive (and
cluster condition holds), otherwise not. To see that A1 and A2 still hold, construct the
set E ∈ X 3 as in the proof of Lemma 4.1 with R = 1. Then Y+ = YC × C ′, where C ′ ⊂ C
is the set of states corresponding to non-zero columns. This kind of assumption appears
in [7]. In [8] it is strengthen so that to every observation x corresponds a local Doeblin
set that satisfies (4.4).

An interesting and easily verifiable sufficient condition for the filter stability (3.22) is
proven in [3]: the transition matrix has to be primitive with at least one row consisting
of all non-zero entries [3, Ex. 1.1]. This assumption is not comparable with cluster
assumption, because the latter can be fulfilled with a matrix having zero in every row,
and vice versa. On the other hand, it does not assume anything about the emission
densities and so it is very practical. We shall show that A1−A2 still hold.

Proposition 4.2. If P is irreducible and has a least one row consisting of non-zero
entries, then A1 and A2 hold.

Proof. Let the first row of P consisting of strictly positive entries. Since every state
belongs to at least one cluster, let C1 be a cluster containing 1. In what follows, for
a cluster C, let GC = (∩i∈CGi) \ (∪j 6∈CGj). We construct the set E as follows. Take
E1 = X × F1, where F1 = GC1

and notice that Y+(x1:2) is the same for every x1:2 ∈ E1.
Indeed, if (i, j) ∈ Y+(x1:2), then pijfj(x2) > 0, and if this holds for a x2 ∈ F1, then it holds
for any other x′2 ∈ F1 as well. Observe that due to the assumption 1 ∈ Y+

(2). Relabel the

states so that Y+
(2) = {1, 2, . . . , l}. Let A1 ⊂ Y+

(1) be the set of states that can be connected

with 1. Formally, i ∈ A1 if pi1(x1:2) > 0 for every x1:2 ∈ E1. Clearly A1 6= ∅. If A1 = Y+
(1),

then the proposition is proved – just take E = E1×F1 and observe that by assumption for
any state k in C1, p1k > 0. Let A2 = Y+

(1) \A1 consists of states that cannot be connected

to 1 but can be connected to 2. Thus i ∈ A2, if and only if pi2(x1:2) > 0, but pi1(x1:2) = 0

for every x1:2 ∈ E1. The set A2 might be empty. Similarly define

Ak
def
= {i ∈ Y+

(1) \ (∪k−1
j=1Ai) : pik(x1:2) > 0, ∀x1:2 ∈ E1}, k = 3, . . . , l.

By irreducibility there exists a path i1, i2, . . . , is, with i1 = 2 and is = 1 from the state 2 to
the state 1. Let C2, . . . Cs be the corresponding clusters containing i2, . . . , is and define
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Fj = GCj , j = 2 . . . , s. Finally take E2 = F2 × · · · × Fs. Since p1i2 > 0 by assumption
(the first row has all non-zero entries), we have that for every x2:s ∈ E2, p11(x2:s) > 0

and p21(x2:s) > 0. Now enlarge the set E1 by taking E1 × E2 and redefine the sets
A′1, A

′
2, . . . A

′
l′ . Observe: if for a k = 1, . . . , l and for x2:s ∈ E2, pk,1(x2:s) > 0 then Ak ⊂ A′1.

Therefore A1 ∪A2 ⊂ A′1, and l′ < l. If l′ > 1, then proceed similarly by enlarging E1 ×E2

until all elements of Y+
(1) can be connected with 1. This proves A1. The assumption A2 is

trivial.

4.4 Linear Markov switching model

Let X = Rd for some d ≥ 1 and for each state i ∈ Y let {ξk(i)}k≥2 be an i.i.d. sequence
of random variables on X with ξ2(i) having density hi with respect to Lebesgue measure
on Rd. We consider the linear Markov switching model , where X is defined recursively
by

Xk = F (Yk)Xk−1 + ξk(Yk), k ≥ 2. (4.8)

Here F (i) are some d × d matrices, Y = {Yk}k≥1 is a Markov chain with transition
matrix (pij), X1 is some random variable on X , and random variables {ξk(i)}k≥2, i∈Y are
assumed to be independent and independent of X1 and Y . For the linear switching model
measure µ is Lebesgue measure on Rd and the transition kernel density expresses as
q(x2, j|x1, i) = pijhj(x2 − F (j)x1). When F (i) are zero-matrices, then the linear Markov
switching model simply becomes HMM with hi being the emission densities. When
F (i) = F for every i ∈ Y, then the model becomes autoregressive model with correlated
noise. Linear Markov switching models, also sometimes called linear autoregressive
switching models have been widely used in econometric modelling, see e.g. [16, 17, 18].

The following result gives sufficient conditions for A1–A2 to hold. The analytic form
of the stationary density p(z1) is usually intractable for the linear switching model, and
therefore we will avoid its use in the conditions. Instead, we will rely solely on the notion
of ψ-irreducibility. In what follows, let ‖ · ‖ denote the 2-norm on X = Rd, and for any
x ∈ X and ε > 0 let B(x, ε) denote an open ball in X with respect to 2-norm with center
point x and radius ε > 0.

Lemma 4.3. Let Z be a ψ-irreducible linear Markov switching model. If the following
conditions are fulfilled, then Z satisfies A1–A2.

(i) There exists set C ⊂ Y and ε > 0 such that the following two conditions are
satisfied:

1. for x ∈ B(0, ε), hi(x) > 0 if and only if i ∈ C;

2. the sub-stochastic matrix (pij)i,j∈C is primitive.

(ii) Denote YC = {i ∈ Y |∃j ∈ C : pij > 0}. There exists i0 ∈ YC such that (0, i0) ∈
supp(ψ).

Proof. There must exist ε0 > 0 such that

‖x− F (j)x′‖ < ε, ∀j ∈ Y, ∀x, x′ ∈ B(0, ε0). (4.9)

By (i) there exists R ≥ 1 such that PRC contains only positive elements. We take E =

B(0, ε0)R+2. Fixing x1:R+2 ∈ E, we have for any i, j ∈ Y

pij(x1:R+2) =
∑

y1:R+2 : (y1,yR+2)=(i,j)

R+2∏
k=2

pyk−1ykhyk(xk − F (yk)xk−1).
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Together with (4.9) and (i) this implies that pij(x1:R+2) > 0 if and only if i ∈ YC and
j ∈ C. Hence Y+(x) = YC ×C for every x ∈ E. Together with (ii) this implies that A1–A2
hold.

Note that if densities hi are all positive around 0 (for example, Gaussian), then (i)
is fulfilled when P is primitive with C = Y. General conditions for the linear Markov
switching model to be positive Harris and aperiodic can be found in [10].

Remark 4.4. Instead of the linear Markov switching model, we can also consider the
general Markov switching model, also called the nonlinear autoregressive switching
model . For this model the linear recursion in (4.8) is replaced by any measurable
function G : Y × X → X , i.e.

Xk = G(Yk, Xk−1) + ξk(Yk), k ≥ 2,

The statement of Lemma 4.3 holds for this model as well, if we demand that the G(i, ·)
satisfy the following additional conditions:

G(i, ·) are continuous at 0, and G(i, 0) = 0 for all i ∈ Y. (4.10)

If these conditions are too restrictive, a different approach is needed to prove A1–A2.
For general conditions for positivity, Harris recurrence and aperiodicity of the non-linear
switching model see e.g. [10, 11, 44].

A Appendix

Lemma A.1. Let Z be Harris recurrent. If some measurable set W ⊂ Zn, n ≥ 2, satisfies
ψ(W(1)) > 0 and

Pz(Z1:n ∈W ) > 0, ∀z ∈W(1),

then for all z ∈ Z

Pz(Z ∈W i.o.)
def
= Pz

( ∞⋂
k=1

∞⋃
l=k

{Zl:l+n−1 ∈W}

)
= 1.

Proof. By the same argument as in the proof of (3.2), there exists a set W ′ ⊂ W and
ε > 0 such that ψ(W ′(1)) > 0 and

Pz(Z1:n ∈W ′) ≥ ε, ∀z ∈W ′(1).

By [31, Lemma A.1] Pz(Z ∈W ′ i.o.) = 1 for all z ∈ Z, which implies the statement.

Proof of Proposition 2.1. Clearly, if Z is a stationary process, then the process Z is
stationary as well, so that the distribution of Z1 (under π) is invariant probability
measure for Z.

We are going to show that measure ψr is a maximal irreducibility measure for Z.
To see that ψr is an irreducibility measure, suppose A satisfies ψr(A) > 0. There
must exist A′ ⊂ A such that ψ(A′(1)) > 0 and P (Z2:r ∈ A′ | Z1 = z1) > 0 for all
z1 ∈ A′(1). Since ψ(A′(1)) > 0 then for every z ∈ Z there exists k = k(z) ≥ r + 1 such
that P (Zk(z) ∈ A′(1)|Zr = z) > 0. Thus P (Zk(z) ∈ A′|Zr = z) > 0 for every z ∈ Z, which
implies that P (Zk(z) ∈ A|Z1 = (z1:r−1, z)) > 0 for every (z1:r−1, z) ∈ Zr, and so ψr is an
irreducibility measure.

To show that ψr is a maximal irreducibility measure, we need show that ψr � ϕr for
arbitrary irreducibility measure ϕr. Suppose ϕr(A) > 0. Then Pπ(Z1 ∈ A) > 0, because
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invariant measure dominates any irreducibility measure [33, Prop. 10.1.2(ii)]. Then
there exists A′ ⊂ A so that π(A′(1)) > 0 and

P
(
Z2:r ∈ A′(z1) | Z1 = z1

)
> 0 for any z1 ∈ A′(1).

Recall that ψ and π are maximal irreducibility and invariant measures of (Harris) recur-
rent chain Z. Then these measures are equivalent [33, Th.10.4.9]. Hence ψ(A′(1)) > 0

and so by definition (2.2) ψr(A) ≥ ψr(A′) > 0. Thus ψr � ϕ.
It remains to show that Z is Harris chain. Let A be such that ψr(A) > 0. By (2.2),

there exists A′ ⊂ A so that ψ(A′(1)) > 0 and Pz1
(
(Z2, . . . , Zr) ∈ A′(z1)

)
> 0 for every

z1 ∈ A′(1). Thus with

B = ∪z1∈A′(1){z1} ×A′(z1) ⊂ A,

we have

P (Z1:r ∈ B | Z1 = z1) > 0, ∀z1 ∈ A(1).

Since ψ(A(1)) > 0, and Z is Harris, by Lemma A.1, it follows that P (Zk ∈ B, i.o) = 1.
Thus Z is a Harris chain.
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