
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 26 (2021), article no. 53, 1–86.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP601

The Z-Dirac and massive Laplacian operators in the
Z-invariant Ising model

Béatrice de Tilière*

Abstract

Consider an elliptic parameter k; we introduce a family of Zu-Dirac operators
(K(u))u∈C, relate them to the Z-massive Laplacian of [11], and extend to the full
Z-invariant case the results of Kenyon [45] on discrete holomorphic and harmonic
functions, which correspond to the case k = 0. We prove through combinatorial
identities, how and why the Zu-Dirac and Z-massive Laplacian operators appear
in the Z-invariant Ising model, considering the case of infinite and finite isoradial
graphs. More precisely, consider the dimer model on the Fisher graph GF arising from
a Z-invariant Ising model. We express coefficients of the inverse Fisher Kasteleyn
operator as a function of the inverse Zu-Dirac operator and also as a function of
the Z-massive Green function; in particular this proves a (massive) random walk
representation of important observables of the Ising model. We prove that the squared
partition function of the Ising model is equal, up to a constant, to the determinant of
the Z-massive Laplacian operator with specific boundary conditions, the latter being
the partition function of rooted spanning forests. To show these results, we relate
the inverse Fisher Kasteleyn operator and that of the dimer model on the bipartite
graph GQ arising from the XOR-Ising model, and we prove matrix identities between
the Kasteleyn matrix of GQ and the Zu-Dirac operator, that allow to reach inverse
matrices as well as determinants.
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1 Introduction

This paper is inspired by three sets of results suggesting connections between the
Ising model on a planar graph G and (massive) random walks on G and its dual G∗.
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The Z-Dirac and massive Laplacian operators in the Z-invariant Ising model

• Messikh [60] observes that large deviation estimates of a massive random walk
occur when computing the correlation length of the super-critical Ising model on Z2;
a result later proved by Beffara and Duminil-Copin [7] using the FK-Ising observable
of [68] away from the critical point.

• In Smirnov and Chelkak-Smirnov’s proof of conformal invariance of the critical
Z-invariant Ising model [67, 68, 18], the key discrete tools are observables – spin or
FK (see also [39]) – that are holomorphic. Discrete holomorphic functions in turn are
naturally related to harmonic functions [33, 59, 45, 17]. The paper [58] addresses the
question of the massive version of these observables and that of proving convergence
to massive SLE’s. In particular, they give ideas of proofs in the case of the massive
harmonic explorer and of loop erased random walks, see [19] for a complete proof. As
mentioned in the previous point, a massive version of the FK-Ising observable is fruitfully
used in the paper [7].

• We prove, through combinatorial constructions, that the squared partition function
of the critical Z-invariant Ising model is equal, up to a multiplicative constant, to the
partition function of spanning trees [29, 30]. An abstract proof of this identity is given in
the toroidal Z-invariant case in [10, 12].

The main contribution of this paper is to provide a unified framework for all of the
above, which holds in the full Z-invariant case, in the infinite and finite cases. Our main
results are obtained as a combination of intermediate steps that are interesting in their
own respect. We nevertheless feel that, before listing statements leading to the principal
Ising results, we should convey the main ideas.

Let us first be more precise about operators underlying our “inspiration” papers.
Large deviation estimates of massive random walks are related to the massive Green
function, the latter being the inverse of the massive Laplacian operator. By definition
discrete holomorphic functions are in the kernel of the Dirac operator, which is a
Kasteleyn matrix/operator of the double graph GD [45]; harmonic functions are in the
kernel of the Laplacian operator. The spanning tree partition function is equal to the
determinant of the Laplacian operator [50]. Summarizing, a central role is played by the
Dirac operator (at criticality) and the (massive) Laplacian in the (super) critical Ising
model.

Our first contribution is to introduce one of the missing pieces of the puzzle, namely
the full Z-invariant version of the (critical) Dirac operator of [45], referred to as the
Zu-Dirac operator, u being a natural free parameter disappearing at criticality. This is
the subject of Section 3, as well as its connections to the Z-invariant massive Laplacian
of [11] and the study of the corresponding dimer model on the double graph GD.

To study the Ising model, we use Fisher’s correspondence [35] relating the low (or
high) temperature expansion of the model [51, 52] to the dimer model on the Fisher
graph GF with associated Kasteleyn matrix/operator KF. The partition function of the
dimer model is the Pfaffian of KF, and the Boltzmann/Gibbs measures are explicitly
expressed using coefficients of KF and its inverse (KF)−1 [72, 44, 23, 47, 9]. This means
that knowing the determinant of KF and its inverse amounts to fully understanding the
partition function of the Ising model and probabilities of its low (or high) temperature
expansion. Notably, coefficients of the inverse Kasteleyn operator (KF)−1 are also related
to other important observables of the Ising model as the spin-Ising observable of [18],
see [69, 16], and the FK-Ising observable of [68, 18] which is also the fermionic spinor
observable of [39] (up to normalization), see [32, 63].

Consider the dimer model on GF arising from a Z-invariant Ising model. Our main
contribution is to prove matrix identities relating the Kasteleyn operator KF and the
Zu-Dirac operator and also the Z-massive Laplacian of [11]. The strength of these
identities is that they allow to reach inverse operators and also, after some extra

EJP 26 (2021), paper 53.
Page 2/86

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP601
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The Z-Dirac and massive Laplacian operators in the Z-invariant Ising model

work, determinants. As a consequence, in the finite and infinite cases, we express
coefficients of (KF)−1 using the inverse Zu-Dirac operator and also using the Z-massive
Green function; this is the subject of Section 5, see also the corresponding part of the
introduction. In essence, this proves that the contour Ising Boltzmann/Gibbs measures
can be computed from (massive) random walks (with specific boundary conditions in the
finite case). In the finite case we also prove that the squared Ising partition function is
equal, up to an explicit constant, to the determinant of the massive Laplacian, that is to
the partition function of rooted spanning forests, see Corollary 4.5 and also Theorem 1.7
of the introduction. Comments on how these results connect to our “inspiration” and
other papers are given at the end of this section.

Section 2 contains preliminaries. Section 4 contains the main intermediate step:
we consider the dimer model on the bipartite graph GQ arising from the XOR-Ising
model [74] constructed from two independent Z-invariant Ising models [32, 13]. We
prove matrix identities relating its Kasteleyn matrix/operator KQ and the Zu-Dirac
operator. In Section 5, building on the work of Dubédat [32], we express coefficients of
the inverse operator (KF)−1 using coefficients of the inverse operator (KQ)−1; this result
holds for the dimer model on the Fisher graph GF arising from any 2d-Ising model, not
necessarily Z-invariant. Note that this result can also be derived from the paper [16],
see Remark 1.9. Combining this with the results of Section 4 then allows us to deduce
the Ising results. In Section 6, we specify some of our results in two important cases: the
Z-invariant critical case, and the full Z-invariant case when the underlying graph is Z2.

To give detailed statements, let us be more precise about Z-invariant models [64, 43],
fully developed by Baxter [4, 5, 6], see also [65, 2, 3]. A Z-invariant model is naturally
defined on an isoradial graph G = (V,E); parameters are chosen so that the partition
function only changes by a constant when performing a star-triangle transformation of
the underlying graph, i.e., they are required to satisfy the Yang-Baxter equations. The
solution to this set of equations for the Ising model has, given the embedding of the
graph, a free elliptic parameter k, such that (k′)2 := 1− k2 ∈ (0,∞), and the coupling
constants J are [6]:

∀ e ∈ E, Je =
1

2
ln
(1 + sn(θe|k)

cn(θe|k)

)
,

where sn, cn are two of the Jacobi elliptic trigonometric functions, and θ̄e = θe
π

2K is an
angle associated to the edge e in the isoradial embedding. When k = 0, i.e. k′ = 1, the
elliptic functions sn, cn, are the trigonometric functions sin, cos, and the Ising model is
critical [55, 22, 57]. As (k′)2 varies from 0 to ∞, the coupling constants range from
∞ to 0 [12] thus covering the whole range of inverse temperatures. In the paper [11],
we introduce Z-invariant rooted spanning forests with associated operator the massive
Laplacian ∆m; when k = 0, we recover the critical Laplacian of [45]. We also prove an
explicit local expression for its inverse, the Z-massive Green function Gm, using the
discrete massive exponential function [11]. We are now ready to give a detailed overview
of this paper.

Section 3: Zu-Dirac and Z-massive Laplacian operators Fix an elliptic parameter
k, and let T(k) be the torus C/(4KZ+ 4iK ′Z), where K,K ′ are defined in Section 2.5.4.
Denote by C(k) the component R/4KZ of T(k); whenever no confusion occurs, we will
omit the argument k in C(k). We introduce a family of Zu-Dirac operators (K(u))u∈C
on the double graph GD = (W ∪ B,ED) associated to pairs of dual directed spanning
trees, extending to the full Z-invariant case the Dirac operator ∂̄ of [45], corresponding
to k = 0. In the finite case, we introduce a family of operators (K∂(u))u∈C′ , with
boundary conditions tuned for the Ising model, where C′ is a subset of C defined in
Equation (3.4). Although these operators play a key role in the Z-invariant Ising model,
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they are interesting in their own respect. In the specific case k = 0, results we obtain
can be found in [45, 71, 43]. We prove, see also Theorem 3.6:

Theorem 1.1.

• Infinite case. Let u ∈ C, then the Zu-Dirac operator K(u), the Z-massive Laplacian
∆m and the dual ∆m,∗ of [11] satisfy the following identity:

K(u)
t
K(u) = k′

(
∆m 0

0 ∆m,∗

)
.

• Finite case. Let u ∈ C′, then the Zu-Dirac operators K(u), K∂(u), the Z-massive
Laplacian ∆m,∂(u) and the dual ∆m,∗ satisfy the following identity:

K∂(u)
t
K(u) = k′

(
∆m,∂(u) Q(u)

0 ∆m,∗

)
.

A function F ∈ CB is said to be Zu-holomorphic if K(u)F = 0. As a consequence of
Theorem 1.1, if F is Zu-holomorphic, then F|V is Z-massive harmonic on G and F|V∗ is
Z-massive harmonic on G∗, thus explaining the part “Dirac” in “Zu-Dirac operator”.

Note that in the finite case, the Z-massive Laplacian ∆m,∂(u) arising in the context
of the Ising model might have negative masses and conductances along the boundary,
see Equation (3.6) where it is explicitly defined. As a consequence, this operator is not
necessarily positive definite.

In the infinite case, Theorem 1.1 yields the following relations for inverse operators,
see also Corollary 3.15; the statement in the finite case is given in Corollary 3.17.

Corollary 1.2 (Infinite case). For every u ∈ C, consider the operator K(u)−1 mapping
CW to CB whose coefficients are defined by, for every

¯
v,

¯
f, w as in Figure 14,

K(u)−1

¯
v,w =e−i

ᾱf+β̄f
2 (k′)−1sc(θf)

1
2

(
[dn(uαf

) dn(uβf
)]

1
2Gm

¯
v,v2
−[dn(uαf+2K) dn(uβf+2K)]

1
2Gm

¯
v,v1

)
K(u)−1

¯
f,w = −ie−i

ᾱf+β̄f
2 (k′)−1 sc(θ∗f )

1
2

(
[dn((uβf

)∗) dn((uαf+2K)∗)]
1
2Gm,∗

¯
f,f2

+

− [dn((uβf−2K)∗) dn((uαf
)∗)]

1
2Gm,∗

¯
f,f1

)
,

where Gm and Gm,∗ are the Z-massive and dual Z-massive Green functions of [11]. Then
K(u)−1 is the unique inverse of the Zu-Dirac operator K(u) decreasing to zero at infinity.

This gives, in Theorem 3.19, an explicit local expression for a Gibbs measure of the
dimer model on the double graph GD, where the locality property is inherited from that
of the Z-massive Green functions of [11]. Using the KPW-Temperley bijection [71, 49],
probabilities of pairs of dual directed spanning trees are computed using the Green
function of a massive, non-directed random walk. Apart from the locality property which
is specific, a similar result is obtained by Chhita [20] in the case of Z2 with a specific
choice of weights.

In Theorem 3.8 and Corollary 3.10, we restrict to the finite case and prove relations
on determinants; we show,

Theorem 1.3. Let M0 be a dimer configuration of GD,r. Then, for every u ∈ C′, we have

|detK(u)| = (k′)
|V∗|

2

( ∏
w∈W

sc(θw)
1
2

)( ∏
e=wx∈M0

[dn(uαe) dn(uβe)]
1
2

)
det ∆m,∗,

|detK∂(u)| = (k′)
|V|−1

2

( ∏
w∈W

cs(θw)
1
2

)( ∏
e=wx∈M0

[k′ nd(uαe) nd(uβe)]
1
2

)
det ∆m,∂(u).
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As a consequence, the partition function of pairs of dual directed spanning trees
is equal, up to a constant, to the partition function of rooted spanning forests. In the
critical case, k = 0, this is an easy consequence of Temperley’s bijection [71], but the
correspondence does not extend when k 6= 0. The main tools of the proof are gauge
equivalences on bipartite adjacency matrices and on adjacency matrices of digraphs, see
also Appendix A.

The Zu-Dirac operator is equivalent to a model of directed spanning trees. In
Proposition 3.13, we prove that the latter is Z-invariant, thus explaining the part “Zu” of
the terminology “Zu-Dirac operator”.

Section 4: Kasteleyn operator of the graph GQ and Zu-Dirac operator We con-
sider the dimer model on the graph GQ arising from the Z-invariant XOR-Ising model,
with Kasteleyn matrix KQ. The main result of this section, and one of the main result of
this paper, is Theorem 4.2 proving the following relations between the matrix KQ and
the Zu-Dirac operator. The matrices S(u) and T (u) are defined in Section 4.1 and the
statement is as follows.

Theorem 1.4.

• Infinite case. Let u ∈ C, then the Kasteleyn matrix KQ, the Zu-Dirac operator K(u)

and the matrices S(u), T (u) are related by the following identity:

KQ T (u) = S(u)K(u).

• Finite case. Let u ∈ C′, then the Kasteleyn matrix KQ, the Zu-Dirac operator K∂(u)

and the matrices S(u), T (u) are related by the following identity:

KQ T (u) = S(u)K∂(u).

The matrix relations established in Theorem 1.4 have quite remarkable consequences.
They allow to establish a one parameter family of relations between inverse operators
which turn out to be very useful for some specific choices of u. Also, after some extra
work, they permit to relate determinants in the finite case, thus partition functions.
More precisely, in the infinite case, Theorem 1.4 yields the following relations on inverse
matrices, see also Corollary 4.12; the statement in the finite case is the subject of
Corollary 4.14.

Corollary 1.5 (Infinite case). For every u ∈ C, for every
¯
w,

¯
v,

¯
f , and every w, b, b′ as in

Figure 20,

(KQ)−1

¯
w,b cn(uβf

)−i(KQ)−1

¯
w,b′ sn(uβf

) dn(uαf
) =

ei
β̄f−β̄i

2

Λ(uαf
, uβf

)

[
cn(uβi

)K(u)−1

¯
v,w−i sn(uβi

)K(u)−1

¯
f,w

]
,

where Λ(uα, uβ) = [sn θ cn θ nd(uα) nd(uβ)]
1
2 , and θ = uα − uβ .

Specifying the value of the parameter u allows to express coefficients of the inverse
Kasteleyn operator (KQ)−1 using the inverse Zu-Dirac operator; combining this with
Theorem 1.2 yields an expression using the Z-massive Green function of [11]. Note
that since the dimer model on GQ is also related to a free-fermion, zero-field 6-vertex
model [62, 76, 32], see also Section 2.3.3, the following corollary also relates this 6-
vertex model Boltzmann measure to the inverse Zu-Dirac operator and massive Green
function. We obtain, see also Corollary 4.16 and Corollary 4.18 for the finite case,
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Corollary 1.6 (Infinite case). For every
¯
w, b of GQ as in Figure 22,

(KQ)−1

¯
w,b = ei

β̄f−β̄i
2

[cn(θf ) sn(θf ) nd(θf )]
1
2

(
cn
(
βf−βi

2

)
K(βf)

−1

¯
v,w − i sn

(
βf−βi

2

)
K(βf)

−1

¯
f,w

)
(KQ)−1

¯
w,b = e−i

β̄i+ᾱf
2 (k′)−1

(
cn
(
βf−βi

2

)
cn(θf )

[
dn(θf)G

m

¯
v,v2
− k′Gm

¯
v,v1

]
+

−
sn
(
βf−βi

2

)
sn(θf)

[
dn(θf)G

m,∗

¯
f,f2
−Gm,∗

¯
f,f1

])
.

This proves, in an alternative way, an explicit local expression for a Gibbs measure of
the dimer model on the graph GQ [12], where the locality property is seen as directly
inherited from that of the Z-massive Green function.

Again, using Theorem 1.4 and additional combinatorial arguments, we prove in
Theorem 4.3 that the determinants of KQ and of the Zu-Dirac operator are equal, up to
an explicit constant. By [32], the determinant of KQ is equal up to a constant, to the
squared partition function of the Ising model. Combining this with Theorem 1.3 gives,
see also Corollary 4.5 for the explicit value of C(u),

Theorem 1.7. For every u ∈ C′′,

[Z+
Ising(G, J)]2 = C(u)|det ∆m,∂(u)|,

where C′′ is a subset of C defined in Equation (3.19).

When k = 0, we essentially recover the result of [30]; see Section 6.1. The above
proves that the squared partition function of the Z-invariant Ising model is equal, up to
a multiplicative constant, to that of rooted directed spanning forests. This relates on the
level of partition functions two classical, apparently very different, models of statistical
mechanics.

Section 5: Dimer model on the Fisher graph GF and the Kasteleyn matrix KQ

Consider the dimer model on GF with Kasteleyn matrix KF arising from an Ising model
with coupling constants J, not necessarily Z-invariant, and the corresponding dimer
model on the bipartite graph GQ, with (real) Kasteleyn matrix K̃Q. Note that the entries of
K̃Q are fully determined by the coupling constants J. Building on the work of Dubédat [32]
and proving additional matrix relations, we express coefficients of the inverse operator
(KF)−1 using coefficients of the inverse operator (K̃Q)−1. Partitioning vertices of GF as
A ∪B as in [32], we obtain, see also Theorem 5.4,

Theorem 1.8 (Finite and infinite cases). Using the notation of Figure 26, there are four
cases to consider:

1. For every
¯
a ∈ A and every b ∈ B such that, when the graph GF is moreover finite, b

is not a boundary vertex:

(KF)−1

¯
a,b =

1

1 + e−4Jf
e

[
(K̃Q)−1

¯
w,b + (K̃Q)−1

¯
w,b′εb′,be

−2Jf
e
]
.

2. When the graph GF is finite, for every
¯
a ∈ A and every boundary vertex b of B, we

have

(KF)−1

¯
a,b = (K̃Q)−1

¯
w,b.

3. For every
¯
a, a ∈ A,

(KF)−1

¯
a,a = −1

2
(K̃Q)−1

¯
w,bεb,a + κ

¯
a,a,

where κ
¯
a,a = 0 if

¯
a and a do not belong to the same decoration, and to ± 1

4 if they do.
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4. For every
¯
b, b ∈ B,

(KF)−1

¯
b,b = −ε

¯
b,

¯
a1(KF)−1

¯
a1,b

+ ε
¯
b,

¯
a2(KF)−1

¯
a2,b

,

where (KF)−1

¯
a1,b

, (KF)−1

¯
a2,b

are given by Case 1.

As a consequence, the Boltzmann/Gibbs measures of the dimer model on the non-
bipartite graph GF can be computed using the inverse Kasteleyn operator of the bipartite
graph GQ. Note that in the finite case, we do not need positivity of the coupling constants
J. When J < 0, the dimer model on the Fisher graph GF has positive weights 1 and e−2Je

on edges, and is related to a bipartite dimer model with some negative weights, see also
Remark 5.5.

Remark 1.9.

• As mentioned in [32], bosonization identities somehow prove the existence of such
linear relations, but working them out requires more work, which is the subject of
the above theorem.

• As pointed out by one of the referees whom I thank, these relations can also be
derived from the paper [16]. Following his/her suggestion, let us explain how.
Using the notation of [16] we have that KF is F̂ = −iU∗FFUF. The definition of the
matrix F implies, see [16, Section 3.1],

F−1 =

(
I 0

−JB∗ J

)(
C−1 0

0 −J

)(
I −BJ

0 J

)
.

Then, [16, Lemma 3.4] expresses coefficients of C−1 using those of D−1, where D̂ =

−iU∗CDUC is essentially the operator K̃Q. Putting this together gives Theorem 1.8.

Next we restrict to the Z-invariant case. The coefficient (KF)−1

¯
a,a is equal, up to an

additive constant, to the coefficient (KQ)−1

¯
w,b, and is thus expressed using the inverse

Zu-Dirac operator using Corollary 1.6 in the infinite case, and Corollary 4.18 in the finite
case. The same holds for (KF)−1

¯
a,b when b is a boundary vertex. The coefficient (KF)−1

¯
b,b

is a simple linear combination of two coefficients (KF)−1

¯
a1,b

, (KF)−1

¯
a2,b

, so we are left with

expressing the coefficient (KF)−1

¯
a,b. Choosing a specific value of u in Corollary 1.5, and

using Corollary 1.2 gives, see also Corollary 5.8 for the finite case,

Corollary 1.10 (Infinite case). Let uf = αf+βf

2 +K. Then,

(KF)−1

¯
a,b =qb,

¯
we
i
β̄f−β̄i

2 (k′)
1
2

cn
(
K−θf

2

)
(1+(k′)−1 dn(θf ))

2[cn(θf ) sn(θf )]
1
2

(
cn(uf

βi
)K(uf)−1

¯
v,w − i sn(uf

βi
)K(uf)−1

¯
f,w

)
=qb,

¯
we
−i ᾱf+β̄i

2
cn
(
K−θf

2

)
(1+(k′)−1 dn(θf ))

2 ×

×
(

cn(uf
βi

)

cn(θf )
(Gm

¯
v,v2
−Gm

¯
v,v1

)− sn(uf
βi

)

sn(θf )

(
nd
(
K−θf

2

)
Gm,∗

¯
f,f2
− nd

(
K+θf

2

)
Gm,∗

¯
f,f1

))
.

Connection to previously known results. Apart from allowing to compute the contour
Ising Boltzmann/Gibbs measures, coefficients of the inverse Kasteleyn matrix (KF)−1

are important observables of the Ising model: (KF)−1

¯
b,b is related to the spin-Ising observ-

able [69, 18], see for example [16]. Dubédat [32] proves that (KF)−1

¯
a,a is the fermionic

spinor observable of [39] and, referring to Nienhuis-Knops [63], mentions that it is also
the FK-Ising observable of [67, 18] (up to normalization).

As a consequence, in the specific case k = 0 (the critical case), Theorem 1.8, Corol-
lary 1.10 and Corollary 1.6 are deeply related to the discrete part of [18] proving that
these observables are holomorphic, and integrating the square to obtain close to har-
monic functions, see also Section 6.1. Our results have two important features: they
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prove that in the infinite and finite cases, these observables have an exact explicit
expression involving Green functions, and also that these expressions not only hold at
criticality but in the full Z-invariant regime. Note that since our results hold for all k, by
taking k tending to 0 at an appropriate speed, one may obtain interesting features of the
near critical Ising model.

The paper [56] gives a non-backtracking random walk representation of the inverse
Kac-Ward operator, the latter being connected to the inverse Kasteleyn operator. In this
paper, we give a (massive) random walk representation of the inverse Kasteleyn operator
where, in the finite case, this random walk has some vortices along the boundary. In the
critical case, and for one choice of u (namely u = i∞), part of the relation of Theorem 1.4
was obtained in [21]. Let us end this introduction with a comment on the paper [7] based
on an observation by Messikh [60] about the occurrence of large deviation estimates of
a massive random walk in the correlation length of the super-critical Ising model on Z2.
The proof consists in showing that, in the super-critical regime, spin correlations are
approximated by the FK-Ising observable, and then analyzing the latter. By Theorem 1.8
and Corollary 1.6, the latter a directly related to the massive Green function, thus
explaining the occurrence of the massive random walk, see also Section 6.2 specifying
our results to the case where G = Z2.

A word on the parameter u. As noted above, the parameter u of the Zu-Dirac operator
disappears at criticality, and so some motivation on where it comes from may be useful.
When writing this paper, the parameter u naturally arose from elliptic trigonometric
identities; it provided an additional degree of freedom which turned out to be very useful:
for example in Corollary 1.6, choosing specific values of u enables us to express the
operator (KQ)−1 as a function of the operator K(u)−1. While in the revision process of
this paper, the paper [8] came out and allows to give more insight in the periodic case.
By [12], we know that spectral curves of Z-invariant Ising models with elliptic weights
are in correspondence with genus 1 Harnack curves with central symmetry. From [8]
we know that genus 1 Harnack curves arise from bipartite dimer models with Fock’s
elliptic weights [36]. Indeed, it turns out that the Zu-Dirac operator is gauge equivalent
to Fock’s elliptic Kasteleyn operator on the double graph GD as shown in [8, Section
8.2]. Now Fock’s elliptic operator has a natural additional parameter (denoted t in [8]
instead of u here) which is in bijection with the hole of the amoeba of the spectral curve.
In the critical case, corresponding to genus 0 Harnack curves, there is no hole in the
amoeba and thus no extra parameter. Note that, although the construction is not explicit,
Goncharov and Kenyon [37], already proved a correspondence between bipartite dimer
models and Harnack curves with marked points on the ovals. One last point on this
topic: as observed after the statement of Theorem 1.1, every Zu-holomorphic function
is Z-massive harmonic; this in particular raises the question of thoroughly studying a
massive version of discrete complex analysis in the spirit of the papers [59, 17].

2 Preliminaries

This section contains all the preliminaries required for this paper. We give the
definitions of the Ising model, the dimer model per se, the dimer model on decorated
graphs arising from the Ising model, from the XOR-Ising model and from pairs of dual
directed spanning trees; we also define the rooted directed spanning forests model. We
end with isoradial graphs, Z-invariance and the Z-invariant versions of the above models.
In the whole of the paper, planar embedded graphs are supposed to be simply connected.
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2.1 The Ising model

Consider a finite, planar, simple graph G = (V,E). Suppose that edges of G are
assigned positive coupling constants J = (Je)e∈E. The Ising model on G with free
boundary conditions is defined as follows. A spin configuration is a function on vertices
of G taking values in {−1, 1}. The probability on the set of spin configurations {−1, 1}V
is given by the Ising Boltzmann measure PIsing, defined by:

∀σ ∈ {−1, 1}V, PIsing(σ) =
1

ZIsing(G, J)
exp
( ∑
e=vv′∈E

Jeσvσv′
)
,

where ZIsing(G, J) =
∑
σ∈{−1,1}V exp

(∑
e=vv′∈E Jeσvσv′

)
is the normalizing constant

known as the Ising partition function.
From now on, we suppose that the planar graph G is embedded. Boundary vertices

of G are vertices on the boundary of the unbounded face of G. The Ising model with +

boundary conditions has the additional restriction that boundary vertices have +1 spin.
Denote by P+

Ising and Z+
Ising(G, J) the corresponding Boltzmann measure and partition

function1.
Denote by Ḡ∗ = (V̄∗, Ē∗) the dual graph of G, and by o the vertex of Ḡ∗ corresponding

to the unbounded face of G. Consider also the restricted dual graph G∗ = (V∗,E∗)
obtained from Ḡ∗ by removing the vertex o and all of its incident edges. A polygon
configuration of G∗ is a subset of edges such that every vertex has even degree; let P(G∗)
denote the set of polygon configurations of G∗. Then, the low temperature expansion
(LTE) of the Ising partition function with + boundary conditions is [51, 52]:

Z+
Ising(G, J) =

(∏
e∈E

eJe
) ∑

P∈P(G∗)

∏
e∗∈P

e−2Je . (2.1)

Polygon configurations of this expansion separate clusters of ±1 spins of the Ising model.
In this paper we consider the case where the graph is finite or infinite. The definition

of the Boltzmann measure does not hold in the infinite case but extends naturally, and
this will be clarified as we go along.

In the finite case, we consider the Ising model with + boundary conditions. It will
be crucial to use the boundary trick of Chelkak and Smirnov [18] consisting in adding
one extra vertex with +1 spin on every boundary edge of the graph. This has no effect
on the Ising model, but the graph gains geometric freedom along the boundary, which
will be key to handling boundary terms in Theorem 4.2. In order not to introduce too
many graphs and confuse the reader, from now on we let G be the graph we started
from with the extra vertex on every boundary edge, then Ḡ∗ is its dual graph and G∗ its
restricted dual. Figure 1 provides an example of: a graph G, its restricted dual G∗, a
spin configuration with + boundary conditions and the corresponding low temperature
polygon configuration of G∗.

In the infinite case, we suppose that the embedded graph together with its faces
cover the whole plane. So as not to have too many notation, and since it will be clear
from the setting, we also denote by G the infinite graph; the dual graph is denoted G∗.

2.2 The dimer model

Throughout the paper, we use the dimer model defined on three decorated versions
of the graph G. Prior to defining these decorated graphs, we recall the definition of the

1Note that the Ising model with + boundary conditions on the graph G can be seen as the Ising model with
free boundary conditions on the graph G′ obtained from G by merging all boundary edges and vertices into a
single vertex.
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Figure 1: An example of a graph G (black), of its restricted dual G∗ (grey), of a spin con-
figuration with + boundary conditions on G and its corresponding polygon configuration
on G∗ (red). Vertices of G are pictured as bullets – black ones represent vertices of the
original graph and grey ones are the additional vertices on boundary edges – vertices of
G∗ are pictured as diamonds.

dimer model per se, as well as that of the Kasteleyn matrix. We also recall the founding
results that we will use.

Consider a planar, simple, embedded graph G = (V,E). A dimer configuration of G,
also known as a perfect matching, is a subset of edges such that every vertex is incident
to exactly one edge of this subset. Denote by M(G) the set of dimer configurations of
the graph G. Suppose that a positive weight function ν is assigned to edges of G.

2.2.1 Finite case

Suppose that the graph G is finite, and that |V | is even. Then, the probability of
occurrence of a dimer configuration, chosen with respect to the dimer Boltzmann
measure Pdimer, is given by

∀M ∈M(G), Pdimer(M) =

∏
e∈M νe

Zdimer(G, ν)
,

where Zdimer(G, ν) =
∑

M∈M(G)

∏
e∈M νe is the normalizing constant known as the dimer

partition function.
The main tool used to study the dimer model is the Kasteleyn matrix [41, 42, 72],

it is defined as follows. A face-cycle is a cycle of G bounding a bounded face of the
graph. A Kasteleyn orientation is an orientation of the edges such that every face-cycle is
clockwise odd, meaning that when traveling clockwise around a face-cycle, the number
of co-oriented edges is odd. By the results of [42], a Kasteleyn orientation always exists
for planar graphs. A Kasteleyn matrix, denoted by K, is a weighted, directed, adjacency
matrix of the graph G associated to the weight function ν and to a Kasteleyn orientation.
More precisely, rows and columns of the matrix K are indexed by vertices of G, and
non-zero coefficients of K are defined by,

∀ edge (x, y) of G, Kx,y = εx,yνxy,

where

εx,y =

{
1 if xy ∈ E and x→ y

−1 if xy ∈ E and x← y.
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Note that the matrix K is skew symmetric.

When the graph G is bipartite, the set of vertices can be split into V = W ∪B, where
W represents the set of white vertices, B the set of black ones, and vertices in W are
only adjacent to vertices in B. Suppose that |W | = |B| for otherwise G has no dimer
configurations. The Kasteleyn matrix K is naturally block diagonal with two 0 blocks
corresponding to rows/columns indexed by W/W or B/B. It thus suffices to consider
the bipartite, weighted, directed, adjacency matrix of the graph G, denoted by K̃. It has
rows indexed by white vertices of G and column by black ones. Non-zero coefficients are
defined by:

∀ edge wb of G, K̃w,b = εw,bνwb.

Note that the bipartite Kasteleyn matrix can also be defined as minus the transpose of
the above matrix K̃; rows are then indexed by black vertices and columns by white ones.
Actually both bipartite Kasteleyn matrices are considered in this paper.

The two founding results of the dimer model are: an explicit expression for the
partition function [41, 42, 72] and for the dimer Boltzmann measure [44]. Here are their
statements.

Theorem 2.1 ([41, 42, 72]). The dimer partition function of the graph G with weight
function ν is equal to:

Zdimer(G, ν) = |Pf K|.

When the graph G is moreover bipartite, we have:

Zdimer(G, ν) = |det K̃|.

Theorem 2.2 ([44]). The probability of occurrence of a subset E = {e1 = x1y1, . . . , el =

xlyl} of edges of G, chosen with respect to the dimer Boltzmann measure Pdimer is equal
to

Pdimer(e1, . . . , el) =
( l∏
j=1

Kxi,yi

)
Pf(K−1)tE,

where (K−1)E is the sub-matrix of the inverse Kasteleyn matrix K−1 whose rows and
columns are indexed by vertices x1, y1, . . . , xl, yl.

When the graph G is moreover bipartite, the subset of edges E is written as E = {e1 =

w1b1, . . . , el = wlbl}, and we also have,

Pdimer(e1, . . . , el) =
( l∏
j=1

K̃wi,bi

)
det(K̃−1)E,

where (K̃−1)E is the sub-matrix of the inverse bipartite Kasteleyn matrix K̃−1 whose
rows are indexed by black vertices b1, . . . , bl and columns by white vertices w1, . . . , wl.

2.2.2 Infinite case

Suppose that the graph G is infinite. The dimer Boltzmann measure is not well defined
and is replaced by the notion of Gibbs measure. A Gibbs measure is a probability
measure on M(G) satisfying the DLR-conditions: when one fixes a dimer configuration
in an annular region, then perfect matchings inside and outside of the annulus are
independent; moreover, the probability of a dimer configuration in the finite region
separated by the annulus is proportional to the product of the edge-weights.
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Consider a Kasteleyn orientation of the graph G and the corresponding Kasteleyn
matrix K, then K can also be seen as an operator acting on CV :

∀F ∈ CV , (KF )x =
∑
y∼x

Kx,yFy.

When G is bipartite, the bipartite Kasteleyn matrix K̃ is an operator mapping CW to CB:

∀F ∈ CW , (K̃F )b =
∑
w∼b

K̃b,wFw.

Explicit expressions for Gibbs measures typically involve inverse operators of a family of
gauge equivalent Kasteleyn operators, see [47] for definitions and details. An inverse
operator L of a Kasteleyn operator K is asked to satisfy the following conditions:

•KL = Id or LK = Id,

•For every x, Lx,y → 0 as y tends to infinity.

Existence of an inverse Kasteleyn operator and explicit expressions for coefficients
are proved for: Z2-periodic bipartite graphs using Fourier techniques [23, 47]; Z2-
periodic (non-bipartite) Fisher graphs [9, 32]; non-periodic, bipartite isoradial graphs,
bipartite quadri-tiling graphs, and Fisher graphs, all with specific weights arising from
Z-invariance [45, 10, 12], see Sections 2.3.2, 2.3.3, 2.5 for definitions; coefficients of
the inverse then have the remarkable property of being local. We refer to the original
papers for the explicit expressions.

Uniqueness is established when the graph G is Z2-periodic [66, 9], and when the
graph is non-periodic in the setting of the papers [45, 12, 8]. When the inverse Kasteleyn
operator exists and is unique, it is denoted by K−1. Note that uniqueness and the fact
that the product (KK−1)K = K(K−1K) is associative implies that if K−1 is a right, resp.
left, inverse it is also a left, resp. right, inverse [24].

Consider the σ-field generated by cylinder sets of M(G). In all of the above cases,
there is an explicit expression for a Gibbs measure Pdimer on (M(G),F) whose proba-
bilities on cylinder sets is given by the formulas of Theorem 2.2 with K−1 being the
inverse Kasteleyn operator above. When the graph G is moreover Z2-periodic, this Gibbs
measure is obtained as weak limit of the Boltzmann measures on the toroidal exhaustion
(Gn)n≥1, where Gn = G/nZ2. We refer to the original papers for an exact statement, see
also Theorem 3.19 which has the same form.

2.3 Dimer models on decorated graphs

In this paper, an important role is played by the dimer model on the double graph GD,
a model in correspondence with random pairs of dual directed spanning trees [71, 14, 49].
Furthermore, we consider two dimer representations of the Ising model. The first is
related to the LTE of the Ising model [51, 52], while the second arises from the XOR-
Ising model, built from two independent copies of the Ising model [32, 13]. The two
corresponding dimer models live on the Fisher graph GF and the bipartite graph GQ,
respectively. The three graphs GD,GF and GQ are decorated versions of the graph G.

In the next three sections, we define these decorated graphs and the mappings
considered. We treat the case where the graph G is infinite or finite. In the finite case,
the graph G, the dual graph Ḡ∗ and the restricted dual G∗ are those defined in Section 2.1,
where recall that G has an additional vertex on every boundary edge, and that o denotes
the vertex of Ḡ∗ corresponding to the unbounded face of G. In the infinite case, the
dual graph is G∗. Figures illustrate the finite case; a local picture of the infinite case is
obtained by looking at the interior of the finite case.
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2.3.1 Dimers on the double graph GD and Temperley’s bijection

The double graph is denoted by GD = (VD,ED). It is defined as follows, see also Figure 2
(left).

Infinite case. Embed the dual graph G∗ so that edges of the primal and the dual
intersect at a single point. The double graph is obtained by superimposing G and G∗ and
adding an extra vertex at the crossing of each primal and dual edge.

Finite case. It is constructed similarly to the infinite case from the superimposition of
G and the dual graph Ḡ∗. Edges incident to the vertex o are then removed.

In the infinite and fine cases, the double graph GD is bipartite and face-cycles are
quadrangles. The set of black vertices of GD, denoted by B, consists of vertices of G and
G∗; the set of white vertices of GD, denoted by W , consists of vertices at the crossing of
edges of G and G∗ in the infinite case, and of G and Ḡ∗ in the finite case. White vertices
are in bijection with edges of the graph G, or equivalently with edges of the dual graph.
We thus have, VD = B ∪W , where B = V ∪ V∗ and W ↔ E.

Suppose again that G is finite, fix a vertex r of G amongst the additional vertices on
boundary edges, and let Vr = V \ {r}. Denote by GD,r the graph obtained from GD by
removing the vertex r and all edges incident to it. The graph GD,r is also bipartite; its set
of black vertices is Br, where Br = Vr ∪ V∗ and its set of white vertices is W r = W ↔ E,
see Figure 2 (right) for an example. Note that GD,r has the same number of black and
white vertices: |Br| = |W r|.

Bijection between pairs of dual directed spanning trees and dimers Suppose
that G is finite. Prior to stating the bijection, we need a few definitions. A tree of G is
an acyclic connected subset of edges. A spanning tree is a tree spanning all vertices of
the graph. Let v be a vertex of G, then a v-directed spanning tree (v-dST) is obtained
from a spanning tree by directing all edges towards the vertex v, referred to as the root ;
with such an orientation, every vertex has exactly one outgoing edge except the root
which has none. Given a spanning tree, the set of dual edges of the edges absent in the
spanning tree form a spanning tree of the dual graph Ḡ∗, known as the dual spanning
tree.

Consider the fixed boundary vertex r of G as above. Denote by Tr(G) the set of r-dST
of G, by To(Ḡ∗) the set of o-dST of Ḡ∗, and by Tr,o(G, Ḡ∗) the set of pairs of dual directed
spanning trees (dST-pairs) of G and Ḡ∗ such that the primal tree is rooted at r and the
dual tree is rooted at o, see Figure 2 (left) for an example.

The result of Temperley [71], extended by [14] to general non-directed graphs and
by [49] to the directed case, proves a weight preserving bijection between dimer config-
urations of the double graph GD,r and dST-pairs of Tr,o(G, Ḡ∗). It relies on the following
bijection between edges of GD,r and directed edges of G and Ḡ∗. Let w ∈ W r = W ,
x ∈ Vr ∪ V∗ such that wx is an edge of GD,r, then

wx ←→

{
(v, v′) of G if x = v ∈ Vr and v′ is s.t. w belongs to the edge (v, v′)

(f, f ′) of Ḡ∗ if x = f ∈ V∗ and f ′ is s.t. w belongs to the edge (f, f ′).
(2.2)

Note that there are no directed edges of G exiting the vertex r, and no directed edges of
Ḡ∗ exiting the vertex o. Using this bijection, a subset of edges of GD,r corresponds to a
subset of directed edges of G and Ḡ∗; Temperley’s bijection states that subsets defining
dimer configurations are in correspondence with subsets defining dST-pairs of Tr,o(G, Ḡ∗).
An example is provided in Figure 2, the vertex o is represented in a spread-out way, i.e.,
the dotted line should be thought of as being the single vertex o.

Let c be a weight function on edges of GD,r and c̃ a weight function on directed
edges of G, Ḡ∗. The relation between c and c̃ which makes Temperley’s bijection weight
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o

r r

o

Figure 2: Left: double graph GD of the graph G of Figure 1 (grey lines), r-directed
spanning tree of G (turquoise) and dual o-directed spanning tree of Ḡ∗ (purple). Right:
graph GD,r (grey) and the dimer configuration (red) in bijection with the pair of dual
directed spanning trees of the left figure.

preserving naturally arises from the bijection between edges of GD,r and directed edges
of G, Ḡ∗. Let w ∈ W r, x ∈ Vr ∪ V∗, such that wx is an edge of GD,r. Using the notation
of (2.2), we have

cwx =

{
c̃v,v′ if x = v ∈ Vr

c̃f,f ′ if x = f ∈ V∗,
(2.3)

and c̃r,v = 0 for every vertex v ∈ Vr adjacent to r, c̃o,f ′ = 0 for every vertex f ′ ∈ V∗

adjacent to o.

Model on pairs of dual directed spanning trees Suppose that directed edges of
G, Ḡ∗ are assigned the weight function c̃. Consider the Boltzmann measure on dST-pairs,
denoted Pr,o

dST-pairs, defined by

∀ (T,T∗) ∈ Tr,o(G, Ḡ∗), P
r,o
dST-pairs(T,T

∗) =

(∏
(v,v′)∈T c̃v,v′

)(∏
(f,f ′)∈T∗ c̃f,f ′

)
Zr,o

dST-pairs(G, Ḡ
∗)

,

where Zr,o
dST-pairs((G, Ḡ

∗), c̃) =
∑

(T,T∗)∈Tr,o(G,Ḡ∗)

(∏
(v,v′)∈T c̃v,v′

)(∏
(f,f ′)∈T∗ c̃f,f ′

)
, is the

dST-pairs partition function. As a consequence of the KPW-Temperley bijection [71, 49],
we have

Zr,o
dST-pairs((G, Ḡ

∗), c̃) = Zdimer(G
D,r, c).

There is also a natural correspondence between the dST-pairs Boltzmann measure
P

r,o
dST-pairs and the dimer Boltzmann measure PD

dimer on GD,r with weight function c.

Note that if c̃ ≡ 1 on edges of Ḡ∗, resp. on edges of G, then Zr,o
dST-pairs((G, Ḡ

∗), c̃) is equal

to the partition function Zr
dST(G, c̃) of r-directed spanning trees of G, resp. Zo

dST(Ḡ∗, c̃) of
o-directed spanning trees of Ḡ∗.

2.3.2 Dimers on the Fisher graph GF and the LTE of the Ising model

The Fisher graph is denoted by GF = (VF,EF). It is constructed as follows [35, 32], see
Figure 3 for an example.
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Infinite case. Start from the dual graph G∗ and replace every vertex of G∗ by a
decoration made of triangles, where each of the triangles corresponds to an edge
incident to this vertex, then join the triangles in a circular way.

Finite case. Start from the dual graph Ḡ∗ and do the same procedure as in the infinite
case. Then, remove the decoration of the vertex o as well as all edges of Ḡ∗ incident to
this decoration.

In both the infinite and finite case, the Fisher graph consists of internal edges, which
are edges of the decorations, and external edges which are in bijection with edges of G∗

and will often be identified with them. Each decoration has a dual vertex in its center,
giving a way of identifying decorations and vertices of G∗.

Figure 3: The Fisher graph GF for the LTE expansion of the Ising model on G with +

boundary conditions (black); one of the 213 dimer configurations corresponding to the
polygon configuration of Figure 1.

Mapping between LTE polygon configurations and dimers Suppose that G is fi-
nite. Fisher [35] introduces a mapping between polygon configurations of G∗ and dimer
configurations of the corresponding Fisher graph GF. To a given polygon configuration
of G∗, there corresponds 2|V

∗| dimer configurations of GF: edges of the polygon con-
figuration are exactly the external edges of the dimer configurations and given these
external edges, there is exactly two ways of filling each decoration so as to have a dimer
configuration [35], see Figure 3 for an example. This mapping naturally extends when
the graph G is infinite.

We consider polygon configurations arising from the LTE expansion of the Ising
model on G with + boundary conditions and coupling constants J. In order for this
correspondence to be weight preserving up to a multiplicative constant, the dimer
weight function µJ on edges of GF is defined to be, see Equation (2.1), for every edge e
of GF,

µJ

e =

{
1 if e is an internal edge

e−2Je if e is an external edge arising from a dual edge e∗ of G∗.

Let PF

dimer and Zdimer(G
F, µJ) be the corresponding dimer Boltzmann measure and parti-

tion function. Then, as a consequence of Fisher’s correspondence we have,

Z+
Ising(G, J) = 2−|V

∗|
(∏
e∈E

eJe
)
Zdimer(G

F, µJ). (2.4)
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2.3.3 Dimers on the bipartite graph GQ and the XOR-Ising model

The quadri-tiling graph is denoted by GQ = (VQ,EQ), where the name comes from the
paper [28]. In both the finite and infinite cases, we start from the preceding definition
of the double graph GD. Recall that face-cycles of GD are quadrangles consisting of
two black and two white vertices, then add the edges joining opposite black vertices in
quadrangles.

Infinite case. The graph GQ is the dual of the modified graph GD.
Finite case. The graph GQ is the restricted dual of the modified graph GD, see

Figure 4.
Vertices of GQ are partitioned as VQ = B ∪W, and the bipartite coloring is fixed as

in Figure 4. Black, resp. white, vertices of GQ are denoted by b, resp. w, with or with
sub/super-scripts.

In the infinite case, the graph GQ consists of quadrangles that are joined by external
edges. Quadrangles are in bijection with edges of G, or equivalently edges of G∗, or
equivalently white vertices of GD: each quadrangle has a white vertex of GD in its interior,
two of its edges are “parallel” to an edge of G and the two other edges are “parallel” to
the dual edge of G∗. Face-cycles of GQ other than quadrangles either have a vertex of G
or a vertex of G∗ in their interior.

In the finite case, the description is similar away from the boundary. Along the
boundary “quadrangles” in bijection with boundary edges of G, or equivalently with
boundary white vertices of GD, are actually reduced to single edges “parallel” to boundary
edges of G. We refer to those degenerate quadrangles as boundary quadrangles of GQ,
keeping in mind that they actually are edges. Note that some quadrangle edges of GQ are
boundary edges of GQ (in the sense that they belong to the boundary of the unbounded
face) but still belong to “full” quadrangles; as such they are not boundary quadrangle
edges.

Figure 4: The quadri-tiling graph GQ: take the double graph GD of Figure 2 (left) and
add edges joining opposite black vertices in quadrangle-faces; the restricted dual of this
graph is GQ.

We consider the dimer model on the bipartite graph GQ arising from the XOR-Ising
model [74], also known as the polarization of the Ising model [38], obtained by taking
the product of the spins of two independent Ising models. There are two mappings
leading to the dimer model on GQ, both of them are rather long to describe so that
we refer to the original papers: [32] based on results of [40, 75, 34, 76] for the first
approach, and [13] based on results of [62, 76] for the second one. Note that the last
part of the above constructions establishes a correspondence between the dimer model
on GQ and a free-fermion, zero-field 6-vertex model on the medial graph [62, 76, 32]. In
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order not to lengthen this exposition we refer the reader to, for example, Sections 5.1
and 5.2 of [13] for a summary of this correspondence.

The dimer weight function νJ on GQ is defined by, for every edge e of GQ,

νJ

e =



1 if e is an external edge

1 if e is a boundary quadrangle edge in the finite case

tanh(2Je) if e is a quadrangle edge/non-boundary quadrangle edge

in the infinite/finite case, “parallel” to an edge e of G

cosh−1(2Je) if e is a quadrangle edge, “parallel” to a dual edge e∗

of an edge e of G.

When the graph GQ is finite, we let PQ

dimer and Zdimer(G
Q, νJ) be the corresponding

dimer Boltzmann measure and partition function. As a consequence of [32], see also
Corollary 5.3, we have:

Zdimer(G
F, µJ)2 = 2|V

∗|
∏
e∗∈E∗

(1 + e−4Je)Zdimer(G
Q, νJ).

Combining this with Equation (2.4) for the Ising partition function, and denoting by E∂

the set of boundary edges of the graph G, we obtain

[Z+
Ising(G, J)]2 = 2−|V

∗|
(∏
e∈E

e2Je
)( ∏

e∗∈E∗
(1 + e−4Je)

)
Zdimer(G

Q, νJ)

= 2−|V
∗|+|E∗|

(∏
e∈E∂

e2Je
)( ∏

e∗∈E∗
cosh(2Je)

)
Zdimer(G

Q, νJ)

= 2|V|−1
(∏
e∈E∂

e2Je

2

)( ∏
e∗∈E∗

cosh(2Je)
)
Zdimer(G

Q, νJ), (2.5)

where in the last line we used that |E| = |E∗|+ |E∂ | and Euler’s formula: |E| = |V|+ |V∗|−1.

2.4 Rooted directed spanning forests and directed spanning trees

We also need the model of rooted directed spanning forests on the graphs G and G∗,
resp. Gr and G∗, in the infinite, resp. finite, case. So as to include both the primal and
the dual graphs, we now define this model on a simple graph G = (V,E).

Suppose that vertices are assigned non-negative masses, denoted m = (mx)x∈V , and
that directed edges have positive conductances, denoted ρ, meaning that every directed
edge (x, x′) has conductance ρx,x′ .

A rooted directed spanning forest (rdSF) of G is a subset of edges spanning all
vertices of the graph, such that each connected component is a directed tree T rooted at
a vertex of G, denoted xT. Let F(G) denoted the set of rdSF of the graph G.

Suppose that G is finite and consider the Boltzmann measure on rdSF, denoted PrdSF,
defined by:

∀F ∈ F(G), PrdSF(F) =

∏
T∈F

(
mxT

∏
(x,x′)∈T ρx,x′

)
ZrdSF(G, ρ,m)

,

where ZrdSF(G, ρ,m) =
∑

F∈F(G)

∏
T∈FmxT

∏
(x,x′)∈T ρx,x′ is the rdSF partition function.

Whenever conductances are symmetric, i.e., ρx,x′ = ρx′,x, we will remove the “d” in rdSF.
As a consequence of the directed version of Kirchhoff’s matrix-tree theorem [50, 73],

the rdSF partition function is computed using the massive Laplacian operator/matrix as
follows. The massive Laplacian operator ∆m : CV → CV is defined by:

∀F ∈ CV , (∆mF )x =
∑
x′∼x

ρx,x′(Fx − Fx′) +mxFx.
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The operator ∆m is represented by a matrix, also denoted ∆m, whose non-zero coeffi-
cients are given by:

∆m
x,x′ =

{
−ρx,x′ if (x, x′) is an edge of G

mx +
∑
x′∼x ρx,x′ if x′ = x is a vertex of G.

A function F ∈ CV is said to be massive-harmonic, if ∆mF = 0.
Consider the graph G† constructed from G by adding a cemetery vertex † and an

edge (x, †) for every vertex x such that mx 6= 0. Define the modified weight function ρm

on (directed) edges of G† by,

∀ edge (x, x′) of G†, ρmx,x′ =

{
ρx,x′ if x′ 6= †
mx if x′ = †.

There is a natural weight-preserving bijection between T†(G†) and F(G): a †-directed
spanning tree of G† corresponds to the rooted directed spanning forest of G obtained by
replacing every edge (x, †) of the dST by a root of the rdSF.

Denote by ∆† the (non-massive) Laplacian matrix of G† with weight function ρm

on the edges. Then, ∆m is the Laplacian matrix ∆† from which one has removed the
row and column corresponding to the cemetery † and thus, by Kirchhoff’s matrix-tree
theorem [50, 73], the determinant of ∆m counts ρm weighted †-dST of G†. Using the
bijection between †-dST of G† and rdSF of G, we thus have,

Theorem 2.3 ([50, 73]).

ZrdSF(G, ρ,m) = Z†dST(G†, ρ
m) = det(∆m).

When there is at least one vertex with positive mass, the massive Green function,
denoted Gm, is the inverse of the massive Laplacian ∆m. Since in the remainder of the
paper, graphs are written with the letter G with or without superscripts, we believe
that the notation Gm will not create confusion. The massive Green function is naturally
related to the expected number of visits of the network random walk associated to the
conductances ρ and masses m, see for example Appendix D of [11], where a number of
facts are recalled.

2.5 Isoradial graphs and Z-invariance

Sections 3, 4 and 5.3 use Z-invariant models defined on isoradial graphs. We recall
these notions, related concepts and more specifically give the definitions of the Z-
invariant versions of the Ising model on G, of the dimer model on the decorated graphs
GF and GQ and of rooted spanning forests on G or G∗.

2.5.1 Isoradial graphs, diamond graphs and angles

Isoradial graphs naturally appear when considering a discrete version of the Cauchy-
Riemann equations, see [33] and [59, 45, 17]; they also arise in Z-invariant models when
solving the corresponding Yang-Baxter equations [6, 25]; the name isoradial comes from
the paper [45].

Suppose that G is an infinite, planar graph. Then G is said to be isoradial if it can
be embedded in the plane in such a way that every face is inscribable in a circle of the
same radius, and such that the circumcircles are in the interior of the faces. We consider
G as an embedded graph and take the common radius to be 2. Note that the dual G∗ of
an isoradial graph is also isoradial, an embedding of G∗ is obtained by taking as vertices
the circumcenters of the circles.
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This definition also holds when the graph is finite. Recall that in this case, the
notation G is used for the graph having an additional vertex on each boundary edge.
We now fix the isoradial embedding of G when the original graph (the one without the
additional vertices) is isoradial. This is done in the same way as in [18]: each additional
boundary vertex corresponds to a boundary edge xy of the original graph and we embed
this additional vertex in the middle of the arc joining x and y, see Figure 5 (left and
right).

e

v

v′

2eiᾱe

2eiβ̄e

θ̄e

Figure 5: Left: original isoradial graph (black lines) with circumcircles (grey) and dual
vertices embedded as circumcenters (diamonds). Right: isoradial graph G (black lines)
with the additional boundary vertices (grey bullets); diamond graph G� (grey lines);
rhombus (yellow) assigned to an edge e = (v, v′) with the corresponding half-angle θ̄e
and rhombus vectors 2eiᾱe , 2eiβ̄e ; a boundary rhombus pair of R∂ (light grey).

In the infinite case, the diamond graph, denoted G�, is constructed from an isoradial
graph G and its dual G∗ as follows: its vertex set is V ∪ V∗, the vertices of G and G∗; and
each dual vertex is joined to all vertices bounding the face it corresponds to. Since the
graph G is isoradial, faces of the diamond graph G� are side-length-2 rhombi.

There is a bijection between rhombi of G� and pairs e, e∗ of primal and dual edges,
the latter being the two diagonals of the rhombi. To every edge e, one assigns an angle
θ̄e ∈ (0, π2 ) defined to be the half-angle of the corresponding rhombus at the edge e. We
furthermore ask that θ̄e ∈ (ε, π2 − ε), for some ε > 0. The rhombus angle of the dual edge
e∗ is θ̄e∗ = π

2 − θ̄e := θ̄∗e . To a directed edge e = (v, v′) of G we further assign two rhombus

vectors 2eiᾱe , 2eiβ̄e of G�, such that 2eiᾱe is on the right of the edge (v, v′), see Figure 5

(right). The angles ᾱe and β̄e are defined so that β̄e−ᾱe
2 = θ̄e. Whenever no confusion

occurs, we remove the subscript e from the notation. In the finite case, the diamond
graph, also denoted G�, is constructed in a similar way from G and its restricted dual G∗.
One then adds the missing half-rhombi along the boundary; they may overlap but this
causes no problem, see Figure 5 (right). Angles and rhombus vectors assigned to edges
are defined in the same way.

Because of the additional vertex on each boundary edge and because of our choice
of embedding, rhombi along the boundary of G� come in pairs, both having the same
rhombus half-angle; let us denote by R∂ the set of boundary rhombus pairs, an instance
is highlighted in Figure 5 (right, light grey).
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2.5.2 Isoradial embeddings of the decorated graphs GD and GQ

Consider an isoradial graph G, its dual G∗ in the infinite case and its restricted dual G∗

in the finite case. The double graph GD is embedded so that the black vertices are those
of G and G∗ and the white vertices are at the crossing of the diagonals of the rhombi of
G�, see Figure 6 (left).

r r

Figure 6: Left: isoradial embedding of the graph GD (black lines). Right: isoradial
embedding of the graph GQ (black lines). In both cases is also pictured the diamond
graph G�/2 (grey lines), a boundary rhombus pair of R∂ and the root pair (light grey).

In the infinite case and in the finite non-boundary case, consider the embedding of
the bipartite graph GQ where external edges have length-0 and their endpoints become
a single vertex in the middle of the rhombus edges of G�, see Figure 6 (right, inner
vertices); then, inner quadrangles of GQ are rectangles. Note that although external
edges are embedded as single vertices, they still consist of two vertices joined by (a
length-0) edge, i.e., the combinatorics of the graph does not change.

When the graph GQ is finite, the procedure along the boundary is different. Consider
a boundary rhombus pairs of R∂, the following notation will be used throughout the
paper and is illustrated in Figure 7 below. Let v`, vc, vr be the vertices of G in cw
order and let f c be the vertex of G∗; note that vc is the additional vertex on the edge
v`vr of the original graph. Denote by w`, wr the white vertices of the double graph GD

and by w`, b`,wc, br,wr the vertices of GQ. Then, taking the same convention as in the
infinite case for the embedding gives Figure 7 (left); but it turns out that the appropriate
embedding to obtain Theorem 4.2 is that of Figure 7 (center), see also Figure 6 (right),
where the boundary quadrangle edge b`wc has length-0 and is “replaced” by the external
edge w`b`. This change of embedding preserves the combinatorics of the graph; it has
the effect of exchanging the colors of the bipartite coloring of GQ in the left rhombus of
the rhombus pair.

We will often be using the fact that vertices/edges of the boundary rhombus pairs of
R∂ encode: boundary vertices/edges of G, boundary vertices of the restricted dual G∗,
where a boundary vertex of G∗ is defined to be a vertex adjacent to the vertex o in Ḡ∗;
boundary quadrangle vertices/edges of GQ, where recall that boundary quadrangles are
degenerate and reduced to edges in bijection with boundary edges of G. We will use
the notation {v` ∈ R∂} for the set of vertices of type v` belonging to boundary rhombus
pairs, and similarly for other vertices or edges of R∂.
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v`

vc

vr

w` wr

w`

b`
wc br

wr

fc

v`

vc

vr

w` wr

w`

b` w
c
br

wr

fc

v`

vc

vr

w` wr

fc

eiᾱ
`

eiβ̄
`
eiᾱ

r

eiβ̄
r

θ̄∂

Figure 7: Notation for vertices of boundary pairs of rhombi of R∂. Left: isoradial
embedding of GQ under the convention that external edges have length 0. Center:
isoradial embedding used in this paper. Right: rhombus vectors of G�/2 and half-angle
assigned to the edges (vc, w`), (vc, wr) of GD.

The embeddings of GD and GQ are both isoradial with circumcircles having common
radius 1. Consider the graph obtained from the diamond graph G� by cutting rhombi
into four equal length-1 rhombi. Denote this graph by G�/2 in the infinite case and, in the
finite case, let G�/2 be this graph where the boundary quarter rhombi crossed by no edge
of GD are removed. Then G�/2 is the diamond graph of GD. Note that G�/2 is nearly the
diamond graph of GQ: it is slightly extended along the boundary and one should think of
it as having flat rhombi associated to length-0 edges of GQ. We will nevertheless refer to
it as the diamond graph of GD or GQ. An example of graph G�/2 is given in Figure 6 (left
and right, grey).

Consider a boundary rhombus pair of R∂, and let eiᾱ
`

, eiβ̄
`

, resp. eiᾱ
r

, eiβ̄
r

, be the
rhombus vectors of the diamond graph G�/2 assigned to the edge (vc, w`), resp. (vc, wr),

of GD see Figure 7 (right). By definition we have β̄`−ᾱ`
2 , β̄r−ᾱr

2 ∈ (ε, π2 − ε), and by

construction the two rhombi have the same half-angle denoted θ̄∂ = β̄`−ᾱ`
2 = β̄r−ᾱr

2 . We

further impose that β̄` = ᾱr + 2π or equivalently that ᾱ`−β̄r
2 ∈ (2ε, π − 2ε).

Amongst the boundary rhombus pairs of R∂ the one containing the fixed vertex r, i.e.
the one for which vc = r, plays a special role; it will be referred to as the root-boundary
rhombus pair or simply root-pair, see Figure 6 where the root pair is highlighted in light
grey. We denote by R∂,r the set R∂ without the root pair. The isoradial embedding of the
graph GD,r is obtained from GD by removing the vertex r and the edges w`r, wrr of the
root pair. Whenever needed, we add a superscript r to the notation of Figure 7 to specify
vertices of the root pair.

2.5.3 Train-tracks

A train-track of a finite isoradial graph G, also known as a de Bruijn line [26, 27] or
a rapidity line [5] is a maximal chain of edge-adjacent rhombi of the diamond graph
G�, such that when entering a rhombus one exits along the opposite edge [48]; each
train-track τ has a parallel direction ±2eiᾱτ . Consider the simply connected domain
D(G) obtained by taking the union of the faces of G. Then a train-track τ enters
and exits D(G), and there are exactly two parallel edges of τ outside of D(G), see

Figure 5, (right). The boundary rhombus vectors {2eiᾱ` , 2eiβ̄r ∈ R∂}, {2eiᾱr , 2eiβ̄` ∈ R∂}
come in parallel pairs, and all the parallel directions of the train-tracks are encoded in
{±2eiᾱ

`

,±2eiβ̄
` ∈ R∂} = {±2eiᾱ

r

,±2eiβ̄
r ∈ R∂}.

2.5.4 Elliptic angles

Consider an elliptic modulus k, then k′ = (1−k2)
1
2 is the complementary elliptic modulus.

Suppose that k is such that (k′)2 ∈ (0,∞). The complete elliptic integral of the first kind,
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denoted K = K(k) is

K =

∫ π
2

0

1

(1− k2 sin τ)
dτ,

and for later purposes we also need K ′ = K(k′). As in [11, 12], we need the following
linear transformation of rhombus angles and vectors of the diamond graph G� associated
to edges:

θ = θ̄
2K

π
, α = ᾱ

2K

π
, β = β̄

2K

π
.

2.5.5 Z-invariant Ising model and corresponding dimer models

Underlying Z-invariance is the star-triangle transformation, also known as the Y-∆ move,
on isoradial graphs. Suppose that an isoradial graph G has a triangle, then this triangle
can be transformed into a three-legged star while preserving isoradiality. This amounts
to performing a cubic flip in the underlying diamond graph G�; the embedding of the
additional vertex of the triangle is given by the cubic flip, see Figure 8.

Figure 8: A star-triangle transformation of an isoradial graph.

Z-invariance [4, 5] phrased in the context of the Ising model requires that when
decomposing the partition function according to the 23 possible spin configurations at
the three vertices bounding the star/triangle, it only changes by an overall constant
when performing a Y-∆ move, and this constant is independent of the choice of spin
configuration. This yields a set of equations for the coupling constants, known as the
Ising Yang-Baxter equations, see also [65]. Extending the form of the solutions to
the whole of the graph naturally leads to introducing isoradial graphs: the solution is
parameterized by the rhombus half-angles assigned to edges and by the elliptic modulus
k, where k is such that (k′)2 = 1−k2 ∈ (0,∞), see [6]. The Z-invariant coupling constants
are explicitly given by:

∀ e ∈ E, Je =
1

2
ln

(
1 + sn(θe|k)

cn(θe|k)

)
, (2.6)

where sn, cn are two of the twelve Jacobi elliptic trigonometric functions. We refer the
reader to [1, 54] for more on elliptic and related functions.

Suppose that the Z-invariant coupling constants are chosen for the Ising model. Then,
the dimer weight function µJ on the Fisher graph GF arising from Fisher’s correspondence
is given by, for every edge e of GF,

µJ

e =

{
1 if e is an internal edge

cn(θe|k)
1+sn(θe|k) if e is an external edge arising from an edge e∗ of G∗.

(2.7)

The dimer weight function νJ on the bipartite graph GQ arising from the XOR-Ising
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model is given by, for every edge e of GQ,

νJ

e =



1 if e is an external edge

1 if e is a boundary quadrangle edge in the finite case

sn(θe|k) if e is a quadrangle edge/non-boundary quadrangle edge

in the infinite/finite case, parallel to an edge e of G

cn(θe|k) if e is parallel to a dual edge e∗ of an edge e of G.

(2.8)

Recall that the dimer model on GQ corresponds to a free-fermion, zero-field 6-vertex
model [62, 76, 32]. Then, the weights (2.8) also correspond to the 6-vertex version of
the elliptic parameterization of the Z-invariant 8-vertex model weights, computed by
Baxter [4, 6].

2.5.6 The Z-invariant massive Laplacian

In the paper [11], we consider an infinite, isoradial graph G and introduce conductances
and masses defining the Z-invariant massive Laplacian operator or simply Z-massive
Laplacian, related to Z-invariant rooted spanning forests. Recall that every edge (v, v′)

of G is assigned two rhombus vectors 2eiᾱ, 2eiβ̄ and a half-angle θ̄ of the diamond graph
G�. Denote by v1, . . . , vd the neighbors of a vertex v of degree d, and for every edge (v, vj)

use the notation 2eiᾱj , 2eiᾱj+1 , θ̄j for the associated rhombus vectors and half-angle. Fix
an elliptic modulus k such that (k′)2 ∈ (0,∞). Then, for every edge (v, v′) and every
vertex v of G, the conductances ρk and masses mk of [11] are defined by:

ρkv,v′ = sc(θ|k), mk
v =

d∑
j=1

[A(θj |k)− sc(θj |k)],

where sc = sn
cn , and

A(u|k) = (k′)−1
(

Dc(u|k) +
E −K
K

u
)
,

Dc(u|k) =
∫ u

0
dc2(v|k)dv, and E = E(k) =

∫ π
2

0
(1 − k2 sin2(τ))

1
2 dτ , is the complete

elliptic integral of the second kind. Note that mk ≥ 0, by Proposition 6 of [11].
The corresponding Z-massive Laplacian matrix ∆m(k) has non-zero coefficients given

by:

∀ v, v′ ∈ V, ∆
m(k)
v,v′ =

{
− sc(θ|k) if (v, v′) is an edge of G∑d
j=1A(θj |k) if v′ = v.

(2.9)

The dual graph G∗ is also isoradial, we denote by ρk,∗,mk,∗ the associated conductances
and masses, and by θ̄∗ the half-angle of a dual edge. We let ∆m(k),∗ be the corresponding
Z-massive Laplacian operator and refer to it as the dual Z-massive Laplacian.

The inverse of the Z-massive Laplacian ∆m(k) is the Z-massive Green function; it is
denoted Gm(k). In [11], we prove the following explicit local expression for coefficients
of Gm(k): for every pair of vertices x, y of G,

Gm(k) =
k′

4π

∫
Γx,y

e(x,y)(u|k)du, (2.10)

where Γx,y is a vertical contour on the torus T(k) = C/(4KZ + 4iK ′Z), and e( · |k) :

V×V×C→ C is the massive exponential function defined in [11]. To compute e(x,y)(u|k),
consider a path x = x1, . . . , xn = y of the diamond graph G� from x to y, let 2eiᾱj be the
rhombus vector corresponding to the edge xjxj+1, then

e(xj ,xj+1)(u|k) = i(k′)
1
2 sc(uαj |k), and e(x,y)(u|k) =

n−1∏
j=1

e(xj ,xj+1)(u|k), (2.11)
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where uαj :=
u−αj

2 .
Up to an explicit multiplicative constant Gm(k)(x, y) is the expected number of visits

to y of the associated massive random walk on the infinite graph G started at x, see for
example Appendix D4 of [11].

From now on, we consider k such that (k′)2 ∈ (0,∞) as fixed and omit all reference
to k in the notation.

2.5.7 Bipartite dimer models on isoradial graphs

When considering a dimer model on a bipartite isoradial graph G = (W ∪ B,E) with
weight function ν, instead of a Kasteleyn orientation, one can multiply edge-weights by a
complex phase [53, 45]. This defines the complex, bipartite Kasteleyn matrix, denoted
K̃ in the context of this section, whose non-zero coefficients are given by:

∀ edge wb of G, K̃w,b = ei
ᾱe+β̄e

2 νwb,

where eiᾱe , eiβ̄e are the rhombus vectors of G� associated to the edge e = (w, b). The
real and complex bipartite Kasteleyn matrices satisfy the alternating cycle condition
around every inner face of G and are gauge equivalent, see Section A.2 of Appendix A.
The results of [41, 42, 44] recalled in Section 2.2 also hold with the complex, bipartite
Kasteleyn matrix. In the sequel the graph G will be the double graph GD or the bipartite
graph GQ.

3 Zu-Dirac and Z-massive Laplacian operators

We let G be an infinite/finite isoradial graph; its dual graph is G∗/Ḡ∗, and in the finite
case G∗ is its restricted dual. We consider the isoradial embedding of the double graph
GD = (VD,ED) given in Section 2.5.2, see also Figure 6. Fix an elliptic parameter k. Recall
the definition of the torusT(k) = C/(4KZ+4iK ′Z), and of the subset C = C(k) := R/4KZ

of T(k).
In Section 3.1 we introduce a family of bipartite Kasteleyn matrices/operators

(K(u))u∈C on the double graph GD, referred to as the Zu-Dirac operators. Fixing u ∈ C, a
function F ∈ CB is said to be Zu-holomorphic if, K(u)F = 0. When k = 0, the dependence
in u disappears and we recover the discrete Dirac operator ∂̄ introduced in [45], see
Remark 3.4. As a consequence of Theorem 3.6 of Section 3.3, we have that if F is a Zu-
holomorphic function, then F|V is massive harmonic on G and F|V∗ is massive harmonic
on G∗, for the Z-massive Laplacian ∆m and its dual ∆m,∗ of [11]; explaining the part
Dirac of the terminology. In the finite case, we moreover introduce the operator K∂(u)

with specific boundary conditions arising from the forthcoming Theorem 4.2 related to
the Ising model, that are different from the natural dimer ones.

In Section 3.4 we restrict to the finite case. Theorem 3.8 proves that, for every u ∈ C,
the determinant of the Zu-Dirac operator K(u) is equal, up to an explicit multiplicative
constant, to the determinant of the dual massive Laplacian ∆m,∗; we show a similar result
for the operator K∂(u) and the massive Laplacian ∆m,∂(u), where ∆m,∂(u) has specific
boundary conditions and depends on u along the boundary only. Interpreting these
determinants as partition functions, this proves that the weighted sum of pairs of dual
directed spanning trees is equal, up to an explicit constant, to the weighted sum of rooted
spanning forests. In the case k = 0, pairs of directed spanning trees become undirected
and rooted spanning forests are un-rooted so that this theorem is a consequence of
Temperley’s bijection [71] and of the matrix-tree theorem [50]. For k 6= 0, this result is
non-trivial; the proof uses gauge equivalences on bipartite Kasteleyn matrices and on
weighted adjacency matrices of directed graphs (digraphs), see Appendix A.
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For every u ∈ C, the operator K(u) is gauge equivalent to an operator Kg(u) associated
to a model of directed spanning trees. In Proposition 3.13 of Section 3.5, we prove that
this model of directed spanning trees is Z-invariant, thus explaining the part “Zu” in the
terminology Zu-Dirac operator.

Using Theorem 3.6, in Corollary 3.15 of Section 3.6, we express the inverse Zu-Dirac
operator using the Z-massive Green function Gm and its dual Gm,∗ of [11] in the infinite
case. This proves in Theorem 3.19 an explicit local expression for a Gibbs measure
for the dimer model on GD with operator K(u), generalizing to the full Z-invariant case
the results of [45] proved in the case k = 0. In Corollary 3.17, we explicitly express
the inverse of the Zu-Dirac operator K∂(u) as a function of the finite versions of the
Z-massive Green functions. Theorem 3.19 is a planar, directed version of the transfer-
impedance theorem of [14], where probabilities of pairs of dual directed spanning trees
are computed using the Green functions of massive non-directed random walks. Apart
from the locality property which is specific to Z-invariance, a similar result is obtained
by Chhita [20] in the case of the square lattice with a specific choice of weights. Sun [70]
expresses probabilities of directed spanning trees using the Green function of directed
random walks, and Kenyon [46] proves that probabilities of rooted spanning forests are
determinantal, without connecting them to directed spanning trees. It might be that
the techniques of this paper, in particular gauge transformations on weighted adjacency
matrices of digraphs, extend in some respect and allow to relate probabilities of pairs of
dual directed spanning trees to massive non-directed Green functions.

3.1 Family of Zu-Dirac operators (K(u))u∈C

We will be using Section 2.3.1 on the double graph and Temperley’s bijection. Recall
that vertices of the double graph GD are partitioned as VD = B ∪W , where B = V ∪ V∗

and W ↔ E. The diamond graph of GD is G�/2, see Section 2.5.2 and Figure 6. Let u ∈ C
be fixed; we now define the Zu-Dirac operator, first in the infinite case, then in the finite
case.

Infinite case. Consider the weight function c(u) on edges of GD defined by, ∀w ∈
W, ∀x ∈ V ∪ V∗ such that wx is an edge of GD,

c(u)wx =

{
f(uαe , uβe) if x ∈ V

f((uαe)
∗, (uβe)

∗) if x ∈ V∗,
(3.1)

where eiᾱe , eiβ̄e are the rhombus vectors of G�/2 associated to the edge e = (w, x);
uα := u−α

2 , u∗ := K − u, and

f(uα, uβ) = [sc(uα − uβ) dn(uα) dn(uβ)]
1
2 .

Remark 3.1. The function dn is periodic in two directions and naturally defined on the
torus C/(2KZ + 4iK ′Z) [1]. Since dn(u + 2iK ′) = −dn(u), and since the function c(u)

involves products of two dn’s and half arguments, it is defined on the torus T(k). This
argument is similar to that used in [11] to define the domain of the massive exponential
function.

We restrict to u ∈ C because the weight function c(u) is then positive; indeed the

function dn is, and αe, βe are such that β̄e−ᾱe
2 ∈ (ε, π2 − ε). Also, on C the (pure imaginary)

poles of c(u) are avoided and the weights are thus finite. Results in the sequel which use
elliptic trigonometric identities actually hold for all u ∈ T(k); it is when considering the
corresponding dimer model that we use positivity of the weights.

Let K(u) be the complex, bipartite Kasteleyn matrix defined in Section 2.5.7 corre-
sponding to the weight function c(u), with rows indexed by white vertices of GD. Non-zero
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coefficients of K(u) are given by

∀ edge wx of GD, K(u)w,x = ei
ᾱe+β̄e

2 c(u)wx. (3.2)

Recall that this Kasteleyn matrix can also be interpreted as an operator mapping CB

to CW . We refer to this matrix/operator as the Zu-Dirac operator. As an example, we
explicitly compute K(u) around a white vertex w of GD.

Example 3.2. Figure 9 below sets the notation. A white vertex w of GD is adjacent to
the black vertices v1, f1, v2, f2 of GD defining a rhombus of the diamond graph G�, such
that v1, v2 belong to G and f1, f2 to G∗. Denote by 2eiᾱ, 2eiβ̄ the rhombus vectors of G�

associated to the edge (v1, v2), and by θ̄ = β̄−ᾱ
2 the rhombus half-angle of this edge.

2eiᾱ

2eiβ̄

v1 v2

f1

f2

θ̄

π
2 −θ̄

eiᾱei(β̄+π)

ei(ᾱ+π) eiβ̄

v1 v2

f1

f2

w

θ̄

Figure 9: Rhombus v1, f1, v2, f2 of the diamond graph G� (left) and rhombi of the diamond
graph G�/2 associated to the edges wv1, wf1, wv2, wf2, with corresponding rhombus
vectors and half-angles.

Then, we have:

K(u)w,v1
= −ei

α+β
2 [sc(θ) dn(uα+2K) dn(uβ+2K)]

1
2 = −ei

α+β
2 [(k′)2 sc(θ) nd(uα) nd(uβ)]

1
2

K(u)w,v2 = ei
α+β

2 [sc(θ) dn(uα) dn(uβ)]
1
2

K(u)w,f1
= −iei

α+β
2 [(k′)2 sc(θ∗) nd(uβ−2K) nd(uα)]

1
2 = −iei

α+β
2 [cs(θ) dn(uβ) nd(uα)]

1
2

K(u)w,f2 = iei
α+β

2 [(k′)2 sc(θ∗) nd(uβ) nd(uα+2K)]
1
2 = iei

α+β
2 [cs(θ) nd(uβ) dn(uα)]

1
2 ,

using that, sc(θ∗) = sc(K − θ) = (k′)−1 cs(θ), dn(u−K) = k′ nd(u), dn(u+ 2K) = dn(u).

Definition 3.3. A function F ∈ CB is said to be Zu-holomorphic if

K(u)F = 0.

With the notation of Figure 9, this is equivalent to asking that the function F satisfies,

∀w ∈W, K(u)w,v1
· Fv1

+ K(u)w,v2
· Fv2

+ K(u)w,f1
· Ff1

+ K(u)w,f2
· Ff2

= 0

⇔ ∀w ∈W, sc(θ)
1
2

(
[dn(uα) dn(uβ)]

1
2 · Fv2

− [(k′)2 nd(uα) nd(uβ)]
1
2 · Fv1

)
+

+ i[cs(θ)]
1
2

(
[nd(uβ) dn(uα)]

1
2 · Ff2

− [dn(uβ) nd(uα)]
1
2 · Ff1

)
= 0.

Remark 3.4. When k = 0, then k′ = 1, dn ≡ 1, sc = tan, and the Zu-Dirac operator is
the discrete Dirac operator ∂̄ introduced in [45]. A Zu-holomorphic function is then a
holomorphic function as defined in [33, 59, 45, 17]:

∀w ∈W, tan(θ)
1
2 (Fv2 − Fv1) + i[cot(θ)]

1
2 (Ff2 − Ff1) = 0.

Finite case. We will be using Sections 2.3.1 and 2.5.2: the graph GD,r is obtained from
GD by removing the vertex r and its incident edges; the set of black vertices of GD,r is
Br = Vr ∪ V∗, the set of white vertices is W r = W ↔ E, and |Br| = |W r|, see Figure 6
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(left) for an example. The set of boundary rhombus pairs of the diamond graph G� is R∂;
R∂,r is the set R∂ without the root pair containing the vertex r. For boundary rhombus
pairs of R∂ , we use the notation of Figure 7, which we recall here for convenience of the
reader.

v`

vc

vrw` wr

fc

eiᾱ
`

eiβ̄
`
eiᾱ

r

eiβ̄
r

θ̄∂

Figure 10: Notation for vertices of GD in a boundary rhombus pair of R∂, and rhombus
vectors eiᾱ

`

, eiβ̄
`

, resp. eiᾱ
r

, eiβ̄
r

, of G�/2 assigned to the edge (vc, w`), resp. (vc, wr).
When this pair is not the root one, the marked black edge is where the operator K∂(u)

differs from K(u).

We introduce two versions K(u) and K∂(u) of the Zu-Dirac operator, corresponding to
different boundary conditions; both operators map CB

r

to CW
r

.

The operator K(u) is the finite version of the operator K(u) defined in the infinite case,
thus justifying the notation; it is the complex, bipartite Kasteleyn matrix corresponding
to the weight function c(u) of (3.1) restricted to GD,r, and we do not repeat the definition
here.

The operator K∂(u) has specific boundary conditions arising from the forthcoming
Theorem 4.2 related to the Ising model. It is the complex, bipartite Kasteleyn matrix
associated to the weight function c∂(u) differing from c(u) along edges (w`, vc) of the
boundary rhombus pairs of R∂,r. For every edge wx of GD, we have

c∂(u)wx =

{
c(u)wx if (w, x) /∈ {(w`, vc) ∈ R∂,r}
c(u)w`vc

cd(uβr )
cd(u

α`
) if (w, x) ∈ {(w`, vc) ∈ R∂,r}.

(3.3)

In order for c∂(u) to be finite, we restrict the domain of u to:

C′ := C \ {(α` + 2K)[4K] : eiᾱ
`

∈ R∂} (3.4)

= C \ {(βr + 2K)[4K] : eiβ̄
r

∈ R∂},

where the second equality is a consequence of properties of train-tracks, see Sec-
tion 2.5.3. As a consequence, the weight function c∂(u) is everywhere non-zero.

The coefficients of K∂(u) differing from those of K(u) are those corresponding to
edges (w`, vc) of R∂,r, and we have:

K∂(u)w`,vc = K(u)w`,vc
cd(uβr )

cd(uα`)
= −ei

α`+β`
2 [sc(θ∂) dn(uα`+2K) dn(uβ`+2K)]

1
2

cd(uβr )

cd(uα`)
.

(3.5)

Remark 3.5. The weight c∂(u)w`vc might be negative. Using the physics terminology,
see also Remark 5.5, this means that the corresponding dimer model has vortices on
boundary faces vc, w`, f c, wr where this is the case.
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3.2 Z-massive Laplacian operators

In the infinite case, we consider the Z-massive Laplacian associated to the isoradial
graph G introduced in [11], whose definition is recalled in Section 2.5.6. We also consider
the dual Z-massive Laplacian ∆m,∗ of the dual isoradial graph G∗.

The purpose of this section is to define the finite versions of the Z-massive Laplacian
and dual Z-massive Laplacian that are used in this paper; we introduce two operators.
The first is the finite version of the dual Z-massive Laplacian, denoted ∆m,∗ as in the
infinite case. It acts on CV∗ , where recall that V∗ is the vertex set of the restricted dual
G∗, whose boundary vertices are defined to be those adjacent to the vertex o in Ḡ∗. For
every vertex f of G∗ of degree d in Ḡ∗, denote its neighbors by f1, . . . , fd. Let

¯
d be the

degree of f in G∗, then if f is a boundary vertex of G∗ we have
¯
d 6= d, and we label the

vertices so that the first
¯
d ones are common to G∗ and Ḡ∗. For every j ∈ {1, . . . ,

¯
d}, (f, fj)

is an edge of G∗ and we let θ̄∗j denote its half-angle in G�; for every j ∈ {
¯
d + 1, . . . , d},

(f, fj) = (f, o) corresponds to an edge fwj of the double graph GD, where wj is the
unique vertex of GD which belongs to the edge fo, we let θ̄∗j denote the half-angle of
the edge (f, wj) in G�/2. Then, non-zero coefficients of the finite version of the dual
Z-massive Laplacian ∆m,∗ are given by,

∆m,∗
f,f ′ =

{
− sc(θ∗) if (f, f ′) is an edge of G∗∑d
j=1A(θ∗j ) if f ′ = f is a vertex of G∗.

The corresponding conductances ρ∗ and masses m∗ are as defined in Section 2.4.

The second operator acts on CVr

; it is denoted ∆m,∂(u) and we restrict to u ∈ C′. It is
not the natural finite version of the operator ∆m but has boundary conditions inherited
from those of the Zu-Dirac operator K∂(u), see the proof of Theorem 3.6 below. We use
the notation of the infinite Z-massive Laplacian operator ∆m, see Section 2.5.6, and also
the notation of Figure 10 for the boundary rhombus pairs of R∂.

In the following, the two boundary vertices vr, v` of R∂ enter the same framework,
and we denote such a vertex by v∂. For every v∂ of R∂ of degree d in G, let v1, . . . , vd
denote its neighbors in cclw order with v1 on the boundary of G on the left of v∂, see
Figure 12 (right). Note that if v∂ = v∂,r belongs to the root pair, then vc = r is considered
as a neighbor of v∂,r. The coefficients of ∆m,∂(u) differing from those of ∆m are those
corresponding to edges (vc, v`) of R∂,r, and to vertices vr, v`, vc of R∂ such that vc 6= r:

∆m,∂(u)v,v′ =


− sc(θ∂)

cd(uβr )
cd(u

α`
) if (v, v′) ∈ {(vc, v`) ∈ R∂,r}

k′ sc(θ∂)
nd(u

β`
) nd(uβr )

cn(u
α`

)

(
cn(uβr ) + cn(uα`)

)
if v′ = v = vc ∈ {vc ∈ R∂,r}

k′
∑d
j=1 sc(θj) nd(uαj ) nd(uαj+1

) if v′ = v = v∂ ∈ {vr, v` ∈ R∂}.
(3.6)

The corresponding conductances and masses are denoted ρ∂(u) and m∂(u). Note that
the diagonal term ∆m,∂(u)v∂ ,v∂ has the same form as that of the natural finite version of
the Z-massive Laplacian.

In order to state Theorem 3.6 relating the Zu-Dirac and the Z-massive Laplacian
operators, in the finite case we need to introduce the matrix Q(u). It has rows indexed
by black vertices of Gr and columns by those of the restricted dual G∗. The only non-zero
coefficients of Q(u) are for rows corresponding to vertices vc of boundary rhombus pairs
of R∂,r. For such a vertex vc, there is one non-zero coefficient, corresponding to the
column f c, given by

Q(u)vc,fc = −i
nd(uβ`)

cd(uα`)

(
cd(uβr )− cd(uα`)

)
.
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3.3 Relating the Zu-Dirac and the Z-massive Laplacian operators

Theorem 3.6 below relates the Zu-Dirac operator, the Z-massive Laplacian and the
dual Z-massive Laplacian in the infinite and finite cases. In the infinite case, this extends
to the full Z-invariant case the results of Section 6 of [45] which correspond to k = 0.

Theorem 3.6.

• Infinite case. Let u ∈ C, then the Zu-Dirac operator K(u), the Z-massive Laplacian
∆m and the dual ∆m,∗ satisfy the following identity:

K(u)
t
K(u) = k′

(
∆m 0

0 ∆m,∗

)
.

• Finite case. Let u ∈ C′, then the Zu-Dirac operators K(u), K∂(u), the Z-massive
Laplacian ∆m,∂(u) and the dual ∆m,∗ satisfy the following identity:

K∂(u)
t
K(u) = k′

(
∆m,∂(u) Q(u)

0 ∆m,∗

)
.

Remark 3.7.

• As a consequence of Theorem 3.6 in the infinite case, we have that if F ∈ CB
is a Zu-holomorphic function, then F|V is Z-massive harmonic on G and F|V∗ is
Z-massive harmonic on G∗.

• From the proof of Theorem 3.6 it follows that, in the finite case, we also have the
following matrix relation:

K(u)
t
K(u) = k′

(
∆m(u) 0

0 ∆m,∗

)
,

where ∆m(u) is the natural finite version of the Z-massive Laplacian, i.e., where
diagonal coefficients of boundary vertices of ∆m(u) are defined as in the last line
of (3.6).

Proof. As in the critical case [45], the proof consists in showing that matrix coefficients
on both sides are equal. We separate the infinite case together with the part of the
finite case which enters the infinite framework, from the part of the finite case which is
specific. To simplify notation, we omit the argument u from the operators.

When two black vertices x, y of GD, resp. GD,r, are at distance more than two, the

corresponding coefficient [K
t
K]x,y, resp. [K∂

t
K]x,y, is trivially equal to 0, we thus

suppose that x, y are at distance 2 or 0.
Infinite case and part of the finite case. Let (x, y) = (v, f) or (f, v), with v a vertex

of G and f a vertex of G∗, at distance two. Denote by w,w′ the two white vertices of
the quadrangle of GD/GD,r containing v and f ; let eiᾱ, eiβ̄ , resp. eiᾱ

′
, eiβ̄

′
, be the rhombus

vectors of G�/2 associated to the edge (w, v), resp. (w′, v), and let θ̄, resp. θ̄′, be the
corresponding half-angle, see Figure 11. In the finite case, we moreover suppose that
(v, f) 6= (vc, f c) for all boundary rhombus pairs of R∂,r, then we have K∂ = K for all

coefficients involved. Let us prove that [K
t
K]v,f = Kw,vKw,f + Kw′,vKw′,f = 0.

By definition of K, we have

Kw,vKw,f = e−i
α+β

2 [sc(θ) dn(uα) dn(uβ)]
1
2 ei

β−π+α
2 [k′ cs(θ) nd(uβ−2K) nd(uα)]

1
2

= −idn(uβ)

Kw′,vKw′,f = e−i
ᾱ′+β̄′

2 [sc(θ′) dn(uα′) dn(u′β)]
1
2 ei

β̄′+ᾱ′+π
2 [k′ cs(θ′) nd(uβ′) nd(uα′+2K)]

1
2

= i dn(uα′).
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v

f

w

w′

eiᾱ

eiβ̄

eiᾱ
′

eiβ̄
′

θ̄

θ̄′

Figure 11: Notation for computing [K
t
K]v,f .

Since β̄ = ᾱ′[2π], we deduce that [K
t
K]v,f = 0. We also have [K

t
K]f,v = 0, because

[K
t
K]f,v = [K

t
K]v,f .

Next, let (x, y) = (v1, v2) be an edge of the graph G/Gr corresponding to a path v1, w, v2

of GD/GD,r. In the finite case, we moreover suppose that (v1, v2) 6= (vc, v`) for all boundary
rhombus pairs of R∂,r, then we have K∂ = K for all coefficients involved. Using the
notation of Figure 9, we have

[K
t
K]v1,v2

= Kw,v1
Kw,v2

= e−i
ᾱ+β̄+2π

2 [sc(θ) dn(uα+2K) dn(uβ+2K)]
1
2 ei

ᾱ+β̄
2 [sc(θ) dn(uα) dn(uβ)]

1
2

= −k′ sc(θ) = k′∆m
v1,v2

.

We now handle the case where x, y are at distance 0, i.e., when x = y and we suppose
that x is a vertex v of G of degree d. In the finite case, we moreover suppose that v 6= vc

for all boundary rhombus pairs of R∂,r, then we have K∂ = K for all coefficients involved.
Using the notation of Figure 12 we have:

[K
t
K]v,v =

d∑
j=1

Kwj ,vKwj ,v =

d∑
j=1

|Kwj ,v|2

=

d∑
j=1

sc(θj) dn(uαj+2K) dn(uαj+1+2K) = (k′)2
d∑
j=1

sc(θj) nd(uαj ) nd(uαj+1
).

v

v1

w1

v2

w2

vj

wj

2eiᾱj
2eiᾱj+1θ̄j

v∂

v1

w1

wj

vd

vj

wd

2eiᾱd

2eiᾱ1

Figure 12: Notation for computing [K
t
K]v,v, when v is not a boundary vertex (left), and

when v is a boundary vertex v∂ ∈ {v`, vr ∈ R∂} (the additional half-rhombi along the
boundary are pictures in grey).

In the finite case, when v ∈ {v`, vr ∈ R∂}, both vertices enter the same framework and
we denote v by v∂. We stop the computation here, and returning to (3.6), we have that
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[K
t
K]v∂ ,v∂ = k′∆m,∂

v∂ ,v∂
. In the infinite case or in the finite case when v is not a boundary

vertex we write, nd(uα) = nd((u− 2iK ′)α + iK ′) = i sc((u− 2iK ′)α) and obtain

[K
t
K]v,v = −(k′)2

d∑
j=1

sc(θj) sc((u− 2iK ′)αj ) sc((u− 2iK ′)αj+1).

Since in this case we have ᾱd+1 = ᾱ1 + 2π, we can use Proposition 11 of [11] and obtain
that, for every u ∈ T(k),

−(k′)2
d∑
j=1

sc(θj) sc(uαj ) sc(uαj+1
) = k′[

d∑
j=1

A(θj)].

Evaluating this identity at u − 2iK ′, and recalling the definition of ∆m, see (2.9), we

deduce that [K
t
K]v,v = k′[

∑d
j=1A(θj)] = k′∆m

v,v.
We are left with handling the cases where (x, y) = (f1, f2) is an edge of G∗, and

where x = y = f is a vertex of G∗. First note that coefficients of K,K∂ involved in
these computations arise from dual edges, and that for these edges we have K∂ = K.
Next, observe that coefficients of the operator K on edges arising from the primal and
from the dual differ in that the weight function c is evaluated at u or u∗ = K − u,

see (3.1). Given that the value of [K
t
K]v1,v2

is independent of u, we immediately deduce

the corresponding result for [K
t
K]f1,f2

. In the infinite case and in the finite case if v is an

inner vertex of G, [K
t
K]v,v is also independent of u thus giving the corresponding result

for [K
t
K]f,f . The computation of [K

t
K]v,v when v is a boundary vertex v∂ ∈ {v`, vr},

yields a result which depends on u. Recall that what prevents us from proceeding with
the computation as in the non-boundary case is the fact that ᾱd+1 6= ᾱ1 + 2π. Since for
boundary vertices of the restricted dual the condition ᾱd+1 = ᾱ1 + 2π is satisfied, we
proceed with the computation as for inner vertices and obtain the corresponding result

for [K
t
K]f,f . This ends the proof of Theorem 3.6 in the infinite case and part of the finite

case.
Remaining part of the finite case. When (x, y) = (v, f) or (f, v), with v, f at distance 2,

we are left with the case where (v, f) = (vc, f c) for some boundary rhombus pair of R∂,r.

Since the operator [K∂
t
K] is not skew-symmetric, we have to consider the coefficients

(vc, f) and (f, vc) separately. For the coefficient (f c, vc), using the notation of Figure 10,

we have [K∂
t
K]fc,vc = K∂w`,fcKw`,vc + K∂wr,fcKwr,vc . This is equal to 0 as in the finite

non-boundary case, because K∂ is equal to K on the edges (w`, f c) and (wr, f c). For the
coefficient (vc, f c), we have

[K∂
t
K]vc,fc = K∂w`,vcKw`,fc + K∂wr,vcKwr,fc

=
cd(uβr )

cd(uα`)
Kw`,vcKw`,fc + Kwr,vcKwr,fc , by definition of K∂, see (3.5)

= −i dn(uβ`+2K)
(cd(uβr )

cd(uα`)
− 1
)
, by the finite non-boundary computation

= −ik′
nd(uβ`)

cd(uα`)

(
cd(uβr )− cd(uα`)

)
= k′Qvc,fc .

Now consider an edge (v1, v2) of Gr. Then, we are left with the case where (v1, v2) =

(vc, v`) for some boundary rhombus pair of R∂,r. We have,

[K∂
t
K]vc,v` = K∂w`,vcKw`,v` =

cd(uβr )

cd(uα`)
Kw`,vcKw`,v` , by definition of K∂ , see (3.5)

= −k′ cd(uβr )

cd(uα`)
sc(θ∂) = k′∆m,∂

vc,v`
, by the finite non-boundary computation.
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When x, y are at distance 0, and x = y = v is a vertex of G, we are left with the case
where v = vc for some boundary rhombus pair of R∂,r. We have,

[K∂
t
K]vc,vc = K∂w`,vcKw`,vc + K∂wr,vcKwr,vc

= |Kw`,vc |
2 cd(uβr )

cd(uα`)
+ |Kwr,vc |2, by definition of K∂ , see (3.5)

= (k′)2 sc(θ∂)
(

nd(uα`) nd(uβ`)
cd(uβr )

cd(uα`)
+ nd(uαr ) nd(uβr )

)
,

by the finite non-boundary computation

= (k′)2 sc(θ∂)
nd(uβ`) nd(uβr )

cn(uα`)

(
cn(uβr ) + cn(uα`)

)
= k′∆m,∂

vc,vc , since β` = αr[2π].

3.4 Determinants of the Zu-Dirac and Z-massive Laplacian operators

We restrict to the finite case and consider the Zu-Dirac operators K(u) and K∂(u) of
Section 3.1 (finite case), the Z-massive Laplacian ∆m,∂(u), and the dual Z-massive Lapla-
cian ∆m,∗ of Section 3.2 (finite case). Theorem 3.8 below proves that the determinants
of K(u) and ∆m,∗ are equal up to an explicit constant depending on u. Corollary 3.10
establishes a similar result for the determinants of K∂(u) and ∆m,∂(u), thus implying
identities between partition functions.

3.4.1 Determinants as partition functions

Returning to Section 2.3.1 on Temperley’s bijection, in particular to Equation (2.3), let
c̃(u), be the weight function on directed edges of G, Ḡ∗ corresponding to the weight
function c(u) of Equation (3.1). Then, the partition function of pairs of dual r-rooted
and o-rooted directed spanning trees of G, Ḡ∗ with weight function c̃(u), is equal to the
partition function of the dimer model on the graph GD,r with weight function c(u) [71, 49],
which is equal to |detK(u)| [72, 41]. We proceed in a similar way with dimers weighted
by c∂(u) and thus have,

Zr,o
dST-pairs((G, Ḡ

∗), c̃(u)) = |detK(u)|, Zr,o
dST-pairs((G, Ḡ

∗), c̃∂(u)) = |detK∂(u)|. (3.7)

Returning to Section 2.4, we have that det ∆m,∗ counts weighted rooted spanning forests
of G∗ with conductances ρ∗ and masses m∗, where conductances are symmetric. In a
similar way, det ∆m,∂(u) counts weighted rooted directed spanning forests of Gr with
conductances ρ∂(u), m∂(u), where the dependence in u is along the boundary only, and
the conductances are symmetric away from the boundary. That is,

ZrSF(G∗, ρ∗,m∗) = det ∆m,∗, ZrdSF(Gr, ρ∂(u),m∂(u)) = det ∆m,∂(u). (3.8)

3.4.2 Statements

Recall that every edge e = (w, x) of GD,r is assigned two rhombus vectors eiᾱe , eiβ̄e of
the diamond graph G�/2 and a half-angle θ̄e. Moreover, every white vertex w of GD,r is
in the center of a rhombus of the diamond graph G�; we let θ̄w be the half-angle of this
rhombus at one of the two primal vertices.

Theorem 3.8. Let M0 be a dimer configuration of GD,r. Then, for every u ∈ C, we have

|detK(u)| = (k′)
|V∗|

2

( ∏
w∈W

sc(θw)
1
2

)( ∏
e=wx∈M0

[dn(uαe) dn(uβe)]
1
2

)
det ∆m,∗, (3.9)

where, |detK(u)| = Zr,o
dST-pairs((G, Ḡ

∗), c̃(u)), det ∆m,∗ = ZrSF(G∗, ρ∗,m∗).
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Remark 3.9. Comments on this theorem are given in the introduction to Section 3
especially how, in the critical case k = 0, it is an easy consequence of Temperley’s
bijection and the matrix-tree theorem, and how the argument does not directly extend to
the non-critical case.

As one expects, the quantity
∏
e=wx∈M0

[dn(uαe) dn(uβe)]
1
2 is independent of the choice

of perfect matching M0. To see this, it suffices to check that the alternating product
around every inner quadrangle face of GD,r is equal to 1; this is proved in Lemma 3.11
below.

The following is an immediate corollary of Theorem 3.8.

Corollary 3.10. Let M0 be a dimer configuration of GD,r. Then, for every u ∈ C′ we have,

|detK∂(u)| = (k′)
|V|−1

2

( ∏
w∈W

cs(θw)
1
2

)( ∏
e=wx∈M0

[k′ nd(uαe) nd(uβe)]
1
2

)
det ∆m,∂(u),

where |detK∂(u)| = Zr,o
dST-pairs((G, Ḡ

∗), c̃∂(u)), det ∆m,∂(u) = ZrdSF(Gr, ρ∂(u),m∂(u)).

Proof. From Theorem 3.6, we have:

detK∂(u) detK(u) = (k′)|V
r|+|V∗| det ∆m,∂(u) det ∆m,∗.

Replacing detK(u) in the above by Equation (3.9) and recalling that |W r| = |Br| =

|Vr|+ |V∗| and that |Vr| = |V| − 1, yields the result. Note that an argument similar to that
used for proving Theorem 3.8 would give an alternative direct proof of Corollary 3.10.

3.4.3 Proof of Theorem 3.8

The proof of Theorem 3.8 is postponed until the end of this section. It is a consequence
of four intermediate results, see Equations (3.10), (3.13), (3.15), (3.16) below, which we
now establish. We will use Section 2.3.1 on Temperley’s bijection and Appendix A on
gauge transformations.

From pairs of directed spanning trees to directed spanning trees We start by
defining a gauge transformation Kg(u) of the matrix K(u). Being gauge equivalent,
the determinants of Kg(u) and K(u) are equal up to an explicit constant. We then use
Temperley’s bijection to deduce that the determinant of Kg(u) counts weighted o-directed
spanning trees of the dual graph Ḡ∗.

Let g(u) be the weight function on white-to-black edges of GD,r defined by, for every
edge wx of GD,r,

g(u)wx = [cs(θw) nd(uαe) nd(uβe)]
1
2 .

Consider the matrix Kg(u) obtained from K(u) by multiplying edge-weights by g(u).
Returning to the definition of K(u), see (3.1) and (3.2), we obtain that non-zero coeffi-
cients of Kg(u) are given by,

Kg(u)w,x =

{
ei
αe+βe

2 if x ∈ Vr

ei
αe+βe

2 (k′)
1
2 cs(θw) nd(uαe) nd(uβe) if x ∈ V∗.

Lemma 3.11. Consider a perfect matching M0 of GD,r. The bipartite, weighted adjacency
matrices Kg(u) and K(u) are gauge equivalent and we have,

|detK(u)| =
( ∏
w∈W

sc(θw)
1
2

)( ∏
e=wx∈M0

[dn(uαe) dn(uβe)]
1
2

)
|detKg(u)|. (3.10)
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Proof. Details on gauge equivalences for bipartite, weighted adjacency matrices are
given in Section A.2 of Appendix A. To prove that K and Kg are gauge equivalent, it
suffices to show that the alternating products of K and Kg around inner face-cycles of
GD,r are equal. Inner face-cycles of GD,r are quadrangles; using the notation of Figure 11
we have,

Kg
w,vK

g
w′,f

Kg
w,fK

g
w′,v

=
Kw,vKw′,f
Kw,fKw′,v

⇔ gw,v
gw′,f

gw,f
gw′,v

= 1.

By definition of g we have,

gw,v
gw,f

gw′,f
gw′,v

=
cs(θ) nd(uα) nd(uβ)

cs(θ) nd(uβ−2K) nd(uα)

cs(θ′) nd(uβ′) nd(uα′+2K)

cs(θ′) nd(uα′) nd(uβ′)
= 1,

since ᾱ′ = β̄[2π]. The equality between determinants comes from [53], see also Corol-
lary A.8, and from the fact that,

∏
wx∈M0

sc(θw) =
∏
w∈W sc(θw), since a dimer configura-

tion covers all white vertices W r of GD,r, and W r = W .

Now, the matrix Kg(u) is a complex, bipartite Kasteleyn matrix of the graph GD,r,
where edges are assigned the positive weight function c g(u) given by:

c g(u)w,x =

{
1 if x ∈ Vr

(k′)
1
2 cs(θw) nd(uαe) nd(uβe) if x ∈ V∗.

Returning to Section 2.3.1, the weight function c g(u) determines a weight function c̃ g(u)

on directed edges of G, Ḡ∗, see (2.3). Then, c̃ g(u)v,v′ = 1, for all directed edges (v, v′) of
G such that v is a vertex of Gr. Let us now express the weight function c̃ g(u) on directed
edges of Ḡ∗ using the rhombus vectors and half-angles assigned to those edges. Recall
that an edge (f, f ′) of the restricted dual G∗ is assigned two rhombus vectors 2eiᾱ, 2eiβ̄

and a half-angle θ̄∗ of G�. An edge (f, o) of Ḡ∗ corresponds to an edge fw of GD, and one
assigns to (f, o) the rhombus vectors eiᾱ, eiβ̄ and half-angle θ̄∗ of G�/2 associated to the
edge (f, w). Then, for every directed edge (f, f ′) of Ḡ∗ such that f is a vertex of G∗ we
have, using the notation of (2.3):

c̃ g(u)f,f ′ = c g(u)w,f = (k′)
1
2 cs(θw) nd(uαe) nd(uβe)

= (k′)−
1
2 sc(θ∗) dn(uα) dn(uβ), (3.11)

using that θ̄∗ = π
2 − θ̄w, ᾱe = ᾱ ± π, β̄e = β̄ ± π; and c̃ g(u)o,f ′ = 0, for every edge (o, f ′)

of Ḡ∗.

Since edges of the primal graph have weight 1, by the KPW-Temperley bijection [71,
49], the determinant of Kg(u) counts weighted o-directed spanning trees of To(Ḡ∗), where
directed edges of Ḡ∗ are assigned the weight function γ∗(u) given by, for every directed
edge (f, f ′) of Ḡ∗,

γ∗(u)f,f ′ := c̃ g(u)f,f ′ =

{
(k′)−

1
2 sc(θ∗) dn(uα) dn(uβ) if f is a vertex of G∗

0 if f = o.
(3.12)

That is,

|detKg(u)| = Zo
dST(Ḡ∗, γ∗(u)). (3.13)

Matrix-tree theorem An alternative way of computing the partition function (3.13)
is to use the directed version of the matrix-tree theorem [50, 73]. Let ∆∗(u) be the
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(non-massive) Laplacian matrix of the graph Ḡ∗ with conductances γ∗(u) on directed
edges. The non-zero coefficients of the matrix ∆∗(u) are given by:

∆∗(u)f,f ′ =

{
−γ∗(u)f,f ′ if (f, f ′) is an edge of Ḡ∗∑d
j=1 γ

∗(u)f,fj if f ′ = f is a vertex of Ḡ∗.
(3.14)

Let ∆∗,o(u) be the matrix obtained from ∆∗(u) by removing the row and column corre-
sponding to the vertex o. Then,

Zo
dST(Ḡ∗, γ∗(u)) = det ∆∗,o(u). (3.15)

From o-directed spanning trees to rooted spanning forests The last step consists
in going from o-directed spanning trees of Ḡ∗ counted by det ∆∗,o(u) to rooted spanning
forests of G∗ counted by det ∆m,∗ using gauge equivalences on weighted adjacency
matrices of digraphs, see Section A.1 of Appendix A.

Lemma 3.12. The weighted adjacency matrices (k′)−
1
2 ∆∗,o(u) and ∆m,∗ are gauge

equivalent and we have,

det ∆∗,o(u) = (k′)
|V∗|

2 det ∆m,∗. (3.16)

Proof. Both matrices (k′)−
1
2 ∆∗,o(u) and ∆m,∗ have the same associated digraph which

is the restricted dual G∗ where a loop is added at every vertex, and each undirected
edge is replaced by the two possible directed edges. The graph G∗ being connected, the
associated digraph is strongly connected. We use Lemma A.5 to prove gauge equivalence
of the matrices.

For every vertex f of G∗, define qf,f = 1. Next, consider two distinct vertices f1, f2 of
G∗ and a simple di-path γ from f1 to f2. Set,

qf1,f2
=
∏
e∈γ

[(k′)−1 dn(uα) dn(uβ)].

The function q is well defined because it is the exponential function of [11] evaluated at
u− 2K − 2iK ′, see also Equation (2.11). Indeed,

(k′)−1 dn(uα) dn(uβ) = (k′)−1 dn((u− 2K − 2iK ′)α +K + iK ′)×
× dn((u− 2K − 2iK ′)β +K + iK ′)

= [i(k′)
1
2 sc((u− 2K − 2iK ′)α)][i(k′)

1
2 sc((u− 2K − 2iK ′)β)].

Fix a vertex f0 of G∗, and define Df0 to be the diagonal matrix whose diagonal coefficient
Df0

f,f corresponding to the vertex f of G∗ is qf0,f . Let us prove that

∆m,∗ = (k′)−
1
2Df0 ∆∗,o(u)(Df0)−1. (3.17)

Recall the definition of the Laplacian matrix ∆∗,o(u), see (3.14) and (3.12). For the
diagonal coefficient corresponding to a vertex f of G∗, we have

[(k′)−
1
2Df0 ∆∗,o(u)(Df0)−1]f,f = (k′)−

1
2 ∆∗,o(u)f,f = (k′)−1

d∑
j=1

sc(θ∗j ) dn(uαj ) dn(uβj ),

=

d∑
j=1

A(θ∗j ) = ∆m,∗
f,f , by Proposition 11 of [11].
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For an edge (f, f ′) of G∗, we have

[(k′)−
1
2Df0 ∆∗,o(u)(Df0)−1]f,f ′ = (k′)−

1
2
qf0,f

qf0,f ′
∆∗,o(u)f,f ′ = (k′)−

1
2

1

qf,f ′
∆∗,o(u)f,f ′

= −(k′)−
1
2 (k′) nd(uα) nd(uβ)(k′)−

1
2 sc(θ∗) dn(uα) dn(uβ)

= − sc(θ∗) = ∆m,∗
f,f ′ .

By Lemma A.5, Equation (3.17) implies that the matrices (k′)−
1
2 ∆∗,o(u) and ∆m,∗ are

gauge equivalent, and we have equality of the determinants: det ∆m,∗=det[(k′)−
1
2∆∗,o(u)].

Proof of Theorem 3.8. Combining Equation (3.10), (3.13), (3.15) and (3.16), we obtain,

|detK(u)| =
( ∏
w∈W

sc(θw)
1
2

)( ∏
e=wx∈M0

[dn(uαe) dn(uβe)]
1
2

)
|detKg(u)|

=
( ∏
w∈W

sc(θw)
1
2

)( ∏
e=wx∈M0

[dn(uαe) dn(uβe)]
1
2

)
det ∆∗,o(u)

= (k′)
|V∗|

2

( ∏
w∈W

sc(θw)
1
2

)( ∏
e=wx∈M0

[dn(uαe) dn(uβe)]
1
2

)
det ∆m,∗.

3.5 Z-invariance of the Zu-Dirac operator

According to Baxter [4, 5, 6] a model of statistical mechanics is Z-invariant if, when
decomposing the partition function according to the possible configurations outside of
the hexagon of the diamond graph G� defining the star/triangle, it only changes by a
constant independent of the outer configurations when performing a Y-∆ move.

Suppose that the isoradial graph G is finite. The Zu-Dirac operator K(u) is the
bipartite Kasteleyn matrix of the dimer model on the double graph GD,r with weight
function c(u) on the edges given by (3.1). By Section 3.4.1 this dimer model is in bijection
with pairs of dual directed spanning trees of Tr,o(G, Ḡ∗), with weight function c̃(u) on
directed edges of G, Ḡ∗:

Zdimer(G
D,r, c(u)) = |detK(u)| = Zr,o

dST-pairs((G, Ḡ
∗), c̃(u)).

By Lemma 3.11 and Equation (3.13), |detK(u)| is equal up to a constant to |detK g(u)|
which counts o-directed spanning trees of To(Ḡ∗) with conductances γ∗(u) on directed
edges of Ḡ∗ given by (3.12); that is:

Zdimer(G
D,r, c(u)) = C(u) · Zo

dST(Ḡ∗, γ∗(u)),

where C(u) is given in Lemma 3.11. By Temperley’s bijection again, there is a one-to-one
correspondence between dimer configurations of GD,r and o-directed spanning trees of
To(Ḡ∗) (such that the primal tree is r-rooted). We prove Z-invariance of this o-rooted
directed spanning tree model on Ḡ∗; using the above, the decomposition of the partition
function has a direct interpretation in terms of the dimer model on GD,r.

Since duality preserves isoradiality, we actually show Z-invariance of the r-directed
spanning tree model on G, where directed edges of G are assigned conductances γ(u)

given by, for every directed edge (v, v′) of G,

γ(u)v,v′ = (k′)−
1
2 sc(θ) dn(uα) dn(uβ),

where 2eiᾱ, 2eiβ̄ , θ̄ are the rhombus vectors and half-angle of G� associated to the edge
(v, v′); γ(u) is the primal version of the conductances γ∗(u) of (3.12).
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Proposition 3.13. Consider a finite isoradial graph G, and let u ∈ C. Then, the model of
r-directed spanning trees on G, with weight function γ(u) on the edges is Z-invariant.

Remark 3.14.

• By Theorem 3.8, we have:

Zdimer(G
D,r, c(u)) = C ′(u) · ZrSF(G∗, ρ∗,m∗),

and in the paper [11], the model of rooted spanning forests with these weights
is shown to be Z-invariant. But, since the proof of Theorem 3.8 does not provide
a bijection between directed spanning trees and rooted spanning forests, the
two decompositions of the partition functions are not directly comparable; they
should nevertheless be compatible. Note that the computations of the proof of
Proposition 3.13 are reminiscent but much simpler than those of [11] (the latter
have been removed from the published version).

• The critical spanning tree model of [45] with conductances tan(θ) is Z-invariant [43].
The result of [11] extends this to rooted spanning forest while Proposition 3.13
extends it to directed spanning trees.

Proof. Let GY and G∆ be two finite isoradial graphs differing by a star-triangle transfor-
mation, and let r be a fixed root on the boundary of the graph, outside of the hexagon
defining the star/triangle. Let γ∆(u), resp. γY(u), be the weight function on r-dST of G∆,
resp. GY. We use the notation of Figure 13, and write γ∆

i,j/γ
Y
i,j for the weight of the edge

(vi, vj). Using the identities dn(u + K) = k′ nd(u), sc(θ∗) = sc(K − θ) = (k′)−1 cs(θ), we
have the following: for every j ∈ {1, 2, 3}, with cyclic notation for indices:

γY
0,j = (k′)−

1
2 sc(θj) dn(uαj ) dn(uαj+1), γ∆

j,j+1 = (k′)−
1
2 cs(θj−1) nd(uαj ) dn(uαj−1),

γY
j,0 = (k′)

3
2 sc(θj) nd(uαj ) nd(uαj+1), γ∆

j+1,j = (k′)−
1
2 cs(θj−1) dn(uαj ) nd(uαj−1).

v1

v2

v3

v0
θ̄1

θ̄2

θ̄3

eiᾱ3

eiᾱ1

eiᾱ2

v1

v2

v3 θ̄∗1

θ̄∗2

θ̄∗3

eiᾱ3

eiᾱ1

eiᾱ2

Figure 13: Notation for vertices, angles and rhombus vectors in a star-triangle transfor-
mation.

Consider a directed edge configuration T outside of the hexagon which can be
extended to an r-dST of GY/G∆. Then given T, the configurations inside the Y-∆ only
depend on connection properties of T outside. As in the non-directed case [43], we thus
have three kinds of configurations to consider.

I. {T : {v1, v2, v3} are connected to r}.
II. {T : {vj , vj+1} are connected to {r}, j ∈ {1, 2, 3}}.

III. {T : {vj} is connected to {r}, j ∈ {1, 2, 3}}.
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Let Z(GY| i ), resp. Z(G∆| i ), be the partition function of GY, resp. G∆, restricted to
an outer configuration T belonging to the set defined in i, i ∈ {I, II, III}, divided by the
contribution of the configuration T. Then, proving Z-invariance amounts to showing that
there exists a constant C, such that

∀ i ∈ {I, II, III}, Z(GY| i ) = C · Z(G∆| i ).

Let us prove that this is indeed the case, with C = (k′)
3
2

∏3
j=1 sc(θj).

Restriction I We have:

Z(GY| I ) = (k′)−
1
2

3∑
j=1

sc(θj) dn(uαj ) dn(uαj+1
) = (k′)

1
2

3∑
j=1

A(θj)

Z(G∆| I ) = 1,

implying that C = (k′)
1
2

3∑
j=1

A(θj) = (k′)
3
2

3∏
j=1

sc(θj), (3.18)

by Equation (71) of Lemma 47 of [11].

Restriction II We have, ∀ j ∈ {1, 2, 3},

Z(GY| II ) = γY

j+2,0(γY

0,j + γY

0,j+1)

= k′ sc(θj+2) nd(uαj+2
) nd(uαj )[sc(θj) dn(uαj ) dn(uαj+1

)+

+ sc(θj+1) dn(uαj+1
) dn(uαj+2

)]

= k′ sc(θj+2)[sc(θj) nd(uαj+2) dn(uαj+1) + sc(θj+1) nd(uαj ) dn(uαj+1)],

Z(G∆| II ) = γ∆

j+2,j + γ∆

j+2,j+1

= (k′)−
1
2 [cs(θj+1) nd(uαj+2

) dn(uαj+1
) + cs(θj) dn(uαj+1

) nd(uαj )].

Using Equation (3.18), it is straightforward that Z(GY| II ) = CZ(G∆| II ).

Restriction III We have, ∀ j ∈ {1, 2, 3},

Z(GY| III ) = γY

j+1,0γ
Y

j+2,0γ
Y

0,j

= (k′)
5
2 sc(θj+1) nd(uαj+1

) nd(uαj+2
)× sc(θj+2) nd(uαj+2

) nd(uαj )×
× sc(θj) dn(uαj ) dn(uαj+1

)

= (k′)
5
2 sc(θj) sc(θj+1) sc(θj+2) nd2(uαj+2

),

Z(G∆| III ) = γ∆

j+1,j+2γ
∆

j+2,j + γ∆

j+2,j+1γ
∆

j+1,j + γ∆

j+1,jγ
∆

j+2,j

= (k′)−1[cs(θj) nd(uαj+1) dn(uαj ) cs(θj+1) nd(uαj+2) dn(uαj+1)+

+ cs(θj) dn(uαj+1
) nd(uαj ) cs(θj+2) dn(uαj ) nd(uαj+2

)+

+ cs(θj+2) dn(uαj ) nd(uαj+2
) cs(θj+1) nd(uαj+2

) dn(uαj+1
)]

=
(k′)−1∏3
j=1 sc(θj)

nd2(uαj+2)[sc(θj+2) dn(uαj+2) dn(uαj )+

+ sc(θj+1) dn(uαj+1
) dn(uαj+2

) + sc(θj) dn(uαj ) dn(uαj+1
)]

= k′ nd2(uαj+2), by the proof of Restriction I.

The proof that Z(GY| III ) = CZ(G∆| III ) is concluded by using Equation (3.18) again.
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3.6 Inverse Zu-Dirac operator and dimer model on the double graph

Using Theorem 3.6, in Corollaries 3.15 and 3.17, we express the inverse Zu-Dirac
operators K(u)−1 and K∂(u)−1 using the Z-massive and dual Z-massive Green functions.
In the infinite case, this allows to prove in Theorem 3.19 an explicit local expression for
a Gibbs measure for the dimer model on the double graph with weight function c(u).

3.6.1 Inverse Zu-Dirac operator and Z-massive Green functions

Infinite case. Consider an infinite isoradial graph G, and the Zu-Dirac operator K(u).
Consider also the Z-massive Laplacian ∆m on G, the dual Z-massive Laplacian ∆m,∗ of
the dual G∗ [11]. When k 6= 0, let Gm and Gm,∗ be the Z-massive and dual massive Green
functions of G and G∗ of [11], whose definition is recalled in Section 2.5.6. When k = 0,
the mass is 0 and we let G0 and G0,∗ be the Green and dual Green functions of [45].

Notation for coefficients of Corollary 3.15 Let
¯
v, resp.

¯
f , be a vertex of G, resp. G∗.

Let w be a white vertex of GD, its neighbors in GD are v1, f1, v2, f2, and let eiᾱf , eiβ̄f , θ̄f

be the rhombus vectors and half-angle of G�/2 associated to the edge (w, v2), where the
subscript “f” stands for “final”, see Figure 14.

¯
v

¯
f

v1 v2

f1

f2

eiᾱf

eiβ̄f

w
θ̄f

Figure 14: Notation for coefficients of Corollary 3.15 and 3.17.

As a consequence of Theorem 3.6 (infinite case) we obtain,

Corollary 3.15. For every u ∈ C, consider the operator K(u)−1 mapping CW to CB

defined by:

• Matrix form. K(u)−1 = (k′)−1

(
Gm 0

0 Gm,∗

)
K(u)

t
.

• Coefficients. For every
¯
v,

¯
f, w as in the notation above,

K(u)−1

¯
v,w = e−i

ᾱf+β̄f
2 (k′)−1 sc(θf)

1
2

(
[dn(uαf

) dn(uβf
)]

1
2Gm

¯
v,v2
−[dn(uαf+2K) dn(uβf+2K)]

1
2Gm

¯
v,v1

)
K(u)−1

¯
f,w = −ie−i

ᾱf+β̄f
2 (k′)−1 sc(θ∗f )

1
2

(
[dn((uβf

)∗) dn((uαf+2K)∗)]
1
2Gm,∗

¯
f,f2

+

− [dn((uβf−2K)∗) dn((uαf
)∗)]

1
2Gm,∗

¯
f,f1

)
.

Then K(u)−1 is the unique inverse of the operator K(u) decreasing to zero at infinity.

Remark 3.16.

• When k = 0, then dn ≡ 1 and we recover Corollary 7.2 of [45]. When the graph is
Z2 and the weights are specific, Chhita [20] has a result in the same flavor, relating
the inverse Kasteleyn operator of pairs of dual directed spanning trees to a massive
Green function.

• The operator K(u)−1 is local. Indeed the expression for K(u)−1

¯
x,w, with

¯
x =

¯
v ∈ V

or
¯
x =

¯
f ∈ V∗, only depends on: two paths of the diamond graph G� from

¯
x to
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the two neighbors x1, x2 of w in G or G∗, where the two paths are those used in
computing the massive exponential function of coefficients of the massive Green
function of [11]; and from the rhombus vectors and half-angles of G�/2 associated
to the edges (w, x1), (w, x2).

Proof. By definition, see Section 2.2.2, to show that K(u)−1 is an inverse, we need to
prove that K(u)−1K(u) = Id, and that K(u)−1

x,w → 0 as |w − x| → ∞. For the second part,
when k 6= 0 we prove in [11] that the Green function Gm and Gm,∗ decrease exponentially
fast to 0 at infinity; since the function dn is uniformly bounded, the same holds for K(u)−1.
When k = 0, the Green function explodes like − log |x− x′| at infinity, but the difference
converges polynomially fast to 0 as is proved in [45]. For the first part, we apply K(u)

to the right of the definition of K(u)−1 in matrix form and use Theorem 3.6. Note that
this step also uses associativity of the infinite matrix product, which holds in this case.
Uniqueness when k = 0 is proved in [45, Theorem 4.1]; when k 6= 0, it follows from
the fact that 0 is the unique function in the kernel of K(u) decreasing to zero at infinity,
see [8, Proposition 47] (note that when k 6= 0, subexponential growth suffices for this
argument to work).

Finite case. Consider a finite isoradial graph G and the Zu-Dirac operators K(u) and
K∂(u) of Section 3.1 (finite case). Consider also the Z-massive Laplacian ∆m,∂(u) and
dual Laplacian ∆m,∗ of Section 3.2 (finite case). For the purpose of handling the Ising
model, our goal is to obtain an explicit expression for the inverse of the operator K∂(u).
In order to ensure that K∂(u) and ∆m,∂(u) are invertible, we restrict u to:

C′′ := C \ {α`[2K], β`[2K] : eiᾱ
`

, eiβ̄
`

∈ R∂}. (3.19)

Indeed, by the forthcoming Remark 4.4 this ensures that detK∂(u) 6= 0 and by Corol-
lary 3.10 that det ∆m,∂(u) 6= 0 (since nd is positive when u is real). Denote by Gm,∗

the inverse of the (finite) matrix ∆m,∗ and by Gm,∂(u) the inverse of ∆m,∂(u). Note
that when some of the conductances (ρ∂vc,v`(u)) of the boundary rhombus pairs of R∂,r

are negative, there is a twist in defining the associated random walk and in giving the
random walk interpretation of the Green function, but this might at most happen for half
of the boundary edges.

Notation for coefficients of Corollary 3.17 Let w be a white vertex of GD,r; if w /∈
{w`, wr ∈ R∂}, then we use the notation of the infinite case, see Figure 14; if w ∈
{w`, wr ∈ R∂}, then the vertex f2 is absent. As an immediate consequence of Theorem 3.6
(finite case) we obtain

Corollary 3.17. For every u ∈ C′′, the inverse matrix K∂(u)−1 has the following explicit
expression.

• Matrix form. K∂(u)−1 = (k′)−1
[
K(u)

(
Gm,∂(u) −Gm,∂(u)Q(u)Gm,∗

0 Gm,∗

)]t
.

• Coefficients. For every vertex
¯
v of Gr,

¯
f of G∗, and every white vertex w of GD,r,

using the notation of Figure 14,

K∂(u)−1

¯
v,w = e−i

ᾱf+β̄f
2 (k′)−1 sc(θf)

1
2

(
[dn(uαf

) dn(uβf
)]

1
2Gm,∂(u)v2,

¯
v+

− [dn(uαf+2K) dn(uβf+2K)]
1
2Gm,∂(u)v1,

¯
v

)
K∂(u)−1

¯
f,w = −ie−i

ᾱf+β̄f
2 (k′)−1 sc(θ∗f )

1
2

(
I{w/∈{w`,wr∈R∂}}[dn((uβf

)∗) dn((uαf+2K)∗)]
1
2Gm,∗f2,

¯
f+

− [dn((uβf−2K)∗) dn((uαf
)∗)]

1
2Gm,∗f1,

¯
f

)
+

+ i
∑

(vc,fc)∈R∂,r

nd(u
β`

)

cd(u
α`

)

(
cd(uβr )− cd(uα`)

)
K∂(u)−1

vc,w ·G
m,∗
fc,

¯
f ,
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where I{w/∈{w`,wr∈R∂}} is equal to 0 if w is a boundary vertex of GD,r and 1 otherwise. In
the sum over (vc, f c) ∈ R∂,r, we use the notation of Figure 10 for vertices and rhombus
vectors of the boundary rhombus pairs of R∂,r; K∂(u)−1

vc,w in the formula for K∂(u)−1

¯
f,w is

given by the first formula with
¯
v = vc.

Example 3.18. Let us compute the explicit values of Corollaries 3.15 and 3.17 in the
case where u = uf := αf+βf

2 +K. This will be used again in Sections 4.3 and 5.3. In the

finite case, we will also need to evaluate it at u = vf := αf+βf

2 −K. We have,

vf = uf − 2K, uf
αf

= K+θf
2 , uf

βf
= K−θf

2 , vf
αf

= −uf
βf
, vf

βf
= −uf

αf

uf
αf

+ uf
βf

= K, uf
αf+2K + uf

βf+2K = −K, uf
αf+2K + uf

βf
= 0, uf

αf
+ uf

βf−2K = 2K

(3.20)

vf
αf

+ vf
βf

= −K, vf
αf+2K + vf

βf+2K = −3K, vf
αf+2K + vf

βf
= −2K, vf

αf
+ vf

βf−2K = 0.

Using that dn(u±K) = k′ nd(u), dn(u± 2K) = dn(u), dn(−u) = dn(u) and the above
relations, we obtain, for u ∈ {uf ,vf},

[dn(uαf
) dn(uβf

)]
1
2 = [dn(uαf+2K) dn(uβf+2K)]

1
2 = (k′)

1
2

[dn((uβf
)∗) dn((uαf+2K)∗)]

1
2 = k′ nd(uβf

) = k′

{
nd
(
K−θf

2

)
if u = uf

nd
(
K+θf

2

)
if u = vf

[dn((uβf−2K)∗) dn((uαf
)∗)]

1
2 = k′ nd(uαf

) = k′

{
nd
(
K+θf

2

)
if u = uf

nd
(
K−θf

2

)
if u = vf ,

an thus, with the notation of Corollaries 3.15 and 3.17:
• Infinite case.

K(uf)−1

¯
v,w = e−i

ᾱf+β̄f
2 sc(θf)

1
2 (k′)−

1
2

(
Gm

¯
v,v2
−Gm

¯
v,v1

)
K(uf)−1

¯
f,w = −ie−i

ᾱf+β̄f
2 sc(θ∗f )

1
2

(
nd
(
K−θf

2

)
Gm,∗

¯
f,f2
− nd

(
K+θf

2

)
Gm,∗

¯
f,f1

)
.

• Finite case.

K∂(uf)−1

¯
v,w = e−i

ᾱf+β̄f
2 (k′)−

1
2 sc(θf)

1
2

(
Gm,∂(uf)v2,

¯
v −Gm,∂(uf)v1,

¯
v

)
K∂(uf)−1

¯
f,w = −ie−i

ᾱf+β̄f
2 sc(θ∗f )

1
2

(
I{w/∈{w`,wr∈R∂}} nd

(
K−θf

2

)
Gm,∗f2,

¯
f − nd

(
K+θf

2

)
Gm,∗f1,

¯
f

)
+

+ i
∑

(vc,fc)∈R∂,r

nd(uf

β`
)

cd(uf

α`
)

(
cd(uf

βr )− cd(uf
α`)
)
K∂(uf)−1

vc,w ·G
m,∗
fc,

¯
f ,

K∂(vf)−1

¯
v,w = e−i

ᾱf+β̄f
2 (k′)−

1
2 sc(θf)

1
2

(
Gm,∂(vf)v2,

¯
v −Gm,∂(vf)v1,

¯
v

)
K∂(vf)−1

¯
f,w = −ie−i

ᾱf+β̄f
2 sc(θ∗f )

1
2

(
I{w/∈{w`,wr∈R∂}} nd

(
K+θf

2

)
Gm,∗f2,

¯
f − nd

(
K−θf

2

)
Gm,∗f1,

¯
f

)
+

+ i
∑

(vc,fc)∈R∂,r

nd(vf

β`
)

cd(vf

α`
)

(
cd(vf

βr )− cd(vf
α`)
)
K∂(vf)−1

vc,w ·G
m,∗
fc,

¯
f .

3.6.2 Dimer model on an infinite isoradial double graph GD

Suppose that the isoradial graph G is infinite; when it is moreover Z2-periodic, we
consider the natural exhaustion (GD

n)n≥1 of GD by toroidal graphs, where GD
n = GD/nZ2.

Let F denote the σ-field generated by cylinder sets of GD. Using arguments of [23, 47, 28],
we obtain an explicit, local expression for a Gibbs measure of the dimer model on GD with
weight function c(u). Since the proof closely follows that done in the papers [28, 10, 12],
we do not repeat it here. The key requirements are that the operator K(u)−1 is local and
unique in the Z2-periodic case.
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Theorem 3.19. For every u ∈ C, there exists a unique probability measure on (M(GD),F),
denoted PD,u

dimer, such that the probability of occurrence of a subset of edges E =

{w1x1, · · · , wlxl} in a dimer configuration of GD is given by:

PD,u

dimer(w1x1, . . . , wlxl) =
( l∏
j=1

K(u)wj ,xj

)
det(K(u)−1)E,

where (K(u)−1)E is the sub-matrix of K(u)−1 given by Corollary 3.15, whose rows are
indexed by x1, . . . , xl and columns by w1, . . . , wl. The measure PD,u

dimer is a Gibbs measure.
Moreover, when the graph GD is Z2-periodic, the probability measure PD,u

dimer is obtained
as weak limit of the Boltzmann measures on the toroidal exhaustion (GD

n)n≥1.

Remark 3.20.

• As mentioned in the introduction to Section 3, this theorem is a directed version of
the transfer impedance theorem of [14]. A result in the same flavor, i.e., computing
probabilities of pairs of directed spanning trees using the massive Green functions
of massive non-directed random walks, is obtained by [20] in the case where
G = Z2 with specific weights.

• A version of this theorem in the finite case can be obtained using Remark 3.7.

Example 3.21. As an example of application we express the probability of single edges
occurring in dimer configurations of GD chosen with respect to the measure PD,u

dimer,
using the Z-massive and dual Z-massive Green functions of [11]. We use the notation of
Figure 14 and omit the subscript “f” since there is no confusion possible between the
initial and final vertices. Details of computations are given in Appendix B.1.

PD,u

dimer(wv2) =
sc(θ)

k′
[
dn(uα) dn(uβ)Gmv2,v2

− k′Gmv2,v1

]
= H(2uα)−H(2uβ),

PD,u

dimer(wf2) =
sc(θ∗)

k′

[
dn((uβ)∗) dn((uα+2K)∗)Gm,∗f2,f2

− k′Gm,∗f2,f1

]
= H(2(uα+2K)∗)−H(2(uβ)∗),

where H(u|k) = − ik
′

π A
(
iu
2 |k
′), and A(u|k) = 1

k′

(∫ u
0

dc2(v|k)dv + E−K
K u

)
, see [11, (9)].

4 Kasteleyn operator of the graph GQ and Zu-Dirac operator

Let G be an isoradial graph, infinite or finite. We consider the isoradial embedding
of the bipartite graph GQ = (VQ,EQ) given in Section 2.5.2, and the weight function νJ

of Equation (2.8) arising from the Z-invariant Ising model. Let KQ be the associated
complex, bipartite Kasteleyn matrix defined in Section 2.5.7, with rows indexed by black
vertices. In the finite case we moreover consider the diagonal matrix DQ,B, resp. DQ,W,
whose rows/columns are indexed by black/white vertices of GQ, and whose diagonal
coefficients are:

∀ b ∈ B, DQ,B

b,b =

{
sn(θ∂) if b ∈ {b`, br ∈ R∂}
1 otherwise,

∀w ∈W, DQ,W

w,w =

{
sn(θ∂)−1 if w ∈ {wc ∈ R∂}
1 otherwise.

Let KQ be the modified, complex, bipartite Kasteleyn matrix defined by

KQ = DQ,BKQDQ,W, (4.1)
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that is, KQ is obtained from KQ by multiplying the weight of the edges b`w`, brwr of all
boundary rhombus pairs of R∂ by sn(θ∂).

Consider also the isoradial embedding of the double graph GD of Section 2.5.2. For
every u ∈ C, let K(u) be the Zu-Dirac operator and, in the finite case, for every u ∈ C′,
let K∂(u) be the Zu-Dirac operator with specific boundary conditions, as defined in
Equation (3.1).

The main result of this section, and actually the key result of this paper, is Theorem 4.2
of Section 4.1 proving, for every u ∈ C, explicit linear relations between the matrices KQ

and K(u) in the infinite case, and between KQ and K∂(u) in the finite case.

In Section 4.2 we restrict to the finite case; using Theorem 4.2 and a combinatorial
argument, we prove in Theorem 4.3 that the determinant of the Kasteleyn matrix KQ is
equal, up to an explicit multiplicative constant depending on u, to the determinant of the
Zu-Dirac operator K∂(u). Combining this with Theorem 3.8 proves that the determinant
of KQ is equal, up to an explicit constant, to the determinant of the Z-massive Laplacian
∆m,∂(u). Interpreting these determinants as partition functions, Theorem 4.3 proves that
the squared partition function of the Z-invariant Ising model with + boundary conditions
is equal, up to an explicit constant, to the partition function of weighted rooted directed
spanning forests counted by ∆m,∂(u), where the dependence in u is along the boundary
only. This generalizes to the full Z-invariant case the results of [29, 30] proved in the
Z-invariant critical case, and to the case of simply connected domains the result of [12]
proved in the toroidal case. The proof we provide here has a slight combinatorial flavor
but is mainly based on matrix relations, so quite different from [29, 30]. Note that the
combinatorics argument of [30] can be generalized to the full Z-invariant case and would
give an alternative proof. Note also that the boundary trick of Chelkak and Smirnov [18]
allows us to remove dual trees along the boundary which we could not do in [30].

Using Theorem 4.2, Corollaries 4.12 and 4.14 of Section 4.3 prove linear relations
between the inverse operator (KQ)−1 and the inverse Zu-Dirac operator. Choosing
specific values of u allows us to express the dimer measure of the graph GQ using the
inverse Zu-Dirac operator and the Z-massive Green functions, see Corollaries 4.16
and 4.18. This also provides an alternative direct way of finding a local formula for
(KQ)−1 [12], explicitly relating it to the Z-massive Green functions.

4.1 Relating the Kasteleyn operator KQ and the Zu-Dirac operator

The main result of this section is Theorem 4.2 proving an explicit relation between
the matrices KQ and K(u) in the infinite case, and between KQ and K∂(u) in the finite
case. In order to state this theorem we need to introduce two additional matrices S(u)

and T (u). Both of them are “rectangular” with “twice” more rows than columns.

The matrix S(u) has rows indexed by black vertices of GQ and columns by white
vertices of GD, resp. of GD,r, in the infinite case, resp. finite case. If GQ is infinite, let b
be a black vertex; if GQ is finite, let b be a black vertex of an inner quadrangle. Let w be
the white vertex of GD corresponding to the quadrangle to which b belongs. Then, the
only non-zero coefficient of the row corresponding to b is:

s(u)b,w = e−i
β̄
2 cn(uβ)[sn(θ) cn(θ) nd(uα) nd(uβ)]

1
2 , (4.2)

with the following notation, see Figure 15 (left): w is the white vertex of GQ such that
bw is parallel to an edge of G; eiᾱ, eiβ̄ , θ̄ are the rhombus vectors and half-angle of G�/2

assigned to the edge (b,w).

Suppose that GQ is finite, and let b be a black vertex of a boundary quadrangle of GQ.
Then b ∈ {br, b`} for some boundary rhombus pair of R∂, see Figure 15 (right), and the
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non-zero coefficient of the row corresponding to b is:

s(u)br,wr = e−i
β̄r

2 cn(uβr )[sn(θ∂) cn(θ∂) nd(uαr ) nd(uβr )]
1
2

s(u)b`,w` = e−i
ᾱ`

2 cn(uα`)[sn(θ∂) cn(θ∂) nd(uα`) nd(uβ`)]
1
2 ,

(4.3)

where for br the definition is coherent with that of the non-boundary case, since the
rhombus vectors of G�/2 assigned to the edge (br,wr) are eiᾱ

r

, eiβ̄
r

. For b`, the rhombus

vectors assigned to the edge (b`,w`) are eiᾱ
`

, eiβ̄
`

so that there is a change of definition;
this comes from our choice of embedding of GQ which exchanges the bipartite coloring
of vertices in the left rhombus of the pair.

b w

eiᾱ

eiβ̄
v

f

w

θ̄

v`

vc

vr

w` wr

w`
b`w

c

br
wr

fc

eiᾱ
`

eiβ̄
`
eiᾱ

r

eiβ̄
r

θ̄∂

Figure 15: Notation around a black vertex b and a white vertex w of GQ: non-boundary
case (left), boundary case (right).

The matrix T (u) has rows indexed by white vertices of GQ and columns by black
vertices of GD, resp. of GD,r, in the infinite case, resp. finite case. If GQ is infinite, let w
be a white vertex; if GQ is finite, let w be a white vertex such that w 6= wc for all boundary
rhombus pairs of R∂. The vertex w is on a rhombus edge vf of the diamond graph G�,
where v is a vertex of G and f a vertex of G∗, see Figure 15 (left). Then the row of T (u)

corresponding to w has two non-zero coefficients defined by,

t(u)w,v = e−i
β̄
2 cn(uβ)

t(u)w,f = e−i
β̄+π

2 sn((uβ+2K)∗) = e−i
β̄+π

2 cd(uβ+2K),
(4.4)

where eiβ̄ is the rhombus vector (w, v) and ei(β̄+π) is the rhombus vector (w, f).

Suppose that GQ is finite, and let w = wc for some boundary rhombus pair of R∂ , then
wc is on a rhombus edge vcf c of G�, see Figure 15 (right). As long as the rhombus pair
is not the root one, i.e., the one where vc = r, the row of T (u) corresponding to wc has
non-zero coefficients given by,

t(u)wc,vc = −ik′e−i ᾱ
r

2 sn(θ∂) nd(uαr ) cd(uβr ),

t(u)wc,fc = e−i
β̄`

2 sn((uβ`)
∗) = e−i

β̄`

2 cd(uβ`).
(4.5)

When the boundary rhombus pair is the root pair, then only the term t(u)wc,fc is defined.
Note that the definition is specific for vc, and coherent with the non-boundary case for
f c since the rhombus vector (wc, f c) is eiβ̄

`

.

Remark 4.1. Rhombus angles are well defined mod 2π implying that half-angles are
well defined mod π, but the coefficients of S(u) and T (u) are nevertheless well defined.

Indeed, keeping in mind that by definition β̄−ᾱ
2 ∈ (ε, π2 − ε), one has for example, see
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Equation (4.2):

e−i
β̄+2π

2 cn(uβ+4K)[sn(θ) cn(θ) nd(uα+4K) nd(uβ+4K)]
1
2 =

=
(
−e−i

β̄
2

)(
− cn(uβ)

)
[sn(θ) cn(θ) nd(uα) nd(uβ)]

1
2 = sb,w,

using that uβ+4K = uβ − 2K and cn(u − 2K) = − cn(u), nd(u − 2K) = nd(u). Similar
arguments hold for other coefficients.

We are now ready to state our main result.

Theorem 4.2.

• Infinite case. Let u ∈ C, then the Kasteleyn matrix KQ, the Zu-Dirac operator K(u)

and the matrices S(u), T (u) are related by the following identity:

KQ T (u) = S(u)K(u). (4.6)

• Finite case. Let u ∈ C′, then the Kasteleyn matrix KQ, the Zu-Dirac operator K∂(u)

and the matrices S(u), T (u) are related by the following identity:

KQ T (u) = S(u)K∂(u). (4.7)

Proof. In the whole of the proof, we omit the argument u from the matrices.
Infinite case and finite non-boundary case. Figure 16 below sets the notation. Let

b be a black vertex of GQ, then b belongs to a quadrangle corresponding to a vertex
w of GD. If GQ is finite, suppose further that the quadrangle is not a boundary one, or
equivalently that w is not a boundary vertex of GD. Let v1, f1, v2, f2 be the four black
vertices of GD incident to w. Denote by w1,w2,w3 the three white vertices of GQ incident
to b, and let eiᾱ, eiβ̄ be the rhombus vectors of the edge (b,w1).

b

w1w3

w2

eiᾱ

eiβ̄
v1 v2

f1

f2

w

θ̄

Figure 16: Notation around a black vertex b of GQ.

The coefficient [KQ T ]b,x of the LHS of (4.6) and (4.7) is non-zero only when x ∈
{v1, v2, f1, f2}, and

[KQ T ]b,v1
=KQ

b,w2
tw2,v1

+ KQ

b,w3
tw3,v1

[KQ T ]b,v2
=KQ

b,w1
tw1,v2

[KQ T ]b,f1 =KQ

b,w1
tw1,f1 + KQ

b,w3
tw3,f1

[KQ T ]b,f2
=KQ

b,w2
tw2,f2

.

The coefficients of T involved are, see definition (4.4),

tw2,v1 = −ie−i
β̄
2 cn(uβ+2K), tw3,v1

= −ie−i ᾱ2 cn(uα+2K), tw1,v2
= e−i

β̄
2 cn(uβ)

tw1,f1
= ie−i

β̄
2 sn((uβ−2K)∗), tw3,f1

= e−i
ᾱ
2 sn((uα)∗), tw2,f2

= e−i
β̄
2 sn((uβ)∗).

EJP 26 (2021), paper 53.
Page 45/86

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP601
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The Z-Dirac and massive Laplacian operators in the Z-invariant Ising model

Replacing coefficients of KQ yields for the LHS:

[KQ T ]b,v1
=ei

β̄+ᾱ+π
2 cn(θ)tw2,v1

+ ei
ᾱ−π+ᾱ

2 tw3,v1
= ei

ᾱ
2 [cn(θ) cn(uβ+2K)− cn(uα+2K)]

[KQ T ]b,v2
=ei

β̄+ᾱ
2 sn(θ)tw1,v2

= ei
ᾱ
2 sn(θ) cn(uβ)

[KQ T ]b,f1
=ei

β̄+ᾱ
2 sn(θ)tw1,f1

+ ei
ᾱ−π+ᾱ

2 tw3,f1
= iei

ᾱ
2 [sn(θ) sn((uβ−2K)∗)− sn((uα)∗)]

[KQ T ]b,f2
=ei

β̄+ᾱ+π
2 cn(θ)tw2,f2

= iei
ᾱ
2 cn(θ) sn((uβ)∗).

Note that in the finite case, we have K∂ = K for coefficients involved. The coeffi-
cient [S K]b,x of the RHS of (4.6) and (4.7) is also non-zero when x ∈ {v1, v2, f1, f2}
and we have [S K]b,x = sb,wKw,x. To compute these terms, we first express the part
cn(uβ)[nd(uα) nd(uβ)]

1
2 := (�) in sb,w, see (4.2), using the angles and parameters involved

in the four coefficients of K.

(�) = − sn(uβ+2K)[dn(uα+2K) nd(uβ+2K)]
1
2

= cn(uβ)[nd(uα) nd(uβ)]
1
2

= (k′)−
1
2 cn((uβ−2K)∗)[nd((uβ−2K)∗) dn((uα)∗)]

1
2

= (k′)
1
2 sn((uβ)∗)[nd((uβ)∗) nd((uα+2K)∗)]

1
2 ,

where in the first line we used that uα = K + uα+2K , in the third that uβ = −(uβ−2K)∗,
uα = K − (uα)∗, and in the fourth that uβ = K − (uβ)∗, uα = 2K − (uα+2K)∗. Replacing
coefficients of K by their definition gives for the RHS of (4.6),

[S K]b,v1 = sb,wKw,v1 = ei
ᾱ
2 sn(θ) sn(uβ+2K) dn(uα+2K)

[S K]b,v2
= sb,wKw,v2

= ei
ᾱ
2 sn(θ) cn(uβ)

[S K]b,f1
= sb,wKw,f1

= −i(k′)−1ei
ᾱ
2 cn(θ) cn((uβ−2K)∗) dn((uα)∗)

[S K]b,f2 = sb,wKw,f2 = iei
ᾱ
2 cn(θ) sn((uβ)∗).

The equality [KQ T ]b,x = [S K]b,x is then straightforward when x = v2 and x = f2. When
x = v1, this is a consequence of the identity, see [54, chap.2, ex.32 (i)],

cnu cn v − cn(u+ v) = snu sn v dn(u+ v), (4.8)

evaluated at u = θ, v = uβ+2K , u+ v = uα+2K .
We are left with proving the case x = f1. Multiplying the identity (4.8) by nd(u− v),

using that nd(u− v) = (k′)−1 dn(K − (u− v)), cd(u− v) = sn(K − (u− v)) we obtain,

(k′)−1 cnu cn v dn(K − (u− v)) = sn(K − (u− v))− snu sn v.

The proof is concluded by evaluating the above at u = θ, v = (uβ−2K)∗, K−(u−v) = (uα)∗.
Finite boundary case. The notation used are those of Figure 15 (right). Let b ∈ {b`, br}

be a black vertex of some boundary rhombus pair of R∂ . Suppose first that this rhombus
pair is not the root one. Then, if b = br, resp. b = b`, the coefficients of the LHS and
RHS of (4.7) are non-zero when x ∈ {vc, vr, f c}, resp. x ∈ {vc, v`, f c}. We need to prove:

KQ

br,wctwc,vc = sbr,wrK
∂
wr,vc KQ

b`,wc
twc,vc = sb`,w`K

∂

w`,vc

KQ

br,wr twr,vr = sbr,wrK
∂
wr,vr and KQ

b`,w`
tw`,v` = sb`,w`K

∂

w`,v`

KQ

br,wr twr,fc + KQ

br,wctwc,fc = sbr,wrK
∂

wr,fc KQ

b`,w`
tw`,fc + KQ

b`,wc
twc,fc =sb`,w`K

∂

w`,fc .

In both cases, the last two equalities are as in the full plane with the appropriate change
of notation. We thus need to check the first equality of each case. Returning to the
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definition of KQ and boundary values of the matrices S and T defined in Equations (4.3)
and (4.5) we have,

KQ

br,wctwc,vc

sbr,wr
=
ei
ᾱr−π+ᾱr

2 × (−ik′e−i ᾱ
r

2 sn(θ∂) nd(uαr ) cd(uβr ))

e−i
β̄r

2 cn(uβr )[sn(θ∂) cn(θ∂) nd(uαr ) nd(uβr )]
1
2

= −k′ei
ᾱr+β̄r

2 [sc(θ∂) nd(uαr ) nd(uβr )]
1
2

= ei
ᾱr+π+β̄r+π

2 [sc(θ∂) dn(uαr+2K) dn(uβr+2K)]
1
2 = Kwr,vc = K∂wr,vc .

In a similar way,

KQ

b`,wc
twc,vc

sb`,w`
=
ei
β̄`+β̄`+π

2 × (−ik′e−i ᾱ
r

2 sn(θ∂) nd(uαr ) cd(uβr ))

e−i
ᾱ`

2 cn(uα`)[sn(θ∂) cn(θ∂) nd(uα`) nd(uβ`)]
1
2

= k′ei
ᾱ`+β̄`+(β̄`−ᾱr)

2 [sc(θ∂) dn(uα`) dn(uβ`)]
1
2 nd(uαr ) cd(uβr ) nc(uα`),

= −k′ei
ᾱ`+β̄`

2 [sc(θ∂) nd(uα`) nd(uβ`)]
1
2 cd(uβr ) dc(uα`), since β̄` − ᾱr = 2π

= ei
ᾱ`+π+β̄`+π

2 [sc(θ∂) dn(uα`+2K
) nd(uβ`+2K

)]
1
2 cd(uβr ) dc(uα`)

= Kw`,vc cd(uβr ) dc(uα`) = K∂w`,vc .

Note that we always have sbr,wr , sb`,w` 6= 0 on C′, see (3.4), so that it makes sense to
divide by these quantities.

The last case we need to consider is if b belongs to the root boundary rhombus pair
of R∂ . But then, of the three equations above, the first one is absent since we have vc = r,
so we are left with the last two which are as in the full plane case. This ends the proof
of (4.7) and thus finishes the proof of Theorem 4.2.

4.2 Determinants of the Kasteleyn matrix KQ and of the Zu-Dirac operator

We restrict to the finite case. Theorem 4.3 proves that the determinants of the
matrices KQ and K∂(u) are equal up to an explicit multiplicative constant depending on
u. By [32], see also Equation (2.5), the determinant of KQ is equal, up to a constant, to
the squared partition function of the Ising model with + boundary conditions. Using
Corollary 3.10, the determinant of K∂(u) is equal, up to an explicit constant, to the deter-
minant of ∆m,∂(u) which counts weighted rooted directed spanning forests. Theorem 4.3
thus implies identities between partition functions made explicit in Corollary 4.5.

In the whole of this section, we restrict the domain of u to

C′′ = C \ {α`[2K], β`[2K] : eiᾱ
`

, eiβ̄
`

∈ R∂} (4.9)

= C \ {αr[2K], βr[2K] : eiᾱ
r

, eiβ̄
r

∈ R∂}.

Note that by Section 2.5.3 on train-tracks, this amounts to removing all the parallel
directions of the train-tracks of the isoradial graph G.

4.2.1 Results

Every edge e = (w, x) of GD,r is assigned two rhombus vectors eiᾱe , eiβ̄e of the diamond
graph G�/2 and a half-angle θ̄e. We partition the set of white vertices W r = W of GD,r as
W ∂ ∪W ◦, where W ∂ consists of boundary vertices of W and W ◦ of inner ones. Every
white vertex w of GD,r is in the center of a rhombus of the diamond graph G�; we let θ̄w
be the half-angle of this rhombus at one of the two primal vertices.

In the statement below, a specific role is played by the boundary rhombus pair of R∂

containing the root r. We use the notation of Figure 15 (right) and add a superscript r to
specify vertices/angles of this root pair.
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Theorem 4.3. Let M1 be a dimer configuration of GD,r. Then, for every u ∈ C′′, we have

|detKQ| = C̃(u) · | detK∂(u)|,

where C̃(u) is equal to:

(k′)
|V∗|

2

( ∏
w∈W∂

sn(θw)−1
)( ∏

w∈W
[cn(θw) sn(θw)]

1
2

)
×

×
( ∏
wx∈M1:w∈W

| sc(uαe) sc(uβe)|
1
2

)
sn(θ∂,r)

∣∣∣ cd(uβr,r )

sn(uαr,r )

∣∣∣ .
Remark 4.4.

• Since for u ∈ C′′, sc(uαe) sc(uβe) 6= 0, and since detKQ 6= 0, we have that the matrix
K∂(u) is invertible for these values of u.
• The quantity

∏
wx∈M1:w∈W | sc(uαe) sc(uβe)|

1
2 is independent of the choice of perfect

matching M1. Similarly to Remark 3.9, this consists in showing that the alternating
product around every inner face of GD,r is equal to 1; the proof is similar to that of
Lemma 3.11.
• A surprising fact is that the LHS is independent of u while the RHS does not

seem to be, also the RHS seems to depend on the choice of root vertex r. It is
not straightforward to see why this indeed not the case. An alternative way of
proving this theorem is to extend to the full Z-invariant case the combinatorial
argument of [30]; one then better sees the parameter u and the choice of root
vertex r appearing.

Combining Theorems 4.3 and 3.8, we deduce that the squared partition function
of the Z-invariant Ising model with + boundary conditions is equal, up to an explicit
constant, to the determinant of the massive Laplacian ∆m,∂(u), i.e., to the partition
function of rooted directed spanning forests. This generalizes to the full Z-invariant case
the result of [29, 30] and to simply connected domains the result of [12] proved for the
characteristic polynomial in the toroidal case in an abstract way.

Corollary 4.5. For every u ∈ C′′, we have

1. [Z+
Ising(G, J)]2 = 2|V|−1(k′)|E|

( ∏
w∈W∂

1+sn(θw)
2 sn(θw)

)
×

×
( ∏
wx∈M1:w∈W

| sc(uαe) sc(uβe) nd(uαe) nd(uβe)|
1
2

)
sn(θ∂,r)

∣∣∣ cd(uβr,r )

sn(uαr,r )

∣∣∣ |det ∆m,∂(u)|.

2. [Z+
Ising(G, J)]2 = 2|V|−1(k′)−|E|

( ∏
w∈W∂

1+sn(θw)
2 sn(θw)

)
sn(θ∂,r)

∣∣∣ cd(uβr,r ) sn(uβr,r )

cd(uαr,r ) sn(uαr,r )

∣∣∣ 1
2 ×

× | det ∆m,∂(u) det ∆m,∂(u+ 2K)| 12 .

Proof. Equality 2. is obtained by writing [Z+
Ising(G, J)]2 = ([Z+

Ising(G, J)]2[Z+
Ising(G, J)]2)

1
2 ,

using Equality 1. evaluated once at u and once at u + 2K, and using the identities
| sc(u −K)| = |(k′)−1 cs(u)|, |nd(u −K)| = |(k′)−1 dn(u)|, | cd(u −K)| = | sn(u)|, | sn(u −
K)| = cd(u).

Let us prove Equality 1. From Equation (2.5) we have, for all coupling constants J,

[Z+
Ising(G, J)]2 = 2|V|−1

( ∏
e∈E∂

e2Je

2

)( ∏
e∗∈E∗

cosh(2Je)
)
Zdimer(G

Q, νJ).

Returning to the definition of the Z-invariant weights (2.6) and (2.8) gives,( ∏
e∈E∂

e2Je

2

)( ∏
e∗∈E∗

cosh(2Je)
)

=
( ∏
e∈E∂

1+sn(θe)
2 cn(θe)

)( ∏
e∗∈E∗

1
cn(θe)

)
=
( ∏
w∈W∂

1+sn(θw)
2

)( ∏
w∈W

1
cn(θw)

)
,
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where in the second equality we use the notation introduced before the statement of
Theorem 4.3. Since Zdimer(G

Q, νJ) = |detKQ|, Theorem 4.3 yields

[Z+
Ising(G, J)]2 = 2|V|−1(k′)

|V∗|
2

∏
w∈W

[sc(θw)]
1
2

( ∏
w∈W∂

1+sn(θw)
2 sn(θw)

)
×( ∏

wx∈M1:w∈W

| sc(uαe) sc(uβe)|
1
2

)
× sn(θ∂,r)

∣∣∣ cd(uβr,r )

sn(uαr,r )

∣∣∣ |detK∂(u)|.

The proof is concluded by using Corollary 3.10, choosing M1 as perfect matching of GD,r

and using that |V| − 1 = −|V∗|+ |E|.

4.2.2 Proof of Theorem 4.3

Let us prove that for the modified Kasteleyn matrix KQ, we have

detKQ = (k′)
|V∗|

2

( ∏
w∈W

[sn(θw) cn(θw)]
1
2

)( ∏
w∈W∂

sn(θw)−
1
2

)
×

( ∏
wx∈M1:w∈W

| sc(uαe) sc(uβe)|
1
2

)
× sn(θ∂,r)

∣∣∣∣cd(uβr,r)

sn(uαr,r)

∣∣∣∣ |detK∂(u)|.

To obtain the result for KQ, we use Relation (4.1) which implies that

detKQ =
( ∏
w∈W∂

sn(θw)−
1
2

)
detKQ,

because |{b`, br ∈ R∂}| = 2|{wc ∈ R∂}| = 2|W ∂ |. The proof has three main steps: the
first consists in using a partition of black/white vertices of GQ and Theorem 4.2 for
comparing detKQ and detK∂(u). After this first step, there remains auxiliary determinant
computations that are hard to perform for general choices of partitions. In the second
step, we identify specific choices of partitions that make these computations actually
doable. The latter are the subject of the third step.

Partition of the vertices of GQ and Theorem 4.2 We partition black vertices of GQ

into two subsets: B = B1 ∪ B2, where B1 has one black vertex per quadrangle of GQ

and B2 = B \ B1. Since boundary quadrangles of GQ are reduced to edges, B1 contains
all black vertices of boundary quadrangles, and half of the black vertices of inner
quadrangles. As a consequence, B1 has a natural partition as B∂1 ∪ B◦1, where B∂1, resp.
B◦1, consists of boundary quadrangle, resp. inner quadrangles, black vertices. Then B2

has no boundary quadrangle black vertices. In a similar way, we partition white vertices
of GQ: W = W1 ∪W2, where W1 = W∂

1 ∪W◦1.
Recalling that there is a natural bijection between quadrangles of GQ and white

vertices of GD,r, we have the following natural bijections:

W∂

1 ↔W ∂ , W◦1 ↔W ◦, W2 ↔W ◦.

Here are some notation for sub-matrices of the matrices S(u) and T (u) defined in
Section 4.1, and for sub-matrices of the matrix KQ.

S1(u) = S(u)W
r

B1
, S2(u) = S(u)W

◦

B2

S∂1 (u) = S(u)W
∂

B∂1
, S◦1(u) = S(u)W

◦

B◦1

T1(u) = T (u)B
r

W1
, T2(u) = T (u)B

r

W2

∀ i, j ∈ {1, 2}, KQ

ij = (KQ)
Wj

Bi
, KQ

1◦j = (KQ)
Wj

B◦1
.

Using Theorem 4.2, we obtain the following lemma.
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Lemma 4.6. Consider a partition of the black and white vertices of GQ as above. Then,
for every u ∈ C′′,

detKQ · detT1(u) = detS∂1 (u) · detS◦1(u) · detS2(u) · detR(u) · detK∂(u),

where R(u) := S2(u)−1KQ

22 − S◦1 (u)−1KQ

1◦2.

Proof. Note that S2(u) and S◦1 (u) are invertible because we choose u ∈ C′′. By Theo-
rem 4.2, we have the following identity:

W∂
1 W◦1 W2


B∂1 KQ

11 KQ

12
B◦1

B2 KQ

21 KQ

22

Br W2


W∂
1 T1(u) 0

W◦1

W2 T2(u) I

=

=

W∂ W◦ W◦


B∂1 S∂1 (u) 0 0

B◦1 0 S◦1(u) 0

B2 0 S2(u) S2(u)

Br W2


W∂

K∂(u) R̃(u)
W◦

W◦ 0 R(u)

with

{
KQ

1◦2 = S◦1(u)R̃(u)W2

W◦

KQ

22 = S2(u)R̃(u)W2

W◦ + S2(u)R(u).

We extract R̃(u)W2

W◦ from the first equation. Plugging R̃(u)W2

W◦ in the second equation
gives R(u); taking the determinant ends the proof.

Combinatorial partition of the vertices of GQ Let us specify the partition of the
black/white vertices of GQ. It is constructed from a well chosen perfect matching M1 of
GD,r, which we now define. Recall that by Temperley’s bijection, perfect matchings of GD,r

are in bijection with pairs of dual directed spanning trees of Tr,o(G, Ḡ∗), see Section 2.3.1.
Consider a spanning tree of the restricted dual G∗, and root it at the vertex f c,r incident
to the root vertex vc = r in the diamond graph G�. To this spanning tree, add the edge
(f c,r, o) which is the dual of the edge rv`,r of G. This defines an o-directed spanning tree
T∗ of Ḡ∗. Consider the r-directed spanning tree T of G which is the dual of T∗, rooted at
the vertex r. Then (T,T∗) is a pair of dual spanning trees of Tr,o(G, Ḡ∗), and we let M1 be
the corresponding perfect matching of GD,r, see Figure 17.

We now define the partition of black/white vertices of GQ arising from M1; this
amounts to specifying the partition for vertices of inner quadrangle since those of
boundary quadrangles define B∂1/W∂

1. For j ∈ {1, 2}, bj/wj denotes a black/white vertex
of Bj/Wj . Consider an inner quadrangle of GQ corresponding to a white vertex w of
GD,r. Then, exactly one edge of the quadrangle is crossed by an edge wx of the perfect
matching M1. The partition is defined as follows: if x = v ∈ Vr, then w1 is the white
vertex on the right of the edge (w, v), and b1 is the black vertex on the left; if x = f ∈ V∗,
then w1 is the white vertex on the left of the edge (w, f), and b1 is the black vertex on
the right. An example is provided in Figure 17 (right) and Figure 19.

Let us prove a combinatorial lemma. Note that because u ∈ C′′, the fact that
a coefficient of T1(u) or R(u) is non-zero is independent of u. As in Section A.2 of
Appendix A, to the matrix T1(u) corresponds a bipartite graph G(T1) = (W1 ∪Br,E(T1)),
where there is an edge w1x iff t(u)w1,x 6= 0, with w1 ∈ W1, x ∈ Br = Vr ∪ V∗. In a
similar way, to the matrix R(u) of Lemma 4.6 corresponds a bipartite graph G(R) =
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r

v`,r
fc,r

o
r

Figure 17: Left: a pair (T,T∗) of dual directed spanning trees of Tr,o(G, Ḡ∗) such that
T∗ arises from a spanning tree of the restricted dual G∗. Right: corresponding dimer
configuration M1 of GD,r (red); associated partition of black/white vertices of GQ: vertices
of B1,W1 are in green, those of B2,W2 are in blue.

(W ◦ ∪W2,E(R)) where there is an edge ww2 iff r(u)w,w2
6= 0, with w ∈W ◦, w2 ∈W2. The

matrix T1(u), resp. R(u), is then a bipartite, weighted adjacency matrix of the graph
G(T1), resp. G(R).

Lemma 4.7. Consider a partition of the black/white vertices of GQ arising from the
perfect matching M1 of GD,r. Then, the graph G(T1) is a spanning tree on the vertex set
W1 ∪Br, and the graph G(R) is a union of trees on the vertex set W ◦ ∪W2, spanning all
vertices of W ◦ ∪W2.

Proof. Let us prove that G(T1) is a spanning tree. Every vertex w1 of W1 has degree 2 in
G(T1): it is adjacent to a vertex x of Br such that wx is an edge of the perfect matching
M1, and to a vertex x′ such that xx′ is an edge of the diamond graph G� with w1 in its
middle. Using the natural bijection W1 ↔ W , that is, identifying every vertex w1 with
the corresponding vertex w of W r does not change the combinatorics of the graph G(T1).
With this identification, the graph G(T1) contains all edges of the perfect matching M1,
and the second edge wx′ incident to w is such that (w, x′) is on the right, resp. left, of
(x,w) if x ∈ V∗, resp. x ∈ Vr. Then, by Proposition 7.3. of [30], the graph G(T1) is a
spanning tree. An example of G(T1) is pictured with red edges in Figure 18.

Let us prove that G(R) is a union of trees spanning all vertices of W ◦ ∪ W2. By
definition, a white vertex w of W ◦ is adjacent to all white vertices of W2 that are adjacent
to the black vertices b1 and b2 of the quadrangle w corresponds to; that is, w is adjacent
to the vertex w2 of the quadrangle of w and maybe to another vertex of W2. As a
consequence G(R) is spanning all vertices of W ◦ ∪W2. It cannot contain a cycle for
otherwise it would mean that there is a vertex of Br which does not belong to M1, which
is a contradiction with it being a perfect matching. An example of G(R) is pictured with
blue edges in Figure 18.

Corollary 4.8. Consider a partition of the black/white vertices of GQ arising from the
perfect matching M1 of GD,r.
• Using the identification W1 ↔W r = W , we have,

|detT1(u)| =
∏

wx∈M1:w∈W

|t(u)w1,x| =
∏

wx∈M :w∈W◦
|t(u)w1,x|

∏
wx∈M :w∈W∂

|t(u)w1,x|.
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r

Figure 18: Example of graph G(T1) (red edges) and of graph G(R) (blue edges).

• Using the identification W2 ↔W ◦, we have,

|detR(u)| =
∏

w∈W◦
|r(u)w,w2

|,

where for every w ∈W ◦, r(u)w,w2
= s(u)−1

b2,w
KQ

b2,w2
− s(u)−1

b1,w
KQ

b1,w2
.

Proof. Writing the determinant as a sum over permutations, we have that non-zero terms
in the expansion of detT1(u), resp. detR(u), correspond to perfect matchings of the
bipartite graph G(T1), resp. G(R). Since these two graphs are trees or union of trees
spanning all vertices, they have at most one perfect matching; indeed if they had more,
the union of two different ones would yield a cycle which is in contradiction with being a
tree. Using the identification W1 ↔W , The graph G(T1) has one perfect matching given
by edges of M1 (pictured in thick red lines in Figure 18), while the graph G(R) has one
perfect matching given by the natural identification W ◦ ↔ W2 (pictured in thick blue
lines in Figure 18). Since, the contribution of a perfect matching to the determinant is
the product of the edge-weights (up to a sign), this ends the proof of the corollary.

Since S∂1 (u), S◦1(u), S2(u) are diagonal matrices, their determinant is the product
of the diagonal terms. Combining Lemma 4.6 and Corollary 4.8 we thus obtain the
following.

Corollary 4.9. Consider a partition of the black/white vertices of GQ arising from the
perfect matching M1 of GD,r. Then, for every u ∈ C′′,

|detKQ| =

∣∣∣∣∣
∏
w∈W∂ s(u)b1,w∏

wx∈M1:w∈W∂ t(u)w1,x

∣∣∣∣∣︸ ︷︷ ︸
(I)

∣∣∣∣∣
∏
w∈W◦ r

′(u)w,w2∏
wx∈M1:w∈W◦ t(u)w1,x

∣∣∣∣∣︸ ︷︷ ︸
(II)

|detK∂(u)| , (4.10)

where r′(u)w,w2 = s(u)b1,wK
Q

b2,w2
− s(u)b2,wK

Q

b1,w2
.
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Computation of (I)(II) in Identity (4.10) For every u ∈ C′′, define the weight function
η(u) on edges of GD,r as follows.

η(u)wx =


∣∣∣ sn(uαe )

cn(uβe )

∣∣∣ [nd(uαe) dn(uβe)]
1
2 if x = v

(k′)
1
2

∣∣∣ sn(uβe )
cn(uαe )

∣∣∣ [dn(uαe) nd(uβe)]
1
2 if x = f.

(4.11)

Lemma 4.10. The product (I)(II) is equal to:

sn(θ∂,r)

∣∣∣∣cd(uβr,r)

sn(uαr,r)

∣∣∣∣
( ∏
w∈W∂

sn(θw)−
1
2

)( ∏
w∈W

| sn(θw) cn(θw)| 12
) ∏
wx∈M1:w∈W

η(u)wx.

Proof. In the whole of the proof, we simply denote θ̄w by θ̄, and omit the argument u
from matrix coefficients.

We first handle Part (II) involving inner vertices. Let w ∈W ◦ and wx be an edge of
the perfect matching M1, with x = v or f . By definition of the partition of black/white
vertices arising from M1, we have b1, b2,w1,w2 as in Figure 19. Let v′ be the primal
vertex such that the edge v′v crosses the quadrangle, and let 2eiᾱ, 2eiβ̄ be the two
rhombus vectors of G� associated to the edge (v′, v).

2eiᾱ

2eiβ̄

v′ v
w

f

θ̄

b2

w2

w1

b1

2eiᾱ

2eiβ̄

v′ v

f

w

θ̄

b1

w2

w1

b2

Figure 19: Notation for computing
r′w,w2

tw1,x
, when w ∈W ◦ and x = v (left), x = f (right).

We compute the term r′w,w2
when x = v. Using the notation of Figure 19, the rhombus

vectors of G�/2 assigned to the edge (w, v) are eiᾱe = eiᾱ, eiβ̄e = eiβ̄. Returning to the
definition of the matrices KQ and S, see (4.2), we have

sb1,wK
Q

b2,w2
= e−i

β̄+π
2 cn(uβ+2K)[sn(θ) cn(θ) nd(uα+2K) nd(uβ+2K)]

1
2 × ei

β̄+ᾱ+π
2 cn(θ)

= ei
ᾱ
2 cn(θ) sn(uβ) dn(uα)[sn(θ) cn(θ) nd(uα) nd(uβ)]

1
2

sb2,wK
Q

b1,w2
= e−i

β̄
2 cn(uβ)[sn(θ) cn(θ) nd(uα) nd(uβ)]

1
2 × ei

ᾱ+π+β̄+π
2 sn(θ)

= −ei ᾱ2 sn(θ) cn(uβ)[sn(θ) cn(θ) nd(uα) nd(uβ)]
1
2 .

As a consequence,

r′w,w2
= ei

ᾱ
2 [sn(θ) cn(θ) nd(uα) nd(uβ)]

1
2

(
cn(θ) sn(uβ) dn(uα) + sn(θ) cn(uβ)

)
= ei

ᾱ
2 [sn(θ) cn(θ) nd(uα) nd(uβ)]

1
2 dn(uβ) sn(uα)

= ei
ᾱ
2 sn(uα)[sn(θ) cn(θ) nd(uα) dn(uβ)]

1
2 ,

using the identity dn(u) sn(u+ v) = cn(u) sn(v) + sn(u) cn(v) dn(u+ v) [54, chap.2, ex.32
(ii)], evaluated at u = uβ , v = θ, u + v = uα, in the penultimate line. Since eiᾱe = eiᾱ,
eiβ̄e = eiβ̄ , we have

r′w,w2
= ei

ᾱe
2 sn(uαe)[sn(θ) cn(θ) nd(uαe) dn(uβe)]

1
2 . (4.12)
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By definition of T , see (4.4), we have tw1,v = e−i
β̄
2 cn(uβ) = e−i

β̄e
2 cn(uβe), and we

conclude that ∣∣∣∣r′w,w2

tw1,v

∣∣∣∣ = [sn(θ) cn(θ)]
1
2

∣∣∣∣ sn(uαe)

cn(uβe)

∣∣∣∣ [nd(uαe) dn(uβe)]
1
2 .

We now turn to the term r′w,w2
in the case where x = f . The rhombus vectors of

G�/2 assigned to the edge (w, f) are eiᾱe = ei(β̄−π), eiβ̄e = eiᾱ. Moreover, referring to
Figure 19, we see that taking x = f has the effect of exchanging b1 and b2 and leaving
w1,w2 fixed. The quantity r′w,w2

being skew-symmetric in b1, b2, we have that r′w,w2
is

equal to the opposite of (4.12). As a consequence,

r′w,w2
= −ei ᾱ2 sn(uα)[sn(θ) cn(θ) nd(uα) dn(uβ)]

1
2

= −ei
β̄e
2 sn(uβe)[sn(θ) cn(θ) nd(uβe) dn(uαe+2K)]

1
2

= −(k′)
1
2 ei

β̄e
2 sn(uβe)[sn(θ) cn(θ) nd(uβe) nd(uαe)]

1
2 .

using that eiᾱe = ei(β̄−π), eiβ̄e = eiᾱ, and that dn(u−K) = k′ nd(u). By definition of T , we

have tw1,f = e−i
β̄−π

2 cd(uβ−2K) = e−i
ᾱe
2 cd(uαe), and we deduce that∣∣∣∣r′w,w2

tw1,v

∣∣∣∣ = (k′)
1
2 [sn(θ) cn(θ)]

1
2

∣∣∣∣ sn(uβe)

cn(uαe)

∣∣∣∣ [nd(uβe) dn(uαe)]
1
2 .

Summarizing, we have proved that, for every edge wx ∈ M1 such that w ∈W ◦,∣∣∣∣r′w,w2

tw1,x

∣∣∣∣ = [sn(θ) cn(θ)]
1
2 ×


∣∣∣ sn(uαe )

cn(uβe )

∣∣∣ [nd(uαe) dn(uβe)]
1
2 , if x = v

(k′)
1
2

∣∣∣ sn(uβe )
cn(uαe )

∣∣∣ [nd(uβe) dn(uαe)]
1
2 , if x = f

= [sn(θ) cn(θ)]
1
2 ηwx;

and thus,
(II) =

∏
w∈W◦

[sn(θ) cn(θ)]
1
2

∏
wx∈M1:w∈W◦

ηwx. (4.13)

We now compute Part (I) involving boundary vertices of W ∂. We will be using the
notation of Figure 15 for vertices, rhombus vectors and angles of boundary rhombus
pairs of R∂, and add a superscript r when the pair is the root pair, i.e., the one where
vc = r. With our choice of perfect matching M1, the boundary contribution (I) of (4.10)
can be rewritten as, see also Figure 17 (right):

(I) =
( ∏
wr,w`∈W∂\{wr,r,w`,r}

∣∣∣sbr,wrsb`,w`
twr,vr twc,vc

∣∣∣)× ∣∣∣sbr,r,wr,rsb`,r,w`,r
twr,r,vr,rtwc,r,fc,r

∣∣∣.
Suppose first that wr, w` ∈W ∂ \ {wr,r, w`,r}. Recalling the definition of S and T along

the boundary, see (4.3) and (4.5), we have∣∣∣∣sbr,wrsb`,w`twr,vr twc,vc

∣∣∣∣ =

∣∣∣∣∣ sn(θ∂) cn(θ∂) cn(uβr ) cn(uα`)[nd(uαr ) nd(uβr ) nd(uα`) nd(uβ`)]
1
2

cn(uβr )× k′ sn(θ∂) nd(uαr ) cd(uβr )

∣∣∣∣∣
=

∣∣∣∣cn(θ∂) cn(uα`)

k′ cn(uβr )
[dn(uαr ) dn(uβr ) nd(uα`) nd(uβ`)]

1
2

∣∣∣∣ .
On the other hand, by definition of η, the product of weights of the edges wrvr, w`vc

of the perfect matching M1 is equal to,

ηwrvrηw`vc =

∣∣∣∣ sn(uαr )

cn(uβr )

sn(uα`+2K)

cn(uβ`+2K)
[nd(uαr ) dn(uβr ) nd(uα`+2K) dn(uβ`+2K)]

1
2

∣∣∣∣
=

∣∣∣∣ cn(uα`)

k′ cn(uβr )
[dn(uαr ) dn(uβr ) nd(uα`) nd(uβ`)]

1
2

∣∣∣∣ ,
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writing uα`+2K = uα` − K, using elliptic trigonometric identities and the fact that
ᾱr = β̄`[2π].

so that,
∣∣∣ sbr,wr sb`,w`twr,vr twc,vc

∣∣∣ = cn(θ∂)ηw`vcηwrvr .

Let us now consider the term
∣∣∣ sbr,r,wr,rsb`,r,w`,rtwr,r,vr,r twc,r,fc,r

∣∣∣. For the purpose of this computation, it

is useful to imagine that the vertex vc = r is present and that twc,r,vc,r , ηw`,rvc,r are defined
as for the other pairs of rhombi. We then have, omitting to write the superscript r,∣∣∣∣sbr,wrsb`,w`twr,vr twc,fc

1

ηwrvrηw`fc

∣∣∣∣ =

∣∣∣∣sbr,wrsb`,w`twr,vr twc,vc
× 1

ηwrvrηw`vc
×
ηw`,vc

ηw`fc
× twc,vc

twc,fc

∣∣∣∣ .
The product of the first two terms is equal to | cn(θ∂)| by the above computation. Then,
returning to the definition of the weight function η, we have∣∣∣∣ηw`vcηw`f

∣∣∣∣ =

∣∣∣∣ sn(uα`+2K)

cn(uβ`+2K)
[nd(uα`+2K) dn(uβ`+2K)]

1
2

cn(uβ`)

sn(uα`+2K)
[nd(uβ`) dn(uα`+2K)]

1
2 (k′)−

1
2

∣∣∣∣
=
∣∣(k′)−1 cs(uβ`)

∣∣ .
Returning to the definition of the matrix T along the boundary, we have∣∣∣∣ twc,vctwc,fc

∣∣∣∣ =

∣∣∣∣k′ sn(θ∂) nd(uαr ) cd(uβr )

cd(uβ`)

∣∣∣∣ =

∣∣∣∣k′ sn(θ∂) cd(uβr )

cn(uαr )

∣∣∣∣ ,
using that β̄` = ᾱr[2π]. Putting the three computations together, and writing the su-

perscript r again, we deduce that
∣∣∣ sbr,r,wr,rsb`,r,w`,rtwr,r,vr,r twc,r,f r

1
ηwr,rvr,rηw`,rf r

∣∣∣ =
∣∣∣sn(θ∂,r) cn(θ∂,r)

cd(uβr,r )

sn(uαr,r )

∣∣∣,
and thus

(I) =
(
sn(θ∂,r) cn(θ∂,r)

) ∣∣∣∣cd(uβr,r)

sn(uαr,r)

∣∣∣∣ ( ∏
wr,w`∈W∂\{wr,r,w`,r}

cn(θ∂)
1
2

)( ∏
wx∈M1:w∈W∂

ηwx

)
= sn(θ∂,r)

∣∣∣∣cd(uβr,r)

sn(uαr,r)

∣∣∣∣ ( ∏
w∈W∂

cn(θw)
1
2

)( ∏
wx∈M1:w∈W∂

ηwx

)
, (4.14)

using that W ∂ = {w`, wr ∈ R∂}. Combining (4.13) and (4.14) allows to conclude the
proof of Lemma 4.10.

The next lemma proves a simplified expression for the product of the weights ηwx in
Lemma 4.10.

Lemma 4.11. For every u ∈ C′′, we have the following identity,∏
wx∈M1:w∈W

ηwx = (k′)
|V∗|

2

∏
wx∈M1:w∈W

| sc(uαe) sc(uβe)|
1
2 ,

where the weight function η is defined in (4.11).

Proof. We have the following identities:

| sn(uα)|nd(uα)
1
2 = | sn(uα) sn(uα+2K)| 12 | sc(uα)| 12

| cn(uα)|nd(uα)
1
2 = | sn(uα) sn(uα+2K)| 12 | cs(uα)| 12 .

As a consequence, for every edge wx of GD,r, the weight function ηwx can be rewritten as:

ηwx = (k′)
1
2 I{x∈V∗} | sc(uαe) sc(uβe)|η′wx, where η′wx =


∣∣∣ sn(uαe ) sn(uαe+2K)

sn(uβe ) sn(uβe+2K)

∣∣∣ 1
2

if x = v∣∣∣ sn(uβe ) sn(uβe+2K)
sn(uαe ) sn(uαe+2K)

∣∣∣ 1
2

if x = f.
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Now consider a vertex w of GD,r and, using the notation of Figure 16, the correspond-
ing rhombus v1, f1, v2, f2 of the diamond graph G�. Introduce the following notation for
the rhombus vectors:

(v1, f1) = eiᾱ1(w), (v2, f2) = eiᾱ2(w), (v1, f2) = eiβ̄1(w), (v2, f1) = eiβ̄2(w), (4.15)

that is, the notation α, resp. β, is for vectors on the right, resp. left, of the primal edge
of the rhombus. With this notation, the weight η′wx can be written as

η′wx =

∣∣∣∣ sn(uα1(w)) sn(uα2(w))

sn(uβ1(w)) sn(uβ2(w))

∣∣∣∣
1
2

,

and this, independently of whether x = v or f . Let us prove that∏
wx∈M1:w∈W

η′wx =
∏
w∈W

∣∣∣∣ sn(uα1(w)) sn(uα2(w))

sn(uβ1(w)) sn(uβ2(w))

∣∣∣∣
1
2

= 1.

Because of (4.15), the product over white vertices W can be seen as a product over
rhombus vectors of G�. Then, every inner rhombus vector of G� occurs twice exactly and
contributes once to the numerator and once to the denominator, so that the contributions
cancel. Boundary rhombus vectors of G� occur once but, referring to Section 2.5.3
on train-tracks, we know that they come in parallel pairs and contribute once to the
numerator and once to the denominator; the contributions thus also compensate ending
the proof of this lemma.

Putting together Corollary 4.9, Lemmas 4.10 and 4.11 ends the proof of Theorem 4.3.

4.3 Dimer model on the graph GQ and inverse Zu-Dirac operator

Using Theorem 4.2, in Corollaries 4.12 and 4.14, we prove linear relations satisfied
by the inverse Kasteleyn operator (KQ)−1 and the inverse of the Zu-Dirac operators K(u)

and K∂(u). Section 4.3.2 is about applications of these results to the dimer model on GQ.
In particular, when the graph GQ is infinite, we prove an alternative way of obtaining
a local formula for the inverse [12] which is seen as directly related to the Z-massive
Green functions.

4.3.1 Inverse Kasteleyn operator (KQ)−1 and inverse Zu-Dirac operator

Infinite case. In the paper [12] we prove an explicit local expression for an inverse
(KQ)−1 of the operator KQ, which decreases to 0 exponentially fast in the distance when
k 6= 0, and as the inverse distance when k = 0. When k = 0, the local expression is
actually computed in [45]. The operator (KQ)−1 is the unique inverse decreasing to zero
at infinity; this is established in [45] when k = 0 and in [12] when k 6= 0. In Corollary 4.12
below, we use the existence and uniqueness of this inverse operator but not the explicit
expression; we also need the following notation.

Notation for coefficients of Corollary 4.12 Let
¯
w be a white vertex of GQ and

¯
v,

¯
f

be its adjacent vertices in the diamond graph G�/2, such that
¯
v ∈ V and

¯
f ∈ V∗. Denote

by eiβ̄i the rhombus vector corresponding to the edge (
¯
w,

¯
v). Let w be a white vertex of

GD and b, b′ be the black vertices of GQ of the corresponding quadrangle. To the vertex b,
we assign the rhombus vectors eiᾱf , eiβ̄f of G�/2 of the edge (b,w), where the vertex w is
such that the edge bw is parallel to an edge of G. Then, the rhombus vectors assigned to
the vertex b′ are eiᾱf+π, eiβ̄f+π, see Figure 20; the subscripts “i” and “f” stand for “initial”
and “final”.

As a consequence of Theorem 4.2 (infinite case), we obtain the following.
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¯
w

eiβ̄i

¯
v

¯
f

b

b′

w
eiᾱf

eiβ̄f

w

w′

θ̄f

Figure 20: Notation for coefficients of Corollary 4.12 and 4.14.

Corollary 4.12. For every u ∈ C, the inverse operators (KQ)−1, K(u)−1, and the matrices
S(u), T (u) satisfy the following identity.
• Matrix form.

(KQ)−1S(u) = T (u)K(u)−1.

• Coefficients. For every
¯
w,

¯
v,

¯
f , and every w, b, b′ as in the notation above, we have:

(KQ)−1

¯
w,bs(u)b,w + (KQ)−1

¯
w,b′s(u)b′,w = t(u)

¯
w,

¯
vK(u)−1

¯
v,w + t(u)

¯
w,

¯
fK(u)−1

¯
f,w.

Or equivalently,

(KQ)−1

¯
w,b cn(uβf

)−i(KQ)−1

¯
w,b′ sn(uβf

) dn(uαf
) = ei

β̄f−β̄i
2

Λ(uαf
,uβf

)

[
cn(uβi

)K(u)−1

¯
v,w − i sn(uβi

)K(u)−1

¯
f,w

]
,

(4.16)
where Λ(uα, uβ) = [sn θ cn θ nd(uα) nd(uβ)]

1
2 , and θ = uα − uβ .

Proof. To obtain the matrix form, let us consider the matrix (KQ)−1S(u) − T (u)K(u)−1

and left multiply it by KQ. Since coefficients of the inverses tend to 0 at infinity and the
other matrices involved only have finitely many non-zero terms per row and column, the
matrix product is associative and we obtain

KQ[(KQ)−1S(u)− T (u)K(u)−1] = S(u)− KQT (u)K(u)−1. (4.17)

Now, right multiplying Equation (4.6) of Theorem (4.2) by K(u)−1 and again using
associativity of the matrix product we have that Equation (4.17) is equal to zero. As a
consequence, each column of (KQ)−1S(u)− T (u)K(u)−1 is a function in the kernel of KQ,
which moreover tends to zero at infinity since it is the case for coefficients of (KQ)−1

and K(u)−1. Recall that by [45] in the case k = 0 and by [12] in the case k 6= 0, KQ has a
unique inverse tending to zero at infinity. This implies that 0 is the only function tending
to zero at infinity in the kernel of KQ, yielding that (KQ)−1S(u)− T (u)K(u)−1 = 0.

For coefficients, we return to the definition of the matrix S(u), see (4.2), and obtain

s(u)b,w = e−i
β̄f
2 [sn(θf) cn(θf) nd(uαf

) nd(uβf
)]

1
2 cn(uβf

) = e−i
β̄f
2 cn(uβf

)Λ(uαf
, uβf

)

s(u)b′,w = e−i
β̄f+π

2 [sn(θf) cn(θf) nd(uαf+2K) nd(uβf+2K)]
1
2 cn(uβf+2K)

= −ie−i
β̄f
2 [sn(θf) cn(θf) nd(uαf

) nd(uβf
)]

1
2 sn(uβf

) dn(uαf
)

= −ie−i
β̄f
2 sn(uβf

) dn(uαf
)Λ(uαf

, uβf
),

using that cn(u −K) = k′ sd(u −K), nd(u −K) = (k′)−1 dn(u) in the penultimate line.
Returning to the definition of coefficients of the matrix T , see (4.4), we have

t(u)
¯
w,

¯
v = e−i

β̄i
2 cn(uβi)

t(u)
¯
w,

¯
f = −ie−i

β̄i
2 cd(uβi+2K) = −ie−i

β̄i
2 sn(uβi

),
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using that cd(u−K) = sn(u) in the last equality. This ends the proof of the formula for
coefficients.

Remark 4.13. Note that in the quadrangle bwb′w′ on the right, the only role of the white
vertex w is to fix the notation of the angles ᾱf , β̄f . Taking the white vertex w′ instead
would thus give an identity equivalent to (4.16). As a consequence, this trick cannot be
used to extract coefficients of (KQ)−1, which is what we do in Section 4.3.2 using another
technique.

Finite case. We restrict to u ∈ C′′ so that the Zu-Dirac operator K∂(u) is invertible.

Notation for coefficients of Corollary 4.14 As in the notation for coefficients of
Corollary 4.12, we add a subscript i/f for rhombus vectors and half-angles of initial/final
vertices. If

¯
w ∈ {wc ∈ R∂}, or w ∈ {w`, wr ∈ R∂}, we thus have the notation of Figure 21.

¯
vc

¯
wc

¯
fc

θ̄∂i w` wr

b`br

eiᾱ
`
f eiβ̄

r
f

eiβ̄
`
f eiᾱ

r
f

θ̄∂f

Figure 21: Notation for boundary coefficients of Corollary 4.14.

As a consequence of Theorem 4.2 (finite case), we obtain the following.

Corollary 4.14. For every u ∈ C′′, the inverse operators (KQ)−1, (KQ)−1,K∂(u)−1 and the
matrices S(u), T (u) satisfy the following identity.
• Matrix form.

(KQ)−1S(u) = T (u)K∂(u)−1 ⇔ (DQ,W)−1(KQ)−1(DQ,B)−1S(u) = T (u)K∂(u)−1.

• Coefficients. We have two cases to consider.

1. For every
¯
w,

¯
v,

¯
f ; for every w, b, b′ such that w /∈ {w`, wr ∈ R∂}, using the notation of

Figure 20 and 21 (left), we have

(KQ)−1

¯
w,b cn(uβf

)− i(KQ)−1

¯
w,b′ sn(uβf

) dn(uαf
) =

=
ei
β̄f
2 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

Λ(uαf
, uβf

)

(
I{

¯
w 6=wc,r}t(u)

¯
w,

¯
vK

∂(u)−1

¯
v,w + t(u)

¯
w,

¯
fK

∂(u)−1

¯
f,w

)
.

2. For every
¯
w,

¯
v,

¯
f , for every w such that w ∈ {w`, wr} for one of the rhombus pairs of

R∂, then using the notation of Figures 20 and 21, we have

(KQ)−1

¯
w,b`

cn(uα`
f
) =

ei
ᾱ`f
2 sn(θ∂f )−1 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

Λ(uα`
f
, uβ`

f
)

(
I{

¯
w 6=wc,r}t(u)

¯
w,

¯
vK

∂(u)−1

¯
v,w`

+t(u)
¯
w,

¯
fK

∂(u)−1

¯
f,w`

)

(KQ)−1

¯
w,br cn(uβr

f
) =

ei
β̄rf
2 sn(θ∂f )−1 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

Λ(uαr
f
, uβr

f
)

(
I{

¯
w 6=wc,r}t(u)

¯
w,

¯
vK

∂(u)−1

¯
v,wr+t(u)

¯
w,

¯
fK

∂(u)−1

¯
f,wr

)
where coefficients of t(u) are given by Equation (4.4) or (4.5) when

¯
w = wc for some

boundary rhombus pair.
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Example 4.15. Let us compute the explicit values of Corollary 4.12 and of Point 1.
of Corollary 4.14 in the case where u = uf := αf+βf

2 + K. This will be used again in
Sections 4.3.2 and 5.3. In the finite case, we also need to evaluate it at u = vf :=
αf+βf

2 −K. Returning to Relations (3.20) of Example 3.18, we have,

sn(uf
βf

) dn(uf
αf

) = sn(K − uf
αf

) dn(uf
αf

) = cn(uf
αf

)

sn(vf
βf

) dn(vf
αf

) = sn(−K − vf
αf

) dn(vf
αf

) = − cn(vf
αf

)

Λ(uf
αf
,uf

βf
) = [(k′)−1 sn(θf) cn(θf)]

1
2 = Λ(vf

αf
,vf
βf

)

uf
βf

=
K − θf

2
, uf

αf
=
K + θf

2
, vf

βf
= −uf

αf
, vf

αf
= −uf

βf
.

Then,
• Infinite case. For every

¯
w, v, f ; for every w, b, b′, with the notation of Figure 20, we

have

(KQ)−1

¯
w,b cn

(
K−θf

2

)
− i(KQ)−1

¯
w,b′ sn

(K + θf

2

)
=

=
ei
β̄f−β̄i

2 (k′)
1
2

[cn(θf) sn(θf)]
1
2

(
cn(uf

βi
)K(uf)−1

¯
v,w − i sn(uf

βi
)K(uf)−1

¯
f,w

)
.

• Finite case. Point 1.
For every

¯
w,

¯
v,

¯
f ; for every w, b, b′ such that w /∈ {w`, wr ∈ R∂}, with the notation of

Figures 20 and 21 (left), we have

(KQ)−1

¯
w,b cn

(K − θf

2

)
− i(KQ)−1

¯
w,b′ sn

(
K+θf

2

)
=

=
ei
β̄f
2 (k′)

1
2 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

[cn(θf ) sn(θf )]
1
2

(
I{

¯
w 6=wc,r}t(u

f)
¯
w,

¯
vK

∂(uf)−1

¯
v,w + t(uf)

¯
w,

¯
fK

∂(uf)−1

¯
f,w

)
(KQ)−1

¯
w,b cn

(K + θf

2

)
+ i(KQ)−1

¯
w,b′ sn

(
K−θf

2

)
=

=
ei
β̄f
2 (k′)

1
2 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

[cn(θf ) sn(θf )]
1
2

(
I{

¯
w 6=wc,r}t(v

f)
¯
w,

¯
vK

∂(vf)−1

¯
v,w + t(vf)

¯
w,

¯
fK

∂(vf)−1

¯
f,w

)
.

4.3.2 The dimer model on an isoradial graph GQ and the Zu-Dirac operator

Infinite case. In the paper [12], we prove an explicit local expression for an in-
verse (KQ)−1; as a byproduct we obtain a local formula for a Gibbs measure PQ

dimer

on (M(GQ),F), involving the operators KQ and (KQ)−1; we refer to the paper [12] for the
explicit formula for (KQ)−1 and to Section 2.2.2 for the explicit formula of the Gibbs
measure PQ

dimer. Recall also that the dimer model on GQ corresponds to a free-fermion,
zero-field 6-vertex model [62, 76, 32].

Using Corollary 4.12 and Corollary 3.15, we provide an alternative direct way of
finding the local formula for the inverse operator (KQ)−1 of [12], where the locality
property is directly seen as inherited from that of the Z-massive and dual massive Green
functions: we first express coefficients of (KQ)−1 using the inverse Zu-Dirac operator
for appropriate values of u, and then express the latter using the Z-massive and dual
massive Green function of [11]. Note that it is not immediate to see equality between
the formulas of [12] and Corollary 4.16; it probably requires to use elliptic trigonometric
identities. The approach we propose here also extends to the finite case.

Notation for Corollary 4.16 Let
¯
w be a white vertex of GQ and b be a black one.

Consider
¯
v,

¯
f, eiβ̄i , and w, b,w, eiᾱf , eiβ̄f as in Figure 20. The quadrangle of the vertex
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b corresponds to a rhombus v1, f1, v2, f2 of the diamond graph G�, where vertices are
labeled so that the edge (v1, v2) of G is parallel to the edge (b,w) of GQ, and f1 is on the
right of (v1, v2), see Figure 22.

¯
w

eiβ̄i

¯
v

¯
f

b

b′

w
eiᾱf

eiβ̄f

w

θ̄f

v1 v2

f1

f2

Figure 22: Notation for Corollary 4.16.

Corollary 4.16. For every white vertex
¯
w and every black vertex b of GQ, using the

notation of Figure 22, we have

(KQ)−1

¯
w,b = ei

β̄f−β̄i
2

[cn(θf ) sn(θf ) nd(θf )]
1
2

(
cn
(
βf−βi

2

)
K(βf)

−1

¯
v,w − i sn

(
βf−βi

2

)
K(βf)

−1

¯
f,w

)
(KQ)−1

¯
w,b = e−i

β̄i+ᾱf
2 (k′)−1

(
cn
(
βf−βi

2

)
cn(θf )

[
dn(θf)G

m

¯
v,v2
− k′Gm

¯
v,v1

]
−

−
sn
(
βf−βi

2

)
sn(θf)

[
dn(θf)G

m,∗

¯
f,f2
−Gm,∗

¯
f,f1

])
.

Proof. We set u = βf in Corollary 4.12. Then, uαf
= θf , uβf

= 0, and we have cn(uβf
) = 1,

sn(uβf
) = 0, dn(uβf

) = 1. This gives Λ(uαf
, uβf

)|βf
= [sn θf cn θf nd(θf)]

1
2 , thus explaining

the first equality of the Corollary.

We now set u = βf in Corollary 3.15. Using that dn(−u) = dn(u), dn(K±u) = k′ nd(u),
dn(K) = k′, sc(θ∗f ) = (k′)−1 cs(θf), we obtain:

K(βf)
−1

¯
v,w = e−i

ᾱf+β̄f
2 (k′)−1 sc(θf)

1
2

(
dn(θf)

1
2Gm

¯
v,v2
− [(k′)2 nd(θf)]

1
2Gm

¯
v,v1

)
K(βf)

−1

¯
f,w = −ie−i

ᾱf+β̄f
2 (k′)−1 sc(θ∗f )

1
2

(
[dn(K) dn(θf)]

1
2Gm,∗

¯
f,f2
− [dn(0) dn(θf −K)]

1
2Gm,∗

¯
f,f1

)
= −ie−i

ᾱf+β̄f
2 (k′)−1 cs(θf)

1
2

(
dn(θf)

1
2Gm,∗

¯
f,f2
− nd(θf)

1
2Gm,∗

¯
f,f1

)
.

Plugging this into the first equality of the corollary yields the second and concludes the
proof.

Example 4.17. As an example of application we express the probability of single edges
occurring in dimer configurations of GQ chosen with respect to the measure PQ

dimer, as
a function of single edge probabilities of the dimer model on GD with Gibbs measure
PD,β

dimer. We then use Example 3.21 evaluated at u = β to obtain explicit expressions using
the function H; details of computations are given in Appendix B.2. Using the notation of
Figure 16, we have

PQ

dimer(bw1) = PD,β

dimer(wv2) = H(2θ)

PQ

dimer(bw2) = PD,β

dimer(wf2) =
1

2
−H(2θ)

PQ

dimer(bw3) =
1

2
.
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We recover the results of the computations of Theorem 37 of [12] after using addition
formulas.

Finite case. An explicit expression for the Boltzmann measure PQ

dimer as a function of
the matrix KQ and its inverse (KQ)−1 is given in Section 2.2. We now express the inverse
Kasteleyn matrix (KQ)−1 as a function of the Zu-Dirac operator for some choices of u.
Note that we cannot proceed as in the infinite case using u = βf since then the matrix
K∂(βf) is not invertible.

Corollary 4.18.
1. For every white vertex

¯
w of GQ and every black vertex b /∈ {b`, br ∈ R∂}, using the

notation of Figures 20 and 21 (left), let uf = αf+βf

2 +K, vf = αf+βf

2 −K. Then,

(KQ)−1

¯
w,b = ei

β̄f
2 (k′)

1
2 sn(θ∂i )

I{
¯
w∈{wc∈R∂}} 1+(k′)−1 dn(θf )

2[cn(θf ) sn(θf )]
1
2

[
cn
(
K−θf

2

)
Γ(uf) + cn

(
K+θf

2

)
Γ(vf)

]
,

where, Γ(u) = I{
¯
w 6=wc,r}t(u)

¯
w,

¯
vK

∂(u)−1

¯
v,w+t(u)

¯
w,

¯
fK

∂(u)−1

¯
f,w, and coefficients of t(u) are given

by (4.4) and (4.5).
2. For every white vertex

¯
w and every black vertex b ∈ {b`, br} for one of the

rhombus pairs of R∂, using the notation of Figures 20 and 21, let uf,` =
α`f +β`f

2 +K and

uf,r =
αrf +βrf

2 +K. Then,

(KQ)−1

¯
w,b`

=
ei
ᾱ`f
2 (k′)

1
2 sn(θ∂f )−1 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

cn
(
K+θ∂

f
2

)
[cn(θ∂f ) sn(θ∂f )]

1
2

×

×
(
I{

¯
w 6=wc,r}t(u

f,`)
¯
w,

¯
vK

∂(uf,`)−1

¯
v,w`

+ t(uf,`)
¯
w,

¯
fK

∂(uf,`)−1

¯
f,w`

)
(KQ)−1

¯
w,br =

ei
β̄rf
2 (k′)

1
2 sn(θ∂f )−1 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

cn
(
K−θ∂

f
2

)
[cn(θ∂f ) sn(θ∂f )]

1
2

×

×
(
I{

¯
w 6=wc,r}t(u

f,r)
¯
w,

¯
vK

∂(uf,r)−1

¯
v,wr + t(uf,r)

¯
w,

¯
fK

∂(uf,r)−1

¯
f,wr

)
.

Remark 4.19. Example 3.18 expresses coefficients of K(uf)−1,K(vf)−1 using the Z-
massive and dual massive Green function. Plugging this into Corollary 4.18 allows to
write coefficients of (KQ)−1 using the Green functions Gm,∂(uf), Gm,∂(vf), Gm,∗.

Proof. Consider
¯
w,

¯
v,

¯
f and w, b, b′ such that w /∈ {w`, wr ∈ R∂} as in the statement

of Corollary 4.14. Then, from Example 4.15, we have the following linear system of
equations:

(KQ)−1

¯
w,b cn

(
K−θf

2

)
− i(KQ)−1

¯
w,b′ sn

(
K+θf

2

)
= C × Γ(uf)

(KQ)−1

¯
w,b cn

(
K+θf

2

)
+ i(KQ)−1

¯
w,b′ sn

(
K−θf

2

)
= C × Γ(vf),

where C =
ei
β̄f
2 (k′)

1
2 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

[cn(θf ) sn(θf )]
1
2

, Γ(u) = I{
¯
w 6=wc,r}t(u)

¯
w,

¯
vK

∂(u)−1

¯
v,w + t(u)

¯
w,

¯
fK

∂(u)−1

¯
f,w.

Solving for (KQ)−1

¯
w,b gives,

(KQ)−1

¯
w,b = C

cn2
(
K−θf

2

)
+cn2

(
K+θf

2

) [cn
(
K−θf

2

)
Γ(uf) + cn

(
K+θf

2

)
Γ(vf)].

Now, using [54, 2.4.8] and the fact that dn(2K − u) = dn(u), cn(2K − u) = − cn(u), we
have for every u ∈ T(k),

cn2(u) + cn2(K − u) = cn(2u)+dn(2u)
1+dn(2u) + cn(2K−2u)+dn(2K−2u)

1+dn(2K−2u) = 2 dn(2u)
1+dn(2u) = 2

1+nd(2u) .

This implies that, cn2
(
K−θf

2

)
+ cn2

(
K+θf

2

)
= 2

1+nd
(

2
K−θf

2

) = 2
1+(k′)−1 dn(θf )

. (4.18)

Putting everything together ends the proof of Point 1. Point 2. directly follows from Point
2. of Corollary 4.14.
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5 Dimer model on the Fisher graph GF and the Kasteleyn ma-
trix KQ

In the whole of this section, G is a planar, embedded graph defined as in Section 2.1;
it is infinite or finite in which case it has an additional vertex on every boundary edge.
Unless specified, definitions and results hold for the finite and infinite cases; until
Section 5.3, we do not suppose that G is isoradial.

Consider the dimer model on the Fisher graph GF with weight function µJ arising
from the LTE of the Ising model on G with coupling constants J and in the finite case, +

boundary conditions, see Section 2.3.2. Consider also the dimer model on the bipartite
graph GQ with weight function νJ arising for the XOR-Ising model, see Section 2.3.3.

Suppose that edges of GF are oriented according to a Kasteleyn orientation, and
denote by KF the corresponding Kasteleyn matrix, as defined in Section 2.2. Following
Dubédat [32], we partition vertices of GF as VF = A ∪ B, where A consists of vertices
incident to four internal edges of GF, and B consists of those incident to either two
internal and one external edges or to two internal edges (this possibility only occurs in
the finite case). Vertices of type A, resp. B, will be denoted by a, resp. b, with or without
sub/super-scripts. Up to a reordering of the rows and columns, the matrix KF can be
written in block form as

KF =

(
KF
B,B KF

B,A

KF
A,B KF

A,A

)
.

Recall that in the finite case, boundary quadrangles of GQ are degenerate and consist
of edges in bijection with boundary edges of G. Boundary B-vertices of GF are defined
to be B-vertices incident to two internal edges only; they are in natural bijection with
black, resp. white, vertices of boundary quadrangles of GQ, and also with boundary white
vertices of the double graph GD.

In [32] Dubédat shows how, in the case where G is Z2, a Kasteleyn orientation on GF

induces a Kasteleyn orientation on GQ; this generalizes to the case where G is planar:
using the notation of Figure 23 below, define

εb,w = εb,a, εb,w′ = εb,a′ , εb,w′′ = εb,b′εb′,a′′ , (5.1)

then it is straightforward to check that the orientation so defined on GQ is Kasteleyn.
Note that when G is finite, the case εb,w′′ is not present when b belongs to a boundary
quadrangle.

bb̃
a

a′

bw

w′ b b′

a

a′

a′′b

w
b̃

w′

w′′

b′

e Je

e∗

Figure 23: Notation used to relate the Kasteleyn orientations on GF and GQ.

Denote by K̃Q the bipartite Kasteleyn matrix corresponding to the weight function νJ

and to the Kasteleyn orientation constructed in (5.1) with rows indexed by black vertices.
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Wrapping up and using the notation of Figure 23, we have: for the Kasteleyn ma-
trix KF,

KF
u,v = εu,v, if u ∼ v, and u or v is of type A (non exlusive “or”)

KF

b,b′ = εb,b′e
−2Je , if the external edge bb′ corresponds to a dual edge e∗ of G∗

(5.2)
and for the bipartite Kasteleyn matrix K̃Q,

Infinite case & finite case when b Finite case when b belongs to a

does not belong to a boundary quadrangle boundary quadrangle

K̃Q

b,w = εb,w = εb,a K̃Q

b,w = εb,w = εb,a
K̃Q

b,w′ = εb,w′ tanh(2Je) = εb,a′ tanh(2Je) K̃Q

b,w′ = εb,w′ = εb,a′

K̃Q

b,w′′ = εb,w′′ cosh−1(2Je) = εb,b′εb′,a′′ cosh−1(2Je) n.a.
(5.3)

The first contribution of this section is Theorem 5.4 of Section 5.2 expressing the
inverse Kasteleyn operator (KF)−1 using the inverse bipartite Kasteleyn operator (K̃Q)−1;
proving that the contour Ising Boltzmann/Gibbs measures can be computed from the
bipartite dimer model on GQ; note that this result is not restricted to the Z-invariant
case. The proof of Theorem 5.4 builds on matrix relations of [32]; this is the subject
of Section 5.1. Note that this result can also be derived from the paper [16], see
Remark 1.9.

In Section 5.3 we restrict to the Z-invariant case and obtain Corollary 5.8, one of
the main results of this paper, expressing the inverse Kasteleyn operator (KF)−1 using
the inverse Zu-Dirac operator and also using the Z-massive and dual Green functions.
This shows that the contour Ising Boltzmann/Gibbs measures can be computed using
information from random walks only (with specific boundary conditions in the finite
case). As written in the introduction of this paper, this directly translates into results on
the spin-Ising observable of [18] and on the fermionic spinor observable of [39] which
is also the FK-Ising observable of [68, 18] (up to normalization) [32, 63]. Note that in
the infinite case, this also gives an alternative direct way of finding the local formula for
(KF)−1 of [12], explicitly relating it to the Green functions.

5.1 Relating Kasteleyn matrices of the Fisher graph GF and the bipartite graph
GQ

Dubédat [32] establishes a matrix relation between the matrix KF and a block trian-
gular matrix containing K̃Q as one of the diagonal blocks. Using this matrix relation, he
proves that the squared dimer partition function of GF is equal, up to a constant, to the
dimer partition function of GQ in the finite case, and that the characteristic polynomials
of the two models are equal in the case of infinite Z2-periodic graphs. By adding defects
to Ising coupling constants, this allows him to prove bosonization identities.

We attribute the forthcoming Proposition 5.2, consisting of two matrix relations, to
Dubédat. The first is the actual identity of [32]; it is appropriate for comparing deter-
minants of the matrices KF and K̃Q (related matrix relations can also be found in [16]).
The second proves an identity between KF and a block diagonal matrix containing K̃Q

in both diagonal blocks; it is not present in the paper [32] but does not require much
more work; it is useful for comparing matrix inverses. For convenience of the reader we
provide a proof because: we write weights in a different way, directly write the proof for
all planar graphs (and not Z2), handle the boundary conditions very carefully, and the
second identity needs an additional argument.

In order to state Proposition 5.2, we need to introduce the following matrices, all of
which are “square”.
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The matrix IW,A has rows indexed by white vertices of GQ and columns by A-vertices
of GF. It is the identity matrix associated to the following bijection between W and A.
Using the notation of Figure 23, a vertex w of GQ is incident to a unique external edge
wb of GQ; the edge wb is naturally “parallel” to a path from b̃ to b in the external cycle of
the closest decoration of GF; then the vertex a in bijection with w is the unique vertex of
type A in the path from b̃ to b.

The matrix X has rows indexed by B-vertices of GF and columns by black vertices
of GQ. It is block diagonal, with blocks of size 2×2 corresponding to edges of G∗. For each
such edge, the rows are indexed by b and b′, the two corresponding adjacent B-vertices,
and the columns are indexed by the two black vertices b, b′ of the quadrangle of GQ

traversed by the edge bb′, with b closest to b, see Figure 23. The non-zero coefficients of
the row corresponding to the vertex b are,(

xb,b xb,b′
)

=
(
1 KF

b′,b

)
.

In the finite case, the matrix X also has size 1 blocks corresponding to boundary
B-vertices of GF. For such a vertex b, let b be the closest black vertex of GQ. Then, the
only non-zero coefficient of the row corresponding to b is:

xb,b = 1.

The matrix M has rows indexed by B-vertices and columns by A-vertices of GF. It is
block diagonal, with blocks corresponding to decorations, each block having per size the
number of B-vertices times the number of A-vertices of the decoration. The matrix M is
the matrix KF

B,A with some signs reversed. That is, for a B-vertex b, denote by a, a′ its
two neighbors of type A so that in cclw order around the triangle we have a, a′, b, see
Figure 23. Then the non-zero coefficients of the row corresponding to the vertex b are,(

mb,a mb,a′
)

=
(
−εb,a εb,a′

)
The matrix M ′ has rows indexed by A-vertices and columns by B-vertices of GF. It is

defined as,

M ′ = −(KF

B,A)−1KF

B,B.

Remark 5.1. The matrix KF
B,A = −KF

A,B is invertible. Indeed, it is block diagonal,
with blocks corresponding to decorations; for each decoration, the block is a directed
adjacency matrix of the bipartite graph consisting of the outer cycle of the decoration.
The orientation on this cycle is Kasteleyn because it is on the whole graph and this cycle
contains no vertex in its interior [42]. As a consequence, the determinant of this block is
equal to ± the number of dimer configurations of this cycle, that is ±2, and the block is
thus invertible.

In the sequel, it would have been tempting to sometimes use the inverse of the matrix
KF
A,A, but this matrix is not always invertible. Indeed, it is block diagonal with blocks

corresponding to decorations, and when the decoration is associated to a dual vertex of
odd degree, then the corresponding block of KF

A,A is not invertible.

Proposition 5.2. [32] The Kasteleyn matrix KF of the Fisher graph GF and the bipartite
Kasteleyn matrix K̃Q of the graph GQ are related by the following identities:

KF

(
I M

0 I

)
=

(
KF
B,B (XK̃QIW,A)

KF
A,B 0

)
, KF

(
I M

M ′ I

)
=

(
0 (XK̃QIW,A)

−(XK̃QIW,A)t 0

)
.

Proof. The first identity is an easy consequence of the second, so let us prove the second;
unless specified, the arguments hold in the infinite and finite cases. We need to show
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the four identities below.

KF

B,B + KF

B,AM
′ = 0 (5.4)

KF

A,BM + KF

A,A = 0 (5.5)

KF

B,BM + KF

B,A = XK̃QIW,A (5.6)

KF

A,B + KF

A,AM
′ = −(XK̃QIW,A)t. (5.7)

Note that even in the infinite case, they all make sense since matrices involved have
finitely many non-zero coefficients per rows and columns.

Identity (5.4) is immediate by definition of M ′. We now prove (5.5) and (5.6) and then
show that (5.7) follows.

Proof of (5.5). Let us show that KF
A,BM = −KF

A,A. Consider an A-vertex a of GF,
and let a1, a2, b1, b2 be its four neighbors in GF with the notation of Figure 24. Then

b1

b2

a1

aa2

Figure 24: Notation for the proof of (5.5).

the coefficient (KF
A,BM)a,a′ is a priori non zero when a′ ∈ {a, a1, a2}. Returning to the

definition of KF and M , we have

(KF

A,BM)a,a = KF

a,b1mb1,a + KF

a,b2mb2,a = εa,b1εb1,a − εa,b2εb2,a = 0 = −KF

a,a.

When a′ ∈ {a1, a2}, using moreover that the orientation around the triangles a, b1, a1 and
a, a2, b is Kasteleyn, we have

(KF

A,BM)a,a1
= KF

a,b1mb1,a1
= −εa,b1εb1,a1

= −εa,a1
= −KF

a,a1

(KF

A,BM)a,a2
= KF

a,b2mb2,a2
= εa,b2εb2,a2

= −εa,a2
= −KF

a,a2
,

thus ending the proof of (5.5).

Proof of (5.6). Infinite case. Figure 25 (left) below sets the notation and labeling:
b, b′ are adjacent B-vertices of GF, and a1, a2, a3, a4 are their neighbors of type A in GF;
b, b′ are the two black vertices of the quadrangle of GQ traversed by the edge bb′, and
w1, . . . ,w4 are their neighboring white vertices in GQ.

b b′

a1

a2 a3

a4b

b′

w1

w2
w3

w4

b
a1

a2

bw1

w2

Figure 25: Notation for the proof of (5.6).
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Consider a B-vertex b of GF. Then the coefficient (KF
B,BM+KF

B,A)b,a of the LHS of (5.6)
is non-zero when a ∈ {a1, . . . , a4}, and

(KF

B,BM + KF

B,A)b,a =

{
KF

b,a = εb,a if a ∈ {a1, a2}
KF

b,b′mb′,a if a ∈ {a3, a4},

where recall mb′,a3
= −εb′,a3

and mb′,a4
= εb′,a4

.

The coefficient (XK̃QIW,A)b,a of the RHS of (5.6) is non-zero for the same choices of a.
Returning to the definition of X and K̃Q we have,

(XK̃QIW,A)b,a1
= xb,bK̃

Q

b,w1
= 1 · εb,a1

,

(XK̃QIW,A)b,a3
= xb,b′K̃

Q

b′,w3
= KF

b′,bεb′,a3
= −KF

b,b′εb′,a3
,

(XK̃QIW,A)b,a2
= xb,bK̃

Q

b,w2
+ xb,b′K̃

Q

b′,w2

= 1 · εb,a2 tanh(2J) + KF

b′,bεb′,bεb,a2 cosh−1(2J)

= εb,a2

(
tanh(2J) + |KF

b′,b| cosh−1(2J)
)

= εb,a2 , since |KF

b′,b| = e−2J, (5.8)

(XK̃QIW,A)b,a4
= xb,bK̃

Q

b,w4
+ xb,b′K̃

Q

b′,w4

= 1 · εb,b′εb′,a4 cosh−1(2J) + KF

b′,bεb′,a4 tanh(2J)

= KF

b,b′εb′,a4

(
εb,b′

KF

b,b′
cosh−1(2J)− tanh(2J)

)
= KF

b,b′εb′,a4

(
e2J cosh−1(2J)− tanh(2J)

)
= KF

b,b′εb′,a4
. (5.9)

Finite case. The proof is as in the infinite case as long as b is not a boundary B-vertex
of GF, so let b be a boundary B-vertex and refer to Figure 25 (right) for notation. The
coefficient (KF

B,BM + KF
B,A)b,a of the LHS is non-zero when a ∈ {a1, a2}. Similarly to the

infinite case computation, we have:

(KF

B,BM + KF

B,A)b,a = KF

b,a = εb,a, if a ∈ {a1, a2}

The coefficient (XK̃QIW,A)b,a of the RHS is non-zero for the same choices of a. Returning
to the definition of X and K̃Q (boundary case) we have:

(XK̃QIW,A)b,a1
= xb,bK̃

Q

b,w1
= 1 · εb,a1

,

(XK̃QIW,A)b,a2
= xb,bK̃

Q

b,w2
= 1 · εb,a2

.

This ends the proof of (5.6).

Proof of (5.7). From Remark 5.1 the matrix KA,B is invertible, thus from (5.5) we
have M = −(KF

A,B)−1KF
A,A. Plugging this into the LHS of (5.6) gives that it is equal to:

LHS (5.6) = −KF

B,B(KF

A,B)−1KF

A,A + KF

B,A.

Returning to the definition of M ′ (or to (5.4)), we have that the LHS of (5.7) is

LHS(5.7) = KF

A,B − KF

A,A(KF

B,A)−1KF

B,B.

Using that the matrix KF is skew-symmetric, we deduce that LHS (5.7) = −[LHS (5.6)]t.
The same clearly holds for the RHS of the two equations; they are thus equivalent and
we have proved (5.6).
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Corollary 5.3 ([32]). Suppose that the graph G is finite. Then,

[Zdimer(G
F, µJ)]2 = 2|V

∗|
( ∏
e∗∈E∗

(1 + e−4Je)
)
Zdimer(G

Q, νJ),

where Zdimer(G
F, µJ) = |detKF|, Zdimer(G

Q, νJ) = |det K̃Q|.

Proof. By the first identity of Proposition 5.2, we have |detKF| = |detKF
A,B detX detKQ|.

By Remark 5.1, we know that |detKF
A,B| = 2|V

∗|. The determinant of X is computed by
calculating that of its blocks. Let bb′ be an edge of GF corresponding to an edge e∗ of
G∗ and let b, b′ be the black vertices of the quadrangle of GQ traversed by the edge bb′.
Then by definition, the corresponding block of X is:

(
1 KF

b′,b

KF

b,b′ 1

)(b,b′)

(b,b′)

.

Its determinant is equal to 1+|KF

b,b′ |2 = 1+e−4Je , thus ending the proof of the corollary.

5.2 Relating inverse Kasteleyn matrices of GF and GQ

In this section we consider the inverse operators (KF)−1 and (K̃Q)−1. When the
graph G is infinite, we assume that these inverses exist, decrease to zero at infinity
and are unique, referring to these assumptions as (∗). This is proved to hold when the
graph G is Z2-periodic [47, 9], and when it is isoradial (not necessarily periodic) and
the corresponding dimers weights on GF and GQ are Z-invariant [45, 12], in which case
inverse operators furthermore have local expressions.

From Proposition 5.2 and proving additional relations (not present in the paper [32])
we show, in Theorem 5.4 below, identities relating the inverse operator (KF)−1 to the
inverse operator (K̃Q)−1. As mentioned in Remark 1.9 of the introduction, these relations
can also be derived from the paper [16]. Using Section 2.2.2, Theorem 5.4 allows to
express the dimer Boltzmann measure (finite case) and the Gibbs measure (infinite case)
of the Fisher graph GF, denoted PF

dimer, using coefficients of the matrix KF and of the
inverse bipartite Kasteleyn operator (K̃Q)−1, see also Example 5.6. To state Theorem 5.4,
we need to define two additional matrices DB,A and κ.

The matrix DB,A has rows indexed by black vertices of GQ and columns by A-vertices
of GF. It is a diagonal matrix associated to the following bijection between B and A.
Using the notation of Figure 23, a vertex b of GQ belongs to a unique external edge
bw of GQ; then the vertex a in bijection with b is the vertex in bijection with w in the
construction of the matrix IW,A. The corresponding diagonal coefficient db,a is,

db,a = εb,a.

The matrix κ has rows and columns indexed by A-vertices of GF. It is block diagonal
with blocks corresponding to decorations, each block having per size the number of
A-vertices of the decoration. Given two vertices a, a′ of a decoration of GF, we have,

κa,a′ = −1

4

{
−1 if a = a′

(−1)n(a,a′) if a 6= a′,

where n(a, a′) is the number of edges oriented cw in the cclw path going from a to a′ in
the A-cycle of the decoration.
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Notation for coefficients (KF)−1

¯
u,v of Theorem 5.4 If

¯
u =

¯
a is an A-vertex, then

¯
w is

the white vertex of GQ corresponding to
¯
a in the bijection defining IW,A. If

¯
u =

¯
b is a

B-vertex, then
¯
a1 and

¯
a2 are the two A-vertices belonging to the same triangle, with

¯
b,

¯
a1,

¯
a2 in cclw order around the triangle. Note that this definition also holds if

¯
b is a

boundary vertex.
If v = b is a B-vertex, we let b be the closest black vertex of GQ. When moreover b is

not a boundary vertex, we let b′ be the B-vertex such that bb′ defines an edge e∗ of G∗;
we let b′ be the black vertex of GQ closest to b′ (b and b′ are the black vertices of the
quadrangle of GQ traversed by the edge bb′); the coupling constant of the edge e, dual of
e∗, is denoted Jf

e, where “f” stands for “final”. If v = a is an A-vertex, we let b and b be
as defined in the matrix DB,A, see Figure 26.

¯
a1 =

¯
a

¯
a2

¯
b

¯
w

b

b

b′

b

b

b′
a

a

e Jf
e

e∗

Figure 26: Left: notation for initial vertices. Right: notation for final vertices when b is
not a boundary vertex and when it is.

Theorem 5.4. Under assumption (∗), the inverse Kasteleyn operator (KF)−1 can be
expressed using the inverse bipartite Kasteleyn operator (K̃Q)−1 as follows.
• Matrix form.

(KF)−1 =

(
(KF)−1

B,B (KF)−1
B,A

(KF)−1
A,B (KF)−1

A,A

)
=

(
M(XK̃QIW,A)−1 −[(XK̃QIW,A)t]−1

(XK̃QIW,A)−1 − 1
2IA,W(K̃Q)−1DB,A + κA,A

)
. (5.10)

• Coefficients. We have four cases to consider and use the notation of Figure 26.
1. For every

¯
a ∈ A and every b ∈ B such that, when the graph GF is moreover finite, b

is not a boundary vertex:

(KF)−1

¯
a,b =

1

1 + e−4Jf
e

[
(K̃Q)−1

¯
w,b + (K̃Q)−1

¯
w,b′εb′,be

−2Jf
e
]
. (5.11)

2. When the graph GF is finite, for every
¯
a ∈ A and every boundary vertex b of B, we

have
(KF)−1

¯
a,b = (K̃Q)−1

¯
w,b. (5.12)

3. For every
¯
a, a ∈ A,

(KF)−1

¯
a,a = −1

2
(K̃Q)−1

¯
w,bεb,a + κ

¯
a,a. (5.13)

4. For every
¯
b, b ∈ B,

(KF)−1

¯
b,b = −ε

¯
b,

¯
a1

(KF)−1

¯
a1,b

+ ε
¯
b,

¯
a2

(KF)−1

¯
a2,b

, (5.14)

where (KF)−1

¯
a1,b

, (KF)−1

¯
a2,b

are given by (5.11).

Remark 5.5.

• When proving the local formula for (KF)−1

¯
a,a [10, 12] in the Z-invariant case, we

obtained a formula of the form (5.13) – with the constant κ
¯
a,a – without explicitly
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relating it to a coefficient of (KQ)−1. It is quite remarkable that this formula holds
in the full planar case (without assuming Z-invariance), in the finite and infinite
cases.

• In the finite case, we do not need positivity of the coupling constants J. In particular
if the coupling constants are all negative, Theorem 5.4 expresses probabilities of
the dimer model on the non-bipartite graph GF with positive weights e−2Je > 1 on
external edges, as a function of the inverse Kasteleyn operator of a “dimer model”
on the bipartite graph GQ with negative weights (tanh(Je) < 0) on quadrangle edges
parallel to edges of G. Having a negative weight for an edge amounts to reversing
its orientation. From a physics point of view, this amounts to adding defects or
creating vortices at each face where this new orientation is not Kasteleyn. The
physics paper [61] considers bipartite models with negative weights and somehow
describes the non-Harnacity of the associated spectral curves.

• Coefficients of the inverse Kasteleyn operator (KF)−1 not only allow to express
the dimer Boltzmann/Gibbs measure PF

dimer, but are also related to important
observables of the Ising model. By [16], the coefficient (KF)−1

¯
b,b is essentially the

spin-observable of [18] when fixing one vertex to be on the boundary of the
domain; by [32] the coefficient (KF)−1

¯
a,a is the fermionic spinor correlator of [39]

and by [63], it is related to the FK-Ising observable [67, 68, 18] when fixing one
vertex on the boundary of the domain, taking appropriate boundary conditions, up
to normalization.

• Consider a fixed A-vertex a and
¯
a1,

¯
a2,

¯
a3 as in Figure 27 below, such that the

decorations of
¯
a1,

¯
a2,

¯
a3 are distinct from that of a. Then using the identity

[K̃Q(K̃Q)−1]
¯
b,b = 0, from (5.13) we immediately obtain the Dotsenko three-terms

relation [31, 59, 16], see also Definition 2.1. of [15].

ε
¯
b,

¯
a1(KF)−1

¯
a1,a + ε

¯
b,

¯
a2 tanh(2Je)(K

F)−1

¯
a2,a + ε

¯
b,

¯
b′ε

¯
b′,

¯
a3 cosh−1(2Je)(K

F)−1

¯
a3,a = 0.

¯
b

¯
b′

¯
a1

¯
a2

¯
a3¯

b

¯
w1

¯
w2

¯
w3

e Je

a b

Figure 27: Notation for the Dotsenko three-terms relation.

Proof. The expressions for coefficients are obtained from Formula (5.10) and by return-
ing to the definition of the matrices IW,A, DB,A, M and X. The inverse of X is computed
by blocks. For an edge bb′ of GF corresponding to an edge e∗ of G∗, let b, b′ be the black
vertices of the quadrangle of GQ traversed by the edge bb′. Then the inverse of the
corresponding block is,((

1 KF

b′,b

KF

b,b′ 1

)−1
)(b,b′)

(b,b′)

=
1

1 + |KF

b,b′ |2

(
1 KF

b,b′

KF

b′,b 1

)(b,b′)

(b,b′)

. (5.15)

In the finite case, the matrixX also has a size 1, identity block for each boundaryB-vertex
b of GF and its closest black vertices b of GQ. This ends the proof of formulas (5.11), (5.13),
(5.14) for coefficients and we now turn to the proof of (5.10).
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The expressions for (KF)−1
B,B, (K

F)−1
B,A, (K

F)−1
A,B are a direct consequence of Proposi-

tion 5.2. This is not the case of (KF)−1
A,A which requires proving additional identities.

From Proposition 5.2 we know that,

(KF)−1
A,A = −M ′[(XK̃QIW,A)t]−1 = (XK̃QIW,A)−1(M ′)t = −IA,W(K̃Q)−1X−1KF

B,B(KF

A,B)−1,

where in the second and third equalities we used skew-symmetry of KF, and in the third
the definition of M ′. We thus need to prove that

− IA,W(K̃Q)−1X−1KF

B,B(KF

A,B)−1 = −1

2
IA,W(K̃Q)−1DB,A + κA,A

⇔ − IA,W(K̃Q)−1X−1KF

B,B(KF

A,B)−1 = −IA,W(K̃Q)−1

[
1

2
DB,A − K̃QIW,AκA,A

]
⇔ X−1KF

B,B(KF

A,B)−1 =
1

2
DB,A − K̃QIW,AκA,A

⇔ 2X−1KF

B,B = DB,AK
F

A,B − 2K̃QIW,AκA,AK
F

A,B, (5.16)

so let us prove (5.16). We will be using the notation of Figure 28 below.

b b′

b1

a1

a2 a3

a4a5 b

b′

w1

w2
w3

w4

b
a1

a2

bw1

w2

Figure 28: Notation for the proof of Equation (5.16).

We need to introduce an additional matrix, the matrixDA,B, which has rows indexed by
A-vertices and columns by B-vertices of GF. It is diagonal: to an A-vertex a corresponds
the unique B-vertex b such that b comes before a in the cw ordering of the triangle
containing a and b. The diagonal coefficient da,b is:

da,b =
1

2
εb,a.

For example to a2 of Figure 28 corresponds the vertex b, and the coefficient da2,b = 1
2εb,a2 .

Let us first show that
κA,AK

F

A,B = −DA,B. (5.17)

Consider a B-vertex b of GF. Then, the coefficient (κA,AK
F
A,B)a,b of the LHS of (5.17) is a

priori non-zero for all A-vertices a belonging to the same decoration as b. We have,

(κA,AK
F

A,B)a,b = κa,a1
KF

a1,b + κa,a2
KF

a2,b = κa,a1
εa1,b + κa,a2

εa2,b.

Returning to the definition of the matrix Λ, as long as a 6= a2, we have that κa,a1
=

κa,a2
εa2,a1

implying,

(κA,AK
F

A,B)a,b = κa,a2 [εa2,a1εa1,b + εa2,b] = 0 = −da,b,

since the orientation around the triangle a1, a2, b is Kasteleyn and using the definition of
DA,B. When a = a2, then κa2,a1 = − 1

4εa2,a1 , κa2,a2 = 1
4 ; thus

(κA,AK
F

A,B)a2,b = −1

4
εa2,a1

εa1,b +
1

4
εa2,b = −1

2
εb,a2

= −db,a2
,
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using again the Kasteleyn orientation around the triangle and the definition of DA,B,
thus ending the proof of (5.17). Plugging (5.17) into (5.16) leaves us with showing the
equivalent

2X−1KF

B,B = DB,AK
F

A,B + 2K̃QIW,ADA,B. (5.18)

Infinite case. Let b be a vertex of GQ, then the coefficient (2X−1KF
B,B)b,b̃ of the LHS

of (5.18) is non-zero when b̃ ∈ {b, b′}. Recalling the computation of X−1 given in (5.15),
we have

2(X−1KF

B,B)b,b =
2

1 + |KF

b,b′ |2
× (KF

b,b′)K
F

b′,b = e2J cosh−1(2J)εb,b′εb′,be
−4J

= −e−2J cosh−1(2J) = −1 + tanh(2J), using (5.8).

2(X−1KF

B,B)b,b′ =
2

1 + |KF

b,b′ |2
× 1× KF

b,b′ = e2J cosh−1(2J)εb,b′e
−2J

= εb,b′ cosh−1(2J).

The RHS (DB,AK
F
A,B+2K̃QIW,ADA,B)b,b̃ a priori has non-zero coefficients when b̃ ∈ {b, b′, b1},

and

(DB,AK
F

A,B + 2K̃QIW,ADA,B)b,b = εb,a1
εa1,b + 2KQ

b,w2
Iw,a2

εb,a2

= −1 + εb,a2 tanh(2Je)εb,a2 = −1 + tanh(2Je).

(DB,AK
F

A,B + 2K̃QIW,ADA,B)b,b′ = 0 + 2KQ

b,w4
Iw4,a4

εb′,a4

= 0 + εb,b′εb′,a4 cosh−1(2Je)εb′,a4 = εb,b′ cosh−1(2Je).

(DB,AK
F

A,B + 2K̃QIW,ADA,B)b,b1 = εb,a1
εa1,b1 + K̃Q

b,w1
Iw1,a1

εb1,a1

= −εb,a1εa1,b1 + εb,a1εb1,a1 = 0,

and hence Equation (5.18) is proved in the infinite case.

Finite, boundary case. Consider a black vertex b of GQ. As long as b is not a boundary
vertex of GQ, the argument is as in the infinite case, so we suppose that b is a boundary
vertex. The coefficient (2X−1KF

B,B)b,b̃ of the LHS of (5.18) is zero for all b̃ ∈ B. The

coefficient (DB,AK
F
A,B + 2K̃QIW,ADA,B)b,b̃ of the RHS of (5.18) is a priori non-zero when

b̃ ∈ {b, b1}, and we have

(DB,AK
F

A,B + 2K̃QIW,ADA,B)b,b = εb,a1
εa1,b + 2K̃Q

b,w2
Iw,a2

εb,a2

= −1 + εb,a2
εb,a2

= 0,

(DB,AK
F

A,B + 2K̃QIW,ADA,B)b,b1 = 0,

where in the computation for b̃ = b we have used that the boundary coefficient K̃Q

b,w2
=

εb,a2 . The computation for b̃ = b1 is as in the infinite case. This ends the proof of the
finite, boundary case of (5.18) and the proof of Theorem 5.4.

Example 5.6. As an example we give the probability of single edges occurring in dimer
configurations of GF chosen with respect to the Boltzmann measure PF

dimer in the finite
case, or the Gibbs measure PF

dimer in the infinite case, as a function of edge probabilities
of the dimer model on GQ. Details of computations are given in Appendix B.3. Using the
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notation of Figure 23, we have

PF

dimer(aa
′) =

1

4
−
PQ

dimer(bw
′)

2 tanh(2J)

PF

dimer(ab) = PF

dimer(a
′b) =

1

4
+
PQ

dimer(bw
′)

2 tanh(2J)

PF

dimer(bb
′) =

1

2
−
PQ

dimer(bw
′)

tanh(2J)
.

5.3 In the Z-invariant case

We restrict to the case where the graph G is isoradial, finite or infinite, with Ising
coupling constants J given by (2.6), dimer weights on GF by (2.7) and dimer weights on
GQ by (2.8). The main result of this section is Corollary 5.8 relating the inverse Kasteleyn
operator (KF)−1 to the inverse Zu-Dirac operator using Theorem 5.4, Example 4.15,
Corollaries 4.18 and 4.16, and to the Z-massive Green functions. This proves one of
the main results of this paper, namely that the contour Ising Boltzmann/Gibbs measures
can be computed from the inverse Zu-Dirac operator, and also from the Z-massive
Green functions. As a byproduct, in the infinite this also gives a direct alternative way
of proving the local formula of [12] for (KF)−1, where the locality is seen as directly
inherited from the Green function. Note that as for the local expression of (KQ)−1, it is
not immediate to see equality with the expression of [12].

We first relate the real and complex bipartite Kasteleyn matrices K̃Q and KQ of the
graph GQ; we use Appendix A.2. Define the following function q on pairs of vertices of
GQ, inductively on edges. For every edge bw of GQ, let

qb,w =
KQ

b,w

K̃Q

b,w

=
ei
ᾱ+β̄

2

εb,w
, qw,b = q−1

b,w.

For every pair of vertices x, y of GQ, let qx,y =
∏

(x′,y′)∈γx,y qx′,y′ , where γx,y is an edge-path

of GQ from x to y. Then, since the matrices K̃Q and KQ satisfy the alternating product
condition around every face/inner face of GQ if the graph is infinite/finite [53, 45], the
function q is well defined.

Consider a fixed vertex x0 of GQ, and define the diagonal matrices Dx0,B, Dx0,W on
black, resp. white vertices, of GQ by:

∀ b ∈ B, Dx0,B
b,b = qx0,b, ∀w ∈W, Dx0,W

w,w = q−1
x0,w.

By [53, 45], see also Appendix A.2, we have

K̃Q = Dx0,BKQDx0,W,

thus implying the following lemma:

Lemma 5.7 ([53, 45]). Consider the function q as defined above. Then, coefficients of
the inverse of the matrices K̃Q and KQ are related by the following, for every white vertex

¯
w and every black vertex b of GQ,

(K̃Q)−1

¯
w,b = qb,

¯
w(KQ)−1

¯
w,b.

Note that the above matrix relation holds in the finite and infinite cases because
coefficients of the diagonal matrices are finite and uniformly bounded away from 0.

Cases 2. and 3. of Theorem 5.4 directly relate coefficients of (KF)−1 to (K̃Q)−1

¯
w,b. Using

Lemma 5.7, Corollary 4.16 (infinite case), Corollary 4.18 and Remark 4.19 (finite case),
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these coefficients of (KF)−1 are easily expressed using the inverse Zu-Dirac operator
and the Z-massive Green functions.

Case 4. of Theorem 5.4 uses Case 1. so we are left with considering Case 1. The
notation used are summarized in Figure 29 below.

¯
a

¯
w

¯
wc

¯
a

θ̄∂i b

b′w

b b′

a

a′

c

e∗

eiᾱf eiβ̄fθ̄f

f1 f2

v1

v2

Figure 29: Left: notation for initial vertices. Right: notation for final vertices.

Corollary 5.8 (Case 1).
• For every

¯
a ∈ A and every b ∈ B such that, when the graph GF is moreover finite, b

is not a boundary vertex:

(KF)−1

¯
a,b = qb,

¯
w cn

(
K−θf

2

) 1+(k′)−1 dn(θf )
2

[
(KQ)−1

¯
w,b cn

(
K−θf

2

)
− i(KQ)−1

¯
w,b′ cn

(
K−θf

2

)]
.

• Moreover, as a function of the inverse Zuf

-Dirac operator, where uf = αf+βf

2 +K,
we have:

Infinite case.

(KF)−1

¯
a,b =qb,

¯
we
i
β̄f−β̄i

2 (k′)
1
2

cn
(
K−θf

2

)
(1+(k′)−1 dn(θf ))

2[cn(θf ) sn(θf )]
1
2

(
cn(uf

βi
)K(uf)−1

¯
v,w − i sn(uf

βi
)K(uf)−1

¯
f,w

)
=qb,

¯
we
−i ᾱf+β̄i

2
cn
(
K−θf

2

)
(1+(k′)−1 dn(θf ))

2 ×

×
(

cn(uf
βi

)

cn(θf )
(Gm

¯
v,v2
−Gm

¯
v,v1

)− sn(uf
βi

)

sn(θf )

(
nd
(
K−θf

2

)
Gm,∗

¯
f,f2
− nd

(
K+θf

2

)
Gm,∗

¯
f,f1

))
.

Finite case. If
¯
a corresponds to a vertex

¯
wc for some rhombus pair of R∂, we then use

the notation of Figure 29 (2nd quadrant on the left):

(KF)−1

¯
a,b = qb,

¯
we
i
β̄f
2 (k′)

1
2 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

cn
(
K−θf

2

)
(1 + (k′)−1 dn(θf))

2[cn(θf) sn(θf)]
1
2

×

×
(
I{

¯
w 6=wc,r}t(u

f)
¯
w,

¯
vK

∂(uf)−1

¯
v,w + t(uf)

¯
w,

¯
fK

∂(uf)−1

¯
f,w

)
,

where the coefficients K∂(uf)−1

¯
v,w,K

∂(uf)−1

¯
f,w are expressed using the Green functions

Gm,∂(u) and Gm,∗ in Example 3.18.

Proof. Let us prove the first point. We first compare (K̃Q)−1

¯
w,b and (K̃Q)−1

¯
w,b′ of Theorem 5.4.

Using the notation of Figure 29 (right), we have

(K̃Q)−1

¯
w,b′εb′,b = −iqb,

¯
w(KQ)−1

¯
w,b,

that is because, omitting the subscript “f”,

qb′,
¯
wεb′,b = qb′,wqw,bqb,

¯
wεb′,b =

ei
β̄−π+ᾱ

2

εb′,w

εb,w

ei
β̄+ᾱ

2

εb′,bqb,
¯
w = −i εb,a′

εb′,b′εb,a′
εb′,bqb,

¯
w = −iqb,

¯
w.
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We thus have,

(KF)−1

¯
a,b = qb,

¯
w

1

1 + e−4Jf
e

[
(KQ)−1

¯
w,b − i(K

Q)−1

¯
w,b′e

−2Jf
e
]
. (5.19)

We are left with computing the terms involving the coupling constants Jf
e in the Z-

invariant case. By definition, Jf
e = 1

2 ln 1+sn θf
cn θf

. Set u = K−θf
2 , v = K+θf

2 , then u + v =

K,u− v = −θf , so that

e−2Jf
e = cn θf

1+sn θf
= cn(u−v)−cn(u+v)

sn(u+v)−sn(u−v) = sc(u) dn(v) = sn(K−v) dn(v)
cn(u) =

cn
(
K+θf

2

)
cn
(
K−θf

2

) , (5.20)

where in the third equality we used [54, chap.2, ex.14 (iii)] and in the fourth that
sn(v +K) = cd(v). From this and Identity (4.18), we obtain,

1

1 + e−4Jf
e

=
cn2
(
K−θf

2

)
cn2
(
K−θf

2

)
+cn2

(
K+θf

2

) = cn2
(
K−θf

2

) 1+(k′)−1 dn(θf )
2 . (5.21)

Putting together Equation (5.19), (5.20) and (5.21) ends the proof of the first point; let
us now prove the second.

In the infinite case, by Example 4.15, we have

(KQ)−1

¯
w,b cn

(
K−θf

2

)
− i(KQ)−1

¯
w,b′ sn

(K + θf

2

)
=

= ei
β̄f−β̄i

2 (k′)
1
2

[cn(θf ) sn(θf )]
1
2

(
cn(uf

βi
)K(uf)−1

¯
v,w − i sn(uf

βi
)K(uf)−1

¯
f,w

)
,

thus proving the first line. The second line is obtained by using Example 3.18 to express
K(uf)−1

¯
v,w and K(uf)−1

¯
f,w using the Z-massive Green functions Gm and Gm,∗.

In the finite case, by Example 4.15, we have

(KQ)−1

¯
w,b cn

(K − θf

2

)
− i(KQ)−1

¯
w,b′ sn

(
K+θf

2

)
=

=
ei
β̄f
2 (k′)

1
2 sn(θ∂i )

I{
¯
w∈{wc∈R∂}}

[cn(θf ) sn(θf )]
1
2

(
I{

¯
w 6=wc,r}t(u

f)
¯
w,

¯
vK

∂(uf)−1

¯
v,w + t(uf)

¯
w,

¯
fK

∂(uf)−1

¯
f,w

)
,

thus concluding the proof.

6 Examples

In this section we specify some of our results to two cases of interest: the critical Z-
invariant Ising model, and the full Z-invariant Ising model when the underlying isoradial
graph G is Z2 with the regular embedding.

6.1 Z-invariant critical case

The Z-invariant Ising model is critical when k = 0 (k′ = 1) [55, 22, 57]. In this case,
the elliptic functions sn, cn are the trigonometric functions sin, cos and dn ≡ 1.

Returning to Section 3.1, the finite Zu-Dirac operator K∂(u) with boundary conditions
arising from the Ising model has coefficients defined by, for every edge wx of GD,

K∂(u)w,x = ei
ᾱe+β̄e

2


tan(θ)

1
2 if x ∈ V and (w, x) /∈ (w`, vc) ∈ R∂,r

cot(θ)
1
2 if x ∈ V∗

tan(θ∂)
cos(uβr )
cos(u

α`
) if (w, x) ∈ (w`, vc) ∈ R∂,r.

Away from the boundary, we recover the Dirac operator of [45].
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Dimer model on the bipartite graph GQ, finite case Corollary 4.18 expresses coef-
ficients of (KQ)−1 as a function of the inverse Zu-Dirac operator. When b does not belong
to a boundary quadrangle (Case 1.), we have

(KQ)−1

¯
w,b = ei

β̄f
2 (k′)

1
2 sin(θ∂i )

I{
¯
w∈{wc∈R∂}} 1

[cos(θf ) sin(θf )]
1
2

[
cos
(
K−θf

2

)
Γ(uf) + cos

(
K+θf

2

)
Γ(vf)

]
,

where, Γ(u) = I{
¯
w 6=wc,r}t(u)

¯
w,

¯
vK

∂(u)−1

¯
v,w+t(u)

¯
w,

¯
fK

∂(u)−1

¯
f,w, and coefficients of t(u) are given

by (4.4) and (4.5). The mass of the Z-massive Laplacian is equal to 0 away from the
boundary [11]; then Example 3.18 expresses coefficients of K∂(uf)−1 using the Z-Green
function G 0,∂(uf) and dual Z-Green function G0,∗; we have

K∂(uf)−1

¯
v,w = e−i

ᾱf+β̄f
2 tan(θf)

1
2

(
G 0,∂(uf)v2,

¯
v −G 0,∂(uf)v1,

¯
v

)
K∂(uf)−1

¯
f,w = −ie−i

ᾱf+β̄f
2 cot(θf)

1
2

(
I{w/∈{w`,wr∈R∂}}G

0,∗
f2,

¯
f −G

0,∗
f1,

¯
f

)
+

+ i
∑

(vc,fc)∈R∂,r

cos(uf
βr )−cos(uf

α`
)

cos(uf

α`
)

K∂(uf)−1
vc,w ·G

0,∗
fc,

¯
f .

A similar expression holds for K∂(vf)−1.

Dimer model on the Fisher graph GF, finite case Corollary 5.8 (finite case) simply
becomes:

(KF)−1

¯
a,b = ei

β̄f
2 sin(θ∂i )

I{
¯
w∈{wc∈R∂}}

cos
(
K+θf

2

)
[cos(θf) sin(θf)]

1
2

×

×
(
I{

¯
w 6=wc,r}t(u

f)
¯
w,

¯
vK

∂(uf)−1

¯
v,w + t(uf)

¯
w,

¯
fK

∂(uf)−1

¯
f,w

)
.

Partition function of the Ising model with + boundary conditions Corollary 4.5,
expressing the squared Z-invariant Ising partition function, holds for every u ∈ C′′. When
k = 0, a nice expression is obtained by setting u = iu′ and taking the limit u′ → −∞. We
have

lim
u′→−∞

cos((iu′)α)

cos((iv)β)
= ei

β−α
2 , lim

u′→−∞
tan((iu′)α) = 1.

As a consequence,

∆m,∂(−i∞)v,v′ =


− tan(θ) if (v, v′) /∈ {(vc, v`) ∈ R∂,r}
−ei

α`−βr
2 tan(θ∂) if (v, v′) ∈ {(vc, v`) ∈ R∂,r}∑d

j=1 tan(θj) if v′ = v = v∂ ∈ {vr, v` ∈ R∂}
tan(θ∂)(ei

α`−βr
2 − 1) if v′ = v = vc ∈ {vc ∈ R∂,r},

where we recover the critical Laplacian of [45] away from the boundary. Corollary 4.5
becomes:

[Z+
Ising(G, J)]2 = 2|V|−1

( ∏
w∈W∂

1 + sin(θw)

2 sin(θw)

)
sn(θ∂,r)|det ∆m,∂(−i∞)|.

We essentially recover the main result of [30] proving that the squared critical Z-invariant
Ising model partition function is equal, up to an explicit constant, to the partition function
of spanning trees with specific boundary conditions. The difference is that we here
consider + boundary conditions instead of free ones, and more importantly, we use the
boundary trick of Chelkak and Smirnov [18] allowing us to remove all contributions from
dual spanning trees, which we could not do in [30].
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6.2 Full Z-invariant case when the isoradial graph G is Z2

The goal of this example is to relate our results to the papers [60, 7]. When the
isoradial graph G = Z2 in its regular embedding, all rhombus half-angles θ̄e are equal

to π
4 . Using that sn

(
K
2

)
= 1

(1+k′)
1
2

, cn
(
K
2

)
= (k′)

1
2

(1+k′)
1
2

, dn
(
K
2

)
= (k′)

1
2 [1, 16.5.2], we obtain

the following parameterization of the Ising coupling constants:

∀ e ∈ E, Je = Je(k
′) =

1

2
ln

(
1 + (1 + k′)

1
2

(k′)
1
2

)
,

which is a C∞-bijection from (0,∞) to (∞, 0).

The masses of the Z-massive Laplacian ∆m are equal to [11], ∀ v ∈ V, mv = 2(k′)
1
2

1+k′ ,
and the survival probabilities s of the random walk associated to the Z-invariant conduc-
tances ρ and masses m are

∀ v ∈ V, sv =
4 sc
(
K
2

)
4 sc
(
K
2

)
+mv

=
2(k′)

1
2

1 + k′
.

As in the papers [60, 7] the survival probabilities satisfy

∀ v ∈ V, sv =
2

sinh(2Je) + sinh−1(2Je)
.

In the infinite case, by Theorem 5.4 and Corollary 4.16, the coefficient (KF)−1

¯
a,a of the

inverse Kasteleyn operator (KF)−1 is equal to, as long as
¯
a and a do not belong to the

same decoration,

|(KF)−1

¯
a,a| = (k′)−1(1+(k′))

1
2

(
cn
(
βf−βi

2

)[
Gm

¯
v,v2
−(k′)

1
2Gm

¯
v,v1

]
−sn

(
βf−βi

2

)[
(k′)

1
2Gm,∗

¯
f,f2
−Gm,∗

¯
f,f1

])
.

A similar expression holds in the finite case, see Corollary 4.18 and Example 3.18.
According to [32, 63], this coefficient is the fermionic spinor observable of [39] and,
up to normalization, the FK-Ising observable of [67, 68, 18]. Now, the proof of [7]
for showing the occurrence of large deviation estimates of the massive random walk
in the correlation length of the spin correlations [60] consists in proving that, in the
super-critical regime, spin correlations can be approximated by the FK-Ising observable,
and then using massive harmonicity of the latter to relate it to the massive random
walk. Our explicit expression for |(KF)−1

¯
a,a| in the finite case gives a direct explanation of

the occurrence of these large deviation estimates, and up to handling boundary terms,
should give a rather direct proof valid in the whole super-critical Z-invariant case.

A Gauge equivalence revisited

We consider gauge equivalence of weighted adjacency matrices of digraphs and
rephrase gauge equivalence of bipartite weighted adjacency matrices as defined in
[53, 47] in this context.

A.1 Definitions

In the whole of this section, we consider square matrices of size n× n; let M be such
a matrix. We associate two graphs to M , a non-directed one G(M) = (V(M),E(M)) and a
directed one D(M) = (V(M),A(M)), both having the same vertex set of cardinality n in
bijection with rows/columns of M . An edge xjx` is in E(M) iff Mxj ,x` 6= 0 or Mx`,xj 6= 0.
A directed edge (or simply an edge) (xj , x`) is in A(M) iff the coefficient Mxj ,x` 6= 0. The
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matrix M is a weighted adjacency matrix of the digraph D(M). Whenever no confusion
occurs, we remove the argument M of the graphs.

Let us recall a few definitions. A di-path of a digraph D = (V,A) is a sequence
(x0, . . . , xn) of vertices such that for every j ∈ {0, . . . , n− 1}, (xj , xj+1) is an edge of A. A
simple di-path is a path with pairwise disjoint vertices. A di-cycle is a di-path such that
the first and last vertices are the same. A simple di-cycle is a cycle whose only common
vertices are the first and the last. Note that loops and length-two di-cycles are simple. A
digraph is strongly connected if any two pairs of vertices are joined by a di-path. The
above definitions are easily adapted in the case of non-directed graphs.

Definition A.1. Consider two matrices M and N having the same associated digraph D.
The matrices M and N are said to be gauge equivalent if,

∀ simple di-cycle c of D,
∏

e=(x,y)∈c

Mx,y =
∏

e=(x,y)∈c

Nx,y.

Remark A.2.

• Having the same associated digraph is equivalent to asking that Mx,y 6= 0 ⇔
Nx,y 6= 0.

• Since loops are simple di-cycles, if M and N are gauge equivalent, they have equal
diagonal coefficients.

• Definition A.1 holds if and only if the product condition holds for every di-cycle
of D.

Lemma A.3. Let M,N be two gauge equivalent matrices, then

detM = detN.

Proof. This is proved by writing the determinant as a sum over permutations, and doing
the cyclic decomposition of permutations.

Let us suppose that M and N are gauge equivalent and that the associated digraph
D is strongly connected. Define the function q ∈ CV×V on pairs of vertices of V taking
values in C as follows. For vertices x, y such that (x, y) is an edge of D, set

qx,y =
Nx,y
Mx,y

.

For vertices x, y of D, since the digraph is strongly connected, there exists a di-path γ
from x to y; set

qx,y =
∏

e=(x′,y′)∈γ

qx′,y′ .

Note that if y = x, then γ is a di-cycle and we have qx,x = 1.

Remark A.4. The function q is well defined, i.e., independent of the choice of path from
x to y. If y = x, then qx,x = 1 independently of the choice of di-cycle from x to x. If y 6= x,
consider two di-paths γ1, γ2 from x to y. Since the digraph D is strongly connected, there
exists a simple di-path γ̃ from y to x. Then, γ1 (resp. γ2) followed by γ̃ is a di-cycle and
by definition of gauge equivalence we have,( ∏

e=(x′,y′)∈γ1

qx′,y′
)( ∏

e=(x′,y′)∈γ̃

qx′,y′
)

= 1 =
( ∏
e=(x′,y′)∈γ2

qx′,y′
)( ∏

e=(x′,y′)∈γ̃

qx′,y′
)
,

implying that ∏
e=(x′,y′)∈γ1

qx′,y′ =
∏

e=(x′,y′)∈γ2

qx′,y′ ,

and the function q is thus well defined.
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The following lemma proves that if the associated digraph is strongly connected,
gauge equivalence amounts to having the two matrices related through a diagonal
matrix.

Lemma A.5. Let M,N be two matrices having the same associated digraph D and
suppose that D is strongly connected. Then M and N are gauge equivalent if and only if
there exists an invertible diagonal matrix D such that,

M = DND−1.

Proof. Suppose that M and N are gauge equivalent. Fix a vertex x0 of D, and define Dx0

to be the diagonal matrix whose diagonal coefficient Dx0
x,x corresponding to the vertex x

is qx0,x. Since the digraph D is strongly connected, the matrix Dx0 is invertible. Let us
prove that M = Dx0N(Dx0)−1. Non zero coefficients of M and N correspond to edges of
D; let (x, y) be such an edge. Consider a di-path γ from x0 to x, then γ′ = γ ∪ {(x, y)} is a
di-path from x0 to y. Using γ to compute qx0,x and γ′ to compute qx0,y, we deduce that,

(Dx0N(Dx0)−1)x,y =
qx0,x

qx0,y
Nx,y =

1

qx,y
Nx,y =

Mx,y

Nx,y
Nx,y = Mx,y.

Suppose that M = DND−1, with D an invertible diagonal matrix, and let us prove that
M and N are gauge equivalent. Consider a simple di-cycle c of D, then∏

e=(x,y)∈c

Mx,y =
∏

e=(x,y)∈c

Dx,xNx,yD
−1
y,y =

∏
e=(x,y)∈c

Nx,y (telescopic product),

thus concluding the proof.

Remark A.6. Consider two matrices M,N having the same associated graphs G and D,
such that G is connected and such that for every undirected edge e of G, the two possible
oriented edges are present in D; then D is strongly connected. If moreover G is planar
and embedded, then every simple di-cycle c of length ≥ 3 is the union of face di-cycles,
where edges not in c are traversed in both directions. As a consequence, in this case
proving gauge equivalence for M and N is equivalent to proving that,

∀x ∈ V, Mx,x = Nx,x,

∀ edge e of G, Mx,yMy,x = Nx,yNy,x,

∀ face di-cycle c,
∏

e=(x,y)∈c

Mx,y =
∏

e=(x,y)∈c

Nx,y.

A.2 The bipartite case

Consider a non-directed, finite, bipartite graph G = (V = W ∪ B,E), such that
|W| = |B| = n, having at least one perfect matching. Note that G being bipartite, it
cannot have loops; we furthermore suppose that it has no multiple edges, i.e., that it is
simple.

Fix a perfect matching M0 = {b1w1, . . . , bnwn} of G. From G and M0, construct a
digraph D0 in the following way: vertices bj and wj are merged into a single vertex xj ,
and the corresponding edge becomes a loop. The vertex set of D0 is V0 = {x1, . . . , xn}.
Edges not in the perfect matching M0 remain in D0 and are directed from their black
vertex to the white one, defining the directed edges of D0.

A bipartite, weighted adjacency matrix K associated to the graph G has rows indexed
by vertices of B, columns by those of W, and non-zero coefficients correspond to edges
of G. Up to a reordering of the rows and columns, we can suppose that rows of K are
indexed by b1, . . . , bn and columns by w1, . . . ,wn.
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Instead of seeing K as a bipartite adjacency matrix, we can interpret it as an adjacency
matrix of the digraph D0. In this interpretation, rows and columns are indexed by vertices
of V0 and diagonal coefficients correspond to edges of the perfect matching, they now
represent loops.

Consider the diagonal matrix D0
K whose j-th diagonal coefficients is the coefficient

Kbj ,wj corresponding to the j-th edge of M0. Define the matrix K0 to be,

K0 = (D0
K)−1K.

Note that the matrix K0 has ones on the diagonal.

Definition A.7. Let G be a finite, bipartite graph, and let K, L be two associated bipartite,
weighted adjacency matrices. Fix a perfect matching M0 of G, and let D0 be the directed
graph constructed from G and M0. Then, K and L are said to be gauge equivalent if the
matrices K0 and L0, seen as weighted adjacency matrices of the digraph D0, are gauge
equivalent.

Rephrasing Lemma A.3 in the context of bipartite graphs, we obtain

Corollary A.8. Let K, L be two gauge equivalent bipartite, weighted adjacency matrices,
then

detK =
( ∏
e=bw∈M0

Kb,w

Lb,w

)
det L.

We now rephrase Definition A.7 in the more usual form [53, 47]. Consider the
bipartite graph G together with the reference perfect matching M0. An alternating cycle
of G and M0 is a simple cycle of G whose edges alternate between edges in M0 and edges
in E \M0.

Lemma A.9. The matrices K and L are gauge equivalent iff for every alternating cycle c
of G and M0 of length > 2, we have∏

e=bw∈c\M0
Kb,w∏

e=bw∈c∩M0
Kb,w

=

∏
e=bw∈c\M0

Lb,w∏
e=bw∈c∩M0

Lb,w
.

Proof. By definition, K and L are gauge equivalent if K0 and L0 seen as adjacency
matrices of the digraph G0 are gauge equivalent, see Definition A.1. Length one di-cycles
of D0 are loops corresponding to diagonal coefficients of K0, L0. The latter are all equal
to 1 by definition, and thus equal. Consider a simple di-cycle c of D0 of length m ≥ 2. Up
to a relabeling of the vertices, it can be denoted as c = {x1, . . . , xl = x1}. Then, ∀ j, xj
corresponds to an edge bjwj of the perfect matching M0. By construction of D0, the cycle
c is in correspondence with an alternating cycle {w1, b1, w2, . . . , wm, bm, w1} of length 2m

of G. By definition of K0 we have,

m∏
j=1

K0
xj ,xj+1

=

∏m
j=1 Kbj ,wj+1∏m
j=1 Kbj ,wj

,

with cyclic notation for indices. A similar equality holds for the matrices L0 and L, thus
ending the proof.

Remark A.10. Definition A.7 is independent of the choice of M0. To prove this, use the
fact that if M1 is another reference perfect matching, then the superimposition of M0

and M1 consists of alternating cycles of length > 2 and doubled edges.

From now on we suppose that the bipartite graph G is finite, planar and embedded,
and we let K, L be two bipartite, weighted adjacency matrices of G.
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Lemma A.11 ([53]). If the alternating products of the matrices K and L are equal around
every inner face-cycle of G, then K and L are gauge equivalent.

Proof. This is proved by induction on the number of faces contained in an alternating
cycle of length > 2.

Suppose that K and L satisfy the alternating product condition around every inner
face-cycle of G. Similarly to the directed case, define the function q ∈ CV×V as follows.
For every edge bw of G,

qb,w =
Lb,w
Kb,w

, qw,b = q−1
b,w.

For every pair of vertices x, y of G, let γ be a path from x to y and set qx,y =
∏

(x′,y′)∈γ qx′,y′ .
The function q is well defined [53] and

Lemma A.12 ([53]). The matrices K and L satisfy the alternating product condition
around every inner face-cycle if and only if there exist diagonal matrices DB, DW such
that

K = DB LDW.

Proof. The proof can be found in [53]. For the purpose of Section 5.3, we make the
diagonal matrices explicit assuming the alternating product condition is satisfied. Fix a
vertex x0 of G and set,

∀ b ∈ B, Dx0,B
b,b = qx0,b, ∀w ∈W, Dx0,W

b,b = q−1
x0,w,

where q is given above. Then, K = Dx0,B LDx0,W.

B Computations of probabilities of single edges.

B.1 Dimers model on an infinite isoradial double graph GD

We compute the probability of single edges occurring in dimer configurations of GD

chosen with respect to the measure PD,u

dimer. Notation are recalled in Figure 30 below;
since no confusion occurs, we omit the subscripts f from α, β, θ.

v2

f2

eiᾱ

eiβ̄

w θ̄

Figure 30: Notation for computing PD,u

dimer(wx) when x = v2 or f2.

For every edge wx of GD, we have PD,u

dimer(wx) = K(u)w,xK(u)−1
x,w, where x is a vertex

of G or G∗. Setting
¯
v = v2 in K(u)−1

v,w and
¯
f = f2 in K(u)−1

f,w of Corollary 3.15, and using
that dn(u−K) = k′ nd(u), gives

K(u)−1
v2,w = e−i

ᾱ+β̄
2 (k′)−1[sc(θ) nd(uα) nd(uβ)]

1
2

[
dn(uα) dn(uβ)Gmv2,v2

− k′Gmv2,v1

]
K(u)−1

f2,w
= −ie−i

ᾱ+β̄
2 (k′)−1[sc(θ∗) nd((uβ)∗) nd((uα+2K)∗)]

1
2×

×
[
dn((uβ)∗) dn((uα+2K)∗)Gm,∗f2,f2

− k′Gm,∗f2,f1

]
.
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Multiplying by K(u)w,v2
and K(u)w,f2

respectively yields the first equalities of Exam-
ple 3.21:

K(u)w,v2K(u)−1
v2,w = (k′)−1 sc(θ)

[
dn(uα) dn(uβ)Gmv2,v2

− k′Gmv2,v1

]
K(u)w,f2

K(u)−1
f2,w

= (k′)−1 sc(θ∗)
[
dn((uβ)∗) dn((uα+2K)∗)Gm,∗f2,f2

− k′Gm,∗f2,f1

]
.

Now by [11, Lemma 46], for every vertex v of G, Gmv,v = k′K′

π and, for every u ∈ C,

Gmv2,v1
= Gmv1,v2

=
H(2uβ)−H(2uα)

sc(θ)
+
K ′

π
dn(uα) dn(uβ)

Gm,∗f2,f1
= Gm,∗f1,f2

=
H(2(uβ)∗)−H(2(uα+2K)∗)

sc(θ∗)
+
K ′

π
dn((uβ)∗) dn((uα+2K)∗).

Combining this with the expressions of K(u)−1
x,w concludes the proof of the second

equalities of Example 3.21.

In the critical case, by [11, Lemma 45] we have limk→0H(u) = u
2π , and we recover

that PD,u

dimer(e) = θ
π independently of u [45].

B.2 Dimers on GQ

We compute the probability of single edges occurring in dimer configurations of GQ

chosen with respect to the measure PQ

dimer. Using the mapping between the dimer model
on GQ and the free-fermion, zero-field 6-vertex model [62, 76, 32], this also gives results
for the corresponding 6-vertex Boltzmann measure. Notation used are those of Figure 31
below.

b

w1w3

w2

eiᾱ

eiβ̄
v1 v2

f1

f2

w

θ̄

Figure 31: Notation around a vertex b of GQ.

For every edge wb of GQ we have, PQ

dimer(bw) = KQ

b,w(KQ)−1
w,b. We compute (KQ)−1

wi,b

using Corollary 4.16, i ∈ {1, 2}. In both cases we have β̄f = β̄; when w = w1 then β̄i = β̄

and when w = w2 then β̄i = β̄ − π. Thus,

(KQ)−1
w1,b

=
1

[cn(θ) sn(θ) nd(θ)]
1
2

K(β)−1
v2,w =

e−i
ᾱ+β̄

2

sn(θ)
K(β)w,v2K(β)−1

v2,w =
e−i

ᾱ+β̄
2

sn(θ)
PD,β

dimer(wv2)

(KQ)−1
w2,b

=
i

[cn(θ) sn(θ) nd(θ)]
1
2

(−i)K(β)−1
f2,w

=
−ie−i

ᾱ+β̄
2

cn(θ)
K(β)w,f2K(β)−1

f2,w

=
−ie−i

ᾱ+β̄
2

cn(θ)
PD,β

dimer(wf2),

where in the second equalities of each line we used the definition of K(β), see Section 3.1
and in the third equalities we used the formulas for edge-probabilities on GD.
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Returning to the definition of KQ, this immediately gives,

PQ

dimer(bw1) = PD,β

dimer(wv2), PQ

dimer(bw2) = PD,β

dimer(wf2).

We now use the computations of Example 3.21 evaluated at u = β. In the second line we
use that (uα+2K)∗|β = (2K − uα)|β = 2K − θ, (uβ)∗|β = (K − uβ)|β = K,

PQ

dimer(w1b) = PD,β

dimer(wv2) = H(2θ)−H(0) = H(2θ), since H(0) = 0

PQ

dimer(w2b) = PD,β

dimer(wf2) = H(2(2K − θ))−H(2K) =
1

2
−H(2θ),

where in the last equality we used [11, Lemma 45] to obtain:

H(4K − 2θ) = H(−2θ) + 1 = −H(2θ) + 1

H(2K) = H(4K − 2K) = H(−2K) + 1 = −H(2K) + 1 ⇒ H(2K) =
1

2
.

Since probabilities around the vertex b sum to 1, we have PQ

dimer(w3b) = 1
2 .

B.3 Dimers on GF

We now compute single edge probabilities for dimer configurations of GF chosen with
respect to the Boltzmann measure PF

dimer.

b b′

a

a′

a′′b

b′′

w

w′

w′′

Figure 32: Notation.

Setting
¯
a = a′ in Formula (5.13) gives,

(KF)−1
a′,a = −1

2
(K̃Q)−1

w′,bεb,a + κa′,a = − 1

2 tanh(2J)
PQ

dimer(bw
′)εb,a′εb,a −

1

4
εa′,a,

where we used that PQ

dimer(bw
′) = K̃Q

b,w′(K̃
Q)−1

w′,b = εb,a′ tanh(2J)(K̃Q)−1
w′,b,

= εa′,a

[
−1

4
+
PQ

dimer(bw
′)

2 tanh(2J)

]
, since the orientation of the triangle is Kasteleyn.

We deduce that PF

dimer(aa
′) = KF

a,a′(K
F)−1
a′,a = 1

4 −
P

Q
dimer(bw

′)

2 tanh(2J) .

Setting
¯
a = a′ and in Formula (5.11) gives,

(KF)−1
a′,b =

1

2

[
e2J cosh−1(2J)(KQ)−1

w′,b + εb′,b cosh−1(2J)(KQ)−1
w′,b′

]
=

1

2

[
(1 + tanh(2J))(KQ)−1

w′,b + εb′,b cosh−1(2J)(KQ)−1
w′,b′

]
, using (5.9)

=
1

2

[
(1 + tanh(2J))εb,a′

PQ

dimer(bw
′)

tanh(2J)
+ εb,a′P

Q

dimer(b
′w′)

]
,
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where, as before, we returned to the definition of KQ and of single edge probabilities
of GQ

=
εb,a′

2

[
PQ

dimer(bw
′) + PQ

dimer(b
′w′) +

PQ

dimer(bw
′)

tanh(2J)

]
=
εb,a′

2

[
1− PQ

dimer(b
′′w′) +

PQ

dimer(bw
′)

tanh(2J)

]
,

using that the sum of probabilities is 1 around w′ for PQ

dimer. We deduce that PF

dimer(ba
′) =

KF

b,a′(K
F)−1
a′,b = 1

2 −
P

Q
dimer(b

′′w′)

2 +
P

Q
dimer(bw

′)

2 tanh(2J) .

As a consequence also, we have: PF

dimer(ba
′)+PF

dimer(aa
′) = 3

4−
P

Q
dimer(b

′′w′)

2 . Using that

the sum of probabilities around a′ is 1, we deduce that PF

dimer(ab) =
P

Q
dimer(bw)

2 +
P

Q
dimer(bw

′)

2 tanh(2J) .
Using that the sum of probabilities around the vertex b is 1, we obtain

PF

dimer(bb
′) =

1

2
+
PQ

dimer(b
′′w′)

2
−
PQ

dimer(bw)

2
−
PQ

dimer(bw
′)

2
.

By symmetry PQ

dimer(bw) = 1
2 = PQ

dimer(b
′′w′), implying the expressions of Example 5.6.
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