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Abstract

We study the relationship between functional inequalities for a Markov kernel on a
metric space X and inequalities of transportation distances on the space of probability
measures P(X). Extending results of Luise and Savaré on Hellinger–Kantorovich con-
traction inequalities for the particular case of the heat semigroup on an RCD(K,∞)

metric space, we show that more generally, such contraction inequalities are equiva-
lent to reverse Poincaré inequalities. We also adapt the “dynamic dual” formulation
of the Hellinger–Kantorovich distance to define a new family of divergences on P(X)

which generalize the Rényi divergence, and we show that contraction inequalities
for these divergences are equivalent to the reverse logarithmic Sobolev and Wang
Harnack inequalities. We discuss applications including results on the convergence of
Markov processes to equilibrium, and on quasi-invariance of heat kernel measures in
finite and infinite-dimensional groups.
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1 Introduction

The goal of this paper is to build upon recent results of G. Luise and G. Savaré
[28] on contraction properties of the flow of a heat semigroup in spaces of measures.
There, the authors study a “dynamic dual” formulation of various distances between
probability measures on a metric measure space, including the Kantorovich–Wasserstein
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Transportation inequalities for Markov kernels

and Hellinger distances as well as a family of Hellinger–Kantorovich distances HKα
introduced in [27]. They focus on the setting of RCD(K,∞) spaces, in which the
canonical heat semigroup Pt generated by the Cheeger energy satisfies a Bakry–Émery
curvature condition; these spaces are, very roughly speaking, more general analogues of
Riemannian manifolds with Ricci curvature bounded from below. Under this assumption,
they obtain contraction inequalities of the form

He2(µ0Pt, µ1Pt) ≤ HKα(t)(µ0, µ1) (1.1)

where µPt denotes the dual action of the heat semigroup Pt on the probability measure µ,
He and HK are the Hellinger and Hellinger–Kantorovich distances respectively, and α(t)

depends on K. The proof is based on the fact that RCD(K,∞) spaces satisfy a reverse
Poincaré inequality of the form

|∇Ptf |2 ≤
K

e2Kt − 1
(Pt(f

2)− (Ptf)2). (1.2)

Indeed, the inequality (1.2), with its specific form of the time-dependent constant K
e2Kt−1 ,

is one of many functional inequalities that are equivalent to the Bakry–Émery curvature
condition; see for instance [2, Proposition 3.3].

The first goal of the present paper is to further study the relationship between reverse
Poincaré inequalities and Hellinger–Kantorovich contraction inequalities. Our first main
result is Theorem 3.7, in which we show that the implication between the two holds in a
much more general setting than RCD(K,∞) spaces. We suppose only that we have a
Markov operator P acting on a sufficiently nice metric space X, and we show that if P
satisfies a reverse Poincaré inequality of the form

|∇Pf |2 ≤ C(P (f2)− (Pf)2), f ∈ Lipb(X) (1.3)

then we obtain a Hellinger–Kantorovich contraction of the form

He2(µ0P, µ1P ) ≤ HK4/C(µ0, µ1) (1.4)

for all probability measures µ0, µ1 on X. In particular, (1.4) holds in non-RCD models
where there is a semigroup Pt which satisfies (1.3) for each t, but with a time-dependent
constant C(t) that is not of the form appearing in (1.2). We discuss several examples
and applications in Section 4, including subelliptic diffusions arising in sub-Riemannian
geometry, non-symmetric Ornstein–Uhlenbeck operators on Carnot groups, Langevin
dynamics driven by Lévy processes, and others.

Furthermore, in this general setting, we are able to show (also in Theorem 3.7) that
the converse implication holds as well, so that (1.3) and (1.4) are in fact equivalent. They
are also equivalent to a parabolic Harnack inequality. Thus the Hellinger–Kantorovich
contraction can be seen as a new aspect of a well-known family of functional inequalities,
providing additional tools and motivations for their study.

The key tool in all of this is the dynamic dual formulation of the Hellinger–Kantorovich
distance (Definition 3.1), originally introduced in [27], which expresses HKa(µ0, µ1) as
the supremum of

∫
ϕ1 dµ1 −

∫
ϕ0 dµ0 over a family of time-dependent functions ϕs :

[0, 1]×X → R satisfying a certain Hamilton–Jacobi partial differential inequality in time
and space. This formula extends the so-called Kantorovich duality for the Kantorovich–
Wasserstein distance, and also includes an expression for the Hellinger distance. Having
the distance defined in terms of solutions of a partial differential inequality makes it
particularly convenient to relate it to functional inequalities where the gradient appears,
as we demonstrate in Theorems 3.4 and 3.7. Indeed, this technique also provides an
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Transportation inequalities for Markov kernels

extension of the Kuwada duality theorem [25, 27], relating L2 gradient estimates to a
Kantorovich–Wasserstein contraction inequality; see Corollary 3.5.

Pursuing this idea in a different direction, in Section 5 we use a dynamic dual
approach to formulate a new family of transportation-cost divergences Ta,b on the space
of probability measures, which are of “entropic” type and include the Rényi divergence.
In place of reverse Poincaré inequalities, this family is designed to connect with reverse
logarithmic Sobolev inequalities of the form

Pf |∇ lnPf |2 ≤ C(P (f ln f)− (Pf) lnPf). (1.5)

We note that an equality of the type (1.5) is stronger than an inequality of the type
(1.3), by using (1.5) with 1 + εf . After developing some properties of the Ta,b diver-
gences, we show in Theorem 5.15 that (1.5) is actually equivalent to a family of entropic
transportation-cost contraction inequalities for Ta,b, of the form

T0,κC(µ0P, µ1P ) ≤ Tκ,κC(µ0, µ1), κ > 0. (1.6)

These two statements are moreover equivalent to a Wang-type parabolic Harnack in-
equality, as well as to an integrated Harnack inequality (see Remark 5.16). Thus, the
reverse log Sobolev inequality (1.5) also has a “transport” aspect. We discuss in Section
6 how (1.6) can be used, in finite or infinite dimensions, to prove certain quasi-invariance
results that were previously obtained via Wang Harnack inequalities or other methods;
see for instance [9].

For other applications, and a general overview of reverse Poincaré and log-Sobolev
inequalities and of the connections with Harnack type inequalities, we refer to the book
[35].

2 General setup and notation

Throughout the paper, unless otherwise specified, (X, d) denotes a complete, proper,
separable metric space which is a length space; in particular, path connected. We
suppose that X is equipped with a strong upper gradient |∇f | as defined in [1, Definition
1.2.1]. More precisely, for a measurable function f : X → R we define

|∇f |(x) = lim
r→0

sup
0<d(x,y)≤r

|f(x)− f(y)|
d(x, y)

(2.1)

and denote by Lipb(X) the space of all bounded Lipschitz functions on X. Then, we have
the following result:

Lemma 2.1 (Proposition 1.11, [17]). For every f ∈ Lipb(X), |∇f | is a strong upper
gradient in the sense that for each rectifiable curve γ : [0, L] → X parametrized by
arc-length we have

|f(γ(L))− f(γ(0))| ≤
∫ L

0

|∇f |(γ(s))ds.

One may also verify that |∇f | satisfies the chain rule:

Lemma 2.2. If f : X → R is Lipschitz in a neighborhood of x and φ : R → R is
differentiable at f(x), then |∇(φ ◦ f)|(x) = |φ′(f(x))| |∇f |(x).

Let BX denote the Borel σ-algebra of (X, d), and P(X) the set of Borel probability
measures onX. We suppose we are given a Markov probability kernel P : X×BX → [0, 1],
and we denote by Pf , µP the usual action of P on bounded Borel functions f and Borel
probability measures µ, i.e.

Pf(x) :=

∫
X

f(y)P (x, dy), µP (A) :=

∫
X

P (x,A)µ(dx).
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Transportation inequalities for Markov kernels

In some applications, P will be taken to be a Markov semigroup Pt, which may or
may not be symmetric with respect to some reference measure. Our setting is similar to
[25]. This is more general than the setting of [28], which only considered the symmetric
semigroup Pt generated by the Cheeger energy with respect to the given gradient and a
given reference measure.

Given µ0, µ1 ∈ P(X), the 2-Kantorovich–Wasserstein distance W2(µ0, µ1) is defined as
usual by

W2(µ0, µ1)2 := inf
π

∫
d(x0, x1)2 µ(dx0,dx1), (2.2)

the infimum taken over all couplings π ∈ P(X × X) of µ0, µ1. In particular, for point
masses µi = δxi , we have W2(δx0

, δx1
) = d(x0, x1). We let P2(X) ⊂ P(X) denote the

Wasserstein space of probability measures µ having a finite second moment, i.e. for
which

∫
X
d(x, x0)2 µ(dx) <∞ for some (equivalently, all) x0 ∈ X.

The 2-Hellinger distance is defined by

He2(µ0, µ1)2 :=

∫
X

(√
dµ1

dm
−
√

dµ0

dm

)2

dm (2.3)

where m is any measure such that µ0, µ1 are both absolutely continuous with respect to
m; the definition is independent of m. Convergence in Hellinger distance is equivalent to
convergence in total variation, and we have He2(µ0, µ1)2 ≤ 2 for all µ0, µ1 ∈ P(X), with
equality iff µ0, µ1 are mutually singular.

The stated hypotheses on the space X are meant to strike a balance between general-
ity and convenience; one may certainly be able to weaken them in various ways. We have
preferred to keep the emphasis on the techniques and their applications, rather than on
stating the most general abstract theorems. In particular, in Section 6 we already depart
from this setting to consider infinite-dimensional examples based on abstract Wiener
space, where X is a separable Banach space (which is not proper), the test functions are
taken to be the cylinder functions instead of all bounded Lipschitz functions, and the
gradient ∇ is derived from the Malliavin gradient, whose norm is not an upper gradient
with respect to the norm distance on X. This requires only trivial modifications to the
arguments in the earlier sections; we discuss the details in Section 6.

3 Hellinger–Kantorovich distances and functional inequalities

3.1 The dynamic dual formulation and basic properties

In this section, we consider the family of Hellinger–Kantorovich distances studied in
[26, 27, 28]. We focus on the so-called dynamic dual formulation of these distances, in
which they may be defined as the supremum of a difference of integrals over a class of
subsolutions of a Hamilton–Jacobi-type equation in time and space variables. This idea
is directly descended from a dynamic dual formulation of the Kantorovich–Wasserstein
distance, introduced in [30]. Using this formulation of these distances, we will see that
Poincaré and reverse Poincaré type inequalities for P lead directly to contraction results
with respect to these distances (Theorem 3.4).

We study the Hellinger–Kantorovich distance via a slightly different parametrization
which is more convenient for our purposes. As above, let Lipb(X) denote the Banach
space of all bounded Lipschitz functions on X. We remark for later use that for any finite
measure µ on X, we have Lipb(X) dense in L1(µ), and in particular that for any bounded
Borel function f there is a sequence fn ∈ Lipb(X) with fn → f µ-a.e. and boundedly.
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Definition 3.1. Let a, b ≥ 0. We denote by Aa,b the class of all functions ϕ = ϕs(x) ∈
C1([0, 1],Lipb(X)) satisfying the differential inequality

∂sϕs + a|∇ϕs|2 + bϕ2
s ≤ 0. (3.1)

Then for probability measures µ1, µ2 ∈ P(X) we set

Wa,b(µ0, µ1) = sup
ϕ∈Aa,b

[∫
X

ϕ1 dµ1 −
∫
X

ϕ0 dµ0

]
. (3.2)

To avoid confusion, we note that Wa,b itself is not a distance on (a subset of) P(X),
but rather the square of a distance.

Lemma 3.2. The squared distances Wa,b satisfy the following basic properties:

1. If a ≤ a′ and b ≤ b′ then Wa′,b′ ≤Wa,b.

2. For any c > 0, we have Wca,cb = c−1Wa,b.

3. When b > 0, we have Wa,b = b−1HK2
4a/b, where HK is the Hellinger–Kantorovich

distance as defined in [28, Definition 2.11].

4. W1/2,0 = 1
2W

2
2 , where W2 is the Kantorovich–Wasserstein 2-distance.

5. W0,1 = He22, where He2 is the Hellinger 2-distance.

Proof. Item 1 is clear because when a ≤ a′ and b ≤ b′, we have Aa′,b′ ⊆ Aa,b. Item 2
holds because ϕ ∈ Aca,cb if and only if cϕ ∈ Aa,b. For item 3, in the notation of [28,
Eq. (39)] (see also [27, Section 8.4]), we have HK2

α = Wα/4,1, and the general statement
follows using item 2. Item 4 can be found as Proposition 2.10 of [28], but goes back at
least as far as [30, Section 3]; see also other references in [28].

Item 5 is almost Proposition 2.8 of [28], but there is a slight difference because
our class of functions A0,1 is required to be Lipschitz in space, whereas [28, Eq. (32)]
uses functions which are only bounded. This is easily handled with a straightforward
approximation argument, which we now give for completeness.

Let AB0,1 = {ϕ ∈ C1([0, 1], B(X)) : ∂sϕs + ϕ2
s ≤ 0}. The statement of [28, Proposition

2.8] is that

He22(µ0, µ1) = sup
ψ∈AB0,1

∫
ψ1 dµ1 −

∫
ψ0 dµ0.

It is clear that W0,1(µ0, µ1) ≤ He22(µ0, µ1), since A0,1 ⊂ AB0,1. Now given ϕ ∈ A0,1, it is
clear from a Grönwall-type argument that we must have ϕs ≤ ϕ0/(1 + sϕ0) for all s; in
particular we must have ϕ0 > −1 or else ϕ will have a singularity. Hence

W0,1(µ0, µ1) = sup

{∫
f

1 + f
dµ1 −

∫
f dµ0 : f ∈ Lipb(X), f > −1

}
and likewise

He22(µ0, µ1) = sup

{∫
f

1 + f
dµ1 −

∫
f dµ0 : f ∈ Bb(X), f > −1

}
.

Now the result follows by noting that for each f ∈ Bb(X) with f > −1, we can find a
sequence of bounded Lipschitz functions fn with fn > −1 and fn → f boundedly and
(µ0 + µ1)-almost everywhere. We then have

∫
fn dµ0 →

∫
f dµ0, and since the sequence

fn/(1 + fn) is bounded above by 1, Fatou’s lemma also gives lim supn→∞
∫

fn
1+fn

dµ1 ≥∫
f

1+f dµ1. From this we conclude that W0,1(µ0, µ1) ≥ He22(µ0, µ1).
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Thus, the (squared) distances Wa,b naturally interpolate between the Kantorovich–
Wasserstein distance, which is perhaps the most familiar transportation distance, and
the Hellinger distance, which metrizes convergence in total variation. As will be seen in
the next subsection, this makes it valuable for obtaining inequalities relating these two
distances.

Proposition 3.3. If x0, x1 ∈ X and δx0
, δx1

∈ P(X) are the corresponding Dirac mea-
sures, then

Wa,b(δx0
, δx1

) =
1

b

(
2− 2 cos

( √
b

2
√
a
d(x0, x1) ∧ π

2

))
≤ 1

4a
d(x0, x1)2 ∧ 2

b
.

Proof. For a = 1
2 , b = 2, this is [27, Eq. (6.31)]; see also [27, Section 8] for the explanation

that the LET distance corresponds to HK2, which is our W1/2,2. Other values of a can
be handled by rescaling the distance d, and general values of a, b are then covered by
Lemma 3.2 2.

We note, however, that the upper bound Wa,b(δx0
, δx1

) ≤ 1
4ad(x0, x1)2 ∧ 2

b can be
shown much more easily, and is comparable to the exact expression up to a universal
constant multiple (whose value is something like 1.2). The upper bound Wa,b(µ0, µ1) ≤ 2

b

is essentially trivial, and can be seen, for instance, by noting

Wa,b ≤W0,b =
1

b
W0,1 =

1

b
He22

and that He22(µ0, µ1) ≤ 2 for all µ0, µ1. The upper bound Wa,b(δx0 , δx1) ≤ 1
4ad(x0, x1)2 can

be seen in a similar way by comparing to the Kantorovich–Wasserstein distance W1/2,0.
But it can also be shown directly from the “dynamic dual” definition of Wa,b. We give the
argument here, partly for comparison with Proposition 5.12 below.

Let a > 0 and b ≥ 0. Recall that (X, d) is assumed to be a complete length space,
so there exists a constant speed geodesic γ : [0, 1] → X joining x0 to x1: namely,
γ0 = x0, γ1 = x1, and d(γs, γt) = |s− t|d(x0, x1). Since ∇ is a strong upper gradient, for
any Lipschitz f : X → R we have that f ◦ γ is absolutely continuous and

∣∣ d
dsf(γs)

∣∣ ≤
|∇f |(γs)d(x0, x1); see [1, Definition 1.2.1]. Now using the chain rule, we have

ϕ1(x1)− ϕ0(x0) =

∫ 1

0

d

ds
ϕs(γs) ds

≤
∫ 1

0

[∂sϕs(γs) + |∇ϕs|(γs)d(x0, x1)] ds

≤
∫ 1

0

[
−a|∇ϕs|(γs)2 − bϕs(γs)2 + |∇ϕs|(γs)d(x0, x1)

]
ds

=

∫ 1

0

[
−a
(
|∇ϕs(γs)| −

1

2a
d(x0, x1)

)2

+
1

4a
d(x0, x1)2 − bϕs(γs)2

]
ds

by completing the square. Discarding the two negative terms and taking the supremum
over ϕs ∈ Aa,b, we recover the desired bound.

3.2 Functional inequalities

Thanks to the form of the dynamic dual definition for Wa,b, one obtains a direct
implication between functional inequalities involving the gradient and contractions of
Hellinger–Kantorovich distances. This was the key idea in the results of [28]; here we
make the implication more explicit and collect several cases into a single statement.
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Theorem 3.4. Suppose that for some a > 0 and b, γ, δ ≥ 0, the Markov operator P
satisfies the functional inequality

a|∇Pf |2 + b(Pf)2 ≤ γP |∇f |2 + δP (f2), f ∈ Lipb(X). (3.3)

Then we have the transportation distance contraction

Wγ,δ(µ0P, µ1P ) ≤Wa,b(µ0, µ1), µ0, µ1 ∈ P(X). (3.4)

Proof. Since a > 0, (3.3) implies that the Markovian operator P is a bounded oper-
ator on Lipb(X). Now let ϕ ∈ Aγ,δ. Since ϕ ∈ C1([0, 1],Lipb(X)), we have Pϕs ∈
C1([0, 1],Lipb(X)) as well, and P∂sϕs = ∂sPϕs. Hence

∂sPϕs = P∂sϕs ≤ P
[
−γ|∇ϕs|2 − δϕ2

s

]
= −γP |∇ϕs|2 − δP (ϕ2

s)

≤ −a|∇Pϕs|2 − b(Pϕs)2

where we used the fact that P is positivity preserving, and the assumed inequality (3.3).
This shows that Pϕs ∈ Aa,b. Thus for µ0, µ1 ∈ P(X) we have

Wγ,δ(µ0P, µ1P ) = sup
ϕ∈Aγ,δ

∫
X

Pϕ1 dµ1 −
∫
X

Pϕ0 dµ0

≤ sup
ψ∈Aa,b

∫
X

ψ1 dµ1 −
∫
X

ψ0 dµ0

= Wa,b(µ0, µ1)

as desired.

Corollary 3.5. If P satisfies the gradient estimate |∇Pf |2 ≤ CP |∇f |2 for some C, then
for any b ≥ 0 we have

W1,b(µ0P, µ1P ) ≤WC,b(µ0, µ1).

In particular, taking b = 0 we recover the Kuwada-type duality

W2(µ0P, µ1P )2 ≤ CW2(µ0, µ1)2.

The case C = 1 of Corollary 3.5 is [27, Theorem 8.24], and when additionally b = 0 it
reduces to [25, Proposition 3.7].

Proof. Noting that (Pf)2 ≤ P (f2) by Jensen’s inequality, the gradient estimate |∇Pf |2 ≤
CP |∇f |2 implies that (3.3) holds with a = 1, γ = C, δ = b.

Remark 3.6. Note that, conversely, the estimate

W2(µ0P, µ1P )2 ≤ CW2(µ0, µ1)2

implies the gradient estimate |∇Pf |2 ≤ CP |∇f |2; see [25].

Theorem 3.7. Let C > 0. The following are equivalent:

1. The reverse Poincaré inequality

|∇Pf |2 ≤ C(P (f2)− (Pf)2), f ∈ Lipb(X). (RPI)

2. The Hellinger–Kantorovich contraction

He2(µ0P, µ1P )2 ≤ HK4/C(µ0, µ1)2 ≤ C

4
W2(µ0, µ1)2, µ0, µ1 ∈ P(X). (HKC)
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3. The Harnack type inequality

Pf(x) ≤ Pf(y) +
√
Cd(x, y)

√
P (f2)(x), x, y ∈ X, f ∈ Bb(X), f ≥ 0. (HPI)

We point out, for future use, that the reverse Poincaré inequality (RPI) is equivalent
to the apparently weaker form

|∇Pf |2 ≤ CP (f2), f ∈ Lipb(X) (3.5)

Indeed, to see that (3.5) self-improves to (RPI), suppose f ∈ Lipb(X), fix an arbitrary
x ∈ X, and let g(y) = f(y)− Pf(x). Then apply (3.5) to g and evaluate at x.

Before we give the proof of the theorem, we state a lemma interesting in itself.

Lemma 3.8. For any f ∈ Bb(X), and x, y ∈ X,

|Pf(x)− Pf(y)|2 ≤ 2He2(δxP, δyP )2
(
P (f2)(x) + P (f2)(y)

)
.

Proof. Let m be a Borel measure such that both δxP and δyP are absolutely continuous
with respect to m. We denote

Pm(x, ·) =
dδxP

dm
, Pm(y, ·) =

dδyP

dm
.

We have

|Pf(x)− Pf(y)|

=

∣∣∣∣∫ Pm(x, z)f(z) dm(z)−
∫
Pm(y, z)f(z) dm(z)

∣∣∣∣
=

∣∣∣∣∫ √Pm(x, z)
√
Pm(x, z)f(z) dm(z)−

∫ √
Pm(y, z)

√
Pm(y, z)f(z) dm(z)

∣∣∣∣
≤
∣∣∣∣∫ √Pm(x, z)

√
Pm(x, z)f(z) dm(z)−

∫ √
Pm(x, z)

√
Pm(y, z)f(z) dm(z)

∣∣∣∣
+

∣∣∣∣∫ √Pm(x, z)
√
Pm(y, z)f(z) dm(z)−

∫ √
Pm(y, z)

√
Pm(y, z)f(z) dm(z)

∣∣∣∣
≤
∫ ∣∣∣√Pm(x, z)−

√
Pm(y, z)

∣∣∣√Pm(x, z)f(z) dm(z)

+

∫ ∣∣∣√Pm(x, z)−
√
Pm(y, z)

∣∣∣√Pm(y, z)f(z) dm(z)

Therefore, by the Cauchy–Schwarz inequality,

|Pf(x)− Pf(y)|2 ≤ He2(δxP, δyP )2
(√

P (f2)(x) +
√
P (f2)(y)

)2
≤ 2He2(δxP, δyP )2

(
P (f2)(x) + P (f2)(y)

)
.

We are now ready for the proof of Theorem 3.7.

Proof of Theorem 3.7. (RPI) =⇒ (HKC): This follows from Theorem 3.4 with γ = 0 and
b = δ = C. We note again that this direction is the essence of [28, Theorem 5.4].

(HKC) =⇒ (RPI): Assume that

He2(µ0P, µ1P )2 ≤ C

4
W2(µ0, µ1)2.

Then, for every x, y ∈ X,

He2(δxP, δyP )2 ≤ C

4
d(x, y)2.
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Therefore, from Lemma 3.8 one deduces

|Pf(x)− Pf(y)|2 ≤ C

2
d(x, y)2(P (f2)(x) + P (f2)(y)). (3.6)

Similarly, one has

|P (f2)(x)− P (f2)(y)|2 ≤ C

2
d(x, y)2(P (f4)(x) + P (f4)(y))

≤ Cd(x, y)2‖f‖4∞,

which implies that P (f2) is a continuous function. Since

|∇Pf |(x) = lim
r→0

sup
0<d(x,y)≤r

|Pf(x)− Pf(y)|
d(x, y)

,

we may divide both sides of (3.6) by d(x, y)2 and let y → x to obtain

|∇Pf |(x) ≤ CP (f2)(x)

which, as noted above, self-improves to (RPI).
(RPI) =⇒ (HPI) and (HPI) =⇒ (RPI): The proof follows from Proposition 1.3 in [36]

so we omit it for conciseness.

4 Applications to convergence to equilibrium

In this section, we focus on the applications of the transportation type inequalities
proven in Theorem 3.4 as a powerful tool to prove convergence to equilibrium for Markov
semigroups. We will mostly focus on the applications of the transportation inequality

He2(µ0P, µ1P )2 ≤ C

4
W2(µ0, µ1)2,

which, according to Theorem 3.7, comes from the reverse Poincaré inequality

|∇Pf |2 ≤ C(P (f2)− (Pf)2).

The original Kuwada duality proved in Corollary 3.5 relating the transportation inequality

W 2
2 (µ0P, µ1P )2 ≤ CW 2

2 (µ0, µ1)2

to the gradient bound
|∇Pf |2 ≤ CP (|∇f |2)

was already illustrated as a tool to prove convergence to equilibrium in [3], so we will
spend less time on it. Also, our examples will be finite dimensional, though applications
could be given in an infinite dimensional framework as in Section 6. In particular,
applications to stochastic partial differential equations might be the object of a future
work.

4.1 Diffusions with Γ2 ≥ 0

In this section, as an illustration of our general results, we first show how to recover
the results of [28]. Let ∆ be a locally subelliptic diffusion operator (see Section 1.2 in
[4] for a definition of local subellipticity) on a smooth manifold M . For smooth functions
f, g : M → R, we can define the carré du champ operator as the symmetric first-order
bilinear differential form given by:

Γ(f, g) :=
1

2
(∆(fg)− f∆g − g∆f) . (4.1)
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We write Γ(f) for Γ(f, f). (When ∆ is the Laplacian on Rn or on a Riemannian manifold,
we have Γ(f) = |∇f |2.) We assume that ∆ is symmetric with respect to some smooth
measure µ (not necessarily finite), which means that for every pair of smooth and
compactly supported functions f, g ∈ C∞0 (M),∫

M

g∆f dµ =

∫
M

f∆g dµ.

There is an intrinsic distance associated to the operator ∆ that we now describe. An
absolutely continuous curve γ : [0, T ]→M is said to be subunit for the operator L if for
every smooth function f : M → R we have

∣∣ d
dtf(γ(t))

∣∣ ≤ √(Γf)(γ(t)). We then define
the subunit length of γ as `s(γ) = T . Given x, y ∈M , we indicate then with

S(x, y) := {γ : [0, T ]→M | γ is subunit for Γ, γ(0) = x, γ(T ) = y}

and assume that S(x, y) 6= ∅ for every x, y ∈M . For instance, if L is an elliptic operator
or if L is a sum of squares operator that satisfies Hörmander’s condition, then this
assumption is satisfied. Under this assumption,

d(x, y) := inf{`s(γ) | γ ∈ S(x, y)} (4.2)

defines a distance on M and (M,d) is by construction a length space. The carré du
champ operator yields a strong upper gradient structure on (M,d) and from Theorem
1.12 in [4] one has

d(x, y) = sup {|f(x)− f(y)|, f ∈ C∞(M), ‖Γ(f)‖∞ ≤ 1} , x, y ∈M.

We assume that the metric space (M,d) is complete. In that case, from Propositions 1.20
and 1.21 in [4], the operator ∆ is essentially self-adjoint on C∞0 (M). The semigroup in
L2(M,µ) generated by ∆ will be denoted by (Pt)t≥0. The Bakry Γ2 operator is defined as

Γ2(f, g) =
1

2
(∆(Γ(f, g))− Γ(f,∆g)− Γ(g,∆f)) , f, g ∈ C∞(M).

Theorem 4.1. Assume that for every f ∈ C∞(M), Γ2(f, f) ≥ 0. Then, for every ν1, ν2 ∈
P2(M) and t > 0,

He2(ν1Pt, ν2Pt)
2 ≤ 1

8t
W2(ν1, ν2)2.

Therefore, if the invariant measure µ is a probability measure which belongs to P2(M),
then for every x ∈M and t > 0,

He2(δxPt, µ)2 ≤ 1

8t
W2(δx, µ)2

and when t→ +∞, δxPt converges to µ in total variation for every x ∈M .

Proof. It follows from Bakry-Émery calculus (see for instance [2, Proposition 3.3 (5)])
that since Γ2 ≥ 0 one has the following gradient bound that holds for bounded and
Lipschitz functions f ,

Γ(Ptf) ≤ 1

2t
(Pt(f

2)− (Ptf)2), t > 0

which yields the conclusion thanks to Theorem 3.7.

Example 4.2. An example where the theorem applies is the case where ∆ is the Laplace–
Beltrami operator on a complete Riemannian manifold of non-negative Ricci curvature.
In that case, the invariant measure µ is the Riemannian volume measure, and the
assumption Γ2 ≥ 0 is equivalent to the condition that the Ricci curvature of M is
non-negative.
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Remark 4.3. More generally, if ∆ is taken to be the operator generated by the Cheeger
energy as in [28], so that Γ = Ch, then the hypothesis of Theorem 4.1 essentially asks
for X to be an RCD(0,∞) space, and the conclusion is included in [28, Theorem 5.2].
Indeed, the Γ2 ≥ K condition was already the key idea of the results of [28]. Our purpose
in stating Theorem 4.1 is to draw attention to the consequence that δxPt converges in
total variation to its equilibrium measure, at a rate no slower than 1/

√
t.

Remark 4.4. If Γ2 ≥ a, then, Bakry–Émery calculus also yields the gradient bound

Γ(Ptf) ≤ e−2atPt(Γ(f)).

which therefore implies from Theorem 3.4 the following contraction property in the W2

distance:
W2(ν1Pt, ν2Pt)

2 ≤ e−2atW2(ν1, ν2)2,

This appears in [25] and [32].

4.2 Subelliptic operators

The assumption Γ2 ≥ 0 requires some form of ellipticity of ∆. In order to generalize
the previous theorem to truly subelliptic operators, one can make use of the generalized
Γ-calculus developed in [8, 5]. In addition to the carré du champ form Γ defined in (4.1),
we assume that M is endowed with another smooth symmetric bilinear differential form,
indicated with ΓZ , satisfying for f, g ∈ C∞(M)

ΓZ(fg, h) = fΓZ(g, h) + gΓZ(f, h),

and ΓZ(f) = ΓZ(f, f) ≥ 0. Let us assume that:

(H.1) There exists an increasing sequence hk ∈ C∞0 (M) such that hk ↗ 1 on M , and

‖Γ(hk)‖∞ + ‖ΓZ(hk)‖∞ → 0, as k →∞.

(H.2) For any f ∈ C∞(M) one has

Γ(f,ΓZ(f)) = ΓZ(f,Γ(f)).

Let us then consider

ΓZ2 (f, g) =
1

2

[
∆ΓZ(f, g)− ΓZ(f,∆g)− ΓZ(g,∆f)

]
. (4.3)

As for Γ and ΓZ , we will freely use the notations Γ2(f) = Γ2(f, f), ΓZ2 (f) = ΓZ2 (f, f).

Theorem 4.5. Let ρ1 ≥ 0, ρ2 > 0 and κ > 0. Assume that for every f ∈ C∞(M) and
ν > 0,

Γ2(f) + νΓZ2 (f) ≥
(
ρ1 −

κ

ν

)
Γ(f) + ρ2ΓZ(f). (4.4)

Then, for every ν1, ν2 ∈ P2(M) and t > 0,

He2(ν1Pt, ν2Pt)
2 ≤ 1

8t

(
1 +

2κ

ρ2

)
W2(ν1, ν2)2.

Therefore, if the invariant measure µ is a probability measure which belongs to P2(M),
then for every x ∈M and t > 0,

He2(δxPt, µ)2 ≤ 1

8t

(
1 +

2κ

ρ2

)
W2(δx, µ)2

and when t→ +∞, δxPt converges to µ in total variation for every x ∈M .
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Proof. It follows from Proposition 3.2 in [5] that

Γ(Ptf) ≤ 1

2t

(
1 +

2κ

ρ2

)
(Pt(f

2)− (Ptf)2)

and thus the conclusion follows from Theorem 3.7.

Example 4.6. An example where this theorem applies is the case where ∆ is the sub-
Laplacian operator on a compact H-type sub-Riemannian manifold, see [10]. In that case,
the invariant measure µ is again the Riemannian volume measure and the assumption
(4.4) is equivalent to the fact that the horizontal Ricci curvature of M is non-negative.
This applies for instance to the sub-Laplacian on the special unitary group SU(2), as well
as to compact quotients of the Heisenberg group H3.

4.3 Non symmetric Ornstein–Uhlenbeck semigroups on Carnot groups

In this section, we show that the method also applies to hypoelliptic and non-
symmetric diffusion operators. In particular we prove a quantitative rate of convergence
for the non-symmetric Ornstein–Uhlenbeck semigroup on a Carnot group.

A Carnot group of step (or depth) N is a simply connected Lie group G whose Lie
algebra can be written

g = V1 ⊕ ...⊕ VN ,

where
[Vi,Vj ] = Vi+j

and
Vs = 0, for s > N.

From the above properties, it is of course seen that Carnot groups are nilpotent. The
number

D =

N∑
i=1

idimVi

is called the homogeneous dimension of G. On g we can consider the family of linear
operators which act by scalar multiplication ti on Vi. These operators are Lie algebra
automorphisms, due to the grading, and induce Lie group automorphisms ∆t : G→ G

which are called the canonical dilations of G. It is easily seen that there exists on G a
complete and smooth vector field D such that

∆t = e(ln t)D.

This vector field D is called the dilation vector field on G. If X is a left (or right) invariant
smooth horizontal vector field on G, we have for every f ∈ C∞(G), and t ≥ 0,

X(f ◦∆t) = tXf ◦∆t.

Let us now pick a basis V1, ..., Vd of the vector space V1. The vectors Vi can be seen as
left invariant vector fields on G. In the sequel, these vector fields shall still be denoted
by V1, ..., Vd. The left invariant sub-Laplacian on G is the operator:

d∑
i=1

V 2
i .

It is essentially self-adjoint on the space of smooth and compactly supported functions
with respect to the Haar measure µ of G. The heat semigroup (Pt)t≥0 on G generated by
the sub-Laplacian, defined through the spectral theorem, is then a Markov semigroup.
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There are two different operators on G which are both commonly referred to as
Ornstein–Uhlenbeck operators; see [29] for a thorough comparison of the two types
and their properties. We are interested here in the non-symmetric Ornstein Uhlenbeck
operator defined by

L =

d∑
i=1

V 2
i − αD

where α > 0. This operator generates a Markov semigroup (Qt)t≥0 which is given by the
Mehler formula

Qtf = P 1−e−αt
α

(f ◦∆e−αt), t ≥ 0.

It is clear that the probability measure δeP1/α is invariant by Qt where e denotes the
identity element in G. Note that δeP1/α is the heat kernel measure started from e in
G. From known heat kernel estimates in Carnot groups (see [31]), one easily sees that
the invariant measure δeP1/α ∈ P2(G). The next theorem proves exponentially fast
convergence to equilibrium for Qt with a quantitative rate.

Theorem 4.7. For every x ∈ G and t > 0,

He2(δxQt, δeP1/α)2 ≤ Dαe−2αt

2(1− e−αt)
W2(δx, δeP1/α)2.

Proof. We denote by ∇H the horizontal gradient on G given by

∇Hf =

d∑
i=1

(Vif)Vi.

The following reverse Poincaré inequality was proved in [6]:

|∇HPtf |2 ≤
D

2t
(Pt(f

2)− (Ptf)2).

Since Qtf = P 1−e−αt
α

(f ◦∆e−αt), one has

∇HQtf = e−αt∇HP 1−e−αt
α

(f ◦∆e−αt).

Thus,

|∇HQtf |2 ≤
Dαe−2αt

2(1− e−αt)
P 1−e−αt

α

((f ◦∆e−αt)
2) =

Dαe−2αt

2(1− e−αt)
Qt(f

2)

and the conclusion follows as before from Theorem 3.7.

Remark 4.8. The above proof and [6] show that if G is an H-type group, then the
constant Dαe−2αt

2(1−e−αt) can be improved into Dαe−2αt

2d(1−e−αt) .

4.4 Langevin type dynamics driven by Lévy processes

In this subsection, we work in the space X = Rn with its usual Euclidean distance
and gradient.

Let (Nt)t≥0 be a Lévy process in Rn, i.e. a càdlàg stochastic process with stationary
and independent increments. We assume that N0 = 0 a.s. and that for every T > 0,

E
(

supt∈[0,T ] |Nt|2
)
< +∞. In Rn, we consider the following stochastic differential

equation with additive noise:

dXx
t = −∇U(Xx

t )dt+ dNt, Xx
0 = x ∈ Rn, (4.5)
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where U : Rn → R is a C2 function. For simplicity, we assume that ∇U is a Lipschitz
function, so that it is easily proved that (4.5) has a unique solution for any x ∈ Rn which

moreover satisfies for every T > 0, E
(

supt∈[0,T ] |Xx
t |2
)
< +∞. For t ≥ 0, we denote by

Pt the Markov kernel defined by

Ptf(x) = E(f(Xx
t )),

so that Pt(x,A) = P(Xx
t ∈ A). It is a contraction semigroup in L∞(Rn), and from the

square integrability we have that for every µ ∈ P2(Rn) and t ≥ 0, µPt ∈ P2(Rn).

4.4.1 Convergence to equilibrium in the Kantorovich–Wasserstein distance

Let ∇2U denote the Hessian of U .

Theorem 4.9. Assume that there exists a > 0 such that ∇2U ≥ a (uniformly in the
sense of quadratic forms). Then, there exists a unique probability measure µ in the
Wasserstein space P2(Rn) such that for every t ≥ 0, µPt = µ. Moreover, for every t ≥ 0,
and ν ∈ P2(Rn) one has,

W2(νPt, µ)2 ≤ e−2atW2(ν, µ)2.

Proof. We proceed in several steps.
Step 1: Proving the Bakry–Émery type estimate.

Let Jt =
∂Xxt
∂x be the first variation process associated with equation (4.5). Since

Ptf(x) = E(f(Xx
t )), by the chain rule we have

∇Ptf(x) = E (J∗t ∇f(Xx
t )) .

Therefore, by the Cauchy–Schwarz inequality,

|∇Ptf(x)|2 ≤ E
(
|J∗t |2

)
E
(
|∇f(Xx

t )|2
)
.

Since E
(
|∇f(Xx

t )|2
)

= Pt(|∇f |2)(x), we are left to estimate E
(
|J∗t |2

)
. To this end, we

observe that

dJt = −∇2U(Xx
t )Jtdt, J0 = IdRn . (4.6)

From the assumption ∇2U ≥ a this yields

|J∗t |2 ≤ e−2at.

One concludes E
(
|J∗t |2

)
≤ e−2at and therefore

|∇Ptf(x)|2 ≤ e−2atPt(|∇f |2)(x).

By Kuwada duality (Corollary 3.5), this yields that for every ν0, ν1 ∈ P2(Rn),

W2(ν0Pt, ν1Pt)
2 ≤ e−2atW2(ν0, ν1)2. (4.7)

Step 2: Proving the existence and uniqueness of the invariant measure.
Let t > 0. Thanks to (4.7), the map ν → νPt is a contraction from P2(Rn) into itself.

Since P2(Rn) is a complete metric space, one deduces that it admits a unique fixed
point; call it µt. We have then for every t > 0 that µtPt = µt. Composing with Ps yields
µtPtPs = µtPs. Since Pt is a semigroup, one has PtPs = PsPt. Therefore, µtPsPt = µtPs
which means that µtPs is invariant for Pt. By uniqueness this implies µtPs = µt. Using
now the uniqueness of the invariant measure for Ps yields µt = µs. As a conclusion, µt is
independent of t. We can call it µ.

Step 3: Concluding.
Using (4.7) with ν0 = ν and ν1 = µ yields the expected result.
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4.4.2 Convergence to equilibrium in the Hellinger distance

Our next application shows that in the diffusion case one can prove convergence to
equilibrium in the Langevin dynamics without assuming coercivity of the Hessian of
the potential (i.e. ∇2U ≥ a > 0). The price to pay is a convergence speed which is not
exponential but polynomial. We now assume that (Nt)t≥0 is a Brownian motion in Rn. In
that case, the invariant measure of (4.5) is known explicitly, and is given up to a possible
normalization constant by e−U(x)dx.

Theorem 4.10. Assume that the normalized invariant measure dµ = 1
Z e
−U(x)dx is a

probability measure with a finite second moment and that ∇2U ≥ 0 (U convex). Then,
for every x ∈ Rn

He2(δxPt, µ)2 ≤ 1

4t
W2(δx, µ)2.

In particular, Xx
t converges in total variation to µ when t→ +∞.

Proof. From the Bismut–Elworthy–Li formula [11, 20], we have for every v ∈ Rn

〈∇Ptf(x), v〉 =
1

t
E

(
f(Xx

t )

∫ t

0

(Jsv)dNs

)
,

where, as before, Jt =
∂Xxt
∂x is the first variation process associated with equation (4.5).

From the Cauchy–Schwarz inequality, and the fact that ∇2U ≥ 0 implies |Jt| ≤ 1 a.s., one
has

E

(
f(Xx

t )

∫ t

0

(Jsv)dNs

)2

≤ E
(
f(Xx

t )2
)
E

((∫ t

0

(Jsv)dNs

)2
)

≤ E
(
f(Xx

t )2
)
E

(∫ t

0

|Jsv|2ds
)

≤ t|v|2E
(
f(Xx

t )2
)

= t|v|2Pt(f2)(x).

One concludes that for every v ∈ Rn,

〈∇Ptf(x), v〉2 =
1

t
|v|2Pt(f2)(x).

This yields

|∇Ptf(x)|2 ≤ 1

t
Pt(f

2)(x)

which is of the form (3.5). As noted before, this self-improves to (RPI) and thus we have
the expected result by Theorem 3.7.

Remark 4.11. Theorem 4.10 might also be proven using Theorem 4.1 above. However,
we wanted to illustrate the use of the Bismut–Elworthy–Li formula as a tool to prove
reverse Poincaré inequalities.

5 Rényi-type divergences and functional inequalities

5.1 The dynamic dual formulation and basic properties

The notions discussed in the previous section can be modified to give a dynamic
dual formulation of a family of “entropic” divergences on P(X) × P(X), which we
will denote by Ta,b. In the same way that the (squared) distances Wa,b included the
Hellinger distance, the Ta,b family will include the Rényi divergence (in a different
normalization); and where contractions of Wa,b were equivalent to reverse Poincaré
inequalities, we will show (Theorem 5.15) that contractions of Ta,b are equivalent to
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reverse logarithmic Sobolev inequalities, Wang-type Harnack inequalities, and integrated
Harnack inequalities.

Definition 5.1. Let a, b ≥ 0. We denote by Ea,b the class of all positive functions
ϕ ∈ C1([0, 1],Lipb(X)), bounded and bounded away from 0, satisfying the differential
inequality

∂sϕs + aϕs|∇ lnϕs|2 + bϕs lnϕs ≤ 0. (5.1)

Then for probability measures µ1, µ2 ∈ P(X) we set

Ta,b(µ0, µ1) = sup
ϕ∈Ea,b

[∫
X

ϕ1 dµ1 −
∫
X

ϕ0 dµ0

]
(5.2)

(We note here a slight abuse of terminology. The functions Ta,b as defined above do
not actually satisfy the definition of a statistical divergence, but they have renormalized
versions T̃a,b, defined in (5.10) below, which are divergences as shown in Proposition

5.8. However, it will be simpler in most cases to work with Ta,b than with T̃a,b, and we
will continue to use the term “divergence” for either of the two when no confusion will
result.)

Remark 5.2. By writing ϕs = eψs , we could formulate Definition 5.1 instead as

Ta,b(µ0, µ1) = sup

{∫
X

eψ1 dµ1 −
∫
X

eψ0 dµ0 : ∂sψx + a|∇ψs|2 + bψs ≤ 0

}
.

In this notation the relevant Hamilon–Jacobi differential inequality more closely resem-
bles (3.1), with a 0th order term which is now linear instead of quadratic. However, for
comparison to functional inequalities as in Theorem 5.14 below, the original formulation
of Definition 5.1 will be more convenient.

Notation 5.3. For b > 0, let p = eb, let q = p/(p− 1) be the conjugate exponent of p, and
set

Cb :=
1

q
p−q/p =

1

q
p1−q. (5.3)

We will use this notation throughout the rest of the paper when discussing Ta,b. The
reader should keep in mind p, q, Cb depend implicitly on b.

The following elementary inequality will be used several times.

Lemma 5.4. Let b > 0 and define p, q, Cb as in Notation 5.3. Suppose z, w > 0. Then for
all x > 0 we have

x1/pz − xw ≤ Cb
zq

wq−1

with equality when x =

(
z

pw

)q
.

Proof. We can suppose without loss of generality that w = 1, for applying this case with
z replaced by z/w and multiplying through by w yields the general case.

Using Young’s inequality for products uv ≤ 1
pu

p + 1
q v
q, we have

x1/pz − x = (px)1/p(p−1/pz)− x ≤ x+
1

q
p−q/pzq − x = Cbz

q.

Young’s inequality becomes equality precisely when up = vq, which in this case means
px = p−q/pzq or x = p−q/p−1zq. Since −q/p− 1 = −q this is the desired expression.

Alternatively, one can let y = −pw/z < 0, f(x) = −px1/p, and write

sup
x>0

x1/pz − xw =
z

p
sup
x>0

(xy − f(x)) =
z

p
f∗(y)
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where f∗ denotes the Legendre transformation or Fenchel conjugate of the convex
function f . It is known that f∗(y) = −(−y)1−q/(1− q) [13, Table 3.1] and this yields the
desired statement. We thank the anonymous referee for this observation.

Lemma 5.5. Suppose a ≥ 0, b > 0. Let f : X → R be bounded and 1-Lipschitz. Then for
every k < 1

4a we have

Ta,b(µ0, µ1) ≥ Cb

(∫
X

exp
(

kb
eb−4akf

2
)

dµ1

)q
(∫

X
exp

(
kb

1−4akf
2
)

dµ0

)q−1 . (5.4)

Proof. We consider a function ϕ of the form ϕs = exp(α(s)f2 + β(s)). In order to have
ϕs ∈ Ea,b we require

0 ≥ ∂sϕs + aϕs|∇ lnϕs|2 + bϕs lnϕs

= ϕs ·
(
α′(s)f2 + β′(s) + aα(s)2|∇f2|2 + bα(s)f2 + bβ(s)

)
.

Since |∇f | ≤ 1, we have |∇f2|2 = (2f |∇f |)2 ≤ 4f2, so it suffices to have

α′(s) + 4aα(s)2 + bα(s) = 0

β′(s) + bβ(s) = 0

which is satisfied by

α(s) =
kb

ebs − 4ak

β(s) = β0e
−bs

for any k < 1
4a and any β0 ∈ R. So with this choice of ϕ, we have

Ta,b(µ0, µ1) ≥
∫
X

ϕ1 dµ1 −
∫
X

ϕ0 dµ0

= eβ0e
−b
∫
X

exp

(
kb

eb − 4ak
f2
)

dµ1 − eβ0

∫
X

exp

(
kb

1− 4ak
f2
)

dµ0

= Cb

(∫
X

exp
(

kb
eb−4akf

2
)

dµ1

)q
(∫

X
exp

(
kb

1−4akf
2
)

dµ0

)q−1
when we make an optimal choice of β0 as described in Lemma 5.4, with x = eβ0 and
noting that 1/p = e−b.

In the previous lemma, when a = 0, the gradient terms vanish, and we can instead
consider a function ϕs of the form ϕs = exp(α(s)f + β(s)) where f need only be bounded
and Lipschitz. This yields the following improvement:

Corollary 5.6. Suppose b > 0, and let f ∈ Lipb(X). Then

T0,b(µ0, µ1) ≥ Cb

(∫
X
ee
−bf dµ1

)q
(∫
X
ef dµ0

)q−1 . (5.5)

Lemma 5.7. Let b > 0, r ≥ 0. Suppose y : [0, 1] → (0,∞) is absolutely continuous and
satisfies the differential inequality

y′ ≤ ry − by ln y a.e., y(0) = y0 > 0. (5.6)
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Then

y(s) ≤ exp
(r
b

(
1− e−bs

))
ye
−bs

0 (5.7)

for all 0 ≤ s ≤ 1, and in particular, following Notation 5.3,

y(1) ≤ exp

(
r

qb

)
y
1/p
0 . (5.8)

Proof. Let ζ(s) = ebs ln y(s); then ζ(s) satisfies ζ ′(s) ≤ rebs a.e. Integrating from 0 to s
yields

ζ(s) ≤ ln y0 +
r

b

(
ebs − 1

)
(5.9)

which rearranges to (5.7).

Proposition 5.8. For all a ≥ 0 and b > 0, we have Ta,b(µ0, µ1) ≥ Cb, with equality iff
µ0 = µ1. Thus

T̃a,b(µ0, µ1) := ln
1

Cb
Ta,b(µ0, µ1) (5.10)

is a statistical divergence on P(X); that is, T̃a,b(µ0, µ1) ≥ 0 with equality iff µ0 = µ1.

Proof. The lower bound Ta,b(µ0, µ1) ≥ Cb follows from Lemma 5.5 with f = 0.
To show equality holds when µ0 = µ1 = µ, let ϕ ∈ Ea,b. Note that in particular, ϕ

satisfies ∂sϕs + bϕs lnϕs ≤ 0; that is, Ea,b ⊆ E0,b. So for each x, y(s) = ϕs(x) satisfies
(5.6) with r = 0, and so by Lemma 5.7 and Lemma 5.4 we have

ϕ1(x)− ϕ0(x) ≤ ϕ0(x)1/p − ϕ0(x) ≤ Cb.

Thus
∫
X

(ϕ1 − ϕ0) dµ ≤ Cb and taking the supremum over ϕs ∈ Ea,b we have Ta,b(µ, µ) ≤
Cb.

Conversely, suppose µ0, µ1 satisfy Ta,b(µ0, µ1) = Cb. Let f : X → R be bounded and
1-Lipschitz. Lemma 5.5 then implies(∫

X

exp

(
kb

eb − 4ak
f2
)

dµ1

)q
≤
(∫

X

exp

(
kb

1− 4ak
f2
)

dµ0

)q−1
for every k < 1

4a . When k = 0, both sides equal 1, so we differentiate the inequality at
k = 0 to obtain

qbe−b
∫
X

f2 dµ1 ≤ (q − 1)b

∫
X

f2 dµ0

which rearranges to ∫
X

f2 dµ1 ≤
∫
X

f2 dµ0

since q/(q − 1) = p = eb. The rest is a density argument. Replacing f by f + c for an
arbitrary constant c ∈ R and expanding, we get∫

X

f2 dµ1 + 2c

∫
X

f dµ1 + c2 ≤
∫
X

f2 dµ0 + 2c

∫
X

f dµ0 + c2

Letting c→ ±∞, we see this implies
∫
X
f dµ1 =

∫
X
f dµ0 for all bounded 1-Lipschitz f ,

and by scaling, the same holds for all bounded Lipschitz f . This implies µ0 = µ1.

We now show that when a = 0, T̃0,b recovers the Rényi divergence, whose definition
we recall:
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Definition 5.9. For µ0, µ1 ∈ P(X) and r > 1, the Rényi divergence of order r is given by

Dr(µ1 ‖µ0) :=
1

r − 1
ln

∫
X

(
dµ1

dµ0

)r
dµ0 =

1

r − 1
ln

∫
X

(
dµ1

dµ0

)r−1
dµ1

if µ1 is absolutely continuous with respect to µ0, and Dr(µ1 ‖µ0) =∞ otherwise.

Lemma 5.10. Let b > 0. If T0,b(µ0, µ1) <∞ then µ1 is absolutely continuous with respect
to µ0.

Proof. Let A ⊂ X be a Borel set for which µ0(A) = 0. We can then find a sequence of
bounded nonpositive Lipschitz functions fn such that fn(x) → 0 for a.e. x ∈ A (with
respect to µ0 + µ1), and fn(x) → −∞ for a.e. x ∈ Ac. Applying Corollary 5.6 to fn, we
have (∫

X

ee
−bfn dµ1

)q
≤ T0,b(µ0, µ1)

Cb

(∫
X

efn dµ0

)q−1
.

Letting n→∞ and using dominated convergence, this becomes

µ1(A)q ≤ T0,b(µ0, µ1)

Cb
µ0(A)q−1 = 0.

Proposition 5.11. Let b > 0. For all µ0, µ1 ∈ P(X) we have

T0,b(µ0, µ1) =

Cb
∫
X

(
dµ1

dµ0

)q
dµ0, µ1 � µ0

∞, µ1 6� µ0

(5.11)

so that

T̃0,b(µ0, µ1) = (q − 1)Dq(µ1 ‖µ0). (5.12)

Proof. The case µ1 6� µ0 is the contrapositive of Lemma 5.10, so suppose µ1 � µ0 and
let % = dµ1

dµ0
. We show T0,b = Cb

∫
X
%q dµ0.

To show T0,b ≤ Cb
∫
X
%q dµ0, let ϕ ∈ E0,b. Taking y(s) = ϕs(x) and r = 0 in Lemma 5.7,

we have ϕ1 ≤ ϕ1/p
0 pointwise. Hence∫

X

ϕ1 dµ1 −
∫
X

ϕ0 dµ0 =

∫
X

(ϕ1%− ϕ0) dµ0

≤
∫
X

(
ϕ
1/p
0 %− ϕ0

)
dµ0

≤ Cb
∫
X

%q dµ0

by Lemma 5.4. Taking the supremum over ϕ ∈ E0,b yields the desired upper bound.

For the lower bound, if % ∈ Lq(µ0), take a sequence fn ∈ Lipb(X) such that efn → %q,
µ0-almost everywhere (hence also µ1-almost everywhere) and in L1(µ0). Then Corollary
5.6 gives

Cb

(∫
X

ee
−bfn dµ1

)q
≤ T0,b(µ0, µ1)

(∫
X

efn dµ0

)q−1
.

Pass to the limit, applying Fatou’s lemma on the left and L1 convergence on the right, to
obtain

Cb

(∫
X

%qe
−b

dµ1

)q
≤ T0,b(µ0, µ1)

(∫
X

%q dµ0

)q−1
. (5.13)
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Now observe that qe−b = q/p = q − 1 and so
∫
X
%qe
−b

dµ1 =
∫
X
%q−1 dµ1 =

∫
X
%q dµ0.

Hence (5.13) rearranges to

Cb

∫
X

%q dµ0 ≤ T0,b(µ0, µ1)

as desired.

If % /∈ Lq(µ0), then we need to show T0,b(µ0, µ1) =∞. Let m ≥ 0 and Am = {% ≤ m}.
Choose fn ∈ Lipb(X) with efn → %q1Am , µ0-a.e. and in L1(µ0). Then proceeding as in the
previous case, we obtain

Cb

∫
Am

%q dµ0 ≤ T0,b(µ0, µ1).

Letting m → ∞ and applying the monotone convergence theorem, we conclude that
T0,b(µ0, µ1) = +∞.

Finally, we estimate the value of Ta,b for point masses.

Proposition 5.12. Suppose a, b > 0, x0, x1 ∈ X. Then

Cb exp

(
bq

4a(p− 1)
d(x0, x1)2

)
≤ Ta,b(δx0

, δx1
) ≤ Cb exp

(
1

4ab
d(x0, x1)2

)
(5.14)

or in terms of T̃a,b,

bq

4a(p− 1)
d(x0, x1)2 ≤ T̃a,b(δx0

, δx1
) ≤ 1

4ab
d(x0, x1)2. (5.15)

Proof. For the upper bound, suppose ϕ ∈ Ea,b, and as in the proof of the upper bound in
Proposition 3.3, let γ : [0, 1]→ X be a constant speed geodesic joining x0 to x1. Using
the chain rule, we have

d

ds
ϕs(γs) ≤ ∂sϕs(γs) + |∇ϕs|(γs)d(x0, x1)

≤ − a

ϕs(γs)
|∇ϕs|(γs)2 − bϕs(γs) lnϕs(γs) + |∇ϕs|(γs)d(x0, x1)

≤ d(x0, x1)2

4a
ϕs(γs)− bϕs(γs) lnϕs(γs)

by completing the square. So y(s) = ϕs(γs) satisfies the differential inequality (5.6) with
r = d(x0, x1)2/4a, and by Lemma 5.7 and Lemma 5.4 we have

ϕ1(x1)− ϕ0(x0) ≤ exp

(
1

4abq
d(x0, x1)2

)
ϕ0(x0)1/p − ϕ0(x0)

≤ Cb exp

(
1

4ab
d(x0, x1)2

)
.

For the lower bound, apply Lemma 5.5 with µi = δxi and f(x) = d(x0, x) ∧ d(x0, x1),
which is bounded and 1-Lipschitz. Since f(x0) = 0, the dµ0 integral in (5.4) equals 1, and
we obtain

Ta,b(δx0 , δx1) ≥ Cb exp

(
qkb

eb − 4ak
d(x0, x1)2

)
for any k < 1/4a. Letting k ↑ 1/4a and recalling that eb = p, we have the desired
inequality.
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Corollary 5.13. For µ0, µ1 ∈ P(X), we have

Ta,b(µ0, µ1) ≤ Cb inf
π

∫
X×X

exp

(
1

4ab
d(x, y)2

)
π(dx, dy). (5.16)

where the infimum is taken over all couplings π ∈ P(X ×X) of µ0, µ1. As a special case,
we have

Ta,b(δx, µ) ≤ Cb
∫
X

exp

(
1

4ab
d(x, y)2

)
µ(dy). (5.17)

Proof. Let ϕ ∈ Ea,b and let π be a coupling of µ0, µ1. Then we have∫
X

ϕ1 dµ1 −
∫
X

ϕ0 dµ0 =

∫
X×X

(ϕ1(y)− ϕ0(x))π(dx, dy)

≤
∫
X×X

Ta,b(δx, δy)π(dx, dy)

≤ Cb
∫
X×X

exp

(
1

4ab
d(x, y)2

)
π(dx, dy)

and (5.16) follows by taking the supremum over ϕ and the infimum over π.

5.2 Functional inequalities

In the same way that the Hellinger–Kantorovich contraction property was equivalent
to a reverse Poincaré inequality, it turns out that a similar contraction property for Ta,b is
equivalent to a reverse logarithmic Sobolev inequality, as well as to a Wang-type Harnack
inequality.

For one direction of this equivalence, the key tool is the following general statement,
analogous to Theorem 3.4.

Theorem 5.14. Let a, b, γ, δ ≥ 0. Suppose that for all f ∈ Lipb(X) with f > 0, we have

a(Pf)|∇ lnPf |2 + b(Pf) lnPf ≤ γP (f |∇ ln f |2) + δP (f ln f). (5.18)

Then for all µ0, µ1 ∈ P(X) we have

Tγ,δ(µ0P, µ1P ) ≤ Ta,b(µ0, µ1). (5.19)

Proof. Suppose that ϕ ∈ Eγ,δ. Then we have

∂sPϕs + aPϕs|∇ lnPϕs|2 + bPϕs lnPϕs ≤ ∂sPϕs + γP (ϕs|∇ lnϕs|2) + δP (ϕs lnϕs)

= P
(
∂sϕs + γϕs|∇ lnϕs|2 + δϕs lnϕs

)
≤ 0

since ϕs ∈ Eγ,δ and P is positivity preserving. Thus Pϕs ∈ Ea,b, and so∫
ϕ1 d(µ1P )−

∫
ϕ0 d(µ0P ) =

∫
Pϕ1 dµ1 −

∫
Pϕ0 dµ0 ≤ Ta,b(µ0, µ1).

Taking the supremum over ϕ ∈ Eγ,δ we have Tγ,δ(µ0P, µ1P ) ≤ Ta,b(µ0, µ1).

Theorem 5.15. Let C > 0. The following are equivalent:

1. The reverse logarithmic Sobolev inequality

Pf |∇ lnPf |2 ≤ C (P (f ln f)− (Pf) lnPf) , f ∈ Lipb(X), f > 0. (rLSI)
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2. The family of entropic transportation-cost inequalities

T0,κC(µ0P, µ1P ) ≤ Tκ,κC(µ0, µ1), µ0, µ1 ∈ P(X), κ > 0. (ETI)

3. The Wang-type Harnack inequality

Pf(x)p ≤ exp

(
p

p− 1

Cd(x, y)2

4

)
P (fp)(y),

p > 1, f ∈ Lipb(X), f > 0, x, y ∈ X.
(WHI)

Proof. (rLSI) =⇒ (ETI): Apply Theorem 5.14 with a = κ, b = δ = κC, γ = 0.
(ETI) =⇒ (WHI): Fix x, y ∈ X, and let m be some finite reference measure so that

δxP, δyP are absolutely continuous with respect to m, with densities px, py respectively.
Let κ be arbitrary and let p = eκC , q = p/(p − 1). By Proposition 5.11 and Proposition
5.12 with a = κ, b = κC, taking µ0 = δy, µ1 = δx to match notation with other papers, we
have that (ETI) implies the integrated Harnack inequality∫ (

px
py

)q
py dm =

∫ (
px
py

)q−1
px dm ≤ exp

(
1

κ2C2

Cd(x, y)2

4

)
. (5.20)

Now q − 1 = 1/(p− 1) so this may be rewritten as(∫ (
px
py

)1/(p−1)

px dm

)p−1
≤ exp

(
p− 1

(log p)2
Cd(x, y)2

4

)
, p > 1. (5.21)

Since κ was arbitrary, (5.21) holds for all p > 1. By an application of Hölder’s inequality
(see [9, Lemma 2.11]), (5.21) implies the Wang-type Harnack inequality

Pf(x)p ≤ exp

(
p− 1

(log p)2
Cd(x, y)2

4

)
P (fp)(y), p > 1. (5.22)

To recover the more usual form of the Wang Harnack inequality (WHI), we would like to
have (5.22) with p

p−1 in the exponent in place of p−1
(log p)2 . To this end, fix ε > 0. As p→ 1,

we have p
p−1 ∼

p−1
(log p)2 , so for all sufficiently small p′ > 1 we have p′−1

(log p′)2 ≤ (1 + ε) p′

p′−1
and thus

Pf(x)p
′
≤ exp

(
p′

p′ − 1

(1 + ε)Cd(x, y)2

4

)
P (fp

′
)(y). (5.23)

In particular this holds for p′ = p1/n for sufficiently large n. From [34, Proposition 2.1],
with (1 + ε)C in place of C, it follows that (5.23) holds for p in place of p′, and letting
ε→ 0 we obtain (WHI).

(WHI) =⇒ (rLSI): This is shown, in essence, in [33, Theorem 2.1]. The proof there
is in the setting of a manifold with bounded curvature, and requires some minor changes
to apply in this setting, so we give the details.

Let f be a positive bounded Lipschitz function which is bounded away from 0. Observe
first that (WHI) implies that Pf is continuous. To see this, fix x ∈ X and p > 1. Letting
y → x in (WHI), we see that Pf(x)p ≤ lim infy→x P (fp)(y). Now as p→ 1 we have fp → f

uniformly, and since P is Markovian we also have P (fp) → Pf uniformly. So we can
pass to the limit to conclude Pf(x) ≤ lim infy→x Pf(y). For the other direction, apply
(WHI) with x and y interchanged. Let y → x to obtain

(
lim supy→x Pf(y)

)p ≤ P (fp)(x),
and then let p→ 1.

Now, by definition of |∇Pf | there exists a sequence yn → x, with yn 6= x, such that
Pf(yn)−Pf(x)

d(yn,x)
→ ±|∇Pf |(x). Suppose first that we can choose yn so that we have the
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negative sign, i.e. Pf(yn)−Pf(x)
d(yn,x)

→ −|∇Pf |(x). Set rn = d(yn, x) for convenience, and let
δ > 0 be arbitrary. Then (WHI) with y = yn and p = 1 + rnδ reads

Pf(x)1+rnδ ≤ exp

(
C

4δ
(rn + r2nδ)

)
P (f1+rnδ)(yn).

Subtracting Pf(x), dividing by rn, and breaking up the right side, we have

Pf(x)1+rnδ − Pf(x)

rn
≤

exp
(
C
4δ (rn + r2nδ)

)
− 1

rn
P (f1+rnδ)(yn)

+ P

(
f1+rnδ − f

rn

)
(yn) +

Pf(yn)− Pf(x)

rn
.

We now pass to the limit. Since f is continuous, bounded, and bounded away from 0, we
have f1+rnδ → f and 1

rn
(f1+rnδ − f)→ δf ln f uniformly, and so the same is true when P

is applied. We obtain

δPf(x) lnPf(x) ≤ C

4δ
Pf(x) + δP (f ln f)(x)− |∇Pf |(x) (5.24)

and now optimizing over δ and rearranging yields (rLSI).
Otherwise, there exists a sequence yn → x such that Pf(yn)−Pf(x)

d(yn,x)
→ +|∇Pf |(x). We

apply (WHI) with x and y interchanged and proceed as before to obtain

Pf(yn)1+rnδ − Pf(yn)

rn
≤

exp
(
C
4δ (rn + r2nδ)

)
− 1

rn
P (f1+rnδ)(x)

+ P

(
f1+rnδ − f

rn

)
(x) +

Pf(x)− Pf(yn)

rn
.

Passing to the limit again yields (5.24). On the left side, we use the fact that since
Pf is continuous, bounded, and bounded away from 0, we have 1

rn
((Pf)1+rnδ − Pf)→

δPf lnPf uniformly.

Remark 5.16. The Wang Harnack inequality (WHI) is also known to be equivalent to
the integrated Harnack inequality∫

X

(
px
py

)1/(p−1)

px dm ≤ exp

(
p

(p− 1)2
Cd(x, y)2

4

)
, p > 1 (IHI)

where as above px, py are the densities of δxP, δyP with respect to some reference
measure m; see [9, Lemma 2.11]. Hence (IHI) is also equivalent to (ETI) and (rLSI). In
the proof of Theorem 5.15, we obtained (5.21) which is infinitesimally weaker than (IHI);
the self-improvement comes via the application of [34, Proposition 2.1], applying (WHI)
along a sequence of points between x and y.

A different application of Theorem 5.14 relates a gradient bound for P to another
type of contraction inequality for Ta,b, analogous to Theorem 3.5.

Proposition 5.17. Suppose that for some C, the operator P satisfies the L1 lnL-type
gradient estimate

Pf |∇ lnPf |2 ≤ CP
(
f |∇ ln f |2

)
, f ∈ Lipb(X), f > 0. (5.25)

Then for every κ, ε > 0 we have

TκC,ε(µ0P, µ1P ) ≤ Tκ,ε(µ0, µ1), µ0, µ1 ∈ P(X). (5.26)

In particular, this holds if we have the stronger L1-type gradient estimate

|∇Pf | ≤ C1/2P |∇f |, f ∈ Lipb(X). (5.27)
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Proof. By Jensen’s inequality we have (Pf) lnPf ≤ P (f ln f), and combining this with
(5.25) we have that (5.18) holds with a = κ, γ = κC, b = δ = ε. The conclusion then
follows from Theorem 5.14.

To see that (5.27) implies (5.25), using the former together with the bivariate Jensen
inequality for the convex function ψ(x, y) = x2/y, we obtain

|∇Pf |2

Pf
≤ CP (|∇f |)2

Pf
≤ CP

(
|∇f |2

f

)
which is equivalent to (5.25) thanks to the chain rule (Lemma 2.2).

Remark 5.18. It might seem more natural to take ε = 0 in (5.26), but in fact that
statement would have no content, as one can show that Ta,0(µ0, µ1) = +∞ for all
µ0 6= µ1.

6 Applications to quasi-invariance

The reverse logarithmic Sobolev inequality (rLSI) has been the object of significant
study in the literature, although not nearly as much as the “forward” logarithmic
Sobolev inequality. One particularly interesting area of application is in proving absolute
continuity of heat kernel measures; especially in the presence of group structure, where
it can be used to show quasi-invariance of a heat kernel measure under group translation.
Such results are commonly obtained through the use of the Wang Harnack inequality
(WHI), which as noted in Section 5.2 is equivalent to (rLSI). In this section, we consider
some examples and show how the entropic transportation-cost inequality (ETI) provides
an alternate route to these conclusions.

Although in this paper we limit our attention to a few specific known results, there
are many other situations where similar questions about absolute continuity could be
considered, especially in stochastic PDE, see [35]. The techniques developed in this
paper may be useful in the study of these problems, and we hope to address this in
future work.

6.1 Subelliptic heat kernels on finite-dimensional Lie groups

Let G be a finite-dimensional connected real Lie group with identity element e, and
suppose that G is equipped with a left-invariant sub-Riemannian geometry: a bracket-
generating left-invariant sub-bundle H ⊂ TG, and a sub-Riemannian metric g which
is a left-invariant inner product on H. We denote by ∇ the horizontal sub-gradient,
and |∇f | :=

√
g(∇f,∇f). Let d be the Carnot–Carathéodory distance on G; by the

Chow–Rashevskii theorem, the bracket-generating condition implies that d(x, y) <∞ for
all x, y ∈ G. Let L be the left-invariant sub-Laplacian induced by g, Pt = etL the heat
semigroup generated by L, and µt = δePt the heat kernel measure.

Under these conditions, Hörmander’s theorem implies that L is subelliptic and hence
µt is a smooth measure for all t > 0. Our purpose here is to remark that at least part of
this conclusion can be recovered using our techniques instead, if one has a reverse log
Sobolev inequality.

Recall that in general, a Borel probability measure µ on a topological group G is
said to be quasi-invariant under left translation by an element x ∈ G if µ and its left
translation µx(A) = µ(x−1A) are mutually absolutely continuous. If this holds for every
x in some subgroup H ⊂ G, we say µ is quasi-invariant under left translation by H.

Proposition 6.1. Suppose, under the above assumptions, that Pt satisfies the reverse
logarithmic Sobolev inequality

Ptf |∇Ptf |2 ≤ C(t)(Pt(f ln f)− (Ptf) lnPtf). (6.1)
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Then for all t > 0, µt is quasi-invariant under translation by every x ∈ G. As a con-
sequence, µt is absolutely continuous with respect to left Haar measure and has full
support.

Proof. By Theorem 5.15, (6.1) implies the entropic transportation-cost inequality

T0,κC(t)(µ0Pt, µ1Pt) ≤ Tκ,κC(t)(µ0, µ1), κ > 0.

Taking µ0 = δe, µ1 = δx and applying Lemma 5.12 to bound Tκ,κC(t)(δe, δx), we find that
T0,b(µt, µ

x
t ) <∞, and so Lemma 5.10 implies that µxt � µt; the opposite relation µt � µxt

follows by symmetry.
The consequence that µt is absolutely continuous with respect to left Haar measure

is a standard fact about locally compact groups; see for instance [14, Ch. 7, §1.9,
Proposition 11].

By the results in [5], the reverse log Sobolev inequality holds in sub-Riemannian
manifolds satisfying a generalized curvature-dimension inequality of the type introduced
in [8]. It was shown in [8] that such inequalities hold for step two Carnot groups and
the three-dimensional model groups SU(2) and SL(2), and in [7] for three-dimensional
solvable groups.

6.2 Abstract Wiener space

The phenomenon of quasi-invariance is more interesting in groups that are not locally
compact, such as infinite dimensional vector spaces or Lie groups. Here, the smoothness
of a measure cannot be described in terms of absolute continuity to Haar measure, since
Haar measure does not exist, and so quasi-invariance provides a more “intrinsic” notion
of regularity.

In this subsection, we consider the very classical example of abstract Wiener space.
As this and similar infinite-dimensional models do not fit exactly into the setting defined
in Section 2, we shall briefly discuss how to adapt the results of Sections 3 and 5
in this case, as a prototype for later examples. We give basic definitions here to fix
notation; for further background on abstract Wiener space and Gaussian measures on
infinite-dimensional spaces, we refer to [12, 24].

An abstract Wiener space consists of a real separable Banach space W equipped
with a centered non-degenerate Gaussian Borel measure µ. We denote by H ⊂ W

the associated dense Cameron–Martin space, into which the continuous dual W ∗ is
naturally embedded. A smooth cylinder function is a function F : W → R of the form
F (x) = ϕ(f1(x), . . . , fn(x)) for some n, where ϕ ∈ C∞b (Rn) is a smooth function with all
partial derivatives bounded, and f1, . . . , fn ∈ W ∗ ⊂ H; unless otherwise specified, we
assume without loss of generality that f1, . . . , fn are orthonormal in H. We let Cyl(W )

denote the space of all such functions; this will be used in place of Lipb(W ) as a space of
test functions. It is a standard fact that Cyl(W ) is dense in Lp(µ) for 1 ≤ p <∞.

The Malliavin gradient DF : W → H of a cylinder function is defined by (DF )(x) =∑n
i=1(∂iϕ)(f1(x), . . . , fn(x))fi, so that when the fi are orthonormal in H we have

‖DF (x)‖2H =

n∑
i=1

|∂iϕ(f1(x), . . . , fn(x))|2 = |∇ϕ(f1(x), . . . , fn(x))|2.

Note that ‖DF‖H is not a strong upper gradient on W with respect to the distance
induced by its norm ‖ · ‖W .

The heat semigroup Pt on W is the convolution semigroup induced by the rescaled
measure µ, namely PtF (x) =

∫
F (x +

√
ty)µ(dy). When F is a cylinder function of the
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form F (x) = ϕ(f1(x), . . . , fn(x)), we have PtF (x) = ptϕ(f1(x), . . . , fn(x)) where pt is the
standard heat semigroup on Rn; in particular, PtF is again a cylinder function.

We recall that pt satisfies the reverse Poincaré inequality

|∇ptϕ|2 ≤
1

t
(ptϕ

2 − (ptϕ)2), ϕ ∈ C∞b (Rn) (6.2)

and the reverse logarithmic Sobolev inequality

ptϕ|∇ ln ptϕ|2 ≤
2

t
(pt(ϕ lnϕ)− ptϕ ln ptϕ), ϕ ∈ C∞b (Rn), ϕ > 0. (6.3)

These follow, for instance, by standard Γ-calculus from the elementary commutation
∇ptϕ = pt∇ϕ. See for instance [2, Proposition 3.3], taking ρ = 0. Note that the constants
in these inequalities are dimension-independent. As such, evaluating at (f1(x), . . . , fn(x)),
x ∈W , we obtain the corresponding inequalities for Pt on (W,µ):

‖DPtF‖2H ≤
1

t
(PtF

2 − (PtF )2), F ∈ Cyl(W ) (6.4)

PtF‖D lnPtF‖2H ≤
2

t
(Pt(F lnF )− PtF lnPtF ), F ∈ Cyl(W ), F > 0. (6.5)

We modify Definitions 3.1 and 5.1 and by taking our class of test functions to be
smooth cylinder functions of space and time, e.g. functions Fs : [0, 1] ×W → R of the
form Fs = ϕ(s, f1(x), . . . , fn(x)), ϕ ∈ C∞b ([0, 1]×Rn). Let Cyl([0, 1]×W ) denote the space
of such functions. Then we redefine

Aa,b =
{
Fs ∈ Cyl([0, 1]×W ) : ∂sFs + a‖DFs‖2H + bF 2

s ≤ 0
}

Ea,b =
{
Fs ∈ Cyl([0, 1]×W ) : F > 0, ∂sFs + aFs‖D lnFs‖2H + bF 2

s ≤ 0
}

and defineWa,b, Ta,b accordingly on P(W ). We haveW0,b and T0,b related to Hellinger and
Rényi divergences in the same way as before. Moreover we can follow the proof of the
upper bound in Proposition 5.12, taking γ(s) = sx1 + (1− s)x0 and noting

∣∣ d
dsF (γ(s))

∣∣ ≤
‖DF (γ(s))‖H‖x1 − x0‖H , to conclude

Ta,b(δx0 , δx1) ≤ Cb exp

(
1

4ab
‖x0 − x1‖2H

)
. (6.6)

Now Theorem 5.15 allows us to recover the classical Cameron–Martin quasi-invar-
iance theorem [16]. For t > 0, let µt = µ(t−1/2 · ) = δ0Pt be the rescaling of the Gaussian
measure µ, and for h ∈ H let µht = µ(t−1/2(· − h)) = δhPt be its translation by h. We then
obtain:

Proposition 6.2 (Cameron–Martin theorem). For all t > 0 and h ∈ H, the measures
µt, µ

h
t are mutually absolutely continuous.

Proof. The logic is the same as in the proof of Proposition 6.1. Since the reverse
logarithmic Sobolev inequality holds, Theorem 5.15 and (6.6) imply that for any κ > 0,
we have

T0,2κ/t(µt, µ
h
t ) ≤ T1,2κ/t(δ0, δh) ≤ C2κ/t exp

(
t

8κ2
‖h‖2H

)
<∞ (6.7)

Thus by Lemma 5.10 we have µht � µt, and the reverse statement µt � µht follows by
symmetry.

We also obtain a quantitative estimate on the Lp norm of the density dµht /dµt, which
is perhaps most convenient to consider in the form of (5.21):(∫

W

(
dµt
dµht

)1/(p−1)

dµt

)p−1
≤ exp

(
p− 1

(log p)2
‖h‖2H

2t

)
. (6.8)
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As the left side is known to exactly equal exp
(

p
p−1

‖h‖2H
2t

)
(so that (IHI) is sharp), (6.8)

becomes sharp as p→ 1.
One may also apply the reverse logarithmic Sobolev inequality for the Ornstein–

Uhlenbeck Qs, which is the symmetric Markov semigroup on L2(µ) generated by the
Dirichlet form E(F, F ) =

∫
W
‖DF‖2H dµ. It satisfies

QsF‖D lnQsF‖2H ≤
2

e2s − 1
(Qs(F lnF )−QsF lnQsF ). (6.9)

See for instance [2, Section 3], noting that the carré du champ of Qs is Γ(F, F ) = ‖DF‖2H ,
without a factor of 1

2 . Carrying out the above computations with Qs and noting that

δhQs = µe
−sh

1−e−2s , one obtains exactly the same results for t < 1.
Finally, we remark that the Cameron–Martin quasi-invariance theorem can also be

obtained using the Hellinger–Kantorovich contraction property of Theorem 3.7. Indeed,
the reverse Poincaré inequality (6.4) for Pt implies

He2(µt, µ
h
t )2 ≤ 1

4t
‖h‖2H (6.10)

since the Kantorovich–Wasserstein distance between point masses in this setting cor-
responds to the Cameron–Martin distance; this can be checked directly from the dy-
namic dual definition as in Proposition 3.3. Unfortunately, (6.10) has no content unless
1
4t‖h‖

2
H < 2, so to work around this, choose an integer n so large that n−2 1

4t‖h‖
2
H < 2.

Applying (6.10) with h/n in place of h, we conclude that He22(µt, µ
h/n
t ) < 2 and in particu-

lar that µt, µ
h/n
t are not mutually singular. By the Feldman–Hájek dichotomy theorem

for Gaussian measures [22, 21, 23, 15], they must therefore be mutually absolutely
continuous, which we denote by µt ∼ µh/nt . Repeating this argument n times, we have

µt ∼ µh/nt ∼ µ2h/n
t ∼ · · · ∼ µht , and since ∼ is an equivalence relation, we have µt ∼ µht as

desired.
Although this argument uses only the reverse Poincaré inequality, which is a priori

weaker than the reverse logarithmic Sobolev inequality used in Proposition 6.2, the
conclusion is also weaker as it does not yield any quantitative information about the
distance between the measures µt, µht .

We note that some proofs of the Feldman–Hájek dichotomy theorem, including
Feldman’s original proof [22, 21], make use of the Cameron–Martin quasi-invariance
theorem, which would seem to make the above argument circular. However, it is possible
to prove the dichotomy theorem directly, without assuming quasi-invariance—see for
example [15]—and this breaks the cycle.

6.3 Infinite dimensional Heisenberg-like groups

The ideas of the previous two subsections come together in the study of infinite-
dimensional groups where the semigroup in question is not elliptic. In [9], the authors
considered infinite-dimensional Heisenberg-like groups, introduced in [19], with their
hypoelliptic heat kernels and corresponding heat semigroups. These groups carry a
natural sub-Riemannian geometry analogous to the Heisenberg group and other Carnot
groups of step two. They use generalized curvature-dimension inequalities to show that
these spaces satisfy a reverse logarithmic Sobolev inequality. From this, they derive a
Wang-type Harnack inequality, and use this to show quasi-invariance of the heat kernel
measure under the group translation. In this section, we show that as in the case of
Gaussian measures, transport inequalities provide an alternate route from reverse log
Sobolev to quasi-invariance in this setting. We only sketch the argument here, as the
details are closely analogous to those for the Gaussian case.
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We follow the notation of [9] and refer the reader there for complete definitions,
background, and further references. Let (W,H, µ) be an abstract Wiener space and C

a finite-dimensional inner product space. Suppose that g = W × C is equipped with
a continuous Lie bracket [·, ·] satisfying [W,W ] = C and [g, C] = 0. The corresponding
Banach Lie group G is given by G = W×C equipped with the nonabelian group operation
g1 · g2 = g1 + g2 + 1

2 [g1, g2] defined by the Baker–Campbell–Hausdorff formula. Then
gCM = H ×C is a dense Lie subalgebra of g, called the Cameron–Martin Lie subalgebra,
and likewise GCM = H ×C ⊂ G is a dense subgroup of G.

If Bt is a standard Brownian motion on (W,µ), we may define a left-invariant Brownian

motion gt on G by the formula gt =
(
Bt,

1
2

∫ t
0
[Bs,dBs]

)
. Let νt = Law(g2t) be the heat

kernel measure induced by gt. By analogy with the finite-dimensional Heisenberg group,
one expects the measure νt to be “smooth” in some sense. One cannot express this
smoothness in terms of a density with respect to Lebesgue or Haar measure because the
latter do not exist in infinite dimensions, but another reasonable notion of smoothness
would be for νt to be quasi-invariant under left translation by elements of the Cameron–
Martin subgroup GCM . The main result of [9] is that this is in fact the case. (We
also mention [18] where the same statement was shown through different means, by
producing a density of νt with respect to the measure µ×m, where µ is the Gaussian
measure on W and m is Lebesgue measure on C.)

It is shown in [9] that the group G can be approximated by finite-dimensional projec-
tion groups GP , each of which is a nilpotent Lie group of step 2. This leads to a notion of
smooth cylinder functions F : G→ R which can be differentiated in directions X ∈ gCM ,
and thus a horizontal gradient ∇HF : G → H can be defined for such functions. If
γ : [0, 1]→ GCM is an absolutely continuous horizontal path, then its derivative γ′ can be
identified as a curve in H, and we have the chain rule d

dsF (γ(s)) = 〈∇HF (γ(s)), γ′(s)〉H .
Moreover, GCM is a length space with respect to the horizontal distance dCM , and so
the estimates on Wa,b(δ0, δg), Ta,b(δ0, δg) from Propositions 3.3 and 5.12 go through for
g ∈ GCM , with d = dCM .

Now [9, Proposition 4.8] shows, by means of generalized curvature-dimension inequal-
ities as introduced in [8], that each projection group GP satisfies a reverse logarithmic
Sobolev inequality, with a uniform constant of the form C/t where C depends only on the
structure of G, and not on the projection. This can be restated as the following reverse
logarithmic Sobolev inequality for cylinder functions on G:

PtF‖∇ lnPtF‖ ≤
C

t
(Pt(F lnF )− Ptf lnPtf) (6.11)

and so as in Proposition 6.2 above, we recover a version of the main quasi-invariance
result of [9] and [18]:

Proposition 6.3. For each t > 0, the heat kernel measure νt on G is quasi-invariant
under left translation by elements of GCM .

Moreover, the bounds on T0,b(νt, ν
g
t ) in (ETI) yield Lq bounds on the Radon–Nikodym

derivative dνgt /dν, as in the proof of Theorem 5.15, which are asymptotically equivalent
to the integrated Harnack inequalities of [9, Section 5.2] as p→ 1 and q →∞.
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