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1. OUTLINE

We thank the discussants for their insightful and gen-
erous comments. We organized our reply around a few
themes, rather than responding to issues one by one. In
Section 2, we recap the major elements of the paper in
light of the discussion. Then Section 3 reviews the sev-
eral goals of matching. Finally, Section 4 discusses open
questions.

2. RECAP

First, let us restate the main themes of the paper.

• Network optimization. In our paper, each matched sam-
ple is obtained by optimizing a criterion subject to con-
straints. Specifically, each match is obtained as a min-
imum cost flow in a network, a rich but special fam-
ily of integer programs that can be solved in polyno-
mial time; see Bertsekas (1998) and Korte and Vygen
(2012). There are other approaches to matching that
leave the world of polynomial-time optimization algo-
rithms, and these have both advantages and disadvan-
tages (Zubizarreta, 2012; Karmakar, Small and Rosen-
baum, 2019), but they are not discussed in our paper.

• The constraints do most of the covariate balancing.
It is not possible to closely pair individuals for many
covariates. It is possible to form treated and control
groups with similar distributions of many covariates;
that is, it is possible to balance many low-dimensional
summaries of high-dimensional covariates. Balancing
of covariates is largely achieved by the constraints, not
by minimizing the within pair covariate distance. The
balancing constraints include: (i) calipers on the rank
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of the scalar propensity score, (ii) near-fine balance
constraints for a nominal covariate, perhaps with thou-
sands of levels, (iii) possibly other balance constraints
(Zubizarreta, 2012; Yu and Rosenbaum, 2019). If the
constraints do most of the work, then finding the con-
straints that achieve your objectives is a central aspect
of matching. In contrast, covariate distances used for
pairing should focus on a few key covariates highly pre-
dictive of the outcome (Rosenbaum, 2005; Zubizarreta,
Paredes and Rosenbaum, 2014).

• Optimization is not recommendation. As our example
illustrates, the standard practice is to build several opti-
mal matched samples, then pick the best one. There is
no contradiction here: an optimal match is the solution
to an optimization problem, not a recommended match.
The practical goal is a match that is good in several
senses, not best in one overriding sense, so each opti-
mal solution is merely an approximation to the prac-
tical goal. Optimization is an aid to judgement, not a
substitute for judgement. It is possible to produce the
set of Pareto optima for a multi-objective optimization
problem as a potentially useful guide (Pimentel and
Kelz, 2020; Rosenbaum, 2012), but ultimately the in-
vestigators must pick one match, so the basic structure
is unchanged: practical judgement is used to pick the
most satisfactory of several optimally matched sam-
ples. Several optimal solutions provide points on a map
by which judgement can steer among multiple objec-
tives. Matching is part of the design of the study, com-
pleted prior to the examination of outcomes (Rubin,
2007).

• Guarantee feasibility; guarantee speed. There is no
point in trying to solve an optimization problem sub-
ject to constraints if no solution satisfies the constraints.
A fast implementation of Glover’s (1967) algorithm
permits certain types of constraints to be checked for
feasibility at negligible cost. These include combina-
tions of: (i) exact match constraints for a nominal co-
variate, perhaps with many levels, (ii) a caliper on the
rank of the propensity score, (iii) a near-neighbor count
on the propensity score. A threshold algorithm—a bi-
nary search—rapidly finds the tightest feasible con-
straint with negligible error, thereby guiding optimal
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matching, avoiding infeasibility. The bigmatch pack-
age finds the tightest feasible caliper and then pauses
to ask you: Now that you know the tightest feasible
caliper, what caliper would you like to use? A smaller
caliper is infeasible, but a larger caliper might bet-
ter balance several objectives. The investigator controls
and knows the degree of sparsity of the network before
lengthy computations begin. Stated differently, the in-
vestigator knows and controls ν, so that Proposition 6
provides the relevant guide to the situation at hand.

• Do not compute all T × C distances. Recall that there
are T treated units τ , C potential controls γ , a co-
variate distance δ(τ, γ ) between each treated unit τ

and each potential control γ , where T ≤ C so that
T × C = O(C2); commonly, T ∝ C. Threshold algo-
rithms, of the type proposed by Garfinkel (1971), have
been used before in matching to identify or impose
a tightest feasible constraint on a minimum distance
match (Rosenbaum, 2017); however, previous imple-
mentations required the computation of all T × C dis-
tances, δ(τ, γ ), so these algorithms were computation-
ally infeasible in large matching problems. Although
T × C = O(C2) appears small compared to the theo-
retical computational time bound O(C2 logC) for op-
timizing a sparse network, the bound is a theoreti-
cal worst case rarely encountered in practice, while
computing all T × C distances, δ(τ, γ ), actually takes
T × C steps. Although this is not a theorem, our prac-
tical experience is that the computer spends most of
its time calculating distances, δ(τ, γ ), and creating the
network, and it spends much less time on optimiza-
tion. If it is a mistake to pair a treated unit and a con-
trol with very different values of the propensity score,
then why compute a Mahalanobis distance, δ(τ, γ ), be-
tween two such units? The bigmatch package avoids
the computation of most distances, δ(τ, γ ), because
the bipartite graph has been made sparser before any
distances are computed. In the example, T = 38,841,
C = 159,527, so there are T ×C = 6.2×109 distances,
but most of these were never computed.

• The big gains come from near-fine balance. In Ta-
ble 2 of the article, the 463 Principal Procedure cate-
gories, the 973 Principal Diagnosis categories and their
473 × 973 = 450,499 interaction categories are better
balanced in our final matched sample than they would
have been in the most balanced of 10,000 randomized
experiments built from the same data. This result is pro-
duced in large part by the near-fine balance constraint.
The big gains from solving one sparse optimization
problem, rather than many smaller dense optimization
problems, come from the possibility of using near-fine
balance on a large scale. A small but important innova-
tion in the bigmatch package is the implementation
of near-fine balance as a soft constraint, ensuring that

the feasibility guaranteed by Glover’s algorithm is not
lost when the additional near-fine balance constraint is
imposed.

3. MATCHING HAS SEVERAL OBJECTIVES

The term “convincing evidence” has two meanings, a
normative meaning and a descriptive meaning, that can be
in conflict. At times, evidence that should convince an au-
dience does not do so. At other times, evidence that does
convince an audience should not do so. In a successful sci-
entific study, the normative and descriptive meanings do
not diverge. Evidence is convincing precisely to the extent
that it ought to be convincing, and the reasons it ought
to convince coincide with the reasons it does convince.
Achieving this is the first, the most important objective of
matching.

The audience for a matched observational study is
rarely an audience of statisticians. Surgeons are the au-
dience for a study of surgery. Oncologists are the au-
dience for a study of oncology. Health policy makers
are the audience for a study of health policy. Each such
audience has technical expertise that statisticians lack.
A matched study is intended to be open to view by rel-
evant experts, open to knowledgeable critical assessment.
A matched study straightforwardly shows who was com-
pared to whom, in what senses they were comparable and
in what other senses they might differ. A matched study
straightforwardly compares outcomes in treated and con-
trol groups whose degree of comparability is open to view.
If a study has limitations, then these limitations are open
to view by experts in the field. The audience does not need
to understand a matching algorithm to critically appraise
the resulting matched sample. Too often, statistical analy-
sis based on elaborate models and methodology is little
more than a report by the study’s authors of an essen-
tially private experience that they had with data. This does
not happen with a matched study if properly designed and
conducted.

A randomized clinical trial has a primary statistical
analysis stated in the study’s protocol. Matching sets up
the basic comparison prior to examination of outcomes,
thereby framing a primary analysis. A primary analy-
sis does not preclude secondary and exploratory analy-
ses; rather, a primary analysis distinguishes such analy-
ses. Tukey (1980), p. 24, wrote: “I see no real alterna-
tive, in most truly confirmatory studies, to having a single
main question—in which a question is specified by all of
design, collection, monitoring and analysis.” Secondary
analyses are distinguished from exploratory analyses in
the sense that: (i) secondary analyses are planned before
examining outcomes, (ii) in some appropriate sense, sec-
ondary analyses control the frequency of errors when one
or more analyses continue beyond the primary analysis.
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The central problem in an observational study is that ad-
justments for measured covariates may fail to render com-
parable treated and control groups, because these groups
may differ with respect to covariates that were not mea-
sured. Potential bias from unmeasured covariates is the
central problem no matter how adjustments are made for
measured covariates. Double or triple adjustment for mea-
sured covariates leaves the central problem untouched.
However, it is known that if matching balances many co-
variates but pairs closely for a few key covariates pre-
dictive of the outcome, then insensitivity to unmeasured
covariates is increased, that is, the design sensitivity is
increased (Rosenbaum, 2005; Zubizarreta, Paredes and
Rosenbaum, 2014). Typically, propensity scores and fine
balance try to balance many covariates, while distances
and exact matching try to ensure close pairing for a few
key covariates.

At times, the magnitude of a treatment effect varies with
the level of a measured covariate; that is, there is effect
modification. When this occurs, conclusions may be in-
sensitive to larger unmeasured biases at some levels of
this covariate, because larger effects are typically insensi-
tive to larger unmeasured biases. A principled, planned
secondary analysis may demonstrate this in a sample
matched for this covariate (Hsu et al., 2015; Lee, Small
and Rosenbaum, 2018).

In their discussion, Stuart and Ackerman correctly em-
phasize the importance of the early planning of large ob-
servational studies. When the sample size is large, theory
and experience suggest that it is often helpful to create a
10% planning sample that is used and discarded, together
with a focused and planned 90% analysis sample (Heller,
Rosenbaum and Small, 2009; Zhang et al., 2011). Often,
the loss of a small part of a large sample is inconsequential
when the central problems are biases that do not diminish
with increasing sample sizes. Zhang et al. (2011) used a
small sample of about 13,000 of their matched pairs for
planning, leaving an analysis sample of about 120,000
pairs. The 13,000 pairs were useful in planning and were
not missed in analysis.

4. DIRECTIONS

4.1 Full Matching and Related Techniques

As Fredrickson, Errickson and Hansen observe in their
discussion, matching with a fixed number of controls,
and even pair matching, are not always possible. The is-
sue turns on Frank Yoon’s entire number, defined to be
ent(x) = {1 − Pr(Z = 1|x)}/Pr(Z = 1|x) where Pr(Z =
1|x) is the propensity score: in large samples, we expect
to see ent(x) controls available per treated individual at
value x of the observed covariates. In concept in large
samples, pair matching is feasible if ent(x) > 1 for all

x, matching 2-to-1 is feasible if ent(x) > 2, etc. In con-
trast, in concept in large samples, full matching is feasi-
ble whenever x has the same support in treated and con-
trol groups. Ways of combining variable-ratio matching
with fine balance have only begun to be studied, but show
promise; see Pimentel, Yoon and Keele (2015). What
is a good way to combine full matching with fine bal-
ance in large problems without computing most distances,
δ(τ, γ )?

An alternative approach when ent(x) < 1 for some x is
to stay with pair matching but redefine the study popula-
tion using x. A promising method is discussed by Fogarty
et al. (2016).

4.2 Beyond Calipers and Counts of Nearest
Neighbors

Calipers, exact matching and counts of nearest neigh-
bors have been in the statistical literature for decades.
However, a doubly convex bipartite graph can be pro-
duced in other ways than by sorting on exact match cate-
gories and a propensity score. Are there better ways? Tra-
ditional calipers are symmetric, but the biases that they
are intended to remove are asymmetric. Suppose that the
treated group tends to be older than the controls, prior to
matching. A symmetric caliper might allow a control to
be at most five years older or five years younger than a
treated individual. Given the initial direction of the bias,
within this symmetric caliper, controls will tend to be
younger, on average. An asymmetric caliper might al-
low a control to be up to eight years older or up to two
years younger than a treated individual. The length of the
caliper is ten years in both cases, symmetric or asymmet-
ric, but the asymmetric caliper is tolerant of mismatches
that work against the bias. Yu and Rosenbaum (2019), Ta-
ble 3, show that asymmetric calipers can remove much
more bias if the degree of asymmetry is selected carefully.
Glover’s algorithm could be used to rapidly select both the
length of the caliper for the rank of the propensity score
and its degree of asymmetry.

More generally, directional penalties adjust distances to
favor pairs that work against the direction of biases (Yu
and Rosenbaum, 2019). Suppose that treated individuals,
τ s, are commonly older than controls, γ s, prior to match-
ing. The simplest directional penalty slightly increases the
distance δ(τ, γ ) whenever τ is older than γ . Directional
penalties do not affect the computational complexity of
network optimization algorithms, nor do they require
computation of T × C unpenalized distances, δ(τ, γ ),
so directional penalties can be used in large matching
problems. Directional penalties are closely related to La-
grangians used in integer programming (Yu and Rosen-
baum, 2019, Section 2.5).
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