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Concatenation and pasting of right processes
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Abstract

A universal method for the concatenation of a sequence of Markov right processes
is established. It is then applied to the continued pasting of two Markov right pro-
cesses, which can be used for pathwise constructions of locally defined processes like
Brownian motions on compact intervals.
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1 Introduction

1.1 The objective

The concatenation of a sequence of (strong) Markov processes (Xn, n ∈ N) on state
spaces (En, n ∈ N) forms a stochastic process X on

⋃
n∈NE

n as follows: Started in En,
the process X behaves like Xn until this process dies, afterwards is revived as Xn+1

at a point in En+1 which is chosen by a probability measure which takes Markovian
information of Xn until its death into account, then behaves like Xn+1 until it dies, and
so on.

In earlier works on Markov processes and their applications, the theory of this
technique, in contrast to other well-known modes of transformation like killing or time
substitution, has not been developed much further—if at all—than on restricting it to
special cases, despite the fact that it is not at all trivial to show that the resulting
process X will inherit the (strong) Markov property of the subprocesses. This gap in
the literature is quite surprising, considering it is natural in manifold applications to
construct processes via local solutions and pasting them together, from immediate con-
structions of Markov chains and branching processes [9], extending Markov processes
over their lifetime by instant revivals [13], introduction of isolated jump discontinuities
into diffusion processes, up to the pathwise construction of stochastic processes via local
solution techniques such as in the construction of Brownian motions on intervals [10, 11]
or on metric graphs [12, 6, 17].
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Concatenation and pasting of right processes

In this paper, we are establishing the technique of concatenation of countably many
processes in the general context of right processes [16]. This class of strong Markov
processes encompasses a majority of classical types of Markov processes, such as Feller,
Hunt, standard, and—in some sense [7]—even Ray processes. Our main result will guar-
antee that the process constructed by the concatenation of a sequence of right processes
on disjoint state spaces via transfer kernels will again be a right process, thus especially
maintaining the strong Markov property of its subprocesses. This generalizes [16] from
two to countably many processes, and extends the corresponding results of [13], where
the concatenation of a sequence of identical processes is considered.1 We will then
weaken the assumption on the disjointedness of the state spaces to the concatenation of
alternating copies of two right processes by imposing some consistency conditions on
both partial processes. This method can be used to glue two Markov processes on not
necessarily disjoint state spaces together, extending a result of [14], or to form instant
revival processes in the sense of [8, 13]. We thus provide an unified way to extend or
join an extensive class of Markov processes.

1.2 The context: Markov right processes and strong Markov property

We understand a Markov processX on a Radon space E (equipped with a σ-algebra E )
to be defined in the canonical sense of the standard works of Dynkin [4], Blumenthal–
Getoor [1] and Sharpe [16], that is, as a sextuple

X =
(
Ω,G , (Gt, t ≥ 0), (Xt, t ≥ 0), (Θt, t ≥ 0), (Px, x ∈ E)

)
with the following properties: (Xt, t ≥ 0) is a right continuous, E-valued stochastic
process on the measurable space (Ω,G ), adapted to the filtration (Gt, t ≥ 0), and equipped
with shift operators (Θt, t ≥ 0) on Ω. (Px, x ∈ E) is a family of probability measures
satisfying X0 = x Px-a.s. for all x ∈ E (normality of the process), such that for all t ≥ 0,
B ∈ E , x 7→ Px(Xt ∈ B) is measurable and the Markov property holds:2,3

∀x ∈ E, s, t ≥ 0, f ∈ bE : Ex
(
f(Xs+t)

∣∣Gs) = EXs
(
f(Xt)

)
.

We are basing our results in the context of one of the most general classes of Markov
processes, namely the class of right processes. Right processes are Markov processes
which satisfy the following condition of right continuity in the topology of excessive
functions: For α ≥ 0, the class Sα of α-excessive functions is the set of all non-negative,
measurable functions which satisfy e−αt Ttf ↑ f pointwise as t ↓ 0, with (Tt, t ≥ 0) being
the semigroup associated to X, that is

Ttf(x) := Ex
(
f(Xt)

)
, f ∈ pE ∪ bE , x ∈ E.

Then a Markov process X, equipped with an augmented and right continuous filtration,
is called right process, if it satisfies

for all α > 0, f ∈ Sα, the map t 7→ f(Xt) is a.s. right continuous. (HD2)

It is well-known (see [16, Theorem 7.4]) that in order to establish (HD2), it is sufficient
to check the right continuity of the process on the α-potentials (Uα, α > 0)

Uαf(x) :=

∫ ∞
0

e−αt Ttf(x) dt = Ex

(∫ ∞
0

e−αt f(Xt) dt
)
, f ∈ pE ∪ bE , x ∈ E,

of bounded, uniformly continuous functions4 on E. Furthermore, (HD2) implies the

1With the technique of [13, Section 3], their result can be extended to the concatenation of right processes
on finitely many disjoint spaces.

2For any σ-algebra E , we define bE , pE to be the sets of all E -measurable functions which are bounded,
non-negative respectively, as well as bpE := bE ∩ pE .

3For convenience, we omit the qualifier “a.s.” in equations which contain conditional expectations.
4In the following, the set of all bounded and uniformly continuous functions on E is denoted by bCd(E).
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E1 E2K1

Xt = X1
t , t < ζ1 Xt = X2

t−ζ1 , t ≥ ζ1

X0XR−

XR

Figure 1: Concatenation of two processes X1 and X2 on E1, E2, resulting in the process
X, which, if started in E1, behaves like X1 until R = ζ1, afterwards is revived on some
point in E2 (chosen by a transfer kernel K1), where it then runs like X2.

strong Markov property of the process [loc. cit.], that is, for every (Gt, t ≥ 0)-stopping
time τ , with F being the universal completion of σ(Xs, s ≥ 0):

∀x ∈ E, Y ∈ bF : Ex
(
Y ◦Θτ 1{τ<∞}

∣∣Gτ+

)
= EXτ

(
Y
)
1{τ<∞}.

The strong Markov property is often crucial for the examination of stochastic processes,
in particular it allows to decompose the resolvent of a strong Markov process X at
stopping times τ via Dynkin’s formula [4, Section 5.1]:

Uαf(x) = Ex

(∫ τ

0

e−αt f(Xt) dt
)

+ Ex
(
e−ατ Uαf(Xτ )1{τ<∞}

)
. (1.1)

We impose the usual hypotheses (cf. [16, Sections 3–8, 11, A1]): E is the universal
completion of the Borel σ-algebra on E, the underlying filtration (Gt, t ≥ 0) is augmented
and right continuous, and there exists an isolated, absorbing cemetery state ∆ ∈ E, such
that with the lifetime of the process

ζ := inf{t ≥ 0 : Xt = ∆},

Xt = ∆ holds for all t ≥ ζ. Furthermore, there is a dead path [∆] ∈ Ω with ζ([∆]) = 0,
and we constitute that f(∆) = 0 for any measurable function f , which in conjunction
with X∞ := ∆, Θ∞ := [∆] allows to drop the restricting functions 1{τ<∞} in the above
formulas of the strong Markov property.

1.3 Concatenation of processes: construction approach and main result

Let (Xn, n ∈ N) be a sequence of right processes on disjoint spaces (En, n ∈ N). For
the pathwise definition of a concatenating process X on Ω :=

∏
n∈N Ωn, we set, for

ω := (ωn, n ∈ N) ∈ Ω, t ≥ 0,

Xt(ω) :=



X1
t (ω1), t < ζ1(ω1),

X2
t−ζ1(ω1)(ω

2), ζ1(ω1) ≤ t < ζ1(ω1) + ζ2(ω2),

X3
t−(ζ1(ω1)+ζ2(ω2))(ω

3), ζ1(ω1) + ζ2(ω2) ≤ t < ζ1(ω1) + · · ·+ ζ3(ω3),
...

...

∆, t ≥
∑
n∈N ζ

n(ωn).

In order to define initial measures (Px, x ∈ E) for the processX, we need to constitute
a transfer mechanism between the subprocesses (Xn, n ∈ N), more precisely: a law on
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how the process Xn+1 initiates in En+1 after Xn died. This mechanism can depend on all
information until the lifetime ζn of the subprocess Xn, but it should admit a memoryless
property in order to ensure the Markov property of the resulting process X. The main
principle which allows to salvage the Markov property is the following invariance under
time shifts:

Definition 1.1. For a right process X on E and a terminal time T for X, the left germ
field F[T−] for X at T consists of all FT−-measurable random variables H which satisfy

∀t ≥ 0 : H ◦Θt = H a.s. on {t < T}.

Here, terminal times are a well-known concept for memoryless stopping times:

Definition 1.2. A stopping time T over (Ft, t ≥ 0) is a terminal time for a Markov
process X, provided that

t+ T ◦Θt = T on {t < T}.

The prime examples for terminal times are the first entrance times. Most notably, the
lifetime ζ of a right process is always a terminal time. As ∆ is absorbing, we even have a
stronger version of shift invariance of ζ for any random time R:

ζ ◦ΘR = (ζ −R) ∨ 0. (1.2)

The revival information is then encoded in kernels which are memoryless with respect
to the lifetimes of the partial processes:

Definition 1.3. Let X1, X2 be right processes on E1, E2 respectively. K is a transfer
kernel from X1 to (X2, E2), if it is a probability kernel from (Ω1,F 1

[ζ1−]) to (E2,E 2).

With the help of transfer kernels Kn from Xn to (Xn+1, En+1), the paths of the
concatenated process are chosen for any x ∈ En, n ∈ N, by the initial measure

Px(dω1, . . . , dωn−1, dωn, dωn+1, . . .)

:= δ[∆1](dω
1) · · · δ[∆n−1](dω

n−1)Pnx(dωn)Kn(ωn, dxn+1)Pn+1
xn+1(dωn+1) · · ·

with δ[∆i], being the Dirac-measure in [∆i], ensuring that X starts Px-a.s. in En.
Our main result on the concatenation of countably many right processes, which

extends the concatenation of two processes given in [16, Section 14], is as follows:

Theorem 1.4. Let (Xn, n ∈ N) be a sequence of right processes on disjoint spaces
(En, n ∈ N), such that the topological union E :=

⋃
n∈NE

n is a Radon space, and let
a transfer kernel Kn from Xn to (Xn+1, En+1) be given for each n ∈ N. Then the
concatenation X of the processes (Xn, n ∈ N) via the transfer kernels (Kn, n ∈ N) is
a right process on E. With Rn := inf{t ≥ 0 : Xt ∈ En+1}, for all n ∈ N, x ∈

⋃n
j=1E

j ,
f ∈ bE n+1,

Ex
(
f(XRn)1{Rn<∞}

∣∣FRn−
)

= Knf ◦ πn 1{Rn<∞}.

A standard method of constructing transfer kernels is by imposing conditional distri-
butions k1(x, · ) for the transfer point (that is the “revival point” of X2) given the “exit
point” X1

ζ1− = x of X1 (cf. [16, p. 78]):

Example 1.5. Let X1, X2 be right processes on E1, E2 respectively, such that X1
ζ1−

exists a.s. in E1, and let k1 : E1 × E 2 → [0, 1] be a probability kernel from (E1,E 1) to
(E2,E 2). Then the map K1 : Ω1 × E 2 → [0, 1] with

K1(ω1, A) := k1
(
X1
ζ1−(ω1), A

)
, ω ∈ Ω1, A ∈ E 2,

defines a transfer kernel from X1 to (X2, E2).
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start as X−1:
E−1 E+1

t : 0→ τ−1
−1 → ζ−1 → ζ+1 → · · ·

start as X+1:
E−1 E+1

t : 0→ ζ+1 → ζ−1 → ζ+1 → · · ·

Figure 2: Consistency condition for pasting together two processes X−1, X+1 on a
common state space: The process behavior must be independent of the chosen starting
process. The left-hand picture shows a path behavior if the concatenated process
is started as X−1 (black), which is then revived after its death at ζ−1 as X+1 (red),
afterwards revived as X−1 at ζ+1 (blue), etc. The concatenated process must show the
same behavior if started as X+1, as illustrated in the right-hand picture.

1.4 Pasting of two processes: construction approach and main result

It is possible to weaken the assumption of disjoint subspaces (En, n ∈ N), in order to
apply the above described technique to paste together two right processes. However,
we then need to impose additional conditions on the subprocesses, namely, they need to
coincide on the shared state space, and their entry and exit distributions into this subset
must be equal irrespective of the mode of entry or exit (namely by either subprocess
behavior or revival), see Figure 2.

Let X−1, X+1 be two right processes with lifetimes ζ−1, ζ+1 on E−1, E+1 respectively,
and K−1, K+1 be transfer kernels from X−1 to (X+1, E+1) and from X+1 to (X−1, E−1).
We define alternating copies of these processes and transfer kernels on disjoint state
spaces by setting for each n ∈ N

Xn := {n} ×X(−1)n , Kn := δn+1 ⊗K(−1)n . (1.3)

Then Xn is a right process on En := {n} × E(−1)n , E n = {n} ⊗ E (−1)n , and Kn is a
transfer kernel from Xn to (Xn+1, En+1). Let X be the concatenation of (Xn, n ∈ N) via
the transfer kernels (Kn, n ∈ N). By Theorem 1.4, it is a right process on Ẽ =

⋃
n∈NE

n,

equipped with the universal measurable sets Ẽ .
Set E := E−1 ∪ E+1, and let π : Ẽ → E be the canonical projection onto the second

coordinate. The consistency conditions which ensure the pasted process π(X) to be a
right process on E are as follows:

Theorem 1.6. Let X−1, X+1 be right processes on spaces E−1, E+1 respectively, and X
be concatenation of (Xn, n ∈ N) via (Kn, n ∈ N), as defined in (1.3). Let τ−1

−1 be the first
entry time of X−1 into E−1\E+1, and τ+1

+1 be the first entry time of X+1 into E+1\E−1.
If for all x ∈ E−1 ∩ E+1, α > 0, f ∈ bE , g−1 ∈ bE−1, g+1 ∈ bE +1, the equalities

(i) E−1
x

( ∫ τ−1
−1

0 e−αt f(X−1
t ) dt

)
= E+1

x

( ∫ τ+1
+1

0 e−αt f(X+1
t ) dt

)
,

(ii) E−1
x

(
e−ατ

−1
−1 g−1(X−1

τ−1
−1

); τ−1
−1 < ζ−1

)
= E+1

x

(
e−αζ

+1

K+1g−1; ζ+1 < τ+1
+1

)
,

E+1
x

(
e−ατ

+1
+1 g+1(X+1

τ+1
+1

); τ+1
+1 < ζ+1

)
= E−1

x

(
e−αζ

−1

K−1g+1; ζ−1 < τ−1
−1

)
hold true, then π(X) is a right process on E, with π : Ẽ → E for Ẽ =

⋃
n{n} × E(−1)n ,

E = E−1 ∪ E+1.
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The reader may observe that the second condition of the above theorem is not present
in [14], as Nagasawa only considers continuous processes with instant revivals at the
exit points of the subprocesses.

If we only consider one process X0 on E and one transfer kernel K0 from X0 to
(X0, E), and set X−1 = X+1 = X0, K−1 = K+1 = K0, no special conditions are required
such that the pasted process π(X) is a right process. We then obtain the following result
for the instant revival process (in the sense of [8, 13]), constructed of copies of X0 with
the revival kernel K0:

Theorem 1.7. In the context of Theorem 1.6, if X−1 = X+1, K−1 = K+1, then π(X) is a
right process on E.

2 Concatenation of right processes

In this section, let (Xn, n ∈ N) be a sequence of right processes

Xn =
(
Ωn,Fn, (Fn

t )t≥0, (X
n
t )t≥0, (Θ

n
t )t≥0, (P

n
x)x∈En

)
on disjoint state spaces (En, n ∈ N), and for each n ∈ N, let a transfer kernel Kn from
Xn to (Xn+1, En+1) be given. The objective is to give a rigorous construction of the
concatenation and to prove Theorem 1.4, which will be done incrementally by lifting the
concatenation of finitely many processes to the countable case.

2.1 Concatenation of two processes

Carrying out the specification given in section 1.3 for the case of two processes, we
set the concatenated process X of X1 and X2 via the transfer kernel K := K1 on the
sample space Ω := Ω1 × Ω2 with σ-algebra F := F 1 ⊗F 2 to be Xt : Ω→ E, defined for
each t ≥ 0, ω = (ω1, ω2) ∈ Ω by

Xt

(
(ω1, ω2)

)
:=

{
X1
t (ω1), t < ζ1(ω1),

X2
t−ζ1(ω1)(ω

2), t ≥ ζ1(ω1),

as well as introduce a family of operators (Θt, t ≥ 0) on Ω, defined by

Θt

(
(ω1, ω2)

)
:=

{(
Θ1
t (ω

1), ω2
)
, t < ζ1(ω1),(

[∆1],Θ2
t−ζ1(ω1)(ω

2)
)
, t ≥ ζ1(ω1).

We use the transfer kernel K to concatenate the processes X1 and X2 probabilistically
by giving a transition between the distributions (P1

x, x ∈ E1) and (P2
x, x ∈ E2). To this

end, we define measures (Px, x ∈ E) on F by setting for x ∈ E1, H ∈ b(F 1 ⊗F 2):

Ex(H) =

{∫
H(ω1, ω2)P2

y(dω2)K(ω1, dy)P1
x(dω1), x ∈ E1,∫

H(ω1, ω2)P2
x(dω2) δ[∆1](ω

1), x ∈ E2.

The main result for the concatenation X of two processes X1 and X2 via the transfer
kernel K is as follows:

Theorem 2.1. X is a right process. For the revival time R := inf{t ≥ 0 : Xt ∈ E2}, and
all x ∈ E1, f ∈ bE 2,

Ex
(
f(XR)1{R<∞}

∣∣FR−
)

= Kf ◦ π1 1{R<∞}.

This theorem is proved in detail in [16, Theorem (14.8)] by an examination of the
resolvent and of the excessive functions of the resulting concatenated process X. We
give a short sketch:
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Using Dynkin’s formula (1.1) for decomposing the resolvent (Uα, α > 0) of X at the
revival time R (which a.s. coincides with the terminal time ζ1 of X1), one obtains for
α > 0, f ∈ bC(E), x ∈ E = E1 ∪ E2,

Uαf(x) = 1E1(x)
(
U1
αf

1(x) + E1
x(e−αζ

1

KU2
αf

2)
)

+ 1E2(x)U2
αf

2(x),

with f j := f
∣∣
Ej

, and U j being the resolvent of Xj , j ∈ {1, 2}. An extensive analysis of
the above components under the utilization of the strong Markov property of X1 and X2

as well as the properties of the transfer kernel K then shows the Laplace-transformed
equivalent of the Markov property for X. But U2

αf
2 is α-excessive for X2, and both U1

αf
1

and, by the shift properties of the transfer kernel K, the function x 7→ E1
x(e−αζ

1

KU2
αf

2)

are α-excessive for X1. As X1 and X2 satisfy (HD2), it is immediate from the above
decomposition that t 7→ Uαf(Xt) is a.s. right continuous, which yields (HD2) for X.

2.2 Concatenation of finitely many processes

Next, we consider for fixedm ∈ N the concatenation of the right processesX1, . . . , Xm

via the transfer kernels K1, . . . ,Km−1: For every n ∈ {1, . . . ,m} set E(n) :=
⋃n
j=1E

j

as topological union of the spaces (Ej , j ∈ {1, . . . , n}), as well as E := E(m). Directly
extending the construction of section 2.1, we define the concatenated process X on the
sample space Ω := Ω1 × · · · × Ωm with σ-algebra F := F 1 ⊗ · · · ⊗Fm to be Xt : Ω→ E,
defined for each t ≥ 0, ω = (ω1, . . . , ωm) ∈ Ω, with

ζ(n)(ω) := ζ(n)(ω1, . . . , ωn) := ζ1(ω1) + · · ·+ ζn(ωn) (2.1)

for n ∈ {1, . . . ,m− 1}, by

Xt(ω) :=



X1
t (ω1), t < ζ(1)(ω),

X2
t−ζ(1)(ω)

(ω2), ζ(1)(ω) ≤ t < ζ(2)(ω),

X3
t−ζ(2)(ω)

(ω3), ζ(2)(ω) ≤ t < ζ(3)(ω),
...

...

Xm
t−ζ(m−1)(ω)

(ωm), t ≥ ζ(m−1)(ω),

Furthermore, we introduce a family of operators (Θt, t ≥ 0) on Ω by setting for each
t ≥ 0, ω = (ω1, . . . , ωm) ∈ Ω:

Θt(ω) :=



(
Θ1
t (ω

1), ω2, ω3, ω4, . . . , ωm
)
, t < ζ(1)(ω),(

[∆1],Θ2
t−ζ(1)(ω)

(ω2), ω3, ω4, . . . , ωm
)
, ζ(1)(ω) ≤ t < ζ(2)(ω),(

[∆1], [∆2],Θ3
t−ζ(2)(ω)

(ω3), ω4, . . . , ωm
)
, ζ(2)(ω) ≤ t < ζ(3)(ω),

...
...(

[∆1], . . . , [∆m−1],Θn
t−ζ(m−1)(ω)

(ωm)
)
, t ≥ ζ(m−1)(ω),

The formal proof that (Θt, t ≥ 0) is indeed a family of shift operators for (Xt, t ≥ 0) is a
straight-forward computation with the help of the shift property (1.2) of the lifetime.

Like in the construction for two processes in above section 2.1, we use the transfer
kernels (Kn, n ∈ {1, . . . ,m − 1}) to concatenate the separate measures (Pnx , x ∈ En),
n ∈ {1, . . . ,m}, of the partial processes (Xn, n ∈ {1, . . . ,m}). For every x ∈ E, we define
the measure Px on F by setting for x ∈ En, H ∈ bF :

Ex(H) :=

∫
H(ω1, . . . , ωn)Pnxm(dωm)Km−1(ωm−1, dxm)Pm−1

xm−1(dωm−1)

· · · Pn+1
xn+1(dωm+1)Kn(ωn, dxn+1)Pnx(dωn)

δ[∆n−1](dω
n−1) · · · δ[∆1](dω

1).
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Furthermore, we consider the n-th revival time

Rn := inf{t ≥ 0 : Xt ∈ En+1}, n ∈ {1, . . . ,m− 1},

which is terminal time, as X is right continuous by construction, and every subspace
En+1 is isolated in E.

The extension of Theorem 2.1 to the finite concatenation X of X1, . . . , Xm via the
transfer kernels K1, . . . ,Km−1 then reads as follows:

Theorem 2.2. X is a right process. For n ∈ {1, . . . ,m− 1}, x ∈ E(n), f ∈ bE n+1,

Ex
(
f(XRn)1{Rn<∞}

∣∣FRn−
)

= Knf ◦ πn 1{Rn<∞}.

We will prove this theorem iteratively, that is, by assuming that the concatenation
X(n) of the processes X1, . . . , Xn via the transfer kernels K1, . . . ,Kn−1 is already a right
process for any fixed n ∈ {1, . . . ,m− 1}, and then applying Sharpe’s result (Theorem 2.1)
in order to concatenate X(n) with Xn+1 via the transfer kernel Kn. Before doing this,
we need to lift the transfer kernels Kn from Xn (to (Xn+1, En+1)) to transfer kernels
from X(n) (to (Xn+1, En+1)). We begin with a general result on stopping times:

Lemma 2.3. Let X be a right continuous strong Markov process, and S, T be stopping
times over the natural filtration (Ft, t ≥ 0), such that S + T ◦ ΘS = T . Then ΘS is
FT−/FT−-measurable.

Proof. It is well-known that ΘS is Ft+S/Ft-measurable, see [1, Corollary I.8.5]. Consider
the shift on a generating element of FT−, that is for t ≥ 0, A ∈ Ft,

Θ−1
S

(
A ∩ {t < T}

)
= Θ−1

S (A) ∩ {t < T ◦ΘS}
= Θ−1

S (A) ∩ {t+ S < T}

=
⋃
q∈Q+

((
Θ−1
S (A) ∩ {S < q − t}

)
∩ {q < T}

)
.

As Θ−1
S (A) ∈ Ft+S , we see that, by the definition of Ft+S , the inner term satisfies

∀q ∈ Q+ : Θ−1
S (A) ∩ {t+ S < q} ∈ Fq.

So every set of the countable union above is an element of FT−.

In particular, the random times S := ζ(n−1), T := ζ(n) satisfy the requirements of the
above lemma for the process X(n), in case it is a strongly Markovian.

Lemma 2.4. Assume X(n) is a strong Markov process for some n ∈ {1, . . . ,m− 1}. Then
Kn ◦ πn defined by

Kn ◦ πn
(
(ω1, . . . , ωn), dy

)
:= Kn(ωn, dy)

is a transfer kernel from X(n) to (Xn+1, En+1).

Proof. Obviously, Kn ◦ πn is a probability measure in the second argument, because Kn

is a Markov kernel. In order to show the F
(n)

[ζ(n)−]
-measurability of Kn ◦ πn( · , dy), we

start by observing that(
πn
)−1(

Fn
ζn−
)

= Ω1 × · · · × Ωn−1 ×Fn
ζn− ⊆ F

(n)

ζ(n)−.

This can be seen by the following argument: The σ-algebra Fn
ζn− is generated by

f(Xn
t )1{t<ζn}, f ∈ bE n,
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and these functions, extended to Ω(n), fulfill(
f(Xn

t )1{t<ζn}
)
◦ πn = f

(
X

(n)

t+ζ(n−1)

)
1{t+ζ(n−1)<ζ(n)}

=
(
f(X

(n)
t )1{t<ζ(n)}

)
◦Θζ(n−1) .

Because X(n)
t 1{t<ζ(n)} is F

(n)

ζ(n)−-measurable, Lemma 2.3 shows that the above function

is indeed F
(n)

ζ(n)−-measurable. Therefore, we have
(
πn
)−1(

Fn
ζn−
)
⊆ F

(n)

ζ(n)−, and as

Kn( · , dy) is Fn
[ζn−]-measurable and πn is a projection, Kn ◦ πn is F

(n)

ζ(n)−-measurable.
It remains to prove that the shift invariance also lifts from Kn to Kn ◦ πn: Fix t ≥ 0

and let Nn be a null set on Fn such that, for all ωn ∈ {Nn,

Kn ◦Θn
t (ωn) = Kn(ωn), if t < ζn(ωn).

But then N (n) := (πn)−1(Nn) is a null set on F (n), because

P(n)
(
(πn)−1(Nn)

)
= Pn(Nn) = 0,

and for all ω = (ω1, . . . , ωn) ∈ {N (n) (thus, ωn ∈ {Nn), we have for t < ζ(n)(ω):

(Kn ◦ πn) ◦Θ
(n)
t (ω) =

{
Kn(ωn), t < ζ(n−1)(ω),

Kn ◦Θn
t−ζ(n−1)(ω)

(ωn), 0 ≤ t− ζ(n−1)(ω) < ζn(ω)

= (Kn ◦ πn)(ω),

where we used the shift invariance of Kn for the last identity.

We are ready to prove the extension of Theorem 2.1 to finitely many processes:

Proof of Theorem 2.2. The case m = 2 is already proved, see Theorem 2.1.
Assume now that, for some m ∈ N, the process X(m) resulting from the concatenation

of X1, . . . , Xm via the transfer kernels K1, . . . ,Km−1 is a right process and satisfies for
all n ∈ {1, . . . ,m− 1}, x ∈ E(n), f ∈ bE n+1, with R(n) := inf{t ≥ 0 : X(m) ∈ E(n+1)}:

Ex
(
f(X

(m)

R(n))1{R(n)<∞}
∣∣F (m)

R(n)−

)
= Knf ◦ πn 1{R(n)<∞}. (2.2)

Let X(m+1) be the concatenation of X(m) and Xm+1 via the transfer kernel K(m) :=

Km ◦ πm. By the pathwise definitions at the beginning of sections 2.1 and 2.2, X(m+1)

is equal to the process X arising from the concatenation of X1, . . . , Xm, Xm+1 via the
transfer kernels K1, . . . ,Km−1,Km. In particular, the initial measures P(m+1)

x , Px of
X(m+1), X respectively, coincide for all x ∈ E(m+1).

Now Theorem 2.1 states that X = X(m+1) is a right process, and that, with the revival
time Rm = inf{t ≥ 0 : Xt ∈ Em+1} =: R(m), it satisfies, with π(m) : Ω→ Ω1 × · · · × Ωm:

Ex
(
f(XRm)1{Rm<∞}

∣∣FRm−
)

= E(m+1)
x

(
f(X

(m+1)

R(m) )1{R(m)<∞}
∣∣F (m+1)

R(m)−

)
= (Km ◦ πm)f ◦ π(m) 1{R(m)<∞}

= (Kmf) ◦ πm 1{Rm<∞}.

Assumption (2.2) for X(m) concludes the proof, as we get for n ∈ {1, . . . ,m− 1}:

(Knf) ◦ πn 1{Rn<∞} = E(m)
x

(
f(X

(m)

R(n))1{R(n)<∞}
∣∣F (m)

R(n)−

)
◦ π(m)

= Ex
(
f(XRn)1{Rn<∞}

∣∣FRn−
)
.
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Here, the equality of both conditional expectations is seen as follows: Because Rn =

R(n) ◦ π(m) and Xt = X
(m)
t ◦ π(m) hold for all t < R(m), we have XRn = X

(m)
Rn ◦ π(m). The

σ-algebras FRn− and F
(m)

R(n)− are generated by the multiplicatively closed classes of
functions

J := f1(Xt1) · · · fk(Xtk)1{t<Rn},

J (m) := f1(X
(m)
t1 ) · · · fk(X

(m)
tk

)1{t<R(n)},

with 0 ≤ t1 < · · · < tk ≤ t, f1, . . . , fk ∈ bE , and it is immediate that J = J (m) ◦ π(m).
Therefore, the integrals of both functions are the same (over their respective spaces),
that is, we obtain

Ex
(
f(XRm)1{Rm<∞} J

)
= E(m)

x

(
f(XR(m))1{R(m)<∞} J

(m)
)

= E(m)
x

(
E(m)
x

(
f(X

(m)

R(n))1{R(n)<∞}
∣∣F (m)

R(n)−

)
J (m)

)
= Ex

(
E(m)
x

(
f(X

(m)

R(n))1{R(n)<∞}
∣∣F (m)

R(n)−

)
◦ π(m) J

)
.

On the other hand, π(m) is FRn−/F
(m)

R(m)−-measurable, because for all f ∈ bE ,

f(Xt)1{t<Rn} = f(X
(m)
t )1{t<R(n)} ◦ π(m),

which yields the FRn−-measurability of E(m)
x

(
f(X

(m)

R(n))1{R(n)<∞}
∣∣F (m)

R(n)−

)
◦ π(m).

2.3 Concatenation of countably many processes

We are ready to turn to the concatenation of the processes (Xn, n ∈ N) via the
transfer kernels (Kn, n ∈ N): We assume the topological union E =

⋃
n∈NE

n of the
disjoint spaces (En, n ∈ N) to be a Radon space. For instance, this is the case if the
spaces En, n ∈ N, are Lusin, see [15, Corollary to Lemma II.5]. Adjoin a point ∆ /∈ E as
a new, isolated point and form E∆ := E ∪ {∆}.

Following the construction of section 2.2, let ζ(n) be given as in equation (2.1) for
each n ∈ N. We define the process Xt : Ω → E∆ and the family of shift operators
(Θt, t ≥ 0) for X on Ω :=

∏
n∈N Ωn by setting for all t ≥ 0, ω = (ω1, ω2, . . .) ∈ Ω with

ζ(n−1)(ω) ≤ t < ζ(n)(ω), n ∈ N,

Xt(ω) := Xn
t−ζ(n−1)(ω)(ω

n),

Θt(ω) :=
(
[∆1], . . . , [∆n−1],Θn

t−ζ(n−1)(ω)(ω
n), ωn+1, ωn+2, . . .

)
,

as well as Xt(ω) := ∆, Θt(ω) :=
(
[∆1], [∆2], [∆3], . . .

)
for all t ≥

∑
n∈N ζ

n(ωn). The right
continuity of all underlying processes Xn, n ∈ N, yields the right continuity of X.

Set F :=
⊗

n∈NFn, and introduce the measures (Px, x ∈ E) on (Ω,F ) by consti-
tuting a transition between the subprocesses’ distributions (Pnx , x ∈ En), n ∈ N, via
the transfer kernels (Kn, n ∈ N). To this end, we define the measures (Px, x ∈ E) as
projective limits of the following prescriptions: For any m ∈ N and H ∈ b(F 1⊗· · ·⊗Fm),
we set for x ∈ E1

Ex(H) :=

∫
H(ω1, . . . , ωm)Pmxm(dωm)Km−1(ωm−1, dxm)Pm−1

xm−1(dωm−1)

· · · P2
x2(dω2)K1(ω1, dx2)P1

x(dω1),

while for x ∈ En, n ≥ 2, we set

Ex(H) :=

∫
H(ω1, . . . , ωm)Pmxm(dωm)Km−1(ωm−1, dxm)Pm−1

xm−1(dωm−1)

· · · Pn+1
xn+1(dωn+1)Kn(ωn, dxn+1)Pnx(dωn)

δ[∆n−1](dω
n−1) · · · δ[∆1](dω

1).
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An easy calculation shows that the above definitions admit consistency and therefore, by
the Kolmogorov existence theorem, exist as probability measures on (Ω,F ).

We are going to prepare the main method for the proof that X is a right process. A
stability result for right processes, which will be made rigorous in Lemma 2.5 below,
states the following: Assume we are given a stochastic process X and an increasing
sequence of terminal times (Rn, n ∈ N). If process X killed at Rn is a right process for
every n ∈ N, then X killed at R := limnR

n is a right process as well. This result is then
directly applicable in our context, because, for every n ∈ N, the concatenated process X
killed at the n-th revival time Rn

Rn := inf
{
t ≥ 0 : Xt ∈

∞⋃
m=n+1

Em
}

= ζ(n)

= inf
{
t ≥ 0 : Xt ∈ En+1

}
Px-a.s. for x ∈

⋃
m≤nE

m

is just the finite concatenation of X1, . . . , Xn via K1, . . . ,Kn−1, which is a right process
by the results of section 2.2. Thus, X killed at limnR

n =
∑
n ζ

n (which equals X by
construction) is proved to be a right process.

Lemma 2.5. Let (Xt, t ≥ 0) be a right continuous stochastic process on a measurable
space (Ω,F ) with values in a Radon space E, (Px, x ∈ E) be a family of probability
measures on a measurable space (Ω,F ), (Rn, n ∈ N) be an increasing sequence of
random times with R := supn∈NR

n, and (ER,n, n ∈ N) be an increasing sequence of
Radon spaces. Define the processes (XR,n

t , t ≥ 0), n ∈ N, and (XR
t , t ≥ 0) on Ω by

XR,n
t =

{
Xt, t < Rn,

∆, t ≥ Rn,
and XR

t =

{
Xt, t < R,

∆, t ≥ R,
t ≥ 0.

Then XR =
(
Ω,F , (FR

t )t≥0, (X
R
t )t≥0, (Θ

R
t )t≥0, (Px)x∈E

)
, with (FR

t , t ≥ 0) being the
natural filtration of XR and (ΘR

t , t ≥ 0) being an arbitrary family of shift operators for X,
is a right process on E, if the following conditions are fulfilled:

(i) (Rn, n ∈ N) is a sequence of stopping times over (FR
t , t ≥ 0);

(ii) (ER,n, n ∈ N) increases to E, that is,
⋃
n∈NE

R,n = E;

(iii) for each n ∈ N, there exist a filtration (FR,n
t , t ≥ 0) on (Ω,F ) and a family of

operators (ΘR,n
t , t ≥ 0) on Ω, such that

XR,n :=
(
Ω,F , (FR,n

t )t≥0, (X
R,n
t )t≥0, (Θ

R,n
t )t≥0, (Px)x∈ER,n

)
is a right process on ER,n;

(iv) for each n ∈ N, Rn is a terminal time for the process XR,n, satisfying Rn > 0 Px-a.s.
for all x ∈ ER,n.

Proof. The process XR is normal, because for any x ∈ E, with n ∈ N such that x ∈ ER,n,
the normality of XR,n gives

Px(XR
0 = x) = Px(XR,n

0 = x,Rn > 0) = 1.

Turning to the Markov property of XR, let s, t ≥ 0 and f ∈ bE . For any k ∈ N,
0 = t0 < t1 < t2 < · · · < tk ≤ t, g0 ∈ bE , g1, . . . , gk ∈ bE , set

JR := g0(XR
t0) g1(XR

t1) · · · gk(XR
tk

),

JR,n := g0(XR,n
t0 ) g1(XR,n

t1 ) · · · gk(XR,n
tk

), n ∈ N.
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As the set of functions of the type JR forms a multiplicatively closed generator of bFR
t ,

and as EXRt
(
f(XR

s )
)

is measurable with respect to the natural filtration (FR
t , t ≥ 0), it

suffices to show that

Ex
(
f(XR

s+t) · JR
)

= Ex

(
EXRt

(
f(XR

s )
)
· JR

)
.

We start by observing that {s+t < R} =
⋃
n{s+t < Rn} and XR

s+t = XR,n
s+t on {s+t < Rn},

so Lebesgue’s dominated convergence theorem yields

Ex

(
f(XR

s+t) · JR
)

= lim
n
Ex

(
f(XR,n

s+t ) · JR,n; s+ t < Rn
)
.

By employing both the terminal time property and the stopping time property of Rn with
respect to XR,n next, we obtain

lim
n
Ex

(
f(XR,n

s+t ) · JR,n; s+ t < Rn
)

= lim
n
Ex

(
f(XR,n

s ) ◦ΘR,n
t · JR,n; s < RR,n ◦ΘR,n

t , t < Rn
)

= lim
n
Ex

(
Ex
(
f(XR,n

s ) ◦ΘR,n
t ; s < Rn ◦ΘR,n

t

∣∣FR,n
t

)
· JR,n; t < Rn

)
.

Now, we are able to apply the Markov property of XR,n, which yields

lim
n
Ex

(
Ex
(
f(XR,n

s ) ◦ΘR,n
t ; s < Rn ◦ΘR,n

t

∣∣FR,n
t

)
· JR,n; t < Rn

)
= lim

n
Ex

(
EXR,nt

(
f(XR,n

s ); s < Rn
)
· JR,n; t < Rn

)
,

and by carrying out the above steps in reverse order, we conclude that

lim
n
Ex

(
EXR,nt

(
f(XR,n

s ); s < Rn
)
· JR,n; t < Rn

)
= Ex

(
EXRt

(
f(XR

s ); s < R
)
· JR; t < R

)
= Ex

(
EXRt

(
f(XR

s )
)
· JR

)
.

It remains to verify that t 7→ f(XR
t ) is a.s. right continuous for all α-excessive

functions f . To this end, let Sα(XR,n), Sα(XR), α > 0, be the sets of all α-excessive
functions, Tnt , TRt , t ≥ 0, be the transition operators, and Unα , URα , α > 0, be the
α-potential operators of the processes XR,n, XR respectively, that is,

Unαh(x) = Ex

(∫ ∞
0

e−αs h(XR,n
s ) ds

)
, h ∈ pE , n ∈ N.

Now let f ∈ Sα(XR). Then there exists a sequence (hm,m ∈ N) in bpE such that

f = sup
m
URα hm.

Of course, URα hm is in Sα(XR) (see, e.g., [2, Proposition 2.2]). However, we are going
to prove now that this potential, as a function restricted to ER,n, is also in Sα(XR,n).
As XR,n is a subprocess of XR, we have

e−αt Tnt U
R
α hm = E

(
e−αt URα hm(XR,n

t )
)

= E
(
e−αt URα hm(XR

t ); t < Rn
)

= E
(
e−αtEXRt

(∫ ∞
0

e−αs hm(XR
s ) ds

)
; t < Rn

)
.
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The Markov property of XR and the stopping time property of Rn with respect to XR

imply that this is equal to

e−αt Tnt U
R
α hm = E

(
E
(∫ ∞

t

e−αs hm(XR
s ) ds

∣∣FR
t

)
; t < Rn

)
= E

(∫ ∞
t

e−αs hm(XR
s ) ds; t < Rn

)
.

Therefore, we have e−αt Tnt U
R
α hm ≤ URα hm for all t ≥ 0, and because Rn > 0 holds Px-a.s.

for all x ∈ ER,n, Levi’s monotone convergence theorem yields

lim
t↓0

e−αt Tnt U
R
α hm = E

(∫ ∞
0

e−αs hm(XR
s ) ds

)
= URα hm

on ER,n. Thus URα hm
∣∣
ER,n

∈ S α(XR,n) for each n ∈ N, and as the set of excessive
functions is closed under suprema, we have

f
∣∣
ER,n

= sup
m

(
URα hm

∣∣
ER,n

)
∈ Sα(XR,n).

We are now able to conclude that X satisfies (HD2): We have just seen that, for any
f ∈ Sα(XR), f restricted on ER,n is α-excessive for XR,n for all n ∈ N, so as XR,n is
a right process, the map t 7→ f(XR,n

t ) is a.s. right continuous for each n ∈ N. With
XR
t = XR,n

t on t < Rn, limnR
n = R and f(∆) = 0, we immediately get that t 7→ f(XR

t ) is
a.s. right continuous.

Let X be the concatenation of the right processes (Xn, n ∈ N) via the transfer
kernels (Kn, n ∈ N), as constructed above, and (Rn, n ∈ N) be the revival times of X. As
announced, we are going to apply Lemma 2.5 with XR,n being the subprocesses of X
killed at the revival times Rn, that is, we consider for all ω = (ω1, ω2, . . .) ∈ Ω, t ≥ 0,

XR,n
t (ω) :=

{
Xt(ω), t < Rn,

∆, t ≥ Rn

=



X1
t (ω1), t < ζ(1)(ω),

X2
t−ζ(1)(ω)

(ω2), ζ(1)(ω)) ≤ t < ζ(2)(ω),
...

...

Xn
t−ζ(n−1)(ω)

(ωn), ζ(n−1)(ω) ≤ t < ζ(n)(ω)

∆, t ≥ ζ(n)(ω),

(2.3)

equipped with shift operators (ΘR,n
t , t ≥ 0) defined by

ΘR,n
t (ω) :=

(
Θ1
t (ω

1), ω2, . . .
)
, t < ζ(1)(ω),(

[∆1],Θ2
t−ζ(1)(ω)

(ω2), ω3, . . .
)
, ζ(1)(ω) ≤ t < ζ(2)(ω),

...
...(

[∆1], . . . , [∆n−1],Θn
t−ζ(n−1)(ω)

(ωn), ωn+1, . . .
)
, ζ(n−1)(ω) ≤ t < ζ(n)(ω)(

[∆1], . . . , [∆n−1], [∆n], ωn+1, . . .
)
, t ≥ ζ(n)(ω).

We first need to show that the subprocesses XR,n, n ∈ N, fulfill the requirements of
Lemma 2.5. In particular, they are right processes:
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Lemma 2.6. For every n ∈ N, the process

XR,n =
(
Ω,F , (FR,n

t )t≥0, (X
R,n
t )t≥0, (Θ

R,n
t )t≥0, (Px)x∈ER,n

)
,

with (FR,n
t , t ≥ 0) being its natural filtration, is a right process on the state space

E(n) :=
⋃n
j=1E

j .

Proof. Let X(n) =
(
Ω(n),F (n), (F

(n)
t )t≥0, (X

(n)
t )t≥0, (Θ

(n)
t )t≥0, (P

(n)
x )x∈E(n)

)
be the con-

catenation of X1, . . . , Xn with the transfer kernels K1, . . . ,Kn−1. Then X(n) is a right
process on E(n) by Theorem 2.2.

Consider the canonical projection π(n) : Ω → Ω(n). By checking the decomposi-
tion (2.3) and the definition of X(n) in section 2.2, it is evident that

XR,n
t = X

(n)
t ◦ π(n) for all t ≥ 0, a.s. on Ω.

The definitions of the measures Px, P(n)
x for the countable and finite concatenations yield

that for all x ∈ E(n),

Px ◦ (π(n))−1 = P(n)
x on F (n) = F 1 ⊗ · · · ⊗Fn.

Thus, XR,n and X(n) have the same finite dimensional distributions (with respect to their
corresponding measures P and P(n)):

Px ◦
(
XR,n
t1 , . . . , XR,n

tk

)−1
= P(n)

x ◦
(
X

(n)
t1 , . . . , X

(n)
tk

)−1
. (2.4)

This easily transfers the normality and Markov property from X(n) to XR,n. Turning to
(HD2) for XR,n, we observe that the α-excessive functions of X(n) and XR,n coincide, as
the transition operators T (n)

t , TR,nt , t ≥ 0, of X(n), XR,n agree for all f ∈ pE (n), x ∈ E(n):

TR,nt f(x) = Ex
(
f(XR,n

t )
)

= E(n)
x

(
f(X

(n)
t )

)
= T

(n)
t f(x).

But X(n) is a right process, so for any f ∈ Sα(XR,n),

t 7→ f
(
XR,n
t

)
= f

(
X

(n)
t ◦ π(n)

)
is a.s. right continuous, as for any P(n)

x -null set N in F (n), (π(n))−1(N) is a Px-null set
in F .

We are now able to use Lemma 2.6 to lift Theorem 2.2 to the concatenation of
countably many processes:

Proof of Theorem 1.4. Let XR,n be the processes as defined above Lemma 2.6 for the
revival times Rn, n ∈ N, equipped with their natural filtrations, on their state spaces
ER,n := E(n). Then the sequence (Rn, n ∈ N) increases to the lifetime of X, and the
sequence (ER,n, n ∈ N) increases to E =

⋃
nE

n. Furthermore, by Lemma 2.6, the
process XR,n is a right processes on ER,n for every n ∈ N, and being a subprocess of X,
its natural filtration satisfies FR,n ⊆ FR. Finally, Rn coincides with its lifetime, so it is
a terminal time for XR,n, and being the first entry time of X into a closed set, it is also a
stopping time for X. Thus, Lemma 2.5 is applicable, which shows that X = XR is a right
process.

It only remains to prove the revival formula given in Theorem 1.4. To this end, we
compare once again the processes XR,n and X(n) like in the proof of Lemma 2.6:
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2
N
×
E

+
1(2
N
−

1)
×
E
−

1

π

· · ·

· · ·

⋃
n

(
{n} × E(−1)n

)
E−1 ∪ E+1

Figure 3: Construction of the pasting of two subprocesses X−1, X+1 on E−1, E+1, via
concatenation of alternating subprocess copies on (2N−1)×E−1, 2N×E+1 respectively,
and subsequent projection onto E−1 ∪ E+1.

As X(n+1) is the concatenation of X(n) and Xn+1 with transfer kernel Kn ◦ πn (see
section 2.2), Theorem 2.2 yields, with R(n) = inf{t ≥ 0 : X

(n+1)
t ∈ En+1}:

E(n+1)
x

(
f(X

(n+1)

R(n) )1{R(n)<∞}
∣∣F (n+1)

R(n)−

)
= Knf ◦ πn 1{R(n)<∞}.

Checking the construction of X and X(n+1), we observe that

R(n) ◦ π(n+1) = Rn and X
(n+1)

R(n) ◦ π(n+1) = XR,n+1
Rn a.s. on Ω.

By definition, FRn− = σ
({
A ∩ {t < Rn} : t ≥ 0, A ∈ Ft

})
, and this generator is

∩-stable, because for all s, t ≥ 0, As ∈ Fs, At ∈ Ft, with s ≤ t:(
As ∩ {s < Rn}

)
∩
(
At ∩ {t < Rn}

)
=
(
As ∩At

)
∩ {t < Rn},

and As ∩ At ∈ Ft. Thus, it suffices to show that for all t ≥ 0, f ∈ bE , k ∈ N, 0 ≤ t1 <

· · · < tk ≤ t, g1, . . . , gk ∈ bE with

J := g1(Xt1) · · · gk(Xtk) · 1{t<Rn},

JR,n+1 := g1(XR,n+1
t1 ) · · · gk(XR,n+1

tk
) · 1{t<Rn},

J (n+1) := g1(X
(n+1)
t1 ) · · · gk(X

(n+1)
tk

) · 1{t<R(n)}

the following holds true, as XRn = XR,n+1
Rn a.s.:

Ex
(
f(XRn)1{Rn<∞} · J

)
= Ex

(
f(XR,n+1

Rn )1{Rn<∞} · JR,n+1
)

= E(n+1)
x

(
f(X

(n+1)

R(n) )1{R(n)<∞} · J (n+1)
)

= E(n+1)
x

(
Knf ◦ πn 1{R(n)<∞} · J (n+1)

)
= Ex

(
Knf ◦ πn 1{Rn<∞} · J

)
.

This completes the proof, as Knf ◦ πn is FRn−-measurable by Lemma 2.4.

3 Application to pasting

As described in section 1.4, we achieve the pasting of two right processes X−1, X+1

on non-disjoint spaces E−1, E+1 by introducing a counting coordinate, defining copies
of the two processes on the disjoint spaces {n} × E(−1)n , n ∈ N, concatenating these
processes to a process X on N× (E−1 ∪E+1), and then discarding the first coordinate
by projecting to π(X), see Figure 3. We now need to ensure that π(X) is a right process.
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3.1 Mapping of the state space

In general, the state space transformation ψ(X) of a (strong/right) Markov process X
on a state space E to a new state space Ê via a surjective mapping ψ : E → Ê does not
yield a (strong/right) Markov process. Heuristically speaking, the original process X
needs to “behave identically” on points of E that are mapped together by ψ. A classical
consistency condition with salvages the Markov property of ψ(X) is found, e.g., in [4,
Theorem 10.13], it reads

∀B ∈ Ê , x, x′ ∈ E with ψ(x) = ψ(x′) : Px
(
Xt ∈ ψ−1(B)

)
= Px′

(
Xt ∈ ψ−1(B)

)
.

In the context of right processes the result is almost the same, flavored only by some
measurability conditions. It is found in [16, Theorem (13.5)]:

Theorem 3.1. Let X =
(
Ω,G , (Gt, t ≥ 0), (Xt, t ≥ 0), (Θt, t ≥ 0), (Px, x ∈ E)

)
be a right

process on a Radon space E with semigroup (Tt, t ≥ 0) and resolvent (Uα, α > 0). Let
(Ê, Ê ) be a Radon space and ψ : E → Ê be a mapping, satisfying the following conditions:

(i) ψ is E /Ê -measurable and ψ(E) = Ê;

(ii) t 7→ ψ(Xt) is a.s. right continuous in Ê;

(iii) for all f ∈ bCd(Ê) and all t ≥ 0, there exists gt ∈ bÊ such that Tt(f ◦ ψ) = gt ◦ ψ.

Define the transformed process Yt := ψ(Xt), t ≥ 0, on

Ω̂ :=
{
ω ∈ Ω : t 7→ ψ

(
Xt(ω)

)
is right continuous in Ê

}
,

equipped with shift operators Θ̂t := Θt, t ≥ 0, on Ω̂, and σ-algebras generated by Y

F̂ 0 := σ
({
f(Yt) : f ∈ Ê , t ≥ 0

})
,

F̂ 0
t := σ

({
f(Ys) : f ∈ Ê , s ≤ t

})
, t ≥ 0,

and choose measures for P̂y, y ∈ Ê, by

P̂y := Px on F̂ , for x ∈ E with ψ(x) = y ∈ Ê. (3.1)

Furthermore, let F̂ , (F̂t, t ≥ 0) be the usual completion and augmentations of F̂ 0,
(F̂ 0

t , t ≥ 0) respectively, relative to the family (P̂y, y ∈ Ê).

Then Y =
(
Ω̂, F̂ , (F̂t)t≥0, (Yt)t≥0, (Θ̂t)t≥0, (P̂y)y∈Ê

)
=: ψ(X) is a right process on Ê.

As usual, property (iii) can be extended to all functions f ∈ bÊ by using the monotone
class theorem and standard completion arguments (see [16, Remarks (13.6)]). Because
of this property, the definition of the measures Py on F̂ in (3.1) is independent of the
representatives chosen for y = ψ(x), x ∈ E: For any f ∈ bÊ , t ≥ 0, we have

Êy
(
f(Yt)

)
= Ex

(
f
(
ψ(Xt)

))
= Tt(f ◦ ψ)(x) = gt ◦ ψ(x) = gt(y).

Typically, the fundamental condition (iii) must be verified manually. There is a
Laplace-transformed version of this condition, which sometimes is easier to control, and
which is more suitable in our context:

Theorem 3.2. In Theorem 3.1, under (i) and (ii), condition (iii) is equivalent to

(iii’) for all f ∈ bCd(Ê) and all α > 0, there exists fα ∈ bÊ such that Uα(f ◦ ψ) = fα ◦ ψ.
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Proof. Assume that (i), (ii) and (iii) hold. Then for f ∈ bCd(Ê), α > 0, x ∈ E∆,

Uα(f ◦ ψ)(x) =

∫ ∞
0

e−αt Tt(f ◦ ψ)(x) dt = fα ◦ ψ(x)

holds with fα :=
∫∞

0
e−αt gt dt ∈ bÊ for gt ∈ bÊ as given by (iii).

Now assume that (i), (ii) and (iii’) hold. Let f ∈ bCd(Ê) and consider for every α > 0

the function fα ∈ bÊ as given by (iii’) with Uα(f ◦ ψ) = fα ◦ ψ. For t = 0, the function
g0 = f satisfies T0(f ◦ ψ) = g0 ◦ ψ. For t > 0, we need to invert the Laplace transform,

which is encoded in (fα, α > 0). We first observe that f (k)
α := ∂k

∂αk
fα exists for all k ∈ N0,

because for each y ∈ Ê, there is x ∈ E with ψ(x) = y, so

fα(y) = fα
(
ψ(x)

)
= Uα(f ◦ ψ)(x)

holds and α 7→ Uα(f ◦ ψ)(x) is in C∞(R>0) (see [3, Theorem XII.20]). Furthermore, for
any x ∈ E, the function

t 7→ Tt(f ◦ ψ)(x) = Ex
(
f
(
ψ(Xt)

))
is a bounded and right continuous, because f is bounded and continuous and t 7→ ψ(Xt)

is right continuous by (ii). Let y ∈ Ê, and choose any x ∈ E with ψ(x) = y. Then a
general inversion formula5 for the Laplace transform of t 7→ Tt(f ◦ ψ) yields

Tt(f ◦ ψ)(x) = lim
ε�0

lim
α→∞

1

ε

∑
αt<k≤(α+ε)t

(−1)k

k!
αk U (k)

α (f ◦ ψ)(x)

= lim
ε�0

lim
α→∞

1

ε

∑
αt<k≤(α+ε)t

(−1)k

k!
αk f (k)

α (y)

=: gt(y) = gt ◦ ψ(x),

with the function gt : Ê → R as defined above being bounded as ‖gt‖ = ‖Tt(f ◦ ψ)‖ and

measurable due to the measurability of all f (k)
α , α > 0, k ∈ N0.

3.2 Alternating copies of two processes

Let X−1, X+1 be two right processes with lifetimes ζ−1, ζ+1 on E−1, E+1 respectively,
and K−1, K+1 be transfer kernels from X−1 to (X+1, E+1) and from X+1 to (X−1, E−1).
Let X be the concatenation, as described in section 1.4, of

Xn := {n} ×X(−1)n , Kn := δn+1 ⊗K(−1)n , n ∈ N,

which by Theorem 1.4 is a right process on Ẽ :=
⋃
n{n} × E(−1)n . Let π : Ẽ → E, with

E := E−1 ∪E+1, be the projection onto the second coordinate. We check the consistency
conditions of Theorem 3.2 to prove that the pasted process π(X) is a right process on E.

5The inversion formula

g(t) = lim
ε�0

lim
α→∞

1

ε

∑
αt<k≤(α+ε)t

(−1)k

k!
αk ϕ(k)(α), t > 0,

for the Laplace transform ϕ(α) =
∫∞
0 e−αt g(t) dt of a right continuous, bounded function g : R+ → R is given

in [16, Formula (4.14)] as part of an exercise with a reference to [5, p. 232]. However, Feller only considers
Laplace transforms of probability measures; in the general case the justification of the interchange of limits
and integration, which is essential to Feller’s proof, is more difficult and can be found in [17, Section 1.4].
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Proof of Theorem 1.6. π is clearly surjective. It is Ẽ /E -measurable, as the preimage of
π reads

π−1(B) =
(
(2N− 1)× (B ∩ E−1)

)
∪
(
2N× (B ∩ E+1)

)
, B ∈ E .

The right process X is right continuous and the projection π is continuous, so π(X) is
right continuous as well. By Theorem 3.2, it therefore suffices to prove that for all α > 0,
f ∈ bE , there exists fα ∈ bE such that Uα(f ◦ π) = fα ◦ π holds true. As the process X is
constructed of alternating copies, we look at cycles of two revivals, that is, we examine
for (n, x) ∈ Ẽ:

Uα(f ◦ π) (n, x) =

∞∑
m=0

E(n,x)

(
1{Rn+2m−1<∞}

∫ Rn+2m+1

Rn+2m−1

e−αt f ◦ π(Xt) dt
)
.

For m = 0, we decompose the partial resolvent at the revival time Rn and obtain by
employing the terminal time property of Rn+1, the strong Markov property of X at Rn,
and the revival formula of Theorem 1.4:

E(n,x)

(∫ Rn+1

0

e−αt f ◦ π(Xt) dt
)

= E(−1)n

x

(∫ ζ(−1)n

0

e−αt f
(
X

(−1)n

t

)
dt
)

+ E(−1)n

x

(
1{ζ(−1)n<∞} e

−αζ(−1)n

K(−1)nE
(−1)n+1

·

(∫ ζ(−1)n+1

0

e−αt f
(
X

(−1)n+1

t

)
dt
))

=: g
(−1)n

0 (x).

For general m ∈ N0, we will show inductively that

E(n,x)

(
1{Rn+2m−1<∞}

∫ Rn+2m+1

Rn+2m−1

e−αt f ◦ π(Xt) dt
)

= g(−1)n

m (x) (3.2)

holds with g−1
m ∈ bE−1, g+1

m ∈ bE +1 being independent of n ∈ N. The case m = 0 is
already done. Assuming that (3.2) is proved for an m ∈ N0, we calculate for m+ 1, by
using the same course of actions as above, as well as the definitions of the transfer
kernels Kn:

E(n,x)

(
1{Rn+2(m+1)−1<∞}

∫ Rn+2(m+1)+1

Rn+2(m+1)−1

e−αt f ◦ π(Xt) dt
)

= E(n,x)

(
1{Rn<∞} e

−αRn KnE ·

(
1{Rn+1<∞} e

−αRn+1

Kn+1E ·

(
1{Rn+2m+1<∞}

∫ Rn+2m+3

Rn+2m+1

e−αt f ◦ π(Xt) dt
)
◦ πn+1

)
◦ πn

)
= E(−1)n

x

(
1{ζ(−1)n<∞} e

−αζ(−1)n

K(−1)nE
(−1)n+1

·

(
1{ζ(−1)n+1<∞} e

−αζ(−1)n+1

K(−1)n+1

E(n+2, · )

(
1{Rn+2m+1<∞}

∫ Rn+2m+3

Rn+2m+1

e−αt f ◦ π(Xt) dt
)))
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Next, using the inductive assumption (3.2) and that g(−1)n+2

m = g
(−1)n

m , we get

E(n,x)

(
1{Rn+2(m+1)−1<∞}

∫ Rn+2(m+1)+1

Rn+2(m+1)−1

e−αt f ◦ π(Xt) dt
)

= E(−1)n

x

(
1{ζ(−1)n<∞} e

−αζ(−1)n

K(−1)nE
(−1)n+1

·

(
1{ζ(−1)n+1<∞} e

−αζ(−1)n+1

K(−1)n+1

g(−1)n

m

))
=: g

(−1)n

m+1 (x).

Setting g−1 :=
∑∞
m=0 g

−1
m ∈ bE−1 and g+1 :=

∑∞
m=0 g

+1
m ∈ bE +1, we have proven that

Uα(f ◦ π) (n, x) =

{
g−1(x), n odd-numbered,

g+1(x), n even-numbered

holds for all (n, x) ∈ Ẽ, so the value of the resolvent Uα(f ◦ π) (n, x) is independent of n
for all odd-numbered n, and for all even-numbered n.

It remains to prove g−1 = g+1 on E−1 ∩ E+1, which is equivalent to showing that

Uα(f ◦ π) (no, x) = Uα(f ◦ π) (ne, x)

holds true for all no ∈ (2N − 1), ne ∈ 2N, x ∈ E−1 ∩ E+1 (because (n0, x) /∈ E for
x ∈ E+1\E−1, and (ne, x) /∈ E for x ∈ E−1\E+1).

Let τ−1 be the first entry time of π(X) into E−1\E+1, and τ+1 be the first entry time
of π(X) into E+1\E−1. We synchronize the start of both processes by decomposing at
the stopping time τ−1 ∧ τ+1 with Dynkin’s formula (1.1):

Uα(f ◦ π) (n, x) = E(n,x)

(∫ τ−1∧τ+1

0

e−αt f ◦ π(Xt) dt
)

+ E(n,x)

(
e−α(τ−1∧τ+1) Uα(f ◦ π)(Xτ−1∧τ+1

)
)
.

τ−1 ∧ τ+1 is the exit time of the process X from E−1 ∩ E+1. The above formula will
turn out to be independent of n if the process’ behavior on E−1 ∩ E+1 and its exit/entry
behavior into E\(E−1∩E+1) (represented by e−α(τ−1∧τ+1) and Xτ−1∧τ+1

) are independent
of n. It has already been shown that this is the case for all odd-numbered n, and for all
even-numbered n. It remains to compare the odd-numbered and even-numbered starting
processes, that is, the behavior of the original processes X−1 and X+1 together with the
transfer kernels K−1 and K+1:

For odd-numbered no ∈ (2N−1), the starting process is X(−1)no = X−1, living on E−1,
so the process π(X) starting at (no, x) only enters E+1\E−1 when the first subprocess
dies. Therefore, τ−1 ∧ τ+1 = τ−1 ∧ Rno holds true in this case, and using Dynkin’s
formula (1.1) again, we get

Uα(f ◦ π) (no, x) = E(no,x)

(∫ τ−1∧Rno

0

e−αt f ◦ π(Xt) dt
)

+ E(no,x)

(
e−ατ−1 Uα(f ◦ π)(Xτ−1

); τ−1 < Rno
)

+ E(no,x)

(
e−αR

n0
Uα(f ◦ π)(XRno ); Rno ≤ τ−1

)
,

where Rno ≤ τ−1 can be replaced by Rno < τ−1, as equality only occurs if Rno =∞.

We have, P(no,x)-a.s., Xt =
(
no, X

(−1)no

t ◦πno
)

for all t < Rno = ζ(−1)no ◦πno = ζ−1◦πno ,
and τ−1

−1 ◦ πno < ζ−1 ◦ πno if and only if τ−1 < Rno , and in this case τ−1 = τ−1
−1 ◦ πno holds
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true. Thus, the first part of the above decomposition reads

E(no,x)

(∫ τ−1∧Rno

0

e−αt f ◦ π(Xt) dt
)

= E(no,x)

((∫ τ−1
−1

0

e−αt f(X−1
t ) dt

)
◦ πno ; τ−1 < Rno

)
+ E(no,x)

((∫ ζ−1

0

e−αt f(X−1
t ) dt

)
◦ πno ; Rno ≤ τ−1

)
.

As f(X−1
t ) = f(∆) = 0 for all t > ζ−1, we can replace the upper limit of the latter

integration by τ−1
−1 ≥ ζ−1, in order to obtain

E(no,x)

(∫ τ−1∧Rno

0

e−αt f ◦ π(Xt) dt
)

= E(no,x)

((∫ τ−1
−1

0

e−αt f(X−1
t ) dt

)
◦ πno

)
.

Together with the process transfer at Rno via K(−1)no = K−1, and recalling that we
already showed Uα(f ◦ π) (no, · ) = g−1 and Uα(f ◦ π) (no + 1, · ) = g+1, we get

Uα(f ◦ π) (no, x) = E−1
x

(∫ τ−1
−1

0

e−αt f(X−1
t ) dt

)
+ E−1

x

(
e−ατ

−1
−1 g−1(X−1

τ−1
−1

); τ−1
−1 < ζ−1

)
+ E−1

x

(
e−αζ

−1

K−1g+1; ζ−1 < τ−1
−1

)
.

(3.3)

Analogously, we find that for any even-numbered ne ∈ 2N,

Uα(f ◦ π)(ne, x) = E+1
x

(∫ τ+1
+1

0

e−αt f(X+1
t ) dt

)
+ E+1

x

(
e−ατ

+1
+1 g+1(X+1

τ+1
+1

); τ+1
+1 < ζ+1

)
+ E+1

x

(
e−αζ

+1

K+1g−1; ζ+1 < τ+1
+1

)
(3.4)

holds. Using the assumptions (i) and (ii) of the theorem, we conclude that

Uα(f ◦ π) (no, x) = Uα(f ◦ π) (ne, x),

proving Uα(f ◦ π) (n, x) = g±1 ◦ π(x) for all x ∈ E, n ∈ N.

Proof of Theorem 1.7. In case X−1 = X+1 and K−1 = K+1, each one of the summands
of the decomposition (3.3) is equal to the corresponding summand of (3.4). Again, this
yields g−1 = g+1 and Uα(f ◦ π) (n, x) = g±1 ◦ π(x) for all x ∈ E, n ∈ N.
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